freebsd-skq/sys/dev/drm2/drm_os_freebsd.c
2017-01-28 16:30:14 +00:00

499 lines
11 KiB
C

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/drm2/drmP.h>
#include <dev/agp/agpreg.h>
#include <dev/pci/pcireg.h>
devclass_t drm_devclass;
MALLOC_DEFINE(DRM_MEM_DMA, "drm_dma", "DRM DMA Data Structures");
MALLOC_DEFINE(DRM_MEM_SAREA, "drm_sarea", "DRM SAREA Data Structures");
MALLOC_DEFINE(DRM_MEM_DRIVER, "drm_driver", "DRM DRIVER Data Structures");
MALLOC_DEFINE(DRM_MEM_MAGIC, "drm_magic", "DRM MAGIC Data Structures");
MALLOC_DEFINE(DRM_MEM_MINOR, "drm_minor", "DRM MINOR Data Structures");
MALLOC_DEFINE(DRM_MEM_IOCTLS, "drm_ioctls", "DRM IOCTL Data Structures");
MALLOC_DEFINE(DRM_MEM_MAPS, "drm_maps", "DRM MAP Data Structures");
MALLOC_DEFINE(DRM_MEM_SEGS, "drm_segs", "DRM SEGMENTS Data Structures");
MALLOC_DEFINE(DRM_MEM_PAGES, "drm_pages", "DRM PAGES Data Structures");
MALLOC_DEFINE(DRM_MEM_FILES, "drm_files", "DRM FILE Data Structures");
MALLOC_DEFINE(DRM_MEM_QUEUES, "drm_queues", "DRM QUEUE Data Structures");
MALLOC_DEFINE(DRM_MEM_CMDS, "drm_cmds", "DRM COMMAND Data Structures");
MALLOC_DEFINE(DRM_MEM_MAPPINGS, "drm_mapping", "DRM MAPPING Data Structures");
MALLOC_DEFINE(DRM_MEM_BUFLISTS, "drm_buflists", "DRM BUFLISTS Data Structures");
MALLOC_DEFINE(DRM_MEM_AGPLISTS, "drm_agplists", "DRM AGPLISTS Data Structures");
MALLOC_DEFINE(DRM_MEM_CTXBITMAP, "drm_ctxbitmap",
"DRM CTXBITMAP Data Structures");
MALLOC_DEFINE(DRM_MEM_SGLISTS, "drm_sglists", "DRM SGLISTS Data Structures");
MALLOC_DEFINE(DRM_MEM_MM, "drm_sman", "DRM MEMORY MANAGER Data Structures");
MALLOC_DEFINE(DRM_MEM_HASHTAB, "drm_hashtab", "DRM HASHTABLE Data Structures");
MALLOC_DEFINE(DRM_MEM_KMS, "drm_kms", "DRM KMS Data Structures");
MALLOC_DEFINE(DRM_MEM_VBLANK, "drm_vblank", "DRM VBLANK Handling Data");
const char *fb_mode_option = NULL;
#define NSEC_PER_USEC 1000L
#define NSEC_PER_SEC 1000000000L
int64_t
timeval_to_ns(const struct timeval *tv)
{
return ((int64_t)tv->tv_sec * NSEC_PER_SEC) +
tv->tv_usec * NSEC_PER_USEC;
}
struct timeval
ns_to_timeval(const int64_t nsec)
{
struct timeval tv;
long rem;
if (nsec == 0) {
tv.tv_sec = 0;
tv.tv_usec = 0;
return (tv);
}
tv.tv_sec = nsec / NSEC_PER_SEC;
rem = nsec % NSEC_PER_SEC;
if (rem < 0) {
tv.tv_sec--;
rem += NSEC_PER_SEC;
}
tv.tv_usec = rem / 1000;
return (tv);
}
/* Copied from OFED. */
unsigned long drm_linux_timer_hz_mask;
static void
drm_linux_timer_init(void *arg)
{
/*
* Compute an internal HZ value which can divide 2**32 to
* avoid timer rounding problems when the tick value wraps
* around 2**32:
*/
drm_linux_timer_hz_mask = 1;
while (drm_linux_timer_hz_mask < (unsigned long)hz)
drm_linux_timer_hz_mask *= 2;
drm_linux_timer_hz_mask--;
}
SYSINIT(drm_linux_timer, SI_SUB_DRIVERS, SI_ORDER_FIRST, drm_linux_timer_init, NULL);
static const drm_pci_id_list_t *
drm_find_description(int vendor, int device, const drm_pci_id_list_t *idlist)
{
int i = 0;
for (i = 0; idlist[i].vendor != 0; i++) {
if ((idlist[i].vendor == vendor) &&
((idlist[i].device == device) ||
(idlist[i].device == 0))) {
return (&idlist[i]);
}
}
return (NULL);
}
/*
* drm_probe_helper: called by a driver at the end of its probe
* method.
*/
int
drm_probe_helper(device_t kdev, const drm_pci_id_list_t *idlist)
{
const drm_pci_id_list_t *id_entry;
int vendor, device;
vendor = pci_get_vendor(kdev);
device = pci_get_device(kdev);
if (pci_get_class(kdev) != PCIC_DISPLAY ||
(pci_get_subclass(kdev) != PCIS_DISPLAY_VGA &&
pci_get_subclass(kdev) != PCIS_DISPLAY_OTHER))
return (-ENXIO);
id_entry = drm_find_description(vendor, device, idlist);
if (id_entry != NULL) {
if (device_get_desc(kdev) == NULL) {
DRM_DEBUG("%s desc: %s\n",
device_get_nameunit(kdev), id_entry->name);
device_set_desc(kdev, id_entry->name);
}
return (0);
}
return (-ENXIO);
}
/*
* drm_attach_helper: called by a driver at the end of its attach
* method.
*/
int
drm_attach_helper(device_t kdev, const drm_pci_id_list_t *idlist,
struct drm_driver *driver)
{
struct drm_device *dev;
int vendor, device;
int ret;
dev = device_get_softc(kdev);
vendor = pci_get_vendor(kdev);
device = pci_get_device(kdev);
dev->id_entry = drm_find_description(vendor, device, idlist);
ret = drm_get_pci_dev(kdev, dev, driver);
return (ret);
}
int
drm_generic_suspend(device_t kdev)
{
struct drm_device *dev;
int error;
DRM_DEBUG_KMS("Starting suspend\n");
dev = device_get_softc(kdev);
if (dev->driver->suspend) {
pm_message_t state;
state.event = PM_EVENT_SUSPEND;
error = -dev->driver->suspend(dev, state);
if (error)
goto out;
}
error = bus_generic_suspend(kdev);
out:
DRM_DEBUG_KMS("Finished suspend: %d\n", error);
return error;
}
int
drm_generic_resume(device_t kdev)
{
struct drm_device *dev;
int error;
DRM_DEBUG_KMS("Starting resume\n");
dev = device_get_softc(kdev);
if (dev->driver->resume) {
error = -dev->driver->resume(dev);
if (error)
goto out;
}
error = bus_generic_resume(kdev);
out:
DRM_DEBUG_KMS("Finished resume: %d\n", error);
return error;
}
int
drm_generic_detach(device_t kdev)
{
struct drm_device *dev;
int i;
dev = device_get_softc(kdev);
drm_put_dev(dev);
/* Clean up PCI resources allocated by drm_bufs.c. We're not really
* worried about resource consumption while the DRM is inactive (between
* lastclose and firstopen or unload) because these aren't actually
* taking up KVA, just keeping the PCI resource allocated.
*/
for (i = 0; i < DRM_MAX_PCI_RESOURCE; i++) {
if (dev->pcir[i] == NULL)
continue;
bus_release_resource(dev->dev, SYS_RES_MEMORY,
dev->pcirid[i], dev->pcir[i]);
dev->pcir[i] = NULL;
}
if (pci_disable_busmaster(dev->dev))
DRM_ERROR("Request to disable bus-master failed.\n");
return (0);
}
int
drm_add_busid_modesetting(struct drm_device *dev, struct sysctl_ctx_list *ctx,
struct sysctl_oid *top)
{
struct sysctl_oid *oid;
snprintf(dev->busid_str, sizeof(dev->busid_str),
"pci:%04x:%02x:%02x.%d", dev->pci_domain, dev->pci_bus,
dev->pci_slot, dev->pci_func);
oid = SYSCTL_ADD_STRING(ctx, SYSCTL_CHILDREN(top), OID_AUTO, "busid",
CTLFLAG_RD, dev->busid_str, 0, NULL);
if (oid == NULL)
return (-ENOMEM);
dev->modesetting = (dev->driver->driver_features & DRIVER_MODESET) != 0;
oid = SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(top), OID_AUTO,
"modesetting", CTLFLAG_RD, &dev->modesetting, 0, NULL);
if (oid == NULL)
return (-ENOMEM);
return (0);
}
static int
drm_device_find_capability(struct drm_device *dev, int cap)
{
return (pci_find_cap(dev->dev, cap, NULL) == 0);
}
int
drm_pci_device_is_agp(struct drm_device *dev)
{
if (dev->driver->device_is_agp != NULL) {
int ret;
/* device_is_agp returns a tristate, 0 = not AGP, 1 = definitely
* AGP, 2 = fall back to PCI capability
*/
ret = (*dev->driver->device_is_agp)(dev);
if (ret != DRM_MIGHT_BE_AGP)
return ret;
}
return (drm_device_find_capability(dev, PCIY_AGP));
}
int
drm_pci_device_is_pcie(struct drm_device *dev)
{
return (drm_device_find_capability(dev, PCIY_EXPRESS));
}
static bool
dmi_found(const struct dmi_system_id *dsi)
{
char *hw_vendor, *hw_prod;
int i, slot;
bool res;
hw_vendor = kern_getenv("smbios.planar.maker");
hw_prod = kern_getenv("smbios.planar.product");
res = true;
for (i = 0; i < nitems(dsi->matches); i++) {
slot = dsi->matches[i].slot;
switch (slot) {
case DMI_NONE:
break;
case DMI_SYS_VENDOR:
case DMI_BOARD_VENDOR:
if (hw_vendor != NULL &&
!strcmp(hw_vendor, dsi->matches[i].substr)) {
break;
} else {
res = false;
goto out;
}
case DMI_PRODUCT_NAME:
case DMI_BOARD_NAME:
if (hw_prod != NULL &&
!strcmp(hw_prod, dsi->matches[i].substr)) {
break;
} else {
res = false;
goto out;
}
default:
res = false;
goto out;
}
}
out:
freeenv(hw_vendor);
freeenv(hw_prod);
return (res);
}
bool
dmi_check_system(const struct dmi_system_id *sysid)
{
const struct dmi_system_id *dsi;
bool res;
for (res = false, dsi = sysid; dsi->matches[0].slot != 0 ; dsi++) {
if (dmi_found(dsi)) {
res = true;
if (dsi->callback != NULL && dsi->callback(dsi))
break;
}
}
return (res);
}
#if __OS_HAS_MTRR
int
drm_mtrr_add(unsigned long offset, unsigned long size, unsigned int flags)
{
int act;
struct mem_range_desc mrdesc;
mrdesc.mr_base = offset;
mrdesc.mr_len = size;
mrdesc.mr_flags = flags;
act = MEMRANGE_SET_UPDATE;
strlcpy(mrdesc.mr_owner, "drm", sizeof(mrdesc.mr_owner));
return (-mem_range_attr_set(&mrdesc, &act));
}
int
drm_mtrr_del(int handle __unused, unsigned long offset, unsigned long size,
unsigned int flags)
{
int act;
struct mem_range_desc mrdesc;
mrdesc.mr_base = offset;
mrdesc.mr_len = size;
mrdesc.mr_flags = flags;
act = MEMRANGE_SET_REMOVE;
strlcpy(mrdesc.mr_owner, "drm", sizeof(mrdesc.mr_owner));
return (-mem_range_attr_set(&mrdesc, &act));
}
#endif
void
drm_clflush_pages(vm_page_t *pages, unsigned long num_pages)
{
#if defined(__i386__) || defined(__amd64__)
pmap_invalidate_cache_pages(pages, num_pages);
#else
DRM_ERROR("drm_clflush_pages not implemented on this architecture");
#endif
}
void
drm_clflush_virt_range(char *addr, unsigned long length)
{
#if defined(__i386__) || defined(__amd64__)
pmap_invalidate_cache_range((vm_offset_t)addr,
(vm_offset_t)addr + length, TRUE);
#else
DRM_ERROR("drm_clflush_virt_range not implemented on this architecture");
#endif
}
void
hex_dump_to_buffer(const void *buf, size_t len, int rowsize, int groupsize,
char *linebuf, size_t linebuflen, bool ascii __unused)
{
int i, j, c;
i = j = 0;
while (i < len && j <= linebuflen) {
c = ((const char *)buf)[i];
if (i != 0) {
if (i % rowsize == 0) {
/* Newline required. */
sprintf(linebuf + j, "\n");
++j;
} else if (i % groupsize == 0) {
/* Space required. */
sprintf(linebuf + j, " ");
++j;
}
}
if (j > linebuflen - 4)
break;
sprintf(linebuf + j, "%02X", c);
j += 2;
++i;
}
if (j <= linebuflen)
sprintf(linebuf + j, "\n");
}
#if DRM_LINUX
#include <sys/sysproto.h>
MODULE_DEPEND(DRIVER_NAME, linux, 1, 1, 1);
#define LINUX_IOCTL_DRM_MIN 0x6400
#define LINUX_IOCTL_DRM_MAX 0x64ff
static linux_ioctl_function_t drm_linux_ioctl;
static struct linux_ioctl_handler drm_handler = {drm_linux_ioctl,
LINUX_IOCTL_DRM_MIN, LINUX_IOCTL_DRM_MAX};
/* The bits for in/out are switched on Linux */
#define LINUX_IOC_IN IOC_OUT
#define LINUX_IOC_OUT IOC_IN
static int
drm_linux_ioctl(DRM_STRUCTPROC *p, struct linux_ioctl_args* args)
{
int error;
int cmd = args->cmd;
args->cmd &= ~(LINUX_IOC_IN | LINUX_IOC_OUT);
if (cmd & LINUX_IOC_IN)
args->cmd |= IOC_IN;
if (cmd & LINUX_IOC_OUT)
args->cmd |= IOC_OUT;
error = ioctl(p, (struct ioctl_args *)args);
return error;
}
#endif /* DRM_LINUX */
static int
drm_modevent(module_t mod, int type, void *data)
{
switch (type) {
case MOD_LOAD:
TUNABLE_INT_FETCH("drm.debug", &drm_debug);
TUNABLE_INT_FETCH("drm.notyet", &drm_notyet);
break;
}
return (0);
}
static moduledata_t drm_mod = {
"drmn",
drm_modevent,
0
};
DECLARE_MODULE(drmn, drm_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
MODULE_VERSION(drmn, 1);
MODULE_DEPEND(drmn, agp, 1, 1, 1);
MODULE_DEPEND(drmn, pci, 1, 1, 1);
MODULE_DEPEND(drmn, mem, 1, 1, 1);
MODULE_DEPEND(drmn, iicbus, 1, 1, 1);