3ca5733308
if SCB Paging was enabled: disconnect with more data to transfer disconnected SCB gets paged out target reconnects so we page SCB back in target completes transfer so residual is 0 target disconnects SCB gets reused but not paged out since the residual is 0 (optimization) target reconnects so we page the SCB back in we report a residual because of stale residual information. The fix for this is to set a flag that forces the SCB to be paged back up to the host if we page in an SCB with a residual Pointed out by: Doug Ledford <dledford@dialnet.net>
1151 lines
34 KiB
Plaintext
1151 lines
34 KiB
Plaintext
/*+M***********************************************************************
|
|
*Adaptec 274x/284x/294x device driver for Linux and FreeBSD.
|
|
*
|
|
*Copyright (c) 1994 John Aycock
|
|
* The University of Calgary Department of Computer Science.
|
|
* All rights reserved.
|
|
*
|
|
*FreeBSD, Twin, Wide, 2 command per target support, tagged queuing,
|
|
*SCB paging and other optimizations:
|
|
*Copyright (c) 1994, 1995, 1996, 1997 Justin Gibbs. All rights reserved.
|
|
*
|
|
*Redistribution and use in source and binary forms, with or without
|
|
*modification, are permitted provided that the following conditions
|
|
*are met:
|
|
*1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions, and the following disclaimer.
|
|
*2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of Calgary
|
|
* Department of Computer Science and its contributors.
|
|
*4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
*THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
*ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
*IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
*ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
*FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
*DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
*OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
*HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
*LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
*OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
*SUCH DAMAGE.
|
|
*
|
|
* $Id: aic7xxx.seq,v 1.72 1997/04/18 16:31:55 gibbs Exp $
|
|
*
|
|
*-M************************************************************************/
|
|
|
|
#include <dev/aic7xxx/aic7xxx.reg>
|
|
#include <scsi/scsi_message.h>
|
|
|
|
/*
|
|
* A few words on the waiting SCB list:
|
|
* After starting the selection hardware, we check for reconnecting targets
|
|
* as well as for our selection to complete just in case the reselection wins
|
|
* bus arbitration. The problem with this is that we must keep track of the
|
|
* SCB that we've already pulled from the QINFIFO and started the selection
|
|
* on just in case the reselection wins so that we can retry the selection at
|
|
* a later time. This problem cannot be resolved by holding a single entry
|
|
* in scratch ram since a reconnecting target can request sense and this will
|
|
* create yet another SCB waiting for selection. The solution used here is to
|
|
* use byte 27 of the SCB as a psuedo-next pointer and to thread a list
|
|
* of SCBs that are awaiting selection. Since 0-0xfe are valid SCB indexes,
|
|
* SCB_LIST_NULL is 0xff which is out of range. An entry is also added to
|
|
* this list everytime a request sense occurs or after completing a non-tagged
|
|
* command for which a second SCB has been queued. The sequencer will
|
|
* automatically consume the entries.
|
|
*/
|
|
|
|
/*
|
|
* We assume that the kernel driver may reset us at any time, even in the
|
|
* middle of a DMA, so clear DFCNTRL too.
|
|
*/
|
|
reset:
|
|
clr SCSISIGO; /* De-assert BSY */
|
|
/* Always allow reselection */
|
|
mvi SCSISEQ, ENRSELI|ENAUTOATNP;
|
|
call clear_target_state;
|
|
poll_for_work:
|
|
test SSTAT0,SELDO jnz select;
|
|
test SSTAT0,SELDI jnz reselect;
|
|
test SCSISEQ, ENSELO jnz poll_for_work;
|
|
.if ( TWIN_CHANNEL )
|
|
/*
|
|
* Twin channel devices cannot handle things like SELTO
|
|
* interrupts on the "background" channel. So, if we
|
|
* are selecting, keep polling the current channel util
|
|
* either a selection or reselection occurs.
|
|
*/
|
|
xor SBLKCTL,SELBUSB; /* Toggle to the other bus */
|
|
test SSTAT0,SELDO jnz select;
|
|
test SSTAT0,SELDI jnz reselect;
|
|
test SCSISEQ, ENSELO jnz poll_for_work;
|
|
xor SBLKCTL,SELBUSB; /* Toggle back */
|
|
.endif
|
|
cmp WAITING_SCBH,SCB_LIST_NULL jne start_waiting;
|
|
test_queue:
|
|
/* Has the driver posted any work for us? */
|
|
mov A, QCNTMASK;
|
|
test QINCNT,A jz poll_for_work;
|
|
|
|
/*
|
|
* We have at least one queued SCB now and we don't have any
|
|
* SCBs in the list of SCBs awaiting selection. If we have
|
|
* any SCBs available for use, pull the tag from the QINFIFO
|
|
* and get to work on it.
|
|
*/
|
|
.if ( SCB_PAGING )
|
|
mov ALLZEROS call get_free_or_disc_scb;
|
|
cmp SINDEX, SCB_LIST_NULL je poll_for_work;
|
|
.endif
|
|
dequeue_scb:
|
|
mov CUR_SCBID,QINFIFO;
|
|
.if !( SCB_PAGING )
|
|
/* In the non-paging case, the SCBID == hardware SCB index */
|
|
mov SCBPTR, CUR_SCBID;
|
|
.endif
|
|
dma_queued_scb:
|
|
/*
|
|
* DMA the SCB from host ram into the current SCB location.
|
|
*/
|
|
mvi DMAPARAMS, HDMAEN|DIRECTION|FIFORESET;
|
|
mov CUR_SCBID call dma_scb;
|
|
|
|
/*
|
|
* See if there is not already an active SCB for this target. This code
|
|
* locks out on a per target basis instead of target/lun. Although this
|
|
* is not ideal for devices that have multiple luns active at the same
|
|
* time, it is faster than looping through all SCB's looking for active
|
|
* commands. We also don't have enough spare SCB space for us to store the
|
|
* SCBID of the currently busy transaction for each target/lun making it
|
|
* impossible to link up the SCBs.
|
|
*/
|
|
test_busy:
|
|
test SCB_CONTROL, TAG_ENB|ABORT_SCB jnz start_scb;
|
|
mvi SEQCTL, PAUSEDIS|FASTMODE;
|
|
mov SAVED_SCBPTR, SCBPTR;
|
|
mov SCB_TCL call index_untagged_scb;
|
|
mov ARG_1, SINDIR; /*
|
|
* ARG_1 should
|
|
* now have the SCB ID of
|
|
* any active, non-tagged,
|
|
* command for this target.
|
|
*/
|
|
cmp ARG_1, SCB_LIST_NULL je make_busy;
|
|
.if ( SCB_PAGING )
|
|
/*
|
|
* Put this SCB back onto the free list. It
|
|
* may be necessary to satisfy the search for
|
|
* the active SCB.
|
|
*/
|
|
mov SCBPTR, SAVED_SCBPTR;
|
|
call add_scb_to_free_list;
|
|
/* Find the active SCB */
|
|
mov ALLZEROS call findSCB;
|
|
/*
|
|
* If we couldn't find it, tell the kernel. This should
|
|
* never happen.
|
|
*/
|
|
cmp SINDEX, SCB_LIST_NULL jne paged_busy_link;
|
|
mvi INTSTAT, NO_MATCH_BUSY;
|
|
paged_busy_link:
|
|
/* Link us in */
|
|
mov SCB_LINKED_NEXT, CUR_SCBID;
|
|
/* Put it back on the disconnected list */
|
|
call add_scb_to_disc_list;
|
|
mvi SEQCTL, FASTMODE;
|
|
jmp poll_for_work;
|
|
.else
|
|
simple_busy_link:
|
|
mov SCBPTR, ARG_1;
|
|
mov SCB_LINKED_NEXT, CUR_SCBID;
|
|
mvi SEQCTL, FASTMODE;
|
|
jmp poll_for_work;
|
|
.endif
|
|
make_busy:
|
|
mov DINDIR, CUR_SCBID;
|
|
mov SCBPTR, SAVED_SCBPTR;
|
|
mvi SEQCTL, FASTMODE;
|
|
|
|
start_scb:
|
|
/*
|
|
* Place us on the waiting list in case our selection
|
|
* doesn't win during bus arbitration.
|
|
*/
|
|
mov SCB_NEXT,WAITING_SCBH;
|
|
mov WAITING_SCBH, SCBPTR;
|
|
start_waiting:
|
|
/*
|
|
* Pull the first entry off of the waiting SCB list
|
|
* We don't have to "test_busy" because only transactions that
|
|
* have passed that test can be in the WAITING_SCB list.
|
|
*/
|
|
mov SCBPTR, WAITING_SCBH;
|
|
call start_selection;
|
|
jmp poll_for_work;
|
|
|
|
start_selection:
|
|
.if ( TWIN_CHANNEL )
|
|
and SINDEX,~SELBUSB,SBLKCTL;/* Clear the channel select bit */
|
|
and A,SELBUSB,SCB_TCL; /* Get new channel bit */
|
|
or SINDEX,A;
|
|
mov SBLKCTL,SINDEX; /* select channel */
|
|
.endif
|
|
initialize_scsiid:
|
|
and A, TID, SCB_TCL; /* Get target ID */
|
|
and SCSIID, OID; /* Clear old target */
|
|
or SCSIID, A;
|
|
mvi SCSISEQ, ENSELO|ENAUTOATNO|ENRSELI|ENAUTOATNP ret;
|
|
/*
|
|
* Reselection has been initiated by a target. Make a note that we've been
|
|
* reselected, but haven't seen an IDENTIFY message from the target yet.
|
|
*/
|
|
reselect:
|
|
clr MSG_LEN; /* Don't have anything in the mesg buffer */
|
|
mvi CLRSINT0, CLRSELDI;
|
|
/* XXX test for and handle ONE BIT condition */
|
|
and SAVED_TCL, SELID_MASK, SELID;
|
|
or SEQ_FLAGS,RESELECTED;
|
|
jmp select2;
|
|
|
|
/*
|
|
* After the selection, remove this SCB from the "waiting SCB"
|
|
* list. This is achieved by simply moving our "next" pointer into
|
|
* WAITING_SCBH. Our next pointer will be set to null the next time this
|
|
* SCB is used, so don't bother with it now.
|
|
*/
|
|
select:
|
|
/* Turn off the selection hardware */
|
|
mvi SCSISEQ, ENRSELI|ENAUTOATNP; /*
|
|
* ATN on parity errors
|
|
* for "in" phases
|
|
*/
|
|
mvi CLRSINT0, CLRSELDO;
|
|
mov SCBPTR, WAITING_SCBH;
|
|
mov WAITING_SCBH,SCB_NEXT;
|
|
mov SAVED_TCL, SCB_TCL;
|
|
/*
|
|
* As soon as we get a successful selection, the target should go
|
|
* into the message out phase since we have ATN asserted. Prepare
|
|
* the message to send.
|
|
*
|
|
* Messages are stored in scratch RAM starting with a length byte
|
|
* followed by the message itself.
|
|
*/
|
|
|
|
mk_identify:
|
|
and MSG_OUT,0x7,SCB_TCL; /* lun */
|
|
and A,DISCENB,SCB_CONTROL; /* mask off disconnect privledge */
|
|
or MSG_OUT,A; /* or in disconnect privledge */
|
|
or MSG_OUT,MSG_IDENTIFYFLAG;
|
|
mvi MSG_LEN, 1;
|
|
|
|
/*
|
|
* Send a tag message if TAG_ENB is set in the SCB control block.
|
|
* Use SCB_TAG (the position in the kernel's SCB array) as the tag value.
|
|
*/
|
|
mk_tag:
|
|
test SCB_CONTROL,TAG_ENB jz mk_message;
|
|
and MSG_OUT[1],TAG_ENB|SCB_TAG_TYPE,SCB_CONTROL;
|
|
mov MSG_OUT[2],SCB_TAG;
|
|
add MSG_LEN,2; /* update message length */
|
|
|
|
/*
|
|
* Interrupt the driver, and allow it to tweak the message buffer
|
|
* if it asks.
|
|
*/
|
|
mk_message:
|
|
test SCB_CONTROL,MK_MESSAGE jz select2;
|
|
mvi INTSTAT,AWAITING_MSG;
|
|
|
|
select2:
|
|
mvi CLRSINT1,CLRBUSFREE;
|
|
or SIMODE1, ENBUSFREE; /*
|
|
* We aren't expecting a
|
|
* bus free, so interrupt
|
|
* the kernel driver if it
|
|
* happens.
|
|
*/
|
|
/*
|
|
* Initialize Ultra mode setting and clear the SCSI channel.
|
|
*/
|
|
or SXFRCTL0, CLRSTCNT|SPIOEN|CLRCHN;
|
|
.if ( ULTRA )
|
|
ultra:
|
|
mvi SINDEX, ULTRA_ENB+1;
|
|
test SAVED_TCL, 0x80 jnz ultra_2; /* Target ID > 7 */
|
|
dec SINDEX;
|
|
ultra_2:
|
|
mov FUNCTION1,SAVED_TCL;
|
|
mov A,FUNCTION1;
|
|
test SINDIR, A jz ndx_dtr;
|
|
or SXFRCTL0, FAST20;
|
|
.endif
|
|
|
|
/*
|
|
* Initialize SCSIRATE with the appropriate value for this target.
|
|
* The SCSIRATE settings for each target are stored in an array
|
|
* based at TARG_SCRATCH.
|
|
*/
|
|
ndx_dtr:
|
|
shr A,4,SAVED_TCL;
|
|
test SBLKCTL,SELBUSB jz ndx_dtr_2;
|
|
or SAVED_TCL, SELBUSB; /* Add the channel bit while we're here */
|
|
or A,0x08; /* Channel B entries add 8 */
|
|
ndx_dtr_2:
|
|
add SINDEX,TARG_SCRATCH,A;
|
|
mov SCSIRATE,SINDIR;
|
|
|
|
|
|
/*
|
|
* Main loop for information transfer phases. If BSY is false, then
|
|
* we have a bus free condition, expected or not. Otherwise, wait
|
|
* for the target to assert REQ before checking MSG, C/D and I/O
|
|
* for the bus phase.
|
|
*
|
|
*/
|
|
ITloop:
|
|
test SSTAT1,REQINIT jz ITloop;
|
|
test SSTAT1, SCSIPERR jnz ITloop;
|
|
|
|
and A,PHASE_MASK,SCSISIGI;
|
|
mov LASTPHASE,A;
|
|
mov SCSISIGO,A;
|
|
|
|
cmp ALLZEROS,A je p_dataout;
|
|
cmp A,P_DATAIN je p_datain;
|
|
cmp A,P_COMMAND je p_command;
|
|
cmp A,P_MESGOUT je p_mesgout;
|
|
cmp A,P_STATUS je p_status;
|
|
cmp A,P_MESGIN je p_mesgin;
|
|
|
|
mvi INTSTAT,BAD_PHASE; /* unknown phase - signal driver */
|
|
jmp ITloop; /* Try reading the bus again. */
|
|
|
|
await_busfree:
|
|
and SIMODE1, ~ENBUSFREE;
|
|
call clear_target_state;
|
|
mov NONE, SCSIDATL; /* Ack the last byte */
|
|
test SSTAT1,REQINIT|BUSFREE jz .;
|
|
test SSTAT1, BUSFREE jnz poll_for_work;
|
|
mvi INTSTAT, BAD_PHASE;
|
|
|
|
clear_target_state:
|
|
clr DFCNTRL;
|
|
clr SCSIRATE; /*
|
|
* We don't know the target we will
|
|
* connect to, so default to narrow
|
|
* transfers to avoid parity problems.
|
|
*/
|
|
and SXFRCTL0, ~FAST20;
|
|
mvi LASTPHASE, P_BUSFREE;
|
|
/* clear target specific flags */
|
|
and SEQ_FLAGS,~(RESELECTED|IDENTIFY_SEEN|TAGGED_SCB|DPHASE) ret;
|
|
|
|
p_dataout:
|
|
mvi DMAPARAMS, WIDEODD|SCSIEN|SDMAEN|HDMAEN|DIRECTION|FIFORESET;
|
|
jmp data_phase_init;
|
|
|
|
/*
|
|
* If we re-enter the data phase after going through another phase, the
|
|
* STCNT may have been cleared, so restore it from the residual field.
|
|
*/
|
|
data_phase_reinit:
|
|
mvi DINDEX, STCNT;
|
|
mvi SCB_RESID_DCNT call bcopy_3;
|
|
jmp data_phase_loop;
|
|
|
|
p_datain:
|
|
mvi DMAPARAMS, WIDEODD|SCSIEN|SDMAEN|HDMAEN|FIFORESET;
|
|
data_phase_init:
|
|
call assert; /*
|
|
* Ensure entering a data
|
|
* phase is okay - seen identify, etc.
|
|
*/
|
|
|
|
test SEQ_FLAGS, DPHASE jnz data_phase_reinit;
|
|
|
|
/*
|
|
* Initialize the DMA address and counter from the SCB.
|
|
* Also set SG_COUNT and SG_NEXT in memory since we cannot
|
|
* modify the values in the SCB itself until we see a
|
|
* save data pointers message.
|
|
*/
|
|
mvi DINDEX, HADDR;
|
|
mvi SCB_DATAPTR call bcopy_7;
|
|
|
|
call set_stcnt_from_hcnt;
|
|
|
|
mov SG_COUNT,SCB_SGCOUNT;
|
|
|
|
mvi DINDEX, SG_NEXT;
|
|
mvi SCB_SGPTR call bcopy_4;
|
|
|
|
data_phase_loop:
|
|
/* Guard against overruns */
|
|
test SG_COUNT, 0xff jnz data_phase_inbounds;
|
|
/*
|
|
* Turn on 'Bit Bucket' mode, set the transfer count to
|
|
* 16meg and let the target run until it changes phase.
|
|
* When the transfer completes, notify the host that we
|
|
* had an overrun.
|
|
*/
|
|
or SXFRCTL1,BITBUCKET;
|
|
mvi HCNT[0], 0xff;
|
|
mvi HCNT[1], 0xff;
|
|
mvi HCNT[2], 0xff;
|
|
call set_stcnt_from_hcnt;
|
|
|
|
data_phase_inbounds:
|
|
/* If we are the last SG block, ensure wideodd is off. */
|
|
cmp SG_COUNT,0x01 jne data_phase_wideodd;
|
|
and DMAPARAMS, ~WIDEODD;
|
|
data_phase_wideodd:
|
|
mov DMAPARAMS call dma;
|
|
|
|
/* Go tell the host about any overruns */
|
|
test SXFRCTL1,BITBUCKET jnz data_phase_overrun;
|
|
|
|
/* Exit if we had an underrun. dma clears SINDEX in this case. */
|
|
test SINDEX,0xff jz data_phase_finish;
|
|
|
|
/*
|
|
* Advance the scatter-gather pointers if needed
|
|
*/
|
|
sg_advance:
|
|
dec SG_COUNT; /* one less segment to go */
|
|
|
|
test SG_COUNT, 0xff jz data_phase_finish; /* Are we done? */
|
|
|
|
clr A; /* add sizeof(struct scatter) */
|
|
add SG_NEXT[0],SG_SIZEOF;
|
|
adc SG_NEXT[1],A;
|
|
|
|
/*
|
|
* Load a struct scatter and set up the data address and length.
|
|
* If the working value of the SG count is nonzero, then
|
|
* we need to load a new set of values.
|
|
*
|
|
* This, like all DMA's, assumes little-endian host data storage.
|
|
*/
|
|
sg_load:
|
|
mvi DINDEX, HADDR;
|
|
mvi SG_NEXT call bcopy_4;
|
|
|
|
mvi HCNT[0],SG_SIZEOF;
|
|
clr HCNT[1];
|
|
clr HCNT[2];
|
|
|
|
or DFCNTRL, HDMAEN|DIRECTION|FIFORESET;
|
|
|
|
call dma_finish;
|
|
|
|
/*
|
|
* Copy data from FIFO into SCB data pointer and data count. This assumes
|
|
* that the SG segments are of the form:
|
|
*
|
|
* struct ahc_dma_seg {
|
|
* u_int32_t addr; four bytes, little-endian order
|
|
* u_int32_t len; four bytes, little endian order
|
|
* };
|
|
*/
|
|
mvi HADDR call dfdat_in_7;
|
|
|
|
/* Load STCNT as well. It is a mirror of HCNT */
|
|
call set_stcnt_from_hcnt;
|
|
test SSTAT1,PHASEMIS jz data_phase_loop;
|
|
|
|
data_phase_finish:
|
|
/*
|
|
* After a DMA finishes, save the SG and STCNT residuals back into the SCB
|
|
* We use STCNT instead of HCNT, since it's a reflection of how many bytes
|
|
* were transferred on the SCSI (as opposed to the host) bus.
|
|
*/
|
|
mov SCB_RESID_DCNT[0],STCNT[0];
|
|
mov SCB_RESID_DCNT[1],STCNT[1];
|
|
mov SCB_RESID_DCNT[2],STCNT[2];
|
|
mov SCB_RESID_SGCNT, SG_COUNT;
|
|
|
|
/* We have seen a data phase */
|
|
or SEQ_FLAGS, DPHASE;
|
|
|
|
jmp ITloop;
|
|
|
|
data_phase_overrun:
|
|
/*
|
|
* Turn off BITBUCKET mode and notify the host
|
|
*/
|
|
and SXFRCTL1, ~BITBUCKET;
|
|
mvi INTSTAT,DATA_OVERRUN;
|
|
jmp ITloop;
|
|
|
|
/*
|
|
* Command phase. Set up the DMA registers and let 'er rip.
|
|
*/
|
|
p_command:
|
|
call assert;
|
|
|
|
/*
|
|
* Load HADDR and HCNT.
|
|
*/
|
|
mvi DINDEX, HADDR;
|
|
mvi SCB_CMDPTR call bcopy_5;
|
|
clr HCNT[1];
|
|
clr HCNT[2];
|
|
|
|
call set_stcnt_from_hcnt;
|
|
|
|
mvi (SCSIEN|SDMAEN|HDMAEN|DIRECTION|FIFORESET) call dma;
|
|
jmp ITloop;
|
|
|
|
/*
|
|
* Status phase. Wait for the data byte to appear, then read it
|
|
* and store it into the SCB.
|
|
*/
|
|
p_status:
|
|
call assert;
|
|
|
|
mov SCB_TARGET_STATUS, SCSIDATL;
|
|
jmp ITloop;
|
|
|
|
/*
|
|
* Message out phase. If there is not an active message, but the target
|
|
* took us into this phase anyway, build a no-op message and send it.
|
|
*/
|
|
p_mesgout:
|
|
test MSG_LEN, 0xff jnz p_mesgout_start;
|
|
mvi MSG_NOOP call mk_mesg; /* build NOP message */
|
|
p_mesgout_start:
|
|
/*
|
|
* Set up automatic PIO transfer from MSG_OUT. Bit 3 in
|
|
* SXFRCTL0 (SPIOEN) is already on.
|
|
*/
|
|
mvi SINDEX,MSG_OUT;
|
|
mov DINDEX,MSG_LEN;
|
|
|
|
/*
|
|
* When target asks for a byte, drop ATN if it's the last one in
|
|
* the message. Otherwise, keep going until the message is exhausted.
|
|
* ATN must be dropped *at least* 90ns before we ack the last byte, so
|
|
* the code is aranged to execute two instructions before the byte is
|
|
* transferred to give a good margin of safety
|
|
*
|
|
* Keep an eye out for a phase change, in case the target issues
|
|
* a MESSAGE REJECT.
|
|
*/
|
|
p_mesgout_loop:
|
|
test SSTAT1, REQINIT jz p_mesgout_loop;
|
|
test SSTAT1, SCSIPERR jnz p_mesgout_loop;
|
|
and LASTPHASE, PHASE_MASK, SCSISIGI;
|
|
cmp LASTPHASE, P_MESGOUT jne p_mesgout_done;
|
|
p_mesgout_testretry:
|
|
test DINDEX,0xff jnz p_mesgout_dropatn;
|
|
or SCSISIGO,ATNO,LASTPHASE;/* turn on ATN for the retry */
|
|
jmp p_mesgout_start;
|
|
/*
|
|
* If the next bus phase after ATN drops is a message out, it means
|
|
* that the target is requesting that the last message(s) be resent.
|
|
*/
|
|
p_mesgout_dropatn:
|
|
cmp DINDEX,1 jne p_mesgout_outb; /* last byte? */
|
|
mvi CLRSINT1,CLRATNO; /* drop ATN */
|
|
p_mesgout_outb:
|
|
dec DINDEX;
|
|
mov SCSIDATL,SINDIR;
|
|
jmp p_mesgout_loop;
|
|
|
|
p_mesgout_done:
|
|
mvi CLRSINT1,CLRATNO; /* Be sure to turn ATNO off */
|
|
clr MSG_LEN; /* no active msg */
|
|
jmp ITloop;
|
|
|
|
/*
|
|
* Message in phase. Bytes are read using Automatic PIO mode.
|
|
*/
|
|
p_mesgin:
|
|
mvi ACCUM call inb_first; /* read the 1st message byte */
|
|
mov REJBYTE,A; /* save it for the driver */
|
|
|
|
test A,MSG_IDENTIFYFLAG jnz mesgin_identify;
|
|
cmp A,MSG_DISCONNECT je mesgin_disconnect;
|
|
cmp A,MSG_SAVEDATAPOINTER je mesgin_sdptrs;
|
|
cmp ALLZEROS,A je mesgin_complete;
|
|
cmp A,MSG_RESTOREPOINTERS je mesgin_rdptrs;
|
|
cmp A,MSG_EXTENDED je mesgin_extended;
|
|
cmp A,MSG_MESSAGE_REJECT je mesgin_reject;
|
|
cmp A,MSG_NOOP je mesgin_done;
|
|
|
|
rej_mesgin:
|
|
/*
|
|
* We have no idea what this message in is, so we issue a message reject
|
|
* and hope for the best. In any case, rejection should be a rare
|
|
* occurrence - signal the driver when it happens.
|
|
*/
|
|
mvi INTSTAT,SEND_REJECT; /* let driver know */
|
|
|
|
mvi MSG_MESSAGE_REJECT call mk_mesg;
|
|
|
|
mesgin_done:
|
|
mov NONE,SCSIDATL; /*dummy read from latch to ACK*/
|
|
jmp ITloop;
|
|
|
|
|
|
mesgin_complete:
|
|
/*
|
|
* We got a "command complete" message, so put the SCB_TAG into the QOUTFIFO,
|
|
* and trigger a completion interrupt. Before doing so, check to see if there
|
|
* is a residual or the status byte is something other than NO_ERROR (0). In
|
|
* either of these conditions, we upload the SCB back to the host so it can
|
|
* process this information. In the case of a non zero status byte, we
|
|
* additionally interrupt the kernel driver synchronously, allowing it to
|
|
* decide if sense should be retrieved. If the kernel driver wishes to request
|
|
* sense, it will fill the kernel SCB with a request sense command and set
|
|
* RETURN_1 to SEND_SENSE. If RETURN_1 is set to SEND_SENSE we redownload
|
|
* the SCB, and process it as the next command by adding it to the waiting list.
|
|
* If the kernel driver does not wish to request sense, it need only clear
|
|
* RETURN_1, and the command is allowed to complete normally. We don't bother
|
|
* to post to the QOUTFIFO in the error cases since it would require extra
|
|
* work in the kernel driver to ensure that the entry was removed before the
|
|
* command complete code tried processing it.
|
|
*/
|
|
|
|
/*
|
|
* First check for residuals
|
|
*/
|
|
test SCB_RESID_SGCNT,0xff jnz upload_scb;
|
|
test SCB_TARGET_STATUS,0xff jz status_ok; /* Good Status? */
|
|
upload_scb:
|
|
mvi DMAPARAMS, FIFORESET;
|
|
mov SCB_TAG call dma_scb;
|
|
check_status:
|
|
test SCB_TARGET_STATUS,0xff jz status_ok; /* Just a residual? */
|
|
mvi INTSTAT,BAD_STATUS; /* let driver know */
|
|
cmp RETURN_1, SEND_SENSE jne status_ok;
|
|
/* This SCB becomes the next to execute as it will retrieve sense */
|
|
mov SCB_LINKED_NEXT, SCB_TAG;
|
|
jmp dma_next_scb;
|
|
|
|
status_ok:
|
|
/* First, mark this target as free. */
|
|
test SCB_CONTROL,TAG_ENB jnz complete; /*
|
|
* Tagged commands
|
|
* don't busy the
|
|
* target.
|
|
*/
|
|
mov SAVED_SCBPTR, SCBPTR;
|
|
mov SAVED_LINKPTR, SCB_LINKED_NEXT;
|
|
mov SCB_TCL call index_untagged_scb;
|
|
mov DINDIR, SAVED_LINKPTR;
|
|
mov SCBPTR, SAVED_SCBPTR;
|
|
|
|
complete:
|
|
/* Post the SCB and issue an interrupt */
|
|
mov QOUTFIFO,SCB_TAG;
|
|
mvi INTSTAT,CMDCMPLT;
|
|
test SCB_CONTROL, ABORT_SCB jz dma_next_scb;
|
|
mvi INTSTAT, ABORT_CMDCMPLT;
|
|
|
|
dma_next_scb:
|
|
cmp SCB_LINKED_NEXT, SCB_LIST_NULL je add_to_free_list;
|
|
.if !( SCB_PAGING )
|
|
/* Only DMA on top of ourselves if we are the SCB to download */
|
|
mov A, SCB_LINKED_NEXT;
|
|
cmp SCB_TAG, A je dma_next_scb2;
|
|
call add_scb_to_free_list;
|
|
mov SCBPTR, A;
|
|
jmp add_to_waiting_list;
|
|
.endif
|
|
dma_next_scb2:
|
|
mvi DMAPARAMS, HDMAEN|DIRECTION|FIFORESET;
|
|
mov SCB_LINKED_NEXT call dma_scb;
|
|
add_to_waiting_list:
|
|
mov SCB_NEXT,WAITING_SCBH;
|
|
mov WAITING_SCBH, SCBPTR;
|
|
/*
|
|
* Prepare our selection hardware before the busfree so we have a
|
|
* high probability of winning arbitration.
|
|
*/
|
|
call start_selection;
|
|
jmp await_busfree;
|
|
add_to_free_list:
|
|
call add_scb_to_free_list;
|
|
jmp await_busfree;
|
|
|
|
/*
|
|
* Is it an extended message? Copy the message to our message buffer and
|
|
* notify the host. The host will tell us whether to reject this message,
|
|
* respond to it with the message that the host placed in our message buffer,
|
|
* or simply to do nothing.
|
|
*/
|
|
mesgin_extended:
|
|
mvi MSGIN_EXT_LEN call inb_next;
|
|
mov A, MSGIN_EXT_LEN;
|
|
mesgin_extended_loop:
|
|
mov DINDEX call inb_next;
|
|
dec A;
|
|
cmp DINDEX, MSGIN_EXT_BYTES+3 jne mesgin_extended_loop_test;
|
|
dec DINDEX; /* dump by repeatedly filling the last byte */
|
|
mesgin_extended_loop_test:
|
|
test A, 0xFF jnz mesgin_extended_loop;
|
|
mesgin_extended_intr:
|
|
mvi INTSTAT,EXTENDED_MSG; /* let driver know */
|
|
cmp RETURN_1,SEND_REJ je rej_mesgin;
|
|
cmp RETURN_1,SEND_MSG jne mesgin_done;
|
|
/* The kernel has setup a message to be sent */
|
|
or SCSISIGO,ATNO,LASTPHASE; /* turn on ATNO */
|
|
jmp mesgin_done;
|
|
|
|
/*
|
|
* Is it a disconnect message? Set a flag in the SCB to remind us
|
|
* and await the bus going free.
|
|
*/
|
|
mesgin_disconnect:
|
|
or SCB_CONTROL,DISCONNECTED;
|
|
.if ( SCB_PAGING )
|
|
call add_scb_to_disc_list;
|
|
.endif
|
|
jmp await_busfree;
|
|
|
|
/*
|
|
* Save data pointers message:
|
|
* Copying RAM values back to SCB, for Save Data Pointers message, but
|
|
* only if we've actually been into a data phase to change them. This
|
|
* protects against bogus data in scratch ram and the residual counts
|
|
* since they are only initialized when we go into data_in or data_out.
|
|
*/
|
|
mesgin_sdptrs:
|
|
test SEQ_FLAGS, DPHASE jz mesgin_done;
|
|
mov SCB_SGCOUNT,SG_COUNT;
|
|
|
|
/* The SCB SGPTR becomes the next one we'll download */
|
|
mvi DINDEX, SCB_SGPTR;
|
|
mvi SG_NEXT call bcopy_4;
|
|
|
|
/* The SCB DATAPTR0 becomes the current SHADDR */
|
|
mvi DINDEX, SCB_DATAPTR;
|
|
mvi SHADDR call bcopy_4;
|
|
|
|
/*
|
|
* Use the residual number since STCNT is corrupted by any message transfer.
|
|
*/
|
|
mvi SCB_RESID_DCNT call bcopy_3;
|
|
|
|
jmp mesgin_done;
|
|
|
|
/*
|
|
* Restore pointers message? Data pointers are recopied from the
|
|
* SCB anytime we enter a data phase for the first time, so all
|
|
* we need to do is clear the DPHASE flag and let the data phase
|
|
* code do the rest.
|
|
*/
|
|
mesgin_rdptrs:
|
|
and SEQ_FLAGS, ~DPHASE; /*
|
|
* We'll reload them
|
|
* the next time through
|
|
* the dataphase.
|
|
*/
|
|
jmp mesgin_done;
|
|
|
|
/*
|
|
* Identify message? For a reconnecting target, this tells us the lun
|
|
* that the reconnection is for - find the correct SCB and switch to it,
|
|
* clearing the "disconnected" bit so we don't "find" it by accident later.
|
|
*/
|
|
mesgin_identify:
|
|
test A,0x78 jnz rej_mesgin; /*!DiscPriv|!LUNTAR|!Reserved*/
|
|
and A,0x07; /* lun in lower three bits */
|
|
or SAVED_TCL,A; /* SAVED_TCL should be complete now */
|
|
mov SAVED_TCL call index_untagged_scb;
|
|
mov ARG_1, SINDIR;
|
|
.if ( SCB_PAGING )
|
|
cmp ARG_1,SCB_LIST_NULL jne use_findSCB;
|
|
.else
|
|
cmp ARG_1,SCB_LIST_NULL je snoop_tag;
|
|
/* Directly index the SCB */
|
|
mov SCBPTR,ARG_1;
|
|
test SCB_CONTROL,DISCONNECTED jz not_found;
|
|
jmp setup_SCB;
|
|
.endif
|
|
/*
|
|
* Here we "snoop" the bus looking for a SIMPLE QUEUE TAG message.
|
|
* If we get one, we use the tag returned to find the proper
|
|
* SCB. With SCB paging, this requires using findSCB for both tagged
|
|
* and non-tagged transactions since the SCB may exist in any slot.
|
|
* If we're not using SCB paging, we can use the tag as the direct
|
|
* index to the SCB.
|
|
*/
|
|
snoop_tag:
|
|
mov NONE,SCSIDATL; /* ACK Identify MSG */
|
|
snoop_tag_loop:
|
|
test SSTAT1,REQINIT jz snoop_tag_loop;
|
|
test SSTAT1, SCSIPERR jnz snoop_tag_loop;
|
|
and LASTPHASE, PHASE_MASK, SCSISIGI;
|
|
cmp LASTPHASE, P_MESGIN jne not_found;
|
|
cmp SCSIBUSL,MSG_SIMPLE_Q_TAG jne not_found;
|
|
get_tag:
|
|
or SEQ_FLAGS, TAGGED_SCB;
|
|
mvi ARG_1 call inb_next; /* tag value */
|
|
/*
|
|
* See if the tag is in range. The tag is < SCBCOUNT if we add
|
|
* the complement of SCBCOUNT to the incomming tag and there is
|
|
* no carry.
|
|
*/
|
|
mov A,COMP_SCBCOUNT;
|
|
add SINDEX,A,ARG_1;
|
|
jc not_found;
|
|
|
|
.if ! ( SCB_PAGING )
|
|
index_by_tag:
|
|
mov SCBPTR,ARG_1;
|
|
mov A, SAVED_TCL;
|
|
cmp SCB_TCL,A jne not_found;
|
|
test SCB_CONTROL,TAG_ENB jz not_found;
|
|
test SCB_CONTROL,DISCONNECTED jz not_found;
|
|
.else
|
|
/*
|
|
* Ensure that the SCB the tag points to is for an SCB transaction
|
|
* to the reconnecting target.
|
|
*/
|
|
use_findSCB:
|
|
mov ALLZEROS call findSCB; /* Have to search */
|
|
cmp SINDEX, SCB_LIST_NULL je not_found;
|
|
.endif
|
|
setup_SCB:
|
|
and SCB_CONTROL,~DISCONNECTED;
|
|
or SEQ_FLAGS,IDENTIFY_SEEN; /* make note of IDENTIFY */
|
|
jmp mesgin_done;
|
|
|
|
not_found:
|
|
mvi INTSTAT, NO_MATCH;
|
|
mvi MSG_BUS_DEV_RESET call mk_mesg;
|
|
jmp mesgin_done;
|
|
|
|
/*
|
|
* Message reject? Let the kernel driver handle this. If we have an
|
|
* outstanding WDTR or SDTR negotiation, assume that it's a response from
|
|
* the target selecting 8bit or asynchronous transfer, otherwise just ignore
|
|
* it since we have no clue what it pertains to.
|
|
*/
|
|
mesgin_reject:
|
|
mvi INTSTAT, REJECT_MSG;
|
|
jmp mesgin_done;
|
|
|
|
/*
|
|
* [ ADD MORE MESSAGE HANDLING HERE ]
|
|
*/
|
|
|
|
/*
|
|
* Locking the driver out, build a one-byte message passed in SINDEX
|
|
* if there is no active message already. SINDEX is returned intact.
|
|
*/
|
|
mk_mesg:
|
|
mvi SEQCTL, PAUSEDIS|FASTMODE;
|
|
test MSG_LEN,0xff jz mk_mesg1; /* Should always succeed */
|
|
|
|
/*
|
|
* Hmmm. For some reason the mesg buffer is in use.
|
|
* Tell the driver. It should look at SINDEX to find
|
|
* out what we wanted to use the buffer for and resolve
|
|
* the conflict.
|
|
*/
|
|
mvi SEQCTL,FASTMODE;
|
|
mvi INTSTAT,MSG_BUFFER_BUSY;
|
|
|
|
mk_mesg1:
|
|
or SCSISIGO,ATNO,LASTPHASE;/* turn on ATNO */
|
|
mvi MSG_LEN,1; /* length = 1 */
|
|
mov MSG_OUT,SINDEX; /* 1-byte message */
|
|
mvi SEQCTL,FASTMODE ret;
|
|
|
|
/*
|
|
* Functions to read data in Automatic PIO mode.
|
|
*
|
|
* According to Adaptec's documentation, an ACK is not sent on input from
|
|
* the target until SCSIDATL is read from. So we wait until SCSIDATL is
|
|
* latched (the usual way), then read the data byte directly off the bus
|
|
* using SCSIBUSL. When we have pulled the ATN line, or we just want to
|
|
* acknowledge the byte, then we do a dummy read from SCISDATL. The SCSI
|
|
* spec guarantees that the target will hold the data byte on the bus until
|
|
* we send our ACK.
|
|
*
|
|
* The assumption here is that these are called in a particular sequence,
|
|
* and that REQ is already set when inb_first is called. inb_{first,next}
|
|
* use the same calling convention as inb.
|
|
*/
|
|
|
|
inb_next:
|
|
mov NONE,SCSIDATL; /*dummy read from latch to ACK*/
|
|
inb_next_wait:
|
|
/*
|
|
* If there is a parity error, wait for the kernel to
|
|
* see the interrupt and prepare our message response
|
|
* before continuing.
|
|
*/
|
|
test SSTAT1, REQINIT jz inb_next_wait;
|
|
test SSTAT1, SCSIPERR jnz inb_next_wait;
|
|
and LASTPHASE, PHASE_MASK, SCSISIGI;
|
|
cmp LASTPHASE, P_MESGIN jne mesgin_phasemis;
|
|
inb_first:
|
|
mov DINDEX,SINDEX;
|
|
mov DINDIR,SCSIBUSL ret; /*read byte directly from bus*/
|
|
inb_last:
|
|
mov NONE,SCSIDATL ret; /*dummy read from latch to ACK*/
|
|
|
|
mesgin_phasemis:
|
|
/*
|
|
* We expected to receive another byte, but the target changed phase
|
|
*/
|
|
mvi INTSTAT, MSGIN_PHASEMIS;
|
|
jmp ITloop;
|
|
|
|
/*
|
|
* DMA data transfer. HADDR and HCNT must be loaded first, and
|
|
* SINDEX should contain the value to load DFCNTRL with - 0x3d for
|
|
* host->scsi, or 0x39 for scsi->host. The SCSI channel is cleared
|
|
* during initialization.
|
|
*/
|
|
dma:
|
|
mov DFCNTRL,SINDEX;
|
|
dma_loop:
|
|
test SSTAT0,DMADONE jnz dma_dmadone;
|
|
test SSTAT1,PHASEMIS jz dma_loop; /* ie. underrun */
|
|
dma_phasemis:
|
|
test SSTAT0,SDONE jnz dma_checkfifo;
|
|
mov SINDEX,ALLZEROS; /* Notify caller of phasemiss */
|
|
|
|
/*
|
|
* We will be "done" DMAing when the transfer count goes to zero, or
|
|
* the target changes the phase (in light of this, it makes sense that
|
|
* the DMA circuitry doesn't ACK when PHASEMIS is active). If we are
|
|
* doing a SCSI->Host transfer, the data FIFO should be flushed auto-
|
|
* magically on STCNT=0 or a phase change, so just wait for FIFO empty
|
|
* status.
|
|
*/
|
|
dma_checkfifo:
|
|
test DFCNTRL,DIRECTION jnz dma_fifoempty;
|
|
dma_fifoflush:
|
|
test DFSTATUS,FIFOEMP jz dma_fifoflush;
|
|
|
|
dma_fifoempty:
|
|
/* Don't clobber an inprogress host data transfer */
|
|
test DFSTATUS, MREQPEND jnz dma_fifoempty;
|
|
/*
|
|
* Now shut the DMA enables off and make sure that the DMA enables are
|
|
* actually off first lest we get an ILLSADDR.
|
|
*/
|
|
dma_dmadone:
|
|
and DFCNTRL, ~(SCSIEN|SDMAEN|HDMAEN);
|
|
dma_halt:
|
|
test DFCNTRL, (SCSIEN|SDMAEN|HDMAEN) jnz dma_halt;
|
|
return:
|
|
ret;
|
|
|
|
/*
|
|
* Assert that if we've been reselected, then we've seen an IDENTIFY
|
|
* message.
|
|
*/
|
|
assert:
|
|
test SEQ_FLAGS,RESELECTED jz return; /* reselected? */
|
|
test SEQ_FLAGS,IDENTIFY_SEEN jnz return; /* seen IDENTIFY? */
|
|
|
|
mvi INTSTAT,NO_IDENT ret; /* no - tell the kernel */
|
|
|
|
.if ( SCB_PAGING )
|
|
/*
|
|
* Locate a disconnected SCB either by SAVED_TCL (ARG_1 is SCB_LIST_NULL)
|
|
* or by the SCBIDn ARG_1. The search begins at the SCB index passed in
|
|
* via SINDEX. If the SCB cannot be found, SINDEX will be SCB_LIST_NULL,
|
|
* otherwise, SCBPTR is set to the proper SCB.
|
|
*/
|
|
findSCB:
|
|
mov SCBPTR,SINDEX; /* switch to next SCB */
|
|
mov A, ARG_1; /* Tag passed in ARG_1 */
|
|
cmp SCB_TAG,A jne findSCB_loop;
|
|
test SCB_CONTROL,DISCONNECTED jnz foundSCB;/*should be disconnected*/
|
|
findSCB_loop:
|
|
inc SINDEX;
|
|
mov A,SCBCOUNT;
|
|
cmp SINDEX,A jne findSCB;
|
|
/*
|
|
* We didn't find it. If we're paging, pull an SCB and DMA down the
|
|
* one we want. If we aren't paging or the SCB we dma down has the
|
|
* abort flag set, return not found.
|
|
*/
|
|
mov ALLZEROS call get_free_or_disc_scb;
|
|
mvi DMAPARAMS, HDMAEN|DIRECTION|FIFORESET;
|
|
mov ARG_1 call dma_scb;
|
|
test SCB_RESID_SGCNT, 0xff jz . + 2;
|
|
or SCB_CONTROL, MUST_DMAUP_SCB;
|
|
test SCB_CONTROL, ABORT_SCB jz return;
|
|
find_error:
|
|
mvi SINDEX, SCB_LIST_NULL ret;
|
|
foundSCB:
|
|
test SCB_CONTROL, ABORT_SCB jnz find_error;
|
|
rem_scb_from_disc_list:
|
|
/* Remove this SCB from the disconnection list */
|
|
cmp SCB_NEXT,SCB_LIST_NULL je unlink_prev;
|
|
mov SAVED_LINKPTR, SCB_PREV;
|
|
mov SCBPTR, SCB_NEXT;
|
|
mov SCB_PREV, SAVED_LINKPTR;
|
|
mov SCBPTR, SINDEX;
|
|
unlink_prev:
|
|
cmp SCB_PREV,SCB_LIST_NULL je rHead;/* At the head of the list */
|
|
mov SAVED_LINKPTR, SCB_NEXT;
|
|
mov SCBPTR, SCB_PREV;
|
|
mov SCB_NEXT, SAVED_LINKPTR;
|
|
mov SCBPTR, SINDEX ret;
|
|
rHead:
|
|
mov DISCONNECTED_SCBH,SCB_NEXT ret;
|
|
.else
|
|
ret;
|
|
.endif
|
|
|
|
set_stcnt_from_hcnt:
|
|
mov STCNT[0], HCNT[0];
|
|
mov STCNT[1], HCNT[1];
|
|
mov STCNT[2], HCNT[2] ret;
|
|
|
|
bcopy_7:
|
|
mov DINDIR, SINDIR;
|
|
mov DINDIR, SINDIR;
|
|
bcopy_5:
|
|
mov DINDIR, SINDIR;
|
|
bcopy_4:
|
|
mov DINDIR, SINDIR;
|
|
bcopy_3:
|
|
mov DINDIR, SINDIR;
|
|
mov DINDIR, SINDIR;
|
|
mov DINDIR, SINDIR ret;
|
|
|
|
dma_scb:
|
|
/*
|
|
* SCB index is in SINDEX. Determine the physical address in
|
|
* the host where this SCB is located and load HADDR with it.
|
|
*/
|
|
shr DINDEX, 3, SINDEX;
|
|
shl A, 5, SINDEX;
|
|
add HADDR[0], A, HSCB_ADDR[0];
|
|
mov A, DINDEX;
|
|
adc HADDR[1], A, HSCB_ADDR[1];
|
|
clr A;
|
|
adc HADDR[2], A, HSCB_ADDR[2];
|
|
adc HADDR[3], A, HSCB_ADDR[3];
|
|
/* Setup Count */
|
|
mvi HCNT[0], 28;
|
|
clr HCNT[1];
|
|
clr HCNT[2];
|
|
mov DFCNTRL, DMAPARAMS;
|
|
test DMAPARAMS, DIRECTION jnz dma_scb_fromhost;
|
|
/* Fill it with the SCB data */
|
|
copy_scb_tofifo:
|
|
mvi SINDEX, SCB_CONTROL;
|
|
add A, 28, SINDEX;
|
|
copy_scb_tofifo_loop:
|
|
mov DFDAT,SINDIR;
|
|
mov DFDAT,SINDIR;
|
|
mov DFDAT,SINDIR;
|
|
mov DFDAT,SINDIR;
|
|
mov DFDAT,SINDIR;
|
|
mov DFDAT,SINDIR;
|
|
mov DFDAT,SINDIR;
|
|
cmp SINDEX, A jne copy_scb_tofifo_loop;
|
|
or DFCNTRL, HDMAEN|FIFOFLUSH;
|
|
dma_scb_fromhost:
|
|
call dma_finish;
|
|
/* If we were putting the SCB, we are done */
|
|
test DMAPARAMS, DIRECTION jz return;
|
|
mvi SCB_CONTROL call dfdat_in_7;
|
|
call dfdat_in_7_continued;
|
|
call dfdat_in_7_continued;
|
|
jmp dfdat_in_7_continued;
|
|
dfdat_in_7:
|
|
mov DINDEX,SINDEX;
|
|
dfdat_in_7_continued:
|
|
mov DINDIR,DFDAT;
|
|
mov DINDIR,DFDAT;
|
|
mov DINDIR,DFDAT;
|
|
mov DINDIR,DFDAT;
|
|
mov DINDIR,DFDAT;
|
|
mov DINDIR,DFDAT;
|
|
mov DINDIR,DFDAT ret;
|
|
|
|
/*
|
|
* Wait for DMA from host memory to data FIFO to complete, then disable
|
|
* DMA and wait for it to acknowledge that it's off.
|
|
*/
|
|
dma_finish:
|
|
test DFSTATUS,HDONE jz dma_finish;
|
|
/* Turn off DMA */
|
|
and DFCNTRL, ~HDMAEN;
|
|
test DFCNTRL, HDMAEN jnz .;
|
|
ret;
|
|
|
|
index_untagged_scb:
|
|
mov DINDEX, SINDEX;
|
|
shr DINDEX, 4;
|
|
and DINDEX, 0x03; /* Bottom two bits of tid */
|
|
add DINDEX, SCB_BUSYTARGETS;
|
|
shr A, 6, SINDEX; /* Target ID divided by 4 */
|
|
test SINDEX, SELBUSB jz index_untagged_scb2;
|
|
add A, 2; /* Add 2 positions */
|
|
index_untagged_scb2:
|
|
mov SCBPTR, A; /*
|
|
* Select the SCB with this
|
|
* target's information.
|
|
*/
|
|
mov SINDEX, DINDEX ret;
|
|
|
|
add_scb_to_free_list:
|
|
mov SCB_NEXT, FREE_SCBH;
|
|
mvi SCB_TAG, SCB_LIST_NULL;
|
|
mov FREE_SCBH, SCBPTR ret;
|
|
|
|
.if ( SCB_PAGING )
|
|
get_free_or_disc_scb:
|
|
cmp FREE_SCBH, SCB_LIST_NULL jne dequeue_free_scb;
|
|
cmp DISCONNECTED_SCBH, SCB_LIST_NULL jne dequeue_disc_scb;
|
|
return_error:
|
|
mvi SINDEX, SCB_LIST_NULL ret;
|
|
dequeue_disc_scb:
|
|
mov SCBPTR, DISCONNECTED_SCBH;
|
|
/*
|
|
* If we have a residual, then we are in the middle of some I/O
|
|
* and we have to send this SCB back up to the kernel so that the
|
|
* saved data pointers and residual information isn't lost.
|
|
*/
|
|
test SCB_CONTROL, MUST_DMAUP_SCB jz . + 3;
|
|
and SCB_CONTROL, ~MUST_DMAUP_SCB;
|
|
jmp dma_up_scb;
|
|
test SCB_RESID_SGCNT,0xff jnz dma_up_scb;
|
|
cmp SCB_LINKED_NEXT, SCB_LIST_NULL je unlink_disc_scb;
|
|
dma_up_scb:
|
|
mvi DMAPARAMS, FIFORESET;
|
|
mov SCB_TAG call dma_scb;
|
|
unlink_disc_scb:
|
|
/* jmp instead of call since we want to return anyway */
|
|
mov SCBPTR jmp rem_scb_from_disc_list;
|
|
dequeue_free_scb:
|
|
mov SCBPTR, FREE_SCBH;
|
|
mov FREE_SCBH, SCB_NEXT ret;
|
|
|
|
add_scb_to_disc_list:
|
|
/*
|
|
* Link this SCB into the DISCONNECTED list. This list holds the
|
|
* candidates for paging out an SCB if one is needed for a new command.
|
|
* Modifying the disconnected list is a critical(pause dissabled) section.
|
|
*/
|
|
mvi SCB_PREV, SCB_LIST_NULL;
|
|
mov SCB_NEXT, DISCONNECTED_SCBH;
|
|
mov DISCONNECTED_SCBH, SCBPTR;
|
|
cmp SCB_NEXT,SCB_LIST_NULL je return;
|
|
mov SCBPTR,SCB_NEXT;
|
|
mov SCB_PREV,DISCONNECTED_SCBH;
|
|
mov SCBPTR,DISCONNECTED_SCBH ret;
|
|
.endif
|