e3faadaafe
For a slightly thorough explaination, please refer to [1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html . Summary of changes includes: 1 Volume Per-Channel (vpc). Provides private / standalone volume control unique per-stream pcm channel without touching master volume / pcm. Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for backwards compatibility, SOUND_MIXER_PCM through the opened dsp device instead of /dev/mixer. Special "bypass" mode is enabled through /dev/mixer which will automatically detect if the adjustment is made through /dev/mixer and forward its request to this private volume controller. Changes to this volume object will not interfere with other channels. Requirements: - SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which require specific application modifications (preferred). - No modifications required for using bypass mode, so applications like mplayer or xmms should work out of the box. Kernel hints: - hint.pcm.%d.vpc (0 = disable vpc). Kernel sysctls: - hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer bypass mode. - hw.snd.vpc_autoreset (default: 1). By default, closing/opening /dev/dsp will reset the volume back to 0 db gain/attenuation. Setting this to 0 will preserve its settings across device closing/opening. - hw.snd.vpc_reset (default: 0). Panic/reset button to reset all volume settings back to 0 db. - hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value. 2 High quality fixed-point Bandlimited SINC sampling rate converter, based on Julius O'Smith's Digital Audio Resampling - http://ccrma.stanford.edu/~jos/resample/. It includes a filter design script written in awk (the clumsiest joke I've ever written) - 100% 32bit fixed-point, 64bit accumulator. - Possibly among the fastest (if not fastest) of its kind. - Resampling quality is tunable, either runtime or during kernel compilation (FEEDER_RATE_PRESETS). - Quality can be further customized during kernel compilation by defining FEEDER_RATE_PRESETS in /etc/make.conf. Kernel sysctls: - hw.snd.feeder_rate_quality. 0 - Zero-order Hold (ZOH). Fastest, bad quality. 1 - Linear Interpolation (LINEAR). Slightly slower than ZOH, better quality but still does not eliminate aliasing. 2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC quality always start from 2 and above. Rough quality comparisons: - http://people.freebsd.org/~ariff/z_comparison/ 3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be directly fed into the hardware. 4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf. 5 Transparent/Adaptive Virtual Channel. Now you don't have to disable vchans in order to make digital format pass through. It also makes vchans more dynamic by choosing a better format/rate among all the concurrent streams, which means that dev.pcm.X.play.vchanformat/rate becomes sort of optional. 6 Exclusive Stream, with special open() mode O_EXCL. This will "mute" other concurrent vchan streams and only allow a single channel with O_EXCL set to keep producing sound. Other Changes: * most feeder_* stuffs are compilable in userland. Let's not speculate whether we should go all out for it (save that for FreeBSD 16.0-RELEASE). * kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org> * pull out channel mixing logic out of vchan.c and create its own feeder_mixer for world justice. * various refactoring here and there, for good or bad. * activation of few more OSSv4 ioctls() (see [1] above). * opt_snd.h for possible compile time configuration: (mostly for debugging purposes, don't try these at home) SND_DEBUG SND_DIAGNOSTIC SND_FEEDER_MULTIFORMAT SND_FEEDER_FULL_MULTIFORMAT SND_FEEDER_RATE_HP SND_PCM_64 SND_OLDSTEREO Manual page updates are on the way. Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many unsung / unnamed heroes.
342 lines
8.6 KiB
C
342 lines
8.6 KiB
C
/*-
|
|
* Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/* feeder_volume, a long 'Lost Technology' rather than a new feature. */
|
|
|
|
#ifdef _KERNEL
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_snd.h"
|
|
#endif
|
|
#include <dev/sound/pcm/sound.h>
|
|
#include <dev/sound/pcm/pcm.h>
|
|
#include "feeder_if.h"
|
|
|
|
#define SND_USE_FXDIV
|
|
#include "snd_fxdiv_gen.h"
|
|
|
|
SND_DECLARE_FILE("$FreeBSD$");
|
|
#endif
|
|
|
|
typedef void (*feed_volume_t)(int *, int *, uint32_t, uint8_t *, uint32_t);
|
|
|
|
#define FEEDVOLUME_CALC8(s, v) (SND_VOL_CALC_SAMPLE((intpcm_t) \
|
|
(s) << 8, v) >> 8)
|
|
#define FEEDVOLUME_CALC16(s, v) SND_VOL_CALC_SAMPLE((intpcm_t)(s), v)
|
|
#define FEEDVOLUME_CALC24(s, v) SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
|
|
#define FEEDVOLUME_CALC32(s, v) SND_VOL_CALC_SAMPLE((intpcm64_t)(s), v)
|
|
|
|
#define FEEDVOLUME_DECLARE(SIGN, BIT, ENDIAN) \
|
|
static void \
|
|
feed_volume_##SIGN##BIT##ENDIAN(int *vol, int *matrix, \
|
|
uint32_t channels, uint8_t *dst, uint32_t count) \
|
|
{ \
|
|
intpcm##BIT##_t v; \
|
|
intpcm_t x; \
|
|
uint32_t i; \
|
|
\
|
|
dst += count * PCM_##BIT##_BPS * channels; \
|
|
do { \
|
|
i = channels; \
|
|
do { \
|
|
dst -= PCM_##BIT##_BPS; \
|
|
i--; \
|
|
x = PCM_READ_##SIGN##BIT##_##ENDIAN(dst); \
|
|
v = FEEDVOLUME_CALC##BIT(x, vol[matrix[i]]); \
|
|
x = PCM_CLAMP_##SIGN##BIT(v); \
|
|
_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x); \
|
|
} while (i != 0); \
|
|
} while (--count != 0); \
|
|
}
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
|
|
FEEDVOLUME_DECLARE(S, 16, LE)
|
|
FEEDVOLUME_DECLARE(S, 32, LE)
|
|
#endif
|
|
#if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
|
|
FEEDVOLUME_DECLARE(S, 16, BE)
|
|
FEEDVOLUME_DECLARE(S, 32, BE)
|
|
#endif
|
|
#ifdef SND_FEEDER_MULTIFORMAT
|
|
FEEDVOLUME_DECLARE(S, 8, NE)
|
|
FEEDVOLUME_DECLARE(S, 24, LE)
|
|
FEEDVOLUME_DECLARE(S, 24, BE)
|
|
FEEDVOLUME_DECLARE(U, 8, NE)
|
|
FEEDVOLUME_DECLARE(U, 16, LE)
|
|
FEEDVOLUME_DECLARE(U, 24, LE)
|
|
FEEDVOLUME_DECLARE(U, 32, LE)
|
|
FEEDVOLUME_DECLARE(U, 16, BE)
|
|
FEEDVOLUME_DECLARE(U, 24, BE)
|
|
FEEDVOLUME_DECLARE(U, 32, BE)
|
|
#endif
|
|
|
|
struct feed_volume_info {
|
|
uint32_t bps, channels;
|
|
feed_volume_t apply;
|
|
int volume_class;
|
|
int state;
|
|
int matrix[SND_CHN_MAX];
|
|
};
|
|
|
|
#define FEEDVOLUME_ENTRY(SIGN, BIT, ENDIAN) \
|
|
{ \
|
|
AFMT_##SIGN##BIT##_##ENDIAN, \
|
|
feed_volume_##SIGN##BIT##ENDIAN \
|
|
}
|
|
|
|
static const struct {
|
|
uint32_t format;
|
|
feed_volume_t apply;
|
|
} feed_volume_info_tab[] = {
|
|
#if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
|
|
FEEDVOLUME_ENTRY(S, 16, LE),
|
|
FEEDVOLUME_ENTRY(S, 32, LE),
|
|
#endif
|
|
#if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
|
|
FEEDVOLUME_ENTRY(S, 16, BE),
|
|
FEEDVOLUME_ENTRY(S, 32, BE),
|
|
#endif
|
|
#ifdef SND_FEEDER_MULTIFORMAT
|
|
FEEDVOLUME_ENTRY(S, 8, NE),
|
|
FEEDVOLUME_ENTRY(S, 24, LE),
|
|
FEEDVOLUME_ENTRY(S, 24, BE),
|
|
FEEDVOLUME_ENTRY(U, 8, NE),
|
|
FEEDVOLUME_ENTRY(U, 16, LE),
|
|
FEEDVOLUME_ENTRY(U, 24, LE),
|
|
FEEDVOLUME_ENTRY(U, 32, LE),
|
|
FEEDVOLUME_ENTRY(U, 16, BE),
|
|
FEEDVOLUME_ENTRY(U, 24, BE),
|
|
FEEDVOLUME_ENTRY(U, 32, BE)
|
|
#endif
|
|
};
|
|
|
|
#define FEEDVOLUME_TAB_SIZE ((int32_t) \
|
|
(sizeof(feed_volume_info_tab) / \
|
|
sizeof(feed_volume_info_tab[0])))
|
|
|
|
static int
|
|
feed_volume_init(struct pcm_feeder *f)
|
|
{
|
|
struct feed_volume_info *info;
|
|
struct pcmchan_matrix *m;
|
|
uint32_t i;
|
|
int ret;
|
|
|
|
if (f->desc->in != f->desc->out ||
|
|
AFMT_CHANNEL(f->desc->in) > SND_CHN_MAX)
|
|
return (EINVAL);
|
|
|
|
for (i = 0; i < FEEDVOLUME_TAB_SIZE; i++) {
|
|
if (AFMT_ENCODING(f->desc->in) ==
|
|
feed_volume_info_tab[i].format) {
|
|
info = malloc(sizeof(*info), M_DEVBUF,
|
|
M_NOWAIT | M_ZERO);
|
|
if (info == NULL)
|
|
return (ENOMEM);
|
|
|
|
info->bps = AFMT_BPS(f->desc->in);
|
|
info->channels = AFMT_CHANNEL(f->desc->in);
|
|
info->apply = feed_volume_info_tab[i].apply;
|
|
info->volume_class = SND_VOL_C_PCM;
|
|
info->state = FEEDVOLUME_ENABLE;
|
|
|
|
f->data = info;
|
|
m = feeder_matrix_default_channel_map(info->channels);
|
|
if (m == NULL) {
|
|
free(info, M_DEVBUF);
|
|
return (EINVAL);
|
|
}
|
|
|
|
ret = feeder_volume_apply_matrix(f, m);
|
|
if (ret != 0)
|
|
free(info, M_DEVBUF);
|
|
|
|
return (ret);
|
|
}
|
|
}
|
|
|
|
return (EINVAL);
|
|
}
|
|
|
|
static int
|
|
feed_volume_free(struct pcm_feeder *f)
|
|
{
|
|
struct feed_volume_info *info;
|
|
|
|
info = f->data;
|
|
if (info != NULL)
|
|
free(info, M_DEVBUF);
|
|
|
|
f->data = NULL;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
feed_volume_set(struct pcm_feeder *f, int what, int value)
|
|
{
|
|
struct feed_volume_info *info;
|
|
struct pcmchan_matrix *m;
|
|
int ret;
|
|
|
|
info = f->data;
|
|
ret = 0;
|
|
|
|
switch (what) {
|
|
case FEEDVOLUME_CLASS:
|
|
if (value < SND_VOL_C_BEGIN || value > SND_VOL_C_END)
|
|
return (EINVAL);
|
|
info->volume_class = value;
|
|
break;
|
|
case FEEDVOLUME_CHANNELS:
|
|
if (value < SND_CHN_MIN || value > SND_CHN_MAX)
|
|
return (EINVAL);
|
|
m = feeder_matrix_default_channel_map(value);
|
|
if (m == NULL)
|
|
return (EINVAL);
|
|
ret = feeder_volume_apply_matrix(f, m);
|
|
break;
|
|
case FEEDVOLUME_STATE:
|
|
if (!(value == FEEDVOLUME_ENABLE || value == FEEDVOLUME_BYPASS))
|
|
return (EINVAL);
|
|
info->state = value;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
break;
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
feed_volume_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
|
|
uint32_t count, void *source)
|
|
{
|
|
struct feed_volume_info *info;
|
|
uint32_t j, align;
|
|
int i, *vol, *matrix;
|
|
uint8_t *dst;
|
|
|
|
/*
|
|
* Fetch filter data operation.
|
|
*/
|
|
info = f->data;
|
|
|
|
if (info->state == FEEDVOLUME_BYPASS)
|
|
return (FEEDER_FEED(f->source, c, b, count, source));
|
|
|
|
vol = c->volume[SND_VOL_C_VAL(info->volume_class)];
|
|
matrix = info->matrix;
|
|
|
|
/*
|
|
* First, let see if we really need to apply gain at all.
|
|
*/
|
|
j = 0;
|
|
i = info->channels;
|
|
do {
|
|
if (vol[matrix[--i]] != SND_VOL_FLAT) {
|
|
j = 1;
|
|
break;
|
|
}
|
|
} while (i != 0);
|
|
|
|
/* Nope, just bypass entirely. */
|
|
if (j == 0)
|
|
return (FEEDER_FEED(f->source, c, b, count, source));
|
|
|
|
dst = b;
|
|
align = info->bps * info->channels;
|
|
|
|
do {
|
|
if (count < align)
|
|
break;
|
|
|
|
j = SND_FXDIV(FEEDER_FEED(f->source, c, dst, count, source),
|
|
align);
|
|
if (j == 0)
|
|
break;
|
|
|
|
info->apply(vol, matrix, info->channels, dst, j);
|
|
|
|
j *= align;
|
|
dst += j;
|
|
count -= j;
|
|
|
|
} while (count != 0);
|
|
|
|
return (dst - b);
|
|
}
|
|
|
|
static struct pcm_feederdesc feeder_volume_desc[] = {
|
|
{ FEEDER_VOLUME, 0, 0, 0, 0 },
|
|
{ 0, 0, 0, 0, 0 }
|
|
};
|
|
|
|
static kobj_method_t feeder_volume_methods[] = {
|
|
KOBJMETHOD(feeder_init, feed_volume_init),
|
|
KOBJMETHOD(feeder_free, feed_volume_free),
|
|
KOBJMETHOD(feeder_set, feed_volume_set),
|
|
KOBJMETHOD(feeder_feed, feed_volume_feed),
|
|
KOBJMETHOD_END
|
|
};
|
|
|
|
FEEDER_DECLARE(feeder_volume, NULL);
|
|
|
|
/* Extern */
|
|
|
|
/*
|
|
* feeder_volume_apply_matrix(): For given matrix map, apply its configuration
|
|
* to feeder_volume matrix structure. There are
|
|
* possibilites that feeder_volume be inserted
|
|
* before or after feeder_matrix, which in this
|
|
* case feeder_volume must be in a good terms
|
|
* with _current_ matrix.
|
|
*/
|
|
int
|
|
feeder_volume_apply_matrix(struct pcm_feeder *f, struct pcmchan_matrix *m)
|
|
{
|
|
struct feed_volume_info *info;
|
|
uint32_t i;
|
|
|
|
if (f == NULL || f->desc == NULL || f->desc->type != FEEDER_VOLUME ||
|
|
f->data == NULL || m == NULL || m->channels < SND_CHN_MIN ||
|
|
m->channels > SND_CHN_MAX)
|
|
return (EINVAL);
|
|
|
|
info = f->data;
|
|
|
|
for (i = 0; i < (sizeof(info->matrix) / sizeof(info->matrix[0])); i++) {
|
|
if (i < m->channels)
|
|
info->matrix[i] = m->map[i].type;
|
|
else
|
|
info->matrix[i] = SND_CHN_T_FL;
|
|
}
|
|
|
|
info->channels = m->channels;
|
|
|
|
return (0);
|
|
}
|