freebsd-skq/sys/x86/iommu/intel_idpgtbl.c
Dimitry Andric d4e70c8074 Fix (erroneous) gcc warnings about usage of uninitialized variables in
sys/x86/iommu/intel_idpgtbl.c.

Reviewed by:	kib
2013-11-09 20:36:52 +00:00

784 lines
22 KiB
C

/*-
* Copyright (c) 2013 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/memdesc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/rman.h>
#include <sys/sf_buf.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <sys/tree.h>
#include <sys/uio.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vm_map.h>
#include <machine/atomic.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#include <x86/include/busdma_impl.h>
#include <x86/iommu/intel_reg.h>
#include <x86/iommu/busdma_dmar.h>
#include <x86/iommu/intel_dmar.h>
static int ctx_unmap_buf_locked(struct dmar_ctx *ctx, dmar_gaddr_t base,
dmar_gaddr_t size, int flags);
/*
* The cache of the identity mapping page tables for the DMARs. Using
* the cache saves significant amount of memory for page tables by
* reusing the page tables, since usually DMARs are identical and have
* the same capabilities. Still, cache records the information needed
* to match DMAR capabilities and page table format, to correctly
* handle different DMARs.
*/
struct idpgtbl {
dmar_gaddr_t maxaddr; /* Page table covers the guest address
range [0..maxaddr) */
int pglvl; /* Total page table levels ignoring
superpages */
int leaf; /* The last materialized page table
level, it is non-zero if superpages
are supported */
vm_object_t pgtbl_obj; /* The page table pages */
LIST_ENTRY(idpgtbl) link;
};
static struct sx idpgtbl_lock;
SX_SYSINIT(idpgtbl, &idpgtbl_lock, "idpgtbl");
static LIST_HEAD(, idpgtbl) idpgtbls = LIST_HEAD_INITIALIZER(idpgtbls);
static MALLOC_DEFINE(M_DMAR_IDPGTBL, "dmar_idpgtbl",
"Intel DMAR Identity mappings cache elements");
/*
* Build the next level of the page tables for the identity mapping.
* - lvl is the level to build;
* - idx is the index of the page table page in the pgtbl_obj, which is
* being allocated filled now;
* - addr is the starting address in the bus address space which is
* mapped by the page table page.
*/
static void
ctx_idmap_nextlvl(struct idpgtbl *tbl, int lvl, vm_pindex_t idx,
dmar_gaddr_t addr)
{
vm_page_t m, m1;
dmar_pte_t *pte;
struct sf_buf *sf;
dmar_gaddr_t f, pg_sz;
vm_pindex_t base;
int i;
VM_OBJECT_ASSERT_LOCKED(tbl->pgtbl_obj);
if (addr >= tbl->maxaddr)
return;
m = dmar_pgalloc(tbl->pgtbl_obj, idx, DMAR_PGF_OBJL | DMAR_PGF_WAITOK |
DMAR_PGF_ZERO);
base = idx * DMAR_NPTEPG + 1; /* Index of the first child page of idx */
pg_sz = pglvl_page_size(tbl->pglvl, lvl);
if (lvl != tbl->leaf) {
for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz)
ctx_idmap_nextlvl(tbl, lvl + 1, base + i, f);
}
VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
pte = dmar_map_pgtbl(tbl->pgtbl_obj, idx, DMAR_PGF_WAITOK, &sf);
if (lvl == tbl->leaf) {
for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) {
if (f >= tbl->maxaddr)
break;
pte[i].pte = (DMAR_PTE_ADDR_MASK & f) |
DMAR_PTE_R | DMAR_PTE_W;
}
} else {
for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) {
if (f >= tbl->maxaddr)
break;
m1 = dmar_pgalloc(tbl->pgtbl_obj, base + i,
DMAR_PGF_NOALLOC);
KASSERT(m1 != NULL, ("lost page table page"));
pte[i].pte = (DMAR_PTE_ADDR_MASK &
VM_PAGE_TO_PHYS(m1)) | DMAR_PTE_R | DMAR_PTE_W;
}
}
/* ctx_get_idmap_pgtbl flushes CPU cache if needed. */
dmar_unmap_pgtbl(sf, true);
VM_OBJECT_WLOCK(tbl->pgtbl_obj);
}
/*
* Find a ready and compatible identity-mapping page table in the
* cache. If not found, populate the identity-mapping page table for
* the context, up to the maxaddr. The maxaddr byte is allowed to be
* not mapped, which is aligned with the definition of Maxmem as the
* highest usable physical address + 1. If superpages are used, the
* maxaddr is typically mapped.
*/
vm_object_t
ctx_get_idmap_pgtbl(struct dmar_ctx *ctx, dmar_gaddr_t maxaddr)
{
struct dmar_unit *unit;
struct idpgtbl *tbl;
vm_object_t res;
vm_page_t m;
int leaf, i;
leaf = 0; /* silence gcc */
/*
* First, determine where to stop the paging structures.
*/
for (i = 0; i < ctx->pglvl; i++) {
if (i == ctx->pglvl - 1 || ctx_is_sp_lvl(ctx, i)) {
leaf = i;
break;
}
}
/*
* Search the cache for a compatible page table. Qualified
* page table must map up to maxaddr, its level must be
* supported by the DMAR and leaf should be equal to the
* calculated value. The later restriction could be lifted
* but I believe it is currently impossible to have any
* deviations for existing hardware.
*/
sx_slock(&idpgtbl_lock);
LIST_FOREACH(tbl, &idpgtbls, link) {
if (tbl->maxaddr >= maxaddr &&
dmar_pglvl_supported(ctx->dmar, tbl->pglvl) &&
tbl->leaf == leaf) {
res = tbl->pgtbl_obj;
vm_object_reference(res);
sx_sunlock(&idpgtbl_lock);
ctx->pglvl = tbl->pglvl; /* XXXKIB ? */
goto end;
}
}
/*
* Not found in cache, relock the cache into exclusive mode to
* be able to add element, and recheck cache again after the
* relock.
*/
sx_sunlock(&idpgtbl_lock);
sx_xlock(&idpgtbl_lock);
LIST_FOREACH(tbl, &idpgtbls, link) {
if (tbl->maxaddr >= maxaddr &&
dmar_pglvl_supported(ctx->dmar, tbl->pglvl) &&
tbl->leaf == leaf) {
res = tbl->pgtbl_obj;
vm_object_reference(res);
sx_xunlock(&idpgtbl_lock);
ctx->pglvl = tbl->pglvl; /* XXXKIB ? */
return (res);
}
}
/*
* Still not found, create new page table.
*/
tbl = malloc(sizeof(*tbl), M_DMAR_IDPGTBL, M_WAITOK);
tbl->pglvl = ctx->pglvl;
tbl->leaf = leaf;
tbl->maxaddr = maxaddr;
tbl->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
IDX_TO_OFF(pglvl_max_pages(tbl->pglvl)), 0, 0, NULL);
VM_OBJECT_WLOCK(tbl->pgtbl_obj);
ctx_idmap_nextlvl(tbl, 0, 0, 0);
VM_OBJECT_WUNLOCK(tbl->pgtbl_obj);
LIST_INSERT_HEAD(&idpgtbls, tbl, link);
res = tbl->pgtbl_obj;
vm_object_reference(res);
sx_xunlock(&idpgtbl_lock);
end:
/*
* Table was found or created.
*
* If DMAR does not snoop paging structures accesses, flush
* CPU cache to memory. Note that dmar_unmap_pgtbl() coherent
* argument was possibly invalid at the time of the identity
* page table creation, since DMAR which was passed at the
* time of creation could be coherent, while current DMAR is
* not.
*
* If DMAR cannot look into the chipset write buffer, flush it
* as well.
*/
unit = ctx->dmar;
if (!DMAR_IS_COHERENT(unit)) {
VM_OBJECT_WLOCK(res);
for (m = vm_page_lookup(res, 0); m != NULL;
m = vm_page_next(m))
pmap_invalidate_cache_pages(&m, 1);
VM_OBJECT_WUNLOCK(res);
}
if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
DMAR_LOCK(unit);
dmar_flush_write_bufs(unit);
DMAR_UNLOCK(unit);
}
return (res);
}
/*
* Return a reference to the identity mapping page table to the cache.
*/
void
put_idmap_pgtbl(vm_object_t obj)
{
struct idpgtbl *tbl, *tbl1;
vm_object_t rmobj;
sx_slock(&idpgtbl_lock);
KASSERT(obj->ref_count >= 2, ("lost cache reference"));
vm_object_deallocate(obj);
/*
* Cache always owns one last reference on the page table object.
* If there is an additional reference, object must stay.
*/
if (obj->ref_count > 1) {
sx_sunlock(&idpgtbl_lock);
return;
}
/*
* Cache reference is the last, remove cache element and free
* page table object, returning the page table pages to the
* system.
*/
sx_sunlock(&idpgtbl_lock);
sx_xlock(&idpgtbl_lock);
LIST_FOREACH_SAFE(tbl, &idpgtbls, link, tbl1) {
rmobj = tbl->pgtbl_obj;
if (rmobj->ref_count == 1) {
LIST_REMOVE(tbl, link);
atomic_subtract_int(&dmar_tbl_pagecnt,
rmobj->resident_page_count);
vm_object_deallocate(rmobj);
free(tbl, M_DMAR_IDPGTBL);
}
}
sx_xunlock(&idpgtbl_lock);
}
/*
* The core routines to map and unmap host pages at the given guest
* address. Support superpages.
*/
/*
* Index of the pte for the guest address base in the page table at
* the level lvl.
*/
static int
ctx_pgtbl_pte_off(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl)
{
base >>= DMAR_PAGE_SHIFT + (ctx->pglvl - lvl - 1) * DMAR_NPTEPGSHIFT;
return (base & DMAR_PTEMASK);
}
/*
* Returns the page index of the page table page in the page table
* object, which maps the given address base at the page table level
* lvl.
*/
static vm_pindex_t
ctx_pgtbl_get_pindex(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl)
{
vm_pindex_t idx, pidx;
int i;
KASSERT(lvl >= 0 && lvl < ctx->pglvl, ("wrong lvl %p %d", ctx, lvl));
for (pidx = idx = 0, i = 0; i < lvl; i++, pidx = idx)
idx = ctx_pgtbl_pte_off(ctx, base, i) + pidx * DMAR_NPTEPG + 1;
return (idx);
}
static dmar_pte_t *
ctx_pgtbl_map_pte(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl, int flags,
vm_pindex_t *idxp, struct sf_buf **sf)
{
vm_page_t m;
struct sf_buf *sfp;
dmar_pte_t *pte, *ptep;
vm_pindex_t idx, idx1;
DMAR_CTX_ASSERT_PGLOCKED(ctx);
KASSERT((flags & DMAR_PGF_OBJL) != 0, ("lost PGF_OBJL"));
idx = ctx_pgtbl_get_pindex(ctx, base, lvl);
if (*sf != NULL && idx == *idxp) {
pte = (dmar_pte_t *)sf_buf_kva(*sf);
} else {
if (*sf != NULL)
dmar_unmap_pgtbl(*sf, DMAR_IS_COHERENT(ctx->dmar));
*idxp = idx;
retry:
pte = dmar_map_pgtbl(ctx->pgtbl_obj, idx, flags, sf);
if (pte == NULL) {
KASSERT(lvl > 0, ("lost root page table page %p", ctx));
/*
* Page table page does not exists, allocate
* it and create pte in the up level.
*/
m = dmar_pgalloc(ctx->pgtbl_obj, idx, flags |
DMAR_PGF_ZERO);
if (m == NULL)
return (NULL);
/*
* Prevent potential free while pgtbl_obj is
* unlocked in the recursive call to
* ctx_pgtbl_map_pte(), if other thread did
* pte write and clean while the lock if
* dropped.
*/
m->wire_count++;
sfp = NULL;
ptep = ctx_pgtbl_map_pte(ctx, base, lvl - 1, flags,
&idx1, &sfp);
if (ptep == NULL) {
KASSERT(m->pindex != 0,
("loosing root page %p", ctx));
m->wire_count--;
dmar_pgfree(ctx->pgtbl_obj, m->pindex, flags);
return (NULL);
}
dmar_pte_store(&ptep->pte, DMAR_PTE_R | DMAR_PTE_W |
VM_PAGE_TO_PHYS(m));
sf_buf_page(sfp)->wire_count += 1;
m->wire_count--;
dmar_unmap_pgtbl(sfp, DMAR_IS_COHERENT(ctx->dmar));
/* Only executed once. */
goto retry;
}
}
pte += ctx_pgtbl_pte_off(ctx, base, lvl);
return (pte);
}
static int
ctx_map_buf_locked(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size,
vm_page_t *ma, uint64_t pflags, int flags)
{
dmar_pte_t *pte;
struct sf_buf *sf;
dmar_gaddr_t pg_sz, base1, size1;
vm_pindex_t pi, c, idx, run_sz;
int lvl;
bool superpage;
DMAR_CTX_ASSERT_PGLOCKED(ctx);
base1 = base;
size1 = size;
flags |= DMAR_PGF_OBJL;
TD_PREP_PINNED_ASSERT;
for (sf = NULL, pi = 0; size > 0; base += pg_sz, size -= pg_sz,
pi += run_sz) {
for (lvl = 0, c = 0, superpage = false;; lvl++) {
pg_sz = ctx_page_size(ctx, lvl);
run_sz = pg_sz >> DMAR_PAGE_SHIFT;
if (lvl == ctx->pglvl - 1)
break;
/*
* Check if the current base suitable for the
* superpage mapping. First, verify the level.
*/
if (!ctx_is_sp_lvl(ctx, lvl))
continue;
/*
* Next, look at the size of the mapping and
* alignment of both guest and host addresses.
*/
if (size < pg_sz || (base & (pg_sz - 1)) != 0 ||
(VM_PAGE_TO_PHYS(ma[pi]) & (pg_sz - 1)) != 0)
continue;
/* All passed, check host pages contiguouty. */
if (c == 0) {
for (c = 1; c < run_sz; c++) {
if (VM_PAGE_TO_PHYS(ma[pi + c]) !=
VM_PAGE_TO_PHYS(ma[pi + c - 1]) +
PAGE_SIZE)
break;
}
}
if (c >= run_sz) {
superpage = true;
break;
}
}
KASSERT(size >= pg_sz,
("mapping loop overflow %p %jx %jx %jx", ctx,
(uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
pte = ctx_pgtbl_map_pte(ctx, base, lvl, flags, &idx, &sf);
if (pte == NULL) {
KASSERT((flags & DMAR_PGF_WAITOK) == 0,
("failed waitable pte alloc %p", ctx));
if (sf != NULL) {
dmar_unmap_pgtbl(sf,
DMAR_IS_COHERENT(ctx->dmar));
}
ctx_unmap_buf_locked(ctx, base1, base - base1, flags);
TD_PINNED_ASSERT;
return (ENOMEM);
}
dmar_pte_store(&pte->pte, VM_PAGE_TO_PHYS(ma[pi]) | pflags |
(superpage ? DMAR_PTE_SP : 0));
sf_buf_page(sf)->wire_count += 1;
}
if (sf != NULL)
dmar_unmap_pgtbl(sf, DMAR_IS_COHERENT(ctx->dmar));
TD_PINNED_ASSERT;
return (0);
}
int
ctx_map_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size,
vm_page_t *ma, uint64_t pflags, int flags)
{
struct dmar_unit *unit;
int error;
unit = ctx->dmar;
KASSERT((ctx->flags & DMAR_CTX_IDMAP) == 0,
("modifying idmap pagetable ctx %p", ctx));
KASSERT((base & DMAR_PAGE_MASK) == 0,
("non-aligned base %p %jx %jx", ctx, (uintmax_t)base,
(uintmax_t)size));
KASSERT((size & DMAR_PAGE_MASK) == 0,
("non-aligned size %p %jx %jx", ctx, (uintmax_t)base,
(uintmax_t)size));
KASSERT(size > 0, ("zero size %p %jx %jx", ctx, (uintmax_t)base,
(uintmax_t)size));
KASSERT(base < (1ULL << ctx->agaw),
("base too high %p %jx %jx agaw %d", ctx, (uintmax_t)base,
(uintmax_t)size, ctx->agaw));
KASSERT(base + size < (1ULL << ctx->agaw),
("end too high %p %jx %jx agaw %d", ctx, (uintmax_t)base,
(uintmax_t)size, ctx->agaw));
KASSERT(base + size > base,
("size overflow %p %jx %jx", ctx, (uintmax_t)base,
(uintmax_t)size));
KASSERT((pflags & (DMAR_PTE_R | DMAR_PTE_W)) != 0,
("neither read nor write %jx", (uintmax_t)pflags));
KASSERT((pflags & ~(DMAR_PTE_R | DMAR_PTE_W | DMAR_PTE_SNP |
DMAR_PTE_TM)) == 0,
("invalid pte flags %jx", (uintmax_t)pflags));
KASSERT((pflags & DMAR_PTE_SNP) == 0 ||
(unit->hw_ecap & DMAR_ECAP_SC) != 0,
("PTE_SNP for dmar without snoop control %p %jx",
ctx, (uintmax_t)pflags));
KASSERT((pflags & DMAR_PTE_TM) == 0 ||
(unit->hw_ecap & DMAR_ECAP_DI) != 0,
("PTE_TM for dmar without DIOTLB %p %jx",
ctx, (uintmax_t)pflags));
KASSERT((flags & ~DMAR_PGF_WAITOK) == 0, ("invalid flags %x", flags));
DMAR_CTX_PGLOCK(ctx);
error = ctx_map_buf_locked(ctx, base, size, ma, pflags, flags);
DMAR_CTX_PGUNLOCK(ctx);
if (error != 0)
return (error);
if ((unit->hw_cap & DMAR_CAP_CM) != 0)
ctx_flush_iotlb_sync(ctx, base, size);
else if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) {
/* See 11.1 Write Buffer Flushing. */
DMAR_LOCK(unit);
dmar_flush_write_bufs(unit);
DMAR_UNLOCK(unit);
}
return (0);
}
static void ctx_unmap_clear_pte(struct dmar_ctx *ctx, dmar_gaddr_t base,
int lvl, int flags, dmar_pte_t *pte, struct sf_buf **sf, bool free_fs);
static void
ctx_free_pgtbl_pde(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl, int flags)
{
struct sf_buf *sf;
dmar_pte_t *pde;
vm_pindex_t idx;
sf = NULL;
pde = ctx_pgtbl_map_pte(ctx, base, lvl, flags, &idx, &sf);
ctx_unmap_clear_pte(ctx, base, lvl, flags, pde, &sf, true);
}
static void
ctx_unmap_clear_pte(struct dmar_ctx *ctx, dmar_gaddr_t base, int lvl,
int flags, dmar_pte_t *pte, struct sf_buf **sf, bool free_sf)
{
vm_page_t m;
dmar_pte_clear(&pte->pte);
m = sf_buf_page(*sf);
if (free_sf) {
dmar_unmap_pgtbl(*sf, DMAR_IS_COHERENT(ctx->dmar));
*sf = NULL;
}
m->wire_count--;
if (m->wire_count != 0)
return;
KASSERT(lvl != 0,
("lost reference (lvl) on root pg ctx %p base %jx lvl %d",
ctx, (uintmax_t)base, lvl));
KASSERT(m->pindex != 0,
("lost reference (idx) on root pg ctx %p base %jx lvl %d",
ctx, (uintmax_t)base, lvl));
dmar_pgfree(ctx->pgtbl_obj, m->pindex, flags);
ctx_free_pgtbl_pde(ctx, base, lvl - 1, flags);
}
/*
* Assumes that the unmap is never partial.
*/
static int
ctx_unmap_buf_locked(struct dmar_ctx *ctx, dmar_gaddr_t base,
dmar_gaddr_t size, int flags)
{
dmar_pte_t *pte;
struct sf_buf *sf;
vm_pindex_t idx;
dmar_gaddr_t pg_sz, base1, size1;
int lvl;
DMAR_CTX_ASSERT_PGLOCKED(ctx);
if (size == 0)
return (0);
KASSERT((ctx->flags & DMAR_CTX_IDMAP) == 0,
("modifying idmap pagetable ctx %p", ctx));
KASSERT((base & DMAR_PAGE_MASK) == 0,
("non-aligned base %p %jx %jx", ctx, (uintmax_t)base,
(uintmax_t)size));
KASSERT((size & DMAR_PAGE_MASK) == 0,
("non-aligned size %p %jx %jx", ctx, (uintmax_t)base,
(uintmax_t)size));
KASSERT(base < (1ULL << ctx->agaw),
("base too high %p %jx %jx agaw %d", ctx, (uintmax_t)base,
(uintmax_t)size, ctx->agaw));
KASSERT(base + size < (1ULL << ctx->agaw),
("end too high %p %jx %jx agaw %d", ctx, (uintmax_t)base,
(uintmax_t)size, ctx->agaw));
KASSERT(base + size > base,
("size overflow %p %jx %jx", ctx, (uintmax_t)base,
(uintmax_t)size));
KASSERT((flags & ~DMAR_PGF_WAITOK) == 0, ("invalid flags %x", flags));
pg_sz = 0; /* silence gcc */
base1 = base;
size1 = size;
flags |= DMAR_PGF_OBJL;
TD_PREP_PINNED_ASSERT;
for (sf = NULL; size > 0; base += pg_sz, size -= pg_sz) {
for (lvl = 0; lvl < ctx->pglvl; lvl++) {
if (lvl != ctx->pglvl - 1 && !ctx_is_sp_lvl(ctx, lvl))
continue;
pg_sz = ctx_page_size(ctx, lvl);
if (pg_sz > size)
continue;
pte = ctx_pgtbl_map_pte(ctx, base, lvl, flags,
&idx, &sf);
KASSERT(pte != NULL,
("sleeping or page missed %p %jx %d 0x%x",
ctx, (uintmax_t)base, lvl, flags));
if ((pte->pte & DMAR_PTE_SP) != 0 ||
lvl == ctx->pglvl - 1) {
ctx_unmap_clear_pte(ctx, base, lvl, flags,
pte, &sf, false);
break;
}
}
KASSERT(size >= pg_sz,
("unmapping loop overflow %p %jx %jx %jx", ctx,
(uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz));
}
if (sf != NULL)
dmar_unmap_pgtbl(sf, DMAR_IS_COHERENT(ctx->dmar));
/*
* See 11.1 Write Buffer Flushing for an explanation why RWBF
* can be ignored there.
*/
TD_PINNED_ASSERT;
return (0);
}
int
ctx_unmap_buf(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size,
int flags)
{
int error;
DMAR_CTX_PGLOCK(ctx);
error = ctx_unmap_buf_locked(ctx, base, size, flags);
DMAR_CTX_PGUNLOCK(ctx);
return (error);
}
int
ctx_alloc_pgtbl(struct dmar_ctx *ctx)
{
vm_page_t m;
KASSERT(ctx->pgtbl_obj == NULL, ("already initialized %p", ctx));
ctx->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL,
IDX_TO_OFF(pglvl_max_pages(ctx->pglvl)), 0, 0, NULL);
DMAR_CTX_PGLOCK(ctx);
m = dmar_pgalloc(ctx->pgtbl_obj, 0, DMAR_PGF_WAITOK |
DMAR_PGF_ZERO | DMAR_PGF_OBJL);
/* No implicit free of the top level page table page. */
m->wire_count = 1;
DMAR_CTX_PGUNLOCK(ctx);
return (0);
}
void
ctx_free_pgtbl(struct dmar_ctx *ctx)
{
vm_object_t obj;
vm_page_t m;
obj = ctx->pgtbl_obj;
if (obj == NULL) {
KASSERT((ctx->dmar->hw_ecap & DMAR_ECAP_PT) != 0 &&
(ctx->flags & DMAR_CTX_IDMAP) != 0,
("lost pagetable object ctx %p", ctx));
return;
}
DMAR_CTX_ASSERT_PGLOCKED(ctx);
ctx->pgtbl_obj = NULL;
if ((ctx->flags & DMAR_CTX_IDMAP) != 0) {
put_idmap_pgtbl(obj);
ctx->flags &= ~DMAR_CTX_IDMAP;
return;
}
/* Obliterate wire_counts */
VM_OBJECT_ASSERT_WLOCKED(obj);
for (m = vm_page_lookup(obj, 0); m != NULL; m = vm_page_next(m))
m->wire_count = 0;
VM_OBJECT_WUNLOCK(obj);
vm_object_deallocate(obj);
}
static inline uint64_t
ctx_wait_iotlb_flush(struct dmar_unit *unit, uint64_t wt, int iro)
{
uint64_t iotlbr;
dmar_write8(unit, iro + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
DMAR_IOTLB_DR | DMAR_IOTLB_DW | wt);
for (;;) {
iotlbr = dmar_read8(unit, iro + DMAR_IOTLB_REG_OFF);
if ((iotlbr & DMAR_IOTLB_IVT) == 0)
break;
cpu_spinwait();
}
return (iotlbr);
}
void
ctx_flush_iotlb_sync(struct dmar_ctx *ctx, dmar_gaddr_t base, dmar_gaddr_t size)
{
struct dmar_unit *unit;
dmar_gaddr_t isize;
uint64_t iotlbr;
int am, iro;
unit = ctx->dmar;
KASSERT(!unit->qi_enabled, ("dmar%d: sync iotlb flush call",
unit->unit));
iro = DMAR_ECAP_IRO(unit->hw_ecap) * 16;
DMAR_LOCK(unit);
if ((unit->hw_cap & DMAR_CAP_PSI) == 0 || size > 2 * 1024 * 1024) {
iotlbr = ctx_wait_iotlb_flush(unit, DMAR_IOTLB_IIRG_DOM |
DMAR_IOTLB_DID(ctx->domain), iro);
KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
DMAR_IOTLB_IAIG_INVLD,
("dmar%d: invalidation failed %jx", unit->unit,
(uintmax_t)iotlbr));
} else {
for (; size > 0; base += isize, size -= isize) {
am = calc_am(unit, base, size, &isize);
dmar_write8(unit, iro, base | am);
iotlbr = ctx_wait_iotlb_flush(unit,
DMAR_IOTLB_IIRG_PAGE | DMAR_IOTLB_DID(ctx->domain),
iro);
KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
DMAR_IOTLB_IAIG_INVLD,
("dmar%d: PSI invalidation failed "
"iotlbr 0x%jx base 0x%jx size 0x%jx am %d",
unit->unit, (uintmax_t)iotlbr,
(uintmax_t)base, (uintmax_t)size, am));
/*
* Any non-page granularity covers whole guest
* address space for the domain.
*/
if ((iotlbr & DMAR_IOTLB_IAIG_MASK) !=
DMAR_IOTLB_IAIG_PAGE)
break;
}
}
DMAR_UNLOCK(unit);
}