freebsd-skq/lib/msun/ld128/e_powl.c
bde 6914d33dfe Add a macro nan_mix() and use it to get NaN results that are (bitwise)
independent of the precision in most cases.  This is mainly to simplify
checking for errors.  r176266 did this for e_pow[f].c using a less
refined expression that often didn't work.  r176276 fixes an error in
the log message for r176266.  The main refinement is to always expand
to long double precision.  See old log messages (especially these 2)
and the comment on the macro for more general details.

Specific details:
- using nan_mix() consistently for the new and old pow*() functions was
  the only thing needed to make my consistency test for powl() vs pow()
  pass on amd64.

- catrig[fl].c already had all the refinements, but open-coded.

- e_atan2[fl].c, e_fmod[fl].c and s_remquo[fl] only had primitive NaN
  mixing.

- e_hypot[fl].c already had a different refined version of r176266.  Refine
  this further.  nan_mix() is not directly usable here since we want to
  clear the sign bit.

- e_remainder[f].c already had an earlier version of r176266.

- s_ccosh[f].c,/s_csinh[f].c already had a version equivalent to r176266.
  Refine this further.  nan_mix() is not directly usable here since the
  expression has to handle some non-NaN cases.

- s_csqrt.[fl]: the mixing was special and mostly wrong.  Partially fix the
  special version.

- s_ctanh[f].c already had a version of r176266.
2018-07-17 07:42:14 +00:00

444 lines
12 KiB
C

/*-
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* powl(x,y) return x**y
*
* n
* Method: Let x = 2 * (1+f)
* 1. Compute and return log2(x) in two pieces:
* log2(x) = w1 + w2,
* where w1 has 113-53 = 60 bit trailing zeros.
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
* arithmetic, where |y'|<=0.5.
* 3. Return x**y = 2**n*exp(y'*log2)
*
* Special cases:
* 1. (anything) ** 0 is 1
* 2. (anything) ** 1 is itself
* 3. (anything) ** NAN is NAN
* 4. NAN ** (anything except 0) is NAN
* 5. +-(|x| > 1) ** +INF is +INF
* 6. +-(|x| > 1) ** -INF is +0
* 7. +-(|x| < 1) ** +INF is +0
* 8. +-(|x| < 1) ** -INF is +INF
* 9. +-1 ** +-INF is NAN
* 10. +0 ** (+anything except 0, NAN) is +0
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
* 12. +0 ** (-anything except 0, NAN) is +INF
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
* 15. +INF ** (+anything except 0,NAN) is +INF
* 16. +INF ** (-anything except 0,NAN) is +0
* 17. -INF ** (anything) = -0 ** (-anything)
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <float.h>
#include <math.h>
#include "math_private.h"
static const long double bp[] = {
1.0L,
1.5L,
};
/* log_2(1.5) */
static const long double dp_h[] = {
0.0,
5.8496250072115607565592654282227158546448E-1L
};
/* Low part of log_2(1.5) */
static const long double dp_l[] = {
0.0,
1.0579781240112554492329533686862998106046E-16L
};
static const long double zero = 0.0L,
one = 1.0L,
two = 2.0L,
two113 = 1.0384593717069655257060992658440192E34L,
huge = 1.0e3000L,
tiny = 1.0e-3000L;
/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
z = (x-1)/(x+1)
1 <= x <= 1.25
Peak relative error 2.3e-37 */
static const long double LN[] =
{
-3.0779177200290054398792536829702930623200E1L,
6.5135778082209159921251824580292116201640E1L,
-4.6312921812152436921591152809994014413540E1L,
1.2510208195629420304615674658258363295208E1L,
-9.9266909031921425609179910128531667336670E-1L
};
static const long double LD[] =
{
-5.129862866715009066465422805058933131960E1L,
1.452015077564081884387441590064272782044E2L,
-1.524043275549860505277434040464085593165E2L,
7.236063513651544224319663428634139768808E1L,
-1.494198912340228235853027849917095580053E1L
/* 1.0E0 */
};
/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
0 <= x <= 0.5
Peak relative error 5.7e-38 */
static const long double PN[] =
{
5.081801691915377692446852383385968225675E8L,
9.360895299872484512023336636427675327355E6L,
4.213701282274196030811629773097579432957E4L,
5.201006511142748908655720086041570288182E1L,
9.088368420359444263703202925095675982530E-3L,
};
static const long double PD[] =
{
3.049081015149226615468111430031590411682E9L,
1.069833887183886839966085436512368982758E8L,
8.259257717868875207333991924545445705394E5L,
1.872583833284143212651746812884298360922E3L,
/* 1.0E0 */
};
static const long double
/* ln 2 */
lg2 = 6.9314718055994530941723212145817656807550E-1L,
lg2_h = 6.9314718055994528622676398299518041312695E-1L,
lg2_l = 2.3190468138462996154948554638754786504121E-17L,
ovt = 8.0085662595372944372e-0017L,
/* 2/(3*log(2)) */
cp = 9.6179669392597560490661645400126142495110E-1L,
cp_h = 9.6179669392597555432899980587535537779331E-1L,
cp_l = 5.0577616648125906047157785230014751039424E-17L;
long double
powl(long double x, long double y)
{
long double z, ax, z_h, z_l, p_h, p_l;
long double yy1, t1, t2, r, s, t, u, v, w;
long double s2, s_h, s_l, t_h, t_l;
int32_t i, j, k, yisint, n;
u_int32_t ix, iy;
int32_t hx, hy;
ieee_quad_shape_type o, p, q;
p.value = x;
hx = p.parts32.mswhi;
ix = hx & 0x7fffffff;
q.value = y;
hy = q.parts32.mswhi;
iy = hy & 0x7fffffff;
/* y==zero: x**0 = 1 */
if ((iy | q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
return one;
/* 1.0**y = 1; -1.0**+-Inf = 1 */
if (x == one)
return one;
if (x == -1.0L && iy == 0x7fff0000
&& (q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
return one;
/* +-NaN return x+y */
if ((ix > 0x7fff0000)
|| ((ix == 0x7fff0000)
&& ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) != 0))
|| (iy > 0x7fff0000)
|| ((iy == 0x7fff0000)
&& ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) != 0)))
return nan_mix(x, y);
/* determine if y is an odd int when x < 0
* yisint = 0 ... y is not an integer
* yisint = 1 ... y is an odd int
* yisint = 2 ... y is an even int
*/
yisint = 0;
if (hx < 0)
{
if (iy >= 0x40700000) /* 2^113 */
yisint = 2; /* even integer y */
else if (iy >= 0x3fff0000) /* 1.0 */
{
if (floorl (y) == y)
{
z = 0.5 * y;
if (floorl (z) == z)
yisint = 2;
else
yisint = 1;
}
}
}
/* special value of y */
if ((q.parts32.mswlo | q.parts32.lswhi | q.parts32.lswlo) == 0)
{
if (iy == 0x7fff0000) /* y is +-inf */
{
if (((ix - 0x3fff0000) | p.parts32.mswlo | p.parts32.lswhi |
p.parts32.lswlo) == 0)
return y - y; /* +-1**inf is NaN */
else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */
return (hy >= 0) ? y : zero;
else /* (|x|<1)**-,+inf = inf,0 */
return (hy < 0) ? -y : zero;
}
if (iy == 0x3fff0000)
{ /* y is +-1 */
if (hy < 0)
return one / x;
else
return x;
}
if (hy == 0x40000000)
return x * x; /* y is 2 */
if (hy == 0x3ffe0000)
{ /* y is 0.5 */
if (hx >= 0) /* x >= +0 */
return sqrtl (x);
}
}
ax = fabsl (x);
/* special value of x */
if ((p.parts32.mswlo | p.parts32.lswhi | p.parts32.lswlo) == 0)
{
if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
{
z = ax; /*x is +-0,+-inf,+-1 */
if (hy < 0)
z = one / z; /* z = (1/|x|) */
if (hx < 0)
{
if (((ix - 0x3fff0000) | yisint) == 0)
{
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
}
else if (yisint == 1)
z = -z; /* (x<0)**odd = -(|x|**odd) */
}
return z;
}
}
/* (x<0)**(non-int) is NaN */
if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
return (x - x) / (x - x);
/* |y| is huge.
2^-16495 = 1/2 of smallest representable value.
If (1 - 1/131072)^y underflows, y > 1.4986e9 */
if (iy > 0x401d654b)
{
/* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
if (iy > 0x407d654b)
{
if (ix <= 0x3ffeffff)
return (hy < 0) ? huge * huge : tiny * tiny;
if (ix >= 0x3fff0000)
return (hy > 0) ? huge * huge : tiny * tiny;
}
/* over/underflow if x is not close to one */
if (ix < 0x3ffeffff)
return (hy < 0) ? huge * huge : tiny * tiny;
if (ix > 0x3fff0000)
return (hy > 0) ? huge * huge : tiny * tiny;
}
n = 0;
/* take care subnormal number */
if (ix < 0x00010000)
{
ax *= two113;
n -= 113;
o.value = ax;
ix = o.parts32.mswhi;
}
n += ((ix) >> 16) - 0x3fff;
j = ix & 0x0000ffff;
/* determine interval */
ix = j | 0x3fff0000; /* normalize ix */
if (j <= 0x3988)
k = 0; /* |x|<sqrt(3/2) */
else if (j < 0xbb67)
k = 1; /* |x|<sqrt(3) */
else
{
k = 0;
n += 1;
ix -= 0x00010000;
}
o.value = ax;
o.parts32.mswhi = ix;
ax = o.value;
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
v = one / (ax + bp[k]);
s = u * v;
s_h = s;
o.value = s_h;
o.parts32.lswlo = 0;
o.parts32.lswhi &= 0xf8000000;
s_h = o.value;
/* t_h=ax+bp[k] High */
t_h = ax + bp[k];
o.value = t_h;
o.parts32.lswlo = 0;
o.parts32.lswhi &= 0xf8000000;
t_h = o.value;
t_l = ax - (t_h - bp[k]);
s_l = v * ((u - s_h * t_h) - s_h * t_l);
/* compute log(ax) */
s2 = s * s;
u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
r = s2 * s2 * u / v;
r += s_l * (s_h + s);
s2 = s_h * s_h;
t_h = 3.0 + s2 + r;
o.value = t_h;
o.parts32.lswlo = 0;
o.parts32.lswhi &= 0xf8000000;
t_h = o.value;
t_l = r - ((t_h - 3.0) - s2);
/* u+v = s*(1+...) */
u = s_h * t_h;
v = s_l * t_h + t_l * s;
/* 2/(3log2)*(s+...) */
p_h = u + v;
o.value = p_h;
o.parts32.lswlo = 0;
o.parts32.lswhi &= 0xf8000000;
p_h = o.value;
p_l = v - (p_h - u);
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
z_l = cp_l * p_h + p_l * cp + dp_l[k];
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
t = (long double) n;
t1 = (((z_h + z_l) + dp_h[k]) + t);
o.value = t1;
o.parts32.lswlo = 0;
o.parts32.lswhi &= 0xf8000000;
t1 = o.value;
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
/* s (sign of result -ve**odd) = -1 else = 1 */
s = one;
if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
s = -one; /* (-ve)**(odd int) */
/* split up y into yy1+y2 and compute (yy1+y2)*(t1+t2) */
yy1 = y;
o.value = yy1;
o.parts32.lswlo = 0;
o.parts32.lswhi &= 0xf8000000;
yy1 = o.value;
p_l = (y - yy1) * t1 + y * t2;
p_h = yy1 * t1;
z = p_l + p_h;
o.value = z;
j = o.parts32.mswhi;
if (j >= 0x400d0000) /* z >= 16384 */
{
/* if z > 16384 */
if (((j - 0x400d0000) | o.parts32.mswlo | o.parts32.lswhi |
o.parts32.lswlo) != 0)
return s * huge * huge; /* overflow */
else
{
if (p_l + ovt > z - p_h)
return s * huge * huge; /* overflow */
}
}
else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */
{
/* z < -16495 */
if (((j - 0xc00d01bc) | o.parts32.mswlo | o.parts32.lswhi |
o.parts32.lswlo)
!= 0)
return s * tiny * tiny; /* underflow */
else
{
if (p_l <= z - p_h)
return s * tiny * tiny; /* underflow */
}
}
/* compute 2**(p_h+p_l) */
i = j & 0x7fffffff;
k = (i >> 16) - 0x3fff;
n = 0;
if (i > 0x3ffe0000)
{ /* if |z| > 0.5, set n = [z+0.5] */
n = floorl (z + 0.5L);
t = n;
p_h -= t;
}
t = p_l + p_h;
o.value = t;
o.parts32.lswlo = 0;
o.parts32.lswhi &= 0xf8000000;
t = o.value;
u = t * lg2_h;
v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
z = u + v;
w = v - (z - u);
/* exp(z) */
t = z * z;
u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
t1 = z - t * u / v;
r = (z * t1) / (t1 - two) - (w + z * w);
z = one - (r - z);
o.value = z;
j = o.parts32.mswhi;
j += (n << 16);
if ((j >> 16) <= 0)
z = scalbnl (z, n); /* subnormal output */
else
{
o.parts32.mswhi = j;
z = o.value;
}
return s * z;
}