freebsd-skq/sys/netatalk/ddp_pcb.c
Robert Watson acd3428b7d Sweep kernel replacing suser(9) calls with priv(9) calls, assigning
specific privilege names to a broad range of privileges.  These may
require some future tweaking.

Sponsored by:           nCircle Network Security, Inc.
Obtained from:          TrustedBSD Project
Discussed on:           arch@
Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri,
                        Alex Lyashkov <umka at sevcity dot net>,
                        Skip Ford <skip dot ford at verizon dot net>,
                        Antoine Brodin <antoine dot brodin at laposte dot net>
2006-11-06 13:42:10 +00:00

398 lines
9.9 KiB
C

/*-
* Copyright (c) 2004-2005 Robert N. M. Watson
* Copyright (c) 1990,1994 Regents of The University of Michigan.
* All Rights Reserved.
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appears in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation, and that the name of The University
* of Michigan not be used in advertising or publicity pertaining to
* distribution of the software without specific, written prior
* permission. This software is supplied as is without expressed or
* implied warranties of any kind.
*
* This product includes software developed by the University of
* California, Berkeley and its contributors.
*
* Research Systems Unix Group
* The University of Michigan
* c/o Wesley Craig
* 535 W. William Street
* Ann Arbor, Michigan
* +1-313-764-2278
* netatalk@umich.edu
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/priv.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <net/if.h>
#include <net/route.h>
#include <net/netisr.h>
#include <netatalk/at.h>
#include <netatalk/at_var.h>
#include <netatalk/ddp_var.h>
#include <netatalk/ddp_pcb.h>
#include <netatalk/at_extern.h>
struct mtx ddp_list_mtx;
static struct ddpcb *ddp_ports[ ATPORT_LAST ];
struct ddpcb *ddpcb_list = NULL;
void
at_sockaddr(struct ddpcb *ddp, struct sockaddr **addr)
{
/*
* Prevent modification of ddp during copy of addr.
*/
DDP_LOCK_ASSERT(ddp);
*addr = sodupsockaddr((struct sockaddr *)&ddp->ddp_lsat, M_NOWAIT);
}
int
at_pcbsetaddr(struct ddpcb *ddp, struct sockaddr *addr, struct thread *td)
{
struct sockaddr_at lsat, *sat;
struct at_ifaddr *aa;
struct ddpcb *ddpp;
/*
* We read and write both the ddp passed in, and also ddp_ports.
*/
DDP_LIST_XLOCK_ASSERT();
DDP_LOCK_ASSERT(ddp);
if (ddp->ddp_lsat.sat_port != ATADDR_ANYPORT) { /* shouldn't be bound */
return (EINVAL);
}
if (addr != NULL) { /* validate passed address */
sat = (struct sockaddr_at *)addr;
if (sat->sat_family != AF_APPLETALK) {
return (EAFNOSUPPORT);
}
if (sat->sat_addr.s_node != ATADDR_ANYNODE ||
sat->sat_addr.s_net != ATADDR_ANYNET) {
for (aa = at_ifaddr_list; aa != NULL; aa = aa->aa_next) {
if ((sat->sat_addr.s_net == AA_SAT(aa)->sat_addr.s_net) &&
(sat->sat_addr.s_node == AA_SAT(aa)->sat_addr.s_node)) {
break;
}
}
if (!aa) {
return (EADDRNOTAVAIL);
}
}
if (sat->sat_port != ATADDR_ANYPORT) {
if (sat->sat_port < ATPORT_FIRST ||
sat->sat_port >= ATPORT_LAST) {
return (EINVAL);
}
if (sat->sat_port < ATPORT_RESERVED &&
priv_check(td, PRIV_NETATALK_RESERVEDPORT)) {
return (EACCES);
}
}
} else {
bzero((caddr_t)&lsat, sizeof(struct sockaddr_at));
lsat.sat_len = sizeof(struct sockaddr_at);
lsat.sat_addr.s_node = ATADDR_ANYNODE;
lsat.sat_addr.s_net = ATADDR_ANYNET;
lsat.sat_family = AF_APPLETALK;
sat = &lsat;
}
if (sat->sat_addr.s_node == ATADDR_ANYNODE &&
sat->sat_addr.s_net == ATADDR_ANYNET) {
if (at_ifaddr_list == NULL) {
return (EADDRNOTAVAIL);
}
sat->sat_addr = AA_SAT(at_ifaddr_list)->sat_addr;
}
ddp->ddp_lsat = *sat;
/*
* Choose port.
*/
if (sat->sat_port == ATADDR_ANYPORT) {
for (sat->sat_port = ATPORT_RESERVED;
sat->sat_port < ATPORT_LAST; sat->sat_port++) {
if (ddp_ports[ sat->sat_port - 1 ] == NULL) {
break;
}
}
if (sat->sat_port == ATPORT_LAST) {
return (EADDRNOTAVAIL);
}
ddp->ddp_lsat.sat_port = sat->sat_port;
ddp_ports[ sat->sat_port - 1 ] = ddp;
} else {
for (ddpp = ddp_ports[ sat->sat_port - 1 ]; ddpp;
ddpp = ddpp->ddp_pnext) {
if (ddpp->ddp_lsat.sat_addr.s_net == sat->sat_addr.s_net &&
ddpp->ddp_lsat.sat_addr.s_node == sat->sat_addr.s_node) {
break;
}
}
if (ddpp != NULL) {
return (EADDRINUSE);
}
ddp->ddp_pnext = ddp_ports[ sat->sat_port - 1 ];
ddp_ports[ sat->sat_port - 1 ] = ddp;
if (ddp->ddp_pnext) {
ddp->ddp_pnext->ddp_pprev = ddp;
}
}
return (0);
}
int
at_pcbconnect(struct ddpcb *ddp, struct sockaddr *addr, struct thread *td)
{
struct sockaddr_at *sat = (struct sockaddr_at *)addr;
struct route *ro;
struct at_ifaddr *aa = NULL;
struct ifnet *ifp;
u_short hintnet = 0, net;
DDP_LIST_XLOCK_ASSERT();
DDP_LOCK_ASSERT(ddp);
if (sat->sat_family != AF_APPLETALK) {
return (EAFNOSUPPORT);
}
/*
* Under phase 2, network 0 means "the network". We take "the
* network" to mean the network the control block is bound to.
* If the control block is not bound, there is an error.
*/
if (sat->sat_addr.s_net == ATADDR_ANYNET
&& sat->sat_addr.s_node != ATADDR_ANYNODE) {
if (ddp->ddp_lsat.sat_port == ATADDR_ANYPORT) {
return (EADDRNOTAVAIL);
}
hintnet = ddp->ddp_lsat.sat_addr.s_net;
}
ro = &ddp->ddp_route;
/*
* If we've got an old route for this pcb, check that it is valid.
* If we've changed our address, we may have an old "good looking"
* route here. Attempt to detect it.
*/
if (ro->ro_rt) {
if (hintnet) {
net = hintnet;
} else {
net = sat->sat_addr.s_net;
}
aa = NULL;
if ((ifp = ro->ro_rt->rt_ifp) != NULL) {
for (aa = at_ifaddr_list; aa != NULL; aa = aa->aa_next) {
if (aa->aa_ifp == ifp &&
ntohs(net) >= ntohs(aa->aa_firstnet) &&
ntohs(net) <= ntohs(aa->aa_lastnet)) {
break;
}
}
}
if (aa == NULL || (satosat(&ro->ro_dst)->sat_addr.s_net !=
(hintnet ? hintnet : sat->sat_addr.s_net) ||
satosat(&ro->ro_dst)->sat_addr.s_node !=
sat->sat_addr.s_node)) {
RTFREE(ro->ro_rt);
ro->ro_rt = NULL;
}
}
/*
* If we've got no route for this interface, try to find one.
*/
if (ro->ro_rt == NULL || ro->ro_rt->rt_ifp == NULL) {
ro->ro_dst.sa_len = sizeof(struct sockaddr_at);
ro->ro_dst.sa_family = AF_APPLETALK;
if (hintnet) {
satosat(&ro->ro_dst)->sat_addr.s_net = hintnet;
} else {
satosat(&ro->ro_dst)->sat_addr.s_net = sat->sat_addr.s_net;
}
satosat(&ro->ro_dst)->sat_addr.s_node = sat->sat_addr.s_node;
rtalloc(ro);
}
/*
* Make sure any route that we have has a valid interface.
*/
aa = NULL;
if (ro->ro_rt && (ifp = ro->ro_rt->rt_ifp)) {
for (aa = at_ifaddr_list; aa != NULL; aa = aa->aa_next) {
if (aa->aa_ifp == ifp) {
break;
}
}
}
if (aa == NULL) {
return (ENETUNREACH);
}
ddp->ddp_fsat = *sat;
if (ddp->ddp_lsat.sat_port == ATADDR_ANYPORT) {
return (at_pcbsetaddr(ddp, NULL, td));
}
return (0);
}
void
at_pcbdisconnect(struct ddpcb *ddp)
{
DDP_LOCK_ASSERT(ddp);
ddp->ddp_fsat.sat_addr.s_net = ATADDR_ANYNET;
ddp->ddp_fsat.sat_addr.s_node = ATADDR_ANYNODE;
ddp->ddp_fsat.sat_port = ATADDR_ANYPORT;
}
int
at_pcballoc(struct socket *so)
{
struct ddpcb *ddp;
DDP_LIST_XLOCK_ASSERT();
MALLOC(ddp, struct ddpcb *, sizeof *ddp, M_PCB, M_NOWAIT | M_ZERO);
if (ddp == NULL)
return (ENOBUFS);
DDP_LOCK_INIT(ddp);
ddp->ddp_lsat.sat_port = ATADDR_ANYPORT;
ddp->ddp_socket = so;
so->so_pcb = (caddr_t)ddp;
ddp->ddp_next = ddpcb_list;
ddp->ddp_prev = NULL;
ddp->ddp_pprev = NULL;
ddp->ddp_pnext = NULL;
if (ddpcb_list != NULL) {
ddpcb_list->ddp_prev = ddp;
}
ddpcb_list = ddp;
return(0);
}
void
at_pcbdetach(struct socket *so, struct ddpcb *ddp)
{
/*
* We modify ddp, ddp_ports, and the global list.
*/
DDP_LIST_XLOCK_ASSERT();
DDP_LOCK_ASSERT(ddp);
KASSERT(so->so_pcb != NULL, ("at_pcbdetach: so_pcb == NULL"));
so->so_pcb = NULL;
/* remove ddp from ddp_ports list */
if (ddp->ddp_lsat.sat_port != ATADDR_ANYPORT &&
ddp_ports[ ddp->ddp_lsat.sat_port - 1 ] != NULL) {
if (ddp->ddp_pprev != NULL) {
ddp->ddp_pprev->ddp_pnext = ddp->ddp_pnext;
} else {
ddp_ports[ ddp->ddp_lsat.sat_port - 1 ] = ddp->ddp_pnext;
}
if (ddp->ddp_pnext != NULL) {
ddp->ddp_pnext->ddp_pprev = ddp->ddp_pprev;
}
}
if (ddp->ddp_route.ro_rt) {
RTFREE(ddp->ddp_route.ro_rt);
}
if (ddp->ddp_prev) {
ddp->ddp_prev->ddp_next = ddp->ddp_next;
} else {
ddpcb_list = ddp->ddp_next;
}
if (ddp->ddp_next) {
ddp->ddp_next->ddp_prev = ddp->ddp_prev;
}
DDP_UNLOCK(ddp);
DDP_LOCK_DESTROY(ddp);
FREE(ddp, M_PCB);
}
/*
* For the moment, this just find the pcb with the correct local address.
* In the future, this will actually do some real searching, so we can use
* the sender's address to do de-multiplexing on a single port to many
* sockets (pcbs).
*/
struct ddpcb *
ddp_search(struct sockaddr_at *from, struct sockaddr_at *to,
struct at_ifaddr *aa)
{
struct ddpcb *ddp;
DDP_LIST_SLOCK_ASSERT();
/*
* Check for bad ports.
*/
if (to->sat_port < ATPORT_FIRST || to->sat_port >= ATPORT_LAST) {
return (NULL);
}
/*
* Make sure the local address matches the sent address. What about
* the interface?
*/
for (ddp = ddp_ports[ to->sat_port - 1 ]; ddp; ddp = ddp->ddp_pnext) {
DDP_LOCK(ddp);
/* XXX should we handle 0.YY? */
/* XXXX.YY to socket on destination interface */
if (to->sat_addr.s_net == ddp->ddp_lsat.sat_addr.s_net &&
to->sat_addr.s_node == ddp->ddp_lsat.sat_addr.s_node) {
DDP_UNLOCK(ddp);
break;
}
/* 0.255 to socket on receiving interface */
if (to->sat_addr.s_node == ATADDR_BCAST && (to->sat_addr.s_net == 0 ||
to->sat_addr.s_net == ddp->ddp_lsat.sat_addr.s_net) &&
ddp->ddp_lsat.sat_addr.s_net == AA_SAT(aa)->sat_addr.s_net) {
DDP_UNLOCK(ddp);
break;
}
/* XXXX.0 to socket on destination interface */
if (to->sat_addr.s_net == aa->aa_firstnet &&
to->sat_addr.s_node == 0 &&
ntohs(ddp->ddp_lsat.sat_addr.s_net) >=
ntohs(aa->aa_firstnet) &&
ntohs(ddp->ddp_lsat.sat_addr.s_net) <=
ntohs(aa->aa_lastnet)) {
DDP_UNLOCK(ddp);
break;
}
DDP_UNLOCK(ddp);
}
return (ddp);
}