freebsd-skq/sys/x86/iommu/intel_dmar.h
Ryan Stone 6749935455 Re-implement the DMAR I/O MMU code in terms of PCI RIDs
Under the hood the VT-d spec is really implemented in terms of
PCI RIDs instead of bus/slot/function, even though the spec makes
pains to convert back to bus/slot/function in examples.  However
working with bus/slot/function is not correct when PCI ARI is
in use, so convert to using RIDs in most cases.  bus/slot/function
will only be used when reporting errors to a user.

Reviewed by:	kib
MFC after:	2 months
Sponsored by:	Sandvine Inc.
2014-04-01 15:48:46 +00:00

433 lines
14 KiB
C

/*-
* Copyright (c) 2013 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef __X86_IOMMU_INTEL_DMAR_H
#define __X86_IOMMU_INTEL_DMAR_H
/* Host or physical memory address, after translation. */
typedef uint64_t dmar_haddr_t;
/* Guest or bus address, before translation. */
typedef uint64_t dmar_gaddr_t;
struct dmar_qi_genseq {
u_int gen;
uint32_t seq;
};
struct dmar_map_entry {
dmar_gaddr_t start;
dmar_gaddr_t end;
dmar_gaddr_t free_after; /* Free space after the entry */
dmar_gaddr_t free_down; /* Max free space below the
current R/B tree node */
u_int flags;
TAILQ_ENTRY(dmar_map_entry) dmamap_link; /* Link for dmamap entries */
RB_ENTRY(dmar_map_entry) rb_entry; /* Links for ctx entries */
TAILQ_ENTRY(dmar_map_entry) unroll_link; /* Link for unroll after
dmamap_load failure */
struct dmar_ctx *ctx;
struct dmar_qi_genseq gseq;
};
RB_HEAD(dmar_gas_entries_tree, dmar_map_entry);
RB_PROTOTYPE(dmar_gas_entries_tree, dmar_map_entry, rb_entry,
dmar_gas_cmp_entries);
#define DMAR_MAP_ENTRY_PLACE 0x0001 /* Fake entry */
#define DMAR_MAP_ENTRY_RMRR 0x0002 /* Permanent, not linked by
dmamap_link */
#define DMAR_MAP_ENTRY_MAP 0x0004 /* Busdma created, linked by
dmamap_link */
#define DMAR_MAP_ENTRY_UNMAPPED 0x0010 /* No backing pages */
#define DMAR_MAP_ENTRY_QI_NF 0x0020 /* qi task, do not free entry */
#define DMAR_MAP_ENTRY_READ 0x1000 /* Read permitted */
#define DMAR_MAP_ENTRY_WRITE 0x2000 /* Write permitted */
#define DMAR_MAP_ENTRY_SNOOP 0x4000 /* Snoop */
#define DMAR_MAP_ENTRY_TM 0x8000 /* Transient */
struct dmar_ctx {
uint16_t rid; /* pci RID */
int domain; /* DID */
int mgaw; /* Real max address width */
int agaw; /* Adjusted guest address width */
int pglvl; /* The pagelevel */
int awlvl; /* The pagelevel as the bitmask, to set in
context entry */
dmar_gaddr_t end;/* Highest address + 1 in the guest AS */
u_int refs; /* References to the context, from tags */
struct dmar_unit *dmar;
struct bus_dma_tag_dmar ctx_tag; /* Root tag */
struct mtx lock;
LIST_ENTRY(dmar_ctx) link; /* Member in the dmar list */
vm_object_t pgtbl_obj; /* Page table pages */
u_int flags; /* Protected by dmar lock */
uint64_t last_fault_rec[2]; /* Last fault reported */
u_int entries_cnt;
u_long loads;
u_long unloads;
struct dmar_gas_entries_tree rb_root;
struct dmar_map_entries_tailq unload_entries; /* Entries to unload */
struct dmar_map_entry *first_place, *last_place;
struct task unload_task;
};
/* struct dmar_ctx flags */
#define DMAR_CTX_FAULTED 0x0001 /* Fault was reported,
last_fault_rec is valid */
#define DMAR_CTX_IDMAP 0x0002 /* Context uses identity page table */
#define DMAR_CTX_RMRR 0x0004 /* Context contains RMRR entry,
cannot be turned off */
#define DMAR_CTX_DISABLED 0x0008 /* Device is disabled, the
ephemeral reference is kept
to prevent context destruction */
#define DMAR_CTX_PGLOCK(ctx) VM_OBJECT_WLOCK((ctx)->pgtbl_obj)
#define DMAR_CTX_PGTRYLOCK(ctx) VM_OBJECT_TRYWLOCK((ctx)->pgtbl_obj)
#define DMAR_CTX_PGUNLOCK(ctx) VM_OBJECT_WUNLOCK((ctx)->pgtbl_obj)
#define DMAR_CTX_ASSERT_PGLOCKED(ctx) \
VM_OBJECT_ASSERT_WLOCKED((ctx)->pgtbl_obj)
#define DMAR_CTX_LOCK(ctx) mtx_lock(&(ctx)->lock)
#define DMAR_CTX_UNLOCK(ctx) mtx_unlock(&(ctx)->lock)
#define DMAR_CTX_ASSERT_LOCKED(ctx) mtx_assert(&(ctx)->lock, MA_OWNED)
struct dmar_msi_data {
int irq;
int irq_rid;
struct resource *irq_res;
void *intr_handle;
int (*handler)(void *);
int msi_data_reg;
int msi_addr_reg;
int msi_uaddr_reg;
void (*enable_intr)(struct dmar_unit *);
void (*disable_intr)(struct dmar_unit *);
const char *name;
};
#define DMAR_INTR_FAULT 0
#define DMAR_INTR_QI 1
#define DMAR_INTR_TOTAL 2
struct dmar_unit {
device_t dev;
int unit;
uint16_t segment;
uint64_t base;
/* Resources */
int reg_rid;
struct resource *regs;
struct dmar_msi_data intrs[DMAR_INTR_TOTAL];
/* Hardware registers cache */
uint32_t hw_ver;
uint64_t hw_cap;
uint64_t hw_ecap;
uint32_t hw_gcmd;
/* Data for being a dmar */
struct mtx lock;
LIST_HEAD(, dmar_ctx) contexts;
struct unrhdr *domids;
vm_object_t ctx_obj;
u_int barrier_flags;
/* Fault handler data */
struct mtx fault_lock;
uint64_t *fault_log;
int fault_log_head;
int fault_log_tail;
int fault_log_size;
struct task fault_task;
struct taskqueue *fault_taskqueue;
/* QI */
int qi_enabled;
vm_offset_t inv_queue;
vm_size_t inv_queue_size;
uint32_t inv_queue_avail;
uint32_t inv_queue_tail;
volatile uint32_t inv_waitd_seq_hw; /* hw writes there on wait
descr completion */
uint64_t inv_waitd_seq_hw_phys;
uint32_t inv_waitd_seq; /* next sequence number to use for wait descr */
u_int inv_waitd_gen; /* seq number generation AKA seq overflows */
u_int inv_seq_waiters; /* count of waiters for seq */
u_int inv_queue_full; /* informational counter */
/* Delayed freeing of map entries queue processing */
struct dmar_map_entries_tailq tlb_flush_entries;
struct task qi_task;
struct taskqueue *qi_taskqueue;
/* Busdma delayed map load */
struct task dmamap_load_task;
TAILQ_HEAD(, bus_dmamap_dmar) delayed_maps;
struct taskqueue *delayed_taskqueue;
};
#define DMAR_LOCK(dmar) mtx_lock(&(dmar)->lock)
#define DMAR_UNLOCK(dmar) mtx_unlock(&(dmar)->lock)
#define DMAR_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->lock, MA_OWNED)
#define DMAR_FAULT_LOCK(dmar) mtx_lock_spin(&(dmar)->fault_lock)
#define DMAR_FAULT_UNLOCK(dmar) mtx_unlock_spin(&(dmar)->fault_lock)
#define DMAR_FAULT_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->fault_lock, MA_OWNED)
#define DMAR_IS_COHERENT(dmar) (((dmar)->hw_ecap & DMAR_ECAP_C) != 0)
#define DMAR_HAS_QI(dmar) (((dmar)->hw_ecap & DMAR_ECAP_QI) != 0)
/* Barrier ids */
#define DMAR_BARRIER_RMRR 0
#define DMAR_BARRIER_USEQ 1
struct dmar_unit *dmar_find(device_t dev);
u_int dmar_nd2mask(u_int nd);
bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl);
int ctx_set_agaw(struct dmar_ctx *ctx, int mgaw);
int dmar_maxaddr2mgaw(struct dmar_unit* unit, dmar_gaddr_t maxaddr,
bool allow_less);
vm_pindex_t pglvl_max_pages(int pglvl);
int ctx_is_sp_lvl(struct dmar_ctx *ctx, int lvl);
dmar_gaddr_t pglvl_page_size(int total_pglvl, int lvl);
dmar_gaddr_t ctx_page_size(struct dmar_ctx *ctx, int lvl);
int calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size,
dmar_gaddr_t *isizep);
struct vm_page *dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags);
void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags);
void *dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
struct sf_buf **sf);
void dmar_unmap_pgtbl(struct sf_buf *sf, bool coherent);
int dmar_load_root_entry_ptr(struct dmar_unit *unit);
int dmar_inv_ctx_glob(struct dmar_unit *unit);
int dmar_inv_iotlb_glob(struct dmar_unit *unit);
int dmar_flush_write_bufs(struct dmar_unit *unit);
int dmar_enable_translation(struct dmar_unit *unit);
int dmar_disable_translation(struct dmar_unit *unit);
bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id);
void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id);
int dmar_fault_intr(void *arg);
void dmar_enable_fault_intr(struct dmar_unit *unit);
void dmar_disable_fault_intr(struct dmar_unit *unit);
int dmar_init_fault_log(struct dmar_unit *unit);
void dmar_fini_fault_log(struct dmar_unit *unit);
int dmar_qi_intr(void *arg);
void dmar_enable_qi_intr(struct dmar_unit *unit);
void dmar_disable_qi_intr(struct dmar_unit *unit);
int dmar_init_qi(struct dmar_unit *unit);
void dmar_fini_qi(struct dmar_unit *unit);
void dmar_qi_invalidate_locked(struct dmar_ctx *ctx, dmar_gaddr_t start,
dmar_gaddr_t size, struct dmar_qi_genseq *pseq);
void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit);
void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit);
vm_object_t ctx_get_idmap_pgtbl(struct dmar_ctx *ctx, dmar_gaddr_t maxaddr);
void put_idmap_pgtbl(vm_object_t obj);
int ctx_map_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size,
vm_page_t *ma, uint64_t pflags, int flags);
int ctx_unmap_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size,
int flags);
void ctx_flush_iotlb_sync(struct dmar_ctx *ctx, dmar_gaddr_t base,
dmar_gaddr_t size);
int ctx_alloc_pgtbl(struct dmar_ctx *ctx);
void ctx_free_pgtbl(struct dmar_ctx *ctx);
struct dmar_ctx *dmar_instantiate_ctx(struct dmar_unit *dmar, device_t dev,
bool rmrr);
struct dmar_ctx *dmar_get_ctx(struct dmar_unit *dmar, device_t dev,
uint16_t rid, bool id_mapped, bool rmrr_init);
void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx);
void dmar_free_ctx(struct dmar_ctx *ctx);
struct dmar_ctx *dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid);
void dmar_ctx_unload_entry(struct dmar_map_entry *entry, bool free);
void dmar_ctx_unload(struct dmar_ctx *ctx,
struct dmar_map_entries_tailq *entries, bool cansleep);
void dmar_ctx_free_entry(struct dmar_map_entry *entry, bool free);
int dmar_init_busdma(struct dmar_unit *unit);
void dmar_fini_busdma(struct dmar_unit *unit);
void dmar_gas_init_ctx(struct dmar_ctx *ctx);
void dmar_gas_fini_ctx(struct dmar_ctx *ctx);
struct dmar_map_entry *dmar_gas_alloc_entry(struct dmar_ctx *ctx, u_int flags);
void dmar_gas_free_entry(struct dmar_ctx *ctx, struct dmar_map_entry *entry);
void dmar_gas_free_space(struct dmar_ctx *ctx, struct dmar_map_entry *entry);
int dmar_gas_map(struct dmar_ctx *ctx, const struct bus_dma_tag_common *common,
dmar_gaddr_t size, u_int eflags, u_int flags, vm_page_t *ma,
struct dmar_map_entry **res);
void dmar_gas_free_region(struct dmar_ctx *ctx, struct dmar_map_entry *entry);
int dmar_gas_map_region(struct dmar_ctx *ctx, struct dmar_map_entry *entry,
u_int eflags, u_int flags, vm_page_t *ma);
int dmar_gas_reserve_region(struct dmar_ctx *ctx, dmar_gaddr_t start,
dmar_gaddr_t end);
void dmar_ctx_parse_rmrr(struct dmar_ctx *ctx, device_t dev,
struct dmar_map_entries_tailq *rmrr_entries);
int dmar_instantiate_rmrr_ctxs(struct dmar_unit *dmar);
void dmar_quirks_post_ident(struct dmar_unit *dmar);
void dmar_quirks_pre_use(struct dmar_unit *dmar);
#define DMAR_GM_CANWAIT 0x0001
#define DMAR_GM_CANSPLIT 0x0002
#define DMAR_PGF_WAITOK 0x0001
#define DMAR_PGF_ZERO 0x0002
#define DMAR_PGF_ALLOC 0x0004
#define DMAR_PGF_NOALLOC 0x0008
#define DMAR_PGF_OBJL 0x0010
extern dmar_haddr_t dmar_high;
extern int haw;
extern int dmar_tbl_pagecnt;
extern int dmar_match_verbose;
extern int dmar_check_free;
static inline uint32_t
dmar_read4(const struct dmar_unit *unit, int reg)
{
return (bus_read_4(unit->regs, reg));
}
static inline uint64_t
dmar_read8(const struct dmar_unit *unit, int reg)
{
#ifdef __i386__
uint32_t high, low;
low = bus_read_4(unit->regs, reg);
high = bus_read_4(unit->regs, reg + 4);
return (low | ((uint64_t)high << 32));
#else
return (bus_read_8(unit->regs, reg));
#endif
}
static inline void
dmar_write4(const struct dmar_unit *unit, int reg, uint32_t val)
{
KASSERT(reg != DMAR_GCMD_REG || (val & DMAR_GCMD_TE) ==
(unit->hw_gcmd & DMAR_GCMD_TE),
("dmar%d clearing TE 0x%08x 0x%08x", unit->unit,
unit->hw_gcmd, val));
bus_write_4(unit->regs, reg, val);
}
static inline void
dmar_write8(const struct dmar_unit *unit, int reg, uint64_t val)
{
KASSERT(reg != DMAR_GCMD_REG, ("8byte GCMD write"));
#ifdef __i386__
uint32_t high, low;
low = val;
high = val >> 32;
bus_write_4(unit->regs, reg, low);
bus_write_4(unit->regs, reg + 4, high);
#else
bus_write_8(unit->regs, reg, val);
#endif
}
/*
* dmar_pte_store and dmar_pte_clear ensure that on i386, 32bit writes
* are issued in the correct order. For store, the lower word,
* containing the P or R and W bits, is set only after the high word
* is written. For clear, the P bit is cleared first, then the high
* word is cleared.
*/
static inline void
dmar_pte_store(volatile uint64_t *dst, uint64_t val)
{
KASSERT(*dst == 0, ("used pte %p oldval %jx newval %jx",
dst, (uintmax_t)*dst, (uintmax_t)val));
#ifdef __i386__
volatile uint32_t *p;
uint32_t hi, lo;
hi = val >> 32;
lo = val;
p = (volatile uint32_t *)dst;
*(p + 1) = hi;
*p = lo;
#else
*dst = val;
#endif
}
static inline void
dmar_pte_clear(volatile uint64_t *dst)
{
#ifdef __i386__
volatile uint32_t *p;
p = (volatile uint32_t *)dst;
*p = 0;
*(p + 1) = 0;
#else
*dst = 0;
#endif
}
static inline bool
dmar_test_boundary(dmar_gaddr_t start, dmar_gaddr_t size,
dmar_gaddr_t boundary)
{
if (boundary == 0)
return (true);
return (start + size <= ((start + boundary) & ~(boundary - 1)));
}
#ifdef INVARIANTS
#define TD_PREP_PINNED_ASSERT \
int old_td_pinned; \
old_td_pinned = curthread->td_pinned
#define TD_PINNED_ASSERT \
KASSERT(curthread->td_pinned == old_td_pinned, \
("pin count leak: %d %d %s:%d", curthread->td_pinned, \
old_td_pinned, __FILE__, __LINE__))
#else
#define TD_PREP_PINNED_ASSERT
#define TD_PINNED_ASSERT
#endif
#endif