freebsd-skq/sys/cam/ctl/ctl.c
Edward Tomasz Napierala 8ed9860914 Remove ctl(4) from GENERIC. Also remove 'options CTL_DISABLE'
and kern.cam.ctl.disable tunable; those were introduced as a workaround
to make it possible to boot GENERIC on low memory machines.

With ctl(4) being built as a module and automatically loaded by ctladm(8),
this makes CTL work out of the box.

Reviewed by:	ken
Sponsored by:	FreeBSD Foundation
2013-04-12 16:25:03 +00:00

13130 lines
345 KiB
C

/*-
* Copyright (c) 2003-2009 Silicon Graphics International Corp.
* Copyright (c) 2012 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by Edward Tomasz Napierala
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* $Id: //depot/users/kenm/FreeBSD-test2/sys/cam/ctl/ctl.c#8 $
*/
/*
* CAM Target Layer, a SCSI device emulation subsystem.
*
* Author: Ken Merry <ken@FreeBSD.org>
*/
#define _CTL_C
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/types.h>
#include <sys/kthread.h>
#include <sys/bio.h>
#include <sys/fcntl.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/malloc.h>
#include <sys/conf.h>
#include <sys/ioccom.h>
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <sys/endian.h>
#include <sys/sysctl.h>
#include <cam/cam.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_da.h>
#include <cam/ctl/ctl_io.h>
#include <cam/ctl/ctl.h>
#include <cam/ctl/ctl_frontend.h>
#include <cam/ctl/ctl_frontend_internal.h>
#include <cam/ctl/ctl_util.h>
#include <cam/ctl/ctl_backend.h>
#include <cam/ctl/ctl_ioctl.h>
#include <cam/ctl/ctl_ha.h>
#include <cam/ctl/ctl_private.h>
#include <cam/ctl/ctl_debug.h>
#include <cam/ctl/ctl_scsi_all.h>
#include <cam/ctl/ctl_error.h>
struct ctl_softc *control_softc = NULL;
/*
* The default is to run with CTL_DONE_THREAD turned on. Completed
* transactions are queued for processing by the CTL work thread. When
* CTL_DONE_THREAD is not defined, completed transactions are processed in
* the caller's context.
*/
#define CTL_DONE_THREAD
/*
* Use the serial number and device ID provided by the backend, rather than
* making up our own.
*/
#define CTL_USE_BACKEND_SN
/*
* Size and alignment macros needed for Copan-specific HA hardware. These
* can go away when the HA code is re-written, and uses busdma for any
* hardware.
*/
#define CTL_ALIGN_8B(target, source, type) \
if (((uint32_t)source & 0x7) != 0) \
target = (type)(source + (0x8 - ((uint32_t)source & 0x7)));\
else \
target = (type)source;
#define CTL_SIZE_8B(target, size) \
if ((size & 0x7) != 0) \
target = size + (0x8 - (size & 0x7)); \
else \
target = size;
#define CTL_ALIGN_8B_MARGIN 16
/*
* Template mode pages.
*/
/*
* Note that these are default values only. The actual values will be
* filled in when the user does a mode sense.
*/
static struct copan_power_subpage power_page_default = {
/*page_code*/ PWR_PAGE_CODE | SMPH_SPF,
/*subpage*/ PWR_SUBPAGE_CODE,
/*page_length*/ {(sizeof(struct copan_power_subpage) - 4) & 0xff00,
(sizeof(struct copan_power_subpage) - 4) & 0x00ff},
/*page_version*/ PWR_VERSION,
/* total_luns */ 26,
/* max_active_luns*/ PWR_DFLT_MAX_LUNS,
/*reserved*/ {0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0}
};
static struct copan_power_subpage power_page_changeable = {
/*page_code*/ PWR_PAGE_CODE | SMPH_SPF,
/*subpage*/ PWR_SUBPAGE_CODE,
/*page_length*/ {(sizeof(struct copan_power_subpage) - 4) & 0xff00,
(sizeof(struct copan_power_subpage) - 4) & 0x00ff},
/*page_version*/ 0,
/* total_luns */ 0,
/* max_active_luns*/ 0,
/*reserved*/ {0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0}
};
static struct copan_aps_subpage aps_page_default = {
APS_PAGE_CODE | SMPH_SPF, //page_code
APS_SUBPAGE_CODE, //subpage
{(sizeof(struct copan_aps_subpage) - 4) & 0xff00,
(sizeof(struct copan_aps_subpage) - 4) & 0x00ff}, //page_length
APS_VERSION, //page_version
0, //lock_active
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0} //reserved
};
static struct copan_aps_subpage aps_page_changeable = {
APS_PAGE_CODE | SMPH_SPF, //page_code
APS_SUBPAGE_CODE, //subpage
{(sizeof(struct copan_aps_subpage) - 4) & 0xff00,
(sizeof(struct copan_aps_subpage) - 4) & 0x00ff}, //page_length
0, //page_version
0, //lock_active
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0} //reserved
};
static struct copan_debugconf_subpage debugconf_page_default = {
DBGCNF_PAGE_CODE | SMPH_SPF, /* page_code */
DBGCNF_SUBPAGE_CODE, /* subpage */
{(sizeof(struct copan_debugconf_subpage) - 4) >> 8,
(sizeof(struct copan_debugconf_subpage) - 4) >> 0}, /* page_length */
DBGCNF_VERSION, /* page_version */
{CTL_TIME_IO_DEFAULT_SECS>>8,
CTL_TIME_IO_DEFAULT_SECS>>0}, /* ctl_time_io_secs */
};
static struct copan_debugconf_subpage debugconf_page_changeable = {
DBGCNF_PAGE_CODE | SMPH_SPF, /* page_code */
DBGCNF_SUBPAGE_CODE, /* subpage */
{(sizeof(struct copan_debugconf_subpage) - 4) >> 8,
(sizeof(struct copan_debugconf_subpage) - 4) >> 0}, /* page_length */
0, /* page_version */
{0xff,0xff}, /* ctl_time_io_secs */
};
static struct scsi_format_page format_page_default = {
/*page_code*/SMS_FORMAT_DEVICE_PAGE,
/*page_length*/sizeof(struct scsi_format_page) - 2,
/*tracks_per_zone*/ {0, 0},
/*alt_sectors_per_zone*/ {0, 0},
/*alt_tracks_per_zone*/ {0, 0},
/*alt_tracks_per_lun*/ {0, 0},
/*sectors_per_track*/ {(CTL_DEFAULT_SECTORS_PER_TRACK >> 8) & 0xff,
CTL_DEFAULT_SECTORS_PER_TRACK & 0xff},
/*bytes_per_sector*/ {0, 0},
/*interleave*/ {0, 0},
/*track_skew*/ {0, 0},
/*cylinder_skew*/ {0, 0},
/*flags*/ SFP_HSEC,
/*reserved*/ {0, 0, 0}
};
static struct scsi_format_page format_page_changeable = {
/*page_code*/SMS_FORMAT_DEVICE_PAGE,
/*page_length*/sizeof(struct scsi_format_page) - 2,
/*tracks_per_zone*/ {0, 0},
/*alt_sectors_per_zone*/ {0, 0},
/*alt_tracks_per_zone*/ {0, 0},
/*alt_tracks_per_lun*/ {0, 0},
/*sectors_per_track*/ {0, 0},
/*bytes_per_sector*/ {0, 0},
/*interleave*/ {0, 0},
/*track_skew*/ {0, 0},
/*cylinder_skew*/ {0, 0},
/*flags*/ 0,
/*reserved*/ {0, 0, 0}
};
static struct scsi_rigid_disk_page rigid_disk_page_default = {
/*page_code*/SMS_RIGID_DISK_PAGE,
/*page_length*/sizeof(struct scsi_rigid_disk_page) - 2,
/*cylinders*/ {0, 0, 0},
/*heads*/ CTL_DEFAULT_HEADS,
/*start_write_precomp*/ {0, 0, 0},
/*start_reduced_current*/ {0, 0, 0},
/*step_rate*/ {0, 0},
/*landing_zone_cylinder*/ {0, 0, 0},
/*rpl*/ SRDP_RPL_DISABLED,
/*rotational_offset*/ 0,
/*reserved1*/ 0,
/*rotation_rate*/ {(CTL_DEFAULT_ROTATION_RATE >> 8) & 0xff,
CTL_DEFAULT_ROTATION_RATE & 0xff},
/*reserved2*/ {0, 0}
};
static struct scsi_rigid_disk_page rigid_disk_page_changeable = {
/*page_code*/SMS_RIGID_DISK_PAGE,
/*page_length*/sizeof(struct scsi_rigid_disk_page) - 2,
/*cylinders*/ {0, 0, 0},
/*heads*/ 0,
/*start_write_precomp*/ {0, 0, 0},
/*start_reduced_current*/ {0, 0, 0},
/*step_rate*/ {0, 0},
/*landing_zone_cylinder*/ {0, 0, 0},
/*rpl*/ 0,
/*rotational_offset*/ 0,
/*reserved1*/ 0,
/*rotation_rate*/ {0, 0},
/*reserved2*/ {0, 0}
};
static struct scsi_caching_page caching_page_default = {
/*page_code*/SMS_CACHING_PAGE,
/*page_length*/sizeof(struct scsi_caching_page) - 2,
/*flags1*/ SCP_DISC | SCP_WCE,
/*ret_priority*/ 0,
/*disable_pf_transfer_len*/ {0xff, 0xff},
/*min_prefetch*/ {0, 0},
/*max_prefetch*/ {0xff, 0xff},
/*max_pf_ceiling*/ {0xff, 0xff},
/*flags2*/ 0,
/*cache_segments*/ 0,
/*cache_seg_size*/ {0, 0},
/*reserved*/ 0,
/*non_cache_seg_size*/ {0, 0, 0}
};
static struct scsi_caching_page caching_page_changeable = {
/*page_code*/SMS_CACHING_PAGE,
/*page_length*/sizeof(struct scsi_caching_page) - 2,
/*flags1*/ 0,
/*ret_priority*/ 0,
/*disable_pf_transfer_len*/ {0, 0},
/*min_prefetch*/ {0, 0},
/*max_prefetch*/ {0, 0},
/*max_pf_ceiling*/ {0, 0},
/*flags2*/ 0,
/*cache_segments*/ 0,
/*cache_seg_size*/ {0, 0},
/*reserved*/ 0,
/*non_cache_seg_size*/ {0, 0, 0}
};
static struct scsi_control_page control_page_default = {
/*page_code*/SMS_CONTROL_MODE_PAGE,
/*page_length*/sizeof(struct scsi_control_page) - 2,
/*rlec*/0,
/*queue_flags*/0,
/*eca_and_aen*/0,
/*reserved*/0,
/*aen_holdoff_period*/{0, 0}
};
static struct scsi_control_page control_page_changeable = {
/*page_code*/SMS_CONTROL_MODE_PAGE,
/*page_length*/sizeof(struct scsi_control_page) - 2,
/*rlec*/SCP_DSENSE,
/*queue_flags*/0,
/*eca_and_aen*/0,
/*reserved*/0,
/*aen_holdoff_period*/{0, 0}
};
/*
* XXX KDM move these into the softc.
*/
static int rcv_sync_msg;
static int persis_offset;
static uint8_t ctl_pause_rtr;
static int ctl_is_single = 1;
static int index_to_aps_page;
SYSCTL_NODE(_kern_cam, OID_AUTO, ctl, CTLFLAG_RD, 0, "CAM Target Layer");
/*
* Serial number (0x80), device id (0x83), and supported pages (0x00)
*/
#define SCSI_EVPD_NUM_SUPPORTED_PAGES 3
static void ctl_isc_event_handler(ctl_ha_channel chanel, ctl_ha_event event,
int param);
static void ctl_copy_sense_data(union ctl_ha_msg *src, union ctl_io *dest);
static int ctl_init(void);
void ctl_shutdown(void);
static int ctl_open(struct cdev *dev, int flags, int fmt, struct thread *td);
static int ctl_close(struct cdev *dev, int flags, int fmt, struct thread *td);
static void ctl_ioctl_online(void *arg);
static void ctl_ioctl_offline(void *arg);
static int ctl_ioctl_targ_enable(void *arg, struct ctl_id targ_id);
static int ctl_ioctl_targ_disable(void *arg, struct ctl_id targ_id);
static int ctl_ioctl_lun_enable(void *arg, struct ctl_id targ_id, int lun_id);
static int ctl_ioctl_lun_disable(void *arg, struct ctl_id targ_id, int lun_id);
static int ctl_ioctl_do_datamove(struct ctl_scsiio *ctsio);
static int ctl_serialize_other_sc_cmd(struct ctl_scsiio *ctsio, int have_lock);
static int ctl_ioctl_submit_wait(union ctl_io *io);
static void ctl_ioctl_datamove(union ctl_io *io);
static void ctl_ioctl_done(union ctl_io *io);
static void ctl_ioctl_hard_startstop_callback(void *arg,
struct cfi_metatask *metatask);
static void ctl_ioctl_bbrread_callback(void *arg,struct cfi_metatask *metatask);
static int ctl_ioctl_fill_ooa(struct ctl_lun *lun, uint32_t *cur_fill_num,
struct ctl_ooa *ooa_hdr,
struct ctl_ooa_entry *kern_entries);
static int ctl_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
struct thread *td);
uint32_t ctl_get_resindex(struct ctl_nexus *nexus);
uint32_t ctl_port_idx(int port_num);
#ifdef unused
static union ctl_io *ctl_malloc_io(ctl_io_type io_type, uint32_t targ_port,
uint32_t targ_target, uint32_t targ_lun,
int can_wait);
static void ctl_kfree_io(union ctl_io *io);
#endif /* unused */
static void ctl_free_io_internal(union ctl_io *io, int have_lock);
static int ctl_alloc_lun(struct ctl_softc *ctl_softc, struct ctl_lun *lun,
struct ctl_be_lun *be_lun, struct ctl_id target_id);
static int ctl_free_lun(struct ctl_lun *lun);
static void ctl_create_lun(struct ctl_be_lun *be_lun);
/**
static void ctl_failover_change_pages(struct ctl_softc *softc,
struct ctl_scsiio *ctsio, int master);
**/
static int ctl_do_mode_select(union ctl_io *io);
static int ctl_pro_preempt(struct ctl_softc *softc, struct ctl_lun *lun,
uint64_t res_key, uint64_t sa_res_key,
uint8_t type, uint32_t residx,
struct ctl_scsiio *ctsio,
struct scsi_per_res_out *cdb,
struct scsi_per_res_out_parms* param);
static void ctl_pro_preempt_other(struct ctl_lun *lun,
union ctl_ha_msg *msg);
static void ctl_hndl_per_res_out_on_other_sc(union ctl_ha_msg *msg);
static int ctl_inquiry_evpd_supported(struct ctl_scsiio *ctsio, int alloc_len);
static int ctl_inquiry_evpd_serial(struct ctl_scsiio *ctsio, int alloc_len);
static int ctl_inquiry_evpd_devid(struct ctl_scsiio *ctsio, int alloc_len);
static int ctl_inquiry_evpd(struct ctl_scsiio *ctsio);
static int ctl_inquiry_std(struct ctl_scsiio *ctsio);
static int ctl_get_lba_len(union ctl_io *io, uint64_t *lba, uint32_t *len);
static ctl_action ctl_extent_check(union ctl_io *io1, union ctl_io *io2);
static ctl_action ctl_check_for_blockage(union ctl_io *pending_io,
union ctl_io *ooa_io);
static ctl_action ctl_check_ooa(struct ctl_lun *lun, union ctl_io *pending_io,
union ctl_io *starting_io);
static int ctl_check_blocked(struct ctl_lun *lun);
static int ctl_scsiio_lun_check(struct ctl_softc *ctl_softc,
struct ctl_lun *lun,
struct ctl_cmd_entry *entry,
struct ctl_scsiio *ctsio);
//static int ctl_check_rtr(union ctl_io *pending_io, struct ctl_softc *softc);
static void ctl_failover(void);
static int ctl_scsiio_precheck(struct ctl_softc *ctl_softc,
struct ctl_scsiio *ctsio);
static int ctl_scsiio(struct ctl_scsiio *ctsio);
static int ctl_bus_reset(struct ctl_softc *ctl_softc, union ctl_io *io);
static int ctl_target_reset(struct ctl_softc *ctl_softc, union ctl_io *io,
ctl_ua_type ua_type);
static int ctl_lun_reset(struct ctl_lun *lun, union ctl_io *io,
ctl_ua_type ua_type);
static int ctl_abort_task(union ctl_io *io);
static void ctl_run_task_queue(struct ctl_softc *ctl_softc);
#ifdef CTL_IO_DELAY
static void ctl_datamove_timer_wakeup(void *arg);
static void ctl_done_timer_wakeup(void *arg);
#endif /* CTL_IO_DELAY */
static void ctl_send_datamove_done(union ctl_io *io, int have_lock);
static void ctl_datamove_remote_write_cb(struct ctl_ha_dt_req *rq);
static int ctl_datamove_remote_dm_write_cb(union ctl_io *io);
static void ctl_datamove_remote_write(union ctl_io *io);
static int ctl_datamove_remote_dm_read_cb(union ctl_io *io);
static void ctl_datamove_remote_read_cb(struct ctl_ha_dt_req *rq);
static int ctl_datamove_remote_sgl_setup(union ctl_io *io);
static int ctl_datamove_remote_xfer(union ctl_io *io, unsigned command,
ctl_ha_dt_cb callback);
static void ctl_datamove_remote_read(union ctl_io *io);
static void ctl_datamove_remote(union ctl_io *io);
static int ctl_process_done(union ctl_io *io, int have_lock);
static void ctl_work_thread(void *arg);
/*
* Load the serialization table. This isn't very pretty, but is probably
* the easiest way to do it.
*/
#include "ctl_ser_table.c"
/*
* We only need to define open, close and ioctl routines for this driver.
*/
static struct cdevsw ctl_cdevsw = {
.d_version = D_VERSION,
.d_flags = 0,
.d_open = ctl_open,
.d_close = ctl_close,
.d_ioctl = ctl_ioctl,
.d_name = "ctl",
};
MALLOC_DEFINE(M_CTL, "ctlmem", "Memory used for CTL");
static int ctl_module_event_handler(module_t, int /*modeventtype_t*/, void *);
static moduledata_t ctl_moduledata = {
"ctl",
ctl_module_event_handler,
NULL
};
DECLARE_MODULE(ctl, ctl_moduledata, SI_SUB_CONFIGURE, SI_ORDER_THIRD);
MODULE_VERSION(ctl, 1);
static void
ctl_isc_handler_finish_xfer(struct ctl_softc *ctl_softc,
union ctl_ha_msg *msg_info)
{
struct ctl_scsiio *ctsio;
if (msg_info->hdr.original_sc == NULL) {
printf("%s: original_sc == NULL!\n", __func__);
/* XXX KDM now what? */
return;
}
ctsio = &msg_info->hdr.original_sc->scsiio;
ctsio->io_hdr.flags |= CTL_FLAG_IO_ACTIVE;
ctsio->io_hdr.msg_type = CTL_MSG_FINISH_IO;
ctsio->io_hdr.status = msg_info->hdr.status;
ctsio->scsi_status = msg_info->scsi.scsi_status;
ctsio->sense_len = msg_info->scsi.sense_len;
ctsio->sense_residual = msg_info->scsi.sense_residual;
ctsio->residual = msg_info->scsi.residual;
memcpy(&ctsio->sense_data, &msg_info->scsi.sense_data,
sizeof(ctsio->sense_data));
memcpy(&ctsio->io_hdr.ctl_private[CTL_PRIV_LBA_LEN].bytes,
&msg_info->scsi.lbalen, sizeof(msg_info->scsi.lbalen));
STAILQ_INSERT_TAIL(&ctl_softc->isc_queue, &ctsio->io_hdr, links);
ctl_wakeup_thread();
}
static void
ctl_isc_handler_finish_ser_only(struct ctl_softc *ctl_softc,
union ctl_ha_msg *msg_info)
{
struct ctl_scsiio *ctsio;
if (msg_info->hdr.serializing_sc == NULL) {
printf("%s: serializing_sc == NULL!\n", __func__);
/* XXX KDM now what? */
return;
}
ctsio = &msg_info->hdr.serializing_sc->scsiio;
#if 0
/*
* Attempt to catch the situation where an I/O has
* been freed, and we're using it again.
*/
if (ctsio->io_hdr.io_type == 0xff) {
union ctl_io *tmp_io;
tmp_io = (union ctl_io *)ctsio;
printf("%s: %p use after free!\n", __func__,
ctsio);
printf("%s: type %d msg %d cdb %x iptl: "
"%d:%d:%d:%d tag 0x%04x "
"flag %#x status %x\n",
__func__,
tmp_io->io_hdr.io_type,
tmp_io->io_hdr.msg_type,
tmp_io->scsiio.cdb[0],
tmp_io->io_hdr.nexus.initid.id,
tmp_io->io_hdr.nexus.targ_port,
tmp_io->io_hdr.nexus.targ_target.id,
tmp_io->io_hdr.nexus.targ_lun,
(tmp_io->io_hdr.io_type ==
CTL_IO_TASK) ?
tmp_io->taskio.tag_num :
tmp_io->scsiio.tag_num,
tmp_io->io_hdr.flags,
tmp_io->io_hdr.status);
}
#endif
ctsio->io_hdr.msg_type = CTL_MSG_FINISH_IO;
STAILQ_INSERT_TAIL(&ctl_softc->isc_queue, &ctsio->io_hdr, links);
ctl_wakeup_thread();
}
/*
* ISC (Inter Shelf Communication) event handler. Events from the HA
* subsystem come in here.
*/
static void
ctl_isc_event_handler(ctl_ha_channel channel, ctl_ha_event event, int param)
{
struct ctl_softc *ctl_softc;
union ctl_io *io;
struct ctl_prio *presio;
ctl_ha_status isc_status;
ctl_softc = control_softc;
io = NULL;
#if 0
printf("CTL: Isc Msg event %d\n", event);
#endif
if (event == CTL_HA_EVT_MSG_RECV) {
union ctl_ha_msg msg_info;
isc_status = ctl_ha_msg_recv(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info), /*wait*/ 0);
#if 0
printf("CTL: msg_type %d\n", msg_info.msg_type);
#endif
if (isc_status != 0) {
printf("Error receiving message, status = %d\n",
isc_status);
return;
}
mtx_lock(&ctl_softc->ctl_lock);
switch (msg_info.hdr.msg_type) {
case CTL_MSG_SERIALIZE:
#if 0
printf("Serialize\n");
#endif
io = ctl_alloc_io((void *)ctl_softc->othersc_pool);
if (io == NULL) {
printf("ctl_isc_event_handler: can't allocate "
"ctl_io!\n");
/* Bad Juju */
/* Need to set busy and send msg back */
mtx_unlock(&ctl_softc->ctl_lock);
msg_info.hdr.msg_type = CTL_MSG_BAD_JUJU;
msg_info.hdr.status = CTL_SCSI_ERROR;
msg_info.scsi.scsi_status = SCSI_STATUS_BUSY;
msg_info.scsi.sense_len = 0;
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info), 0) > CTL_HA_STATUS_SUCCESS){
}
goto bailout;
}
ctl_zero_io(io);
// populate ctsio from msg_info
io->io_hdr.io_type = CTL_IO_SCSI;
io->io_hdr.msg_type = CTL_MSG_SERIALIZE;
io->io_hdr.original_sc = msg_info.hdr.original_sc;
#if 0
printf("pOrig %x\n", (int)msg_info.original_sc);
#endif
io->io_hdr.flags |= CTL_FLAG_FROM_OTHER_SC |
CTL_FLAG_IO_ACTIVE;
/*
* If we're in serialization-only mode, we don't
* want to go through full done processing. Thus
* the COPY flag.
*
* XXX KDM add another flag that is more specific.
*/
if (ctl_softc->ha_mode == CTL_HA_MODE_SER_ONLY)
io->io_hdr.flags |= CTL_FLAG_INT_COPY;
io->io_hdr.nexus = msg_info.hdr.nexus;
#if 0
printf("targ %d, port %d, iid %d, lun %d\n",
io->io_hdr.nexus.targ_target.id,
io->io_hdr.nexus.targ_port,
io->io_hdr.nexus.initid.id,
io->io_hdr.nexus.targ_lun);
#endif
io->scsiio.tag_num = msg_info.scsi.tag_num;
io->scsiio.tag_type = msg_info.scsi.tag_type;
memcpy(io->scsiio.cdb, msg_info.scsi.cdb,
CTL_MAX_CDBLEN);
if (ctl_softc->ha_mode == CTL_HA_MODE_XFER) {
struct ctl_cmd_entry *entry;
uint8_t opcode;
opcode = io->scsiio.cdb[0];
entry = &ctl_cmd_table[opcode];
io->io_hdr.flags &= ~CTL_FLAG_DATA_MASK;
io->io_hdr.flags |=
entry->flags & CTL_FLAG_DATA_MASK;
}
STAILQ_INSERT_TAIL(&ctl_softc->isc_queue,
&io->io_hdr, links);
ctl_wakeup_thread();
break;
/* Performed on the Originating SC, XFER mode only */
case CTL_MSG_DATAMOVE: {
struct ctl_sg_entry *sgl;
int i, j;
io = msg_info.hdr.original_sc;
if (io == NULL) {
printf("%s: original_sc == NULL!\n", __func__);
/* XXX KDM do something here */
break;
}
io->io_hdr.msg_type = CTL_MSG_DATAMOVE;
io->io_hdr.flags |= CTL_FLAG_IO_ACTIVE;
/*
* Keep track of this, we need to send it back over
* when the datamove is complete.
*/
io->io_hdr.serializing_sc = msg_info.hdr.serializing_sc;
if (msg_info.dt.sg_sequence == 0) {
/*
* XXX KDM we use the preallocated S/G list
* here, but we'll need to change this to
* dynamic allocation if we need larger S/G
* lists.
*/
if (msg_info.dt.kern_sg_entries >
sizeof(io->io_hdr.remote_sglist) /
sizeof(io->io_hdr.remote_sglist[0])) {
printf("%s: number of S/G entries "
"needed %u > allocated num %zd\n",
__func__,
msg_info.dt.kern_sg_entries,
sizeof(io->io_hdr.remote_sglist)/
sizeof(io->io_hdr.remote_sglist[0]));
/*
* XXX KDM send a message back to
* the other side to shut down the
* DMA. The error will come back
* through via the normal channel.
*/
break;
}
sgl = io->io_hdr.remote_sglist;
memset(sgl, 0,
sizeof(io->io_hdr.remote_sglist));
io->scsiio.kern_data_ptr = (uint8_t *)sgl;
io->scsiio.kern_sg_entries =
msg_info.dt.kern_sg_entries;
io->scsiio.rem_sg_entries =
msg_info.dt.kern_sg_entries;
io->scsiio.kern_data_len =
msg_info.dt.kern_data_len;
io->scsiio.kern_total_len =
msg_info.dt.kern_total_len;
io->scsiio.kern_data_resid =
msg_info.dt.kern_data_resid;
io->scsiio.kern_rel_offset =
msg_info.dt.kern_rel_offset;
/*
* Clear out per-DMA flags.
*/
io->io_hdr.flags &= ~CTL_FLAG_RDMA_MASK;
/*
* Add per-DMA flags that are set for this
* particular DMA request.
*/
io->io_hdr.flags |= msg_info.dt.flags &
CTL_FLAG_RDMA_MASK;
} else
sgl = (struct ctl_sg_entry *)
io->scsiio.kern_data_ptr;
for (i = msg_info.dt.sent_sg_entries, j = 0;
i < (msg_info.dt.sent_sg_entries +
msg_info.dt.cur_sg_entries); i++, j++) {
sgl[i].addr = msg_info.dt.sg_list[j].addr;
sgl[i].len = msg_info.dt.sg_list[j].len;
#if 0
printf("%s: L: %p,%d -> %p,%d j=%d, i=%d\n",
__func__,
msg_info.dt.sg_list[j].addr,
msg_info.dt.sg_list[j].len,
sgl[i].addr, sgl[i].len, j, i);
#endif
}
#if 0
memcpy(&sgl[msg_info.dt.sent_sg_entries],
msg_info.dt.sg_list,
sizeof(*sgl) * msg_info.dt.cur_sg_entries);
#endif
/*
* If this is the last piece of the I/O, we've got
* the full S/G list. Queue processing in the thread.
* Otherwise wait for the next piece.
*/
if (msg_info.dt.sg_last != 0) {
STAILQ_INSERT_TAIL(&ctl_softc->isc_queue,
&io->io_hdr, links);
ctl_wakeup_thread();
}
break;
}
/* Performed on the Serializing (primary) SC, XFER mode only */
case CTL_MSG_DATAMOVE_DONE: {
if (msg_info.hdr.serializing_sc == NULL) {
printf("%s: serializing_sc == NULL!\n",
__func__);
/* XXX KDM now what? */
break;
}
/*
* We grab the sense information here in case
* there was a failure, so we can return status
* back to the initiator.
*/
io = msg_info.hdr.serializing_sc;
io->io_hdr.msg_type = CTL_MSG_DATAMOVE_DONE;
io->io_hdr.status = msg_info.hdr.status;
io->scsiio.scsi_status = msg_info.scsi.scsi_status;
io->scsiio.sense_len = msg_info.scsi.sense_len;
io->scsiio.sense_residual =msg_info.scsi.sense_residual;
io->io_hdr.port_status = msg_info.scsi.fetd_status;
io->scsiio.residual = msg_info.scsi.residual;
memcpy(&io->scsiio.sense_data,&msg_info.scsi.sense_data,
sizeof(io->scsiio.sense_data));
STAILQ_INSERT_TAIL(&ctl_softc->isc_queue,
&io->io_hdr, links);
ctl_wakeup_thread();
break;
}
/* Preformed on Originating SC, SER_ONLY mode */
case CTL_MSG_R2R:
io = msg_info.hdr.original_sc;
if (io == NULL) {
printf("%s: Major Bummer\n", __func__);
mtx_unlock(&ctl_softc->ctl_lock);
return;
} else {
#if 0
printf("pOrig %x\n",(int) ctsio);
#endif
}
io->io_hdr.msg_type = CTL_MSG_R2R;
io->io_hdr.serializing_sc = msg_info.hdr.serializing_sc;
STAILQ_INSERT_TAIL(&ctl_softc->isc_queue,
&io->io_hdr, links);
ctl_wakeup_thread();
break;
/*
* Performed on Serializing(i.e. primary SC) SC in SER_ONLY
* mode.
* Performed on the Originating (i.e. secondary) SC in XFER
* mode
*/
case CTL_MSG_FINISH_IO:
if (ctl_softc->ha_mode == CTL_HA_MODE_XFER)
ctl_isc_handler_finish_xfer(ctl_softc,
&msg_info);
else
ctl_isc_handler_finish_ser_only(ctl_softc,
&msg_info);
break;
/* Preformed on Originating SC */
case CTL_MSG_BAD_JUJU:
io = msg_info.hdr.original_sc;
if (io == NULL) {
printf("%s: Bad JUJU!, original_sc is NULL!\n",
__func__);
break;
}
ctl_copy_sense_data(&msg_info, io);
/*
* IO should have already been cleaned up on other
* SC so clear this flag so we won't send a message
* back to finish the IO there.
*/
io->io_hdr.flags &= ~CTL_FLAG_SENT_2OTHER_SC;
io->io_hdr.flags |= CTL_FLAG_IO_ACTIVE;
/* io = msg_info.hdr.serializing_sc; */
io->io_hdr.msg_type = CTL_MSG_BAD_JUJU;
STAILQ_INSERT_TAIL(&ctl_softc->isc_queue,
&io->io_hdr, links);
ctl_wakeup_thread();
break;
/* Handle resets sent from the other side */
case CTL_MSG_MANAGE_TASKS: {
struct ctl_taskio *taskio;
taskio = (struct ctl_taskio *)ctl_alloc_io(
(void *)ctl_softc->othersc_pool);
if (taskio == NULL) {
printf("ctl_isc_event_handler: can't allocate "
"ctl_io!\n");
/* Bad Juju */
/* should I just call the proper reset func
here??? */
mtx_unlock(&ctl_softc->ctl_lock);
goto bailout;
}
ctl_zero_io((union ctl_io *)taskio);
taskio->io_hdr.io_type = CTL_IO_TASK;
taskio->io_hdr.flags |= CTL_FLAG_FROM_OTHER_SC;
taskio->io_hdr.nexus = msg_info.hdr.nexus;
taskio->task_action = msg_info.task.task_action;
taskio->tag_num = msg_info.task.tag_num;
taskio->tag_type = msg_info.task.tag_type;
#ifdef CTL_TIME_IO
taskio->io_hdr.start_time = time_uptime;
getbintime(&taskio->io_hdr.start_bt);
#if 0
cs_prof_gettime(&taskio->io_hdr.start_ticks);
#endif
#endif /* CTL_TIME_IO */
STAILQ_INSERT_TAIL(&ctl_softc->task_queue,
&taskio->io_hdr, links);
ctl_softc->flags |= CTL_FLAG_TASK_PENDING;
ctl_wakeup_thread();
break;
}
/* Persistent Reserve action which needs attention */
case CTL_MSG_PERS_ACTION:
presio = (struct ctl_prio *)ctl_alloc_io(
(void *)ctl_softc->othersc_pool);
if (presio == NULL) {
printf("ctl_isc_event_handler: can't allocate "
"ctl_io!\n");
/* Bad Juju */
/* Need to set busy and send msg back */
mtx_unlock(&ctl_softc->ctl_lock);
goto bailout;
}
ctl_zero_io((union ctl_io *)presio);
presio->io_hdr.msg_type = CTL_MSG_PERS_ACTION;
presio->pr_msg = msg_info.pr;
STAILQ_INSERT_TAIL(&ctl_softc->isc_queue,
&presio->io_hdr, links);
ctl_wakeup_thread();
break;
case CTL_MSG_SYNC_FE:
rcv_sync_msg = 1;
break;
case CTL_MSG_APS_LOCK: {
// It's quicker to execute this then to
// queue it.
struct ctl_lun *lun;
struct ctl_page_index *page_index;
struct copan_aps_subpage *current_sp;
lun = ctl_softc->ctl_luns[msg_info.hdr.nexus.targ_lun];
page_index = &lun->mode_pages.index[index_to_aps_page];
current_sp = (struct copan_aps_subpage *)
(page_index->page_data +
(page_index->page_len * CTL_PAGE_CURRENT));
current_sp->lock_active = msg_info.aps.lock_flag;
break;
}
default:
printf("How did I get here?\n");
}
mtx_unlock(&ctl_softc->ctl_lock);
} else if (event == CTL_HA_EVT_MSG_SENT) {
if (param != CTL_HA_STATUS_SUCCESS) {
printf("Bad status from ctl_ha_msg_send status %d\n",
param);
}
return;
} else if (event == CTL_HA_EVT_DISCONNECT) {
printf("CTL: Got a disconnect from Isc\n");
return;
} else {
printf("ctl_isc_event_handler: Unknown event %d\n", event);
return;
}
bailout:
return;
}
static void
ctl_copy_sense_data(union ctl_ha_msg *src, union ctl_io *dest)
{
struct scsi_sense_data *sense;
sense = &dest->scsiio.sense_data;
bcopy(&src->scsi.sense_data, sense, sizeof(*sense));
dest->scsiio.scsi_status = src->scsi.scsi_status;
dest->scsiio.sense_len = src->scsi.sense_len;
dest->io_hdr.status = src->hdr.status;
}
static int
ctl_init(void)
{
struct ctl_softc *softc;
struct ctl_io_pool *internal_pool, *emergency_pool, *other_pool;
struct ctl_frontend *fe;
struct ctl_lun *lun;
uint8_t sc_id =0;
#if 0
int i;
#endif
int error, retval;
//int isc_retval;
retval = 0;
ctl_pause_rtr = 0;
rcv_sync_msg = 0;
control_softc = malloc(sizeof(*control_softc), M_DEVBUF,
M_WAITOK | M_ZERO);
softc = control_softc;
softc->dev = make_dev(&ctl_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0600,
"cam/ctl");
softc->dev->si_drv1 = softc;
/*
* By default, return a "bad LUN" peripheral qualifier for unknown
* LUNs. The user can override this default using the tunable or
* sysctl. See the comment in ctl_inquiry_std() for more details.
*/
softc->inquiry_pq_no_lun = 1;
TUNABLE_INT_FETCH("kern.cam.ctl.inquiry_pq_no_lun",
&softc->inquiry_pq_no_lun);
sysctl_ctx_init(&softc->sysctl_ctx);
softc->sysctl_tree = SYSCTL_ADD_NODE(&softc->sysctl_ctx,
SYSCTL_STATIC_CHILDREN(_kern_cam), OID_AUTO, "ctl",
CTLFLAG_RD, 0, "CAM Target Layer");
if (softc->sysctl_tree == NULL) {
printf("%s: unable to allocate sysctl tree\n", __func__);
destroy_dev(softc->dev);
free(control_softc, M_DEVBUF);
control_softc = NULL;
return (ENOMEM);
}
SYSCTL_ADD_INT(&softc->sysctl_ctx,
SYSCTL_CHILDREN(softc->sysctl_tree), OID_AUTO,
"inquiry_pq_no_lun", CTLFLAG_RW,
&softc->inquiry_pq_no_lun, 0,
"Report no lun possible for invalid LUNs");
mtx_init(&softc->ctl_lock, "CTL mutex", NULL, MTX_DEF);
softc->open_count = 0;
/*
* Default to actually sending a SYNCHRONIZE CACHE command down to
* the drive.
*/
softc->flags = CTL_FLAG_REAL_SYNC;
/*
* In Copan's HA scheme, the "master" and "slave" roles are
* figured out through the slot the controller is in. Although it
* is an active/active system, someone has to be in charge.
*/
#ifdef NEEDTOPORT
scmicro_rw(SCMICRO_GET_SHELF_ID, &sc_id);
#endif
if (sc_id == 0) {
softc->flags |= CTL_FLAG_MASTER_SHELF;
persis_offset = 0;
} else
persis_offset = CTL_MAX_INITIATORS;
/*
* XXX KDM need to figure out where we want to get our target ID
* and WWID. Is it different on each port?
*/
softc->target.id = 0;
softc->target.wwid[0] = 0x12345678;
softc->target.wwid[1] = 0x87654321;
STAILQ_INIT(&softc->lun_list);
STAILQ_INIT(&softc->pending_lun_queue);
STAILQ_INIT(&softc->task_queue);
STAILQ_INIT(&softc->incoming_queue);
STAILQ_INIT(&softc->rtr_queue);
STAILQ_INIT(&softc->done_queue);
STAILQ_INIT(&softc->isc_queue);
STAILQ_INIT(&softc->fe_list);
STAILQ_INIT(&softc->be_list);
STAILQ_INIT(&softc->io_pools);
lun = &softc->lun;
/*
* We don't bother calling these with ctl_lock held here, because,
* in theory, no one else can try to do anything while we're in our
* module init routine.
*/
if (ctl_pool_create(softc, CTL_POOL_INTERNAL, CTL_POOL_ENTRIES_INTERNAL,
&internal_pool)!= 0){
printf("ctl: can't allocate %d entry internal pool, "
"exiting\n", CTL_POOL_ENTRIES_INTERNAL);
return (ENOMEM);
}
if (ctl_pool_create(softc, CTL_POOL_EMERGENCY,
CTL_POOL_ENTRIES_EMERGENCY, &emergency_pool) != 0) {
printf("ctl: can't allocate %d entry emergency pool, "
"exiting\n", CTL_POOL_ENTRIES_EMERGENCY);
ctl_pool_free(softc, internal_pool);
return (ENOMEM);
}
if (ctl_pool_create(softc, CTL_POOL_4OTHERSC, CTL_POOL_ENTRIES_OTHER_SC,
&other_pool) != 0)
{
printf("ctl: can't allocate %d entry other SC pool, "
"exiting\n", CTL_POOL_ENTRIES_OTHER_SC);
ctl_pool_free(softc, internal_pool);
ctl_pool_free(softc, emergency_pool);
return (ENOMEM);
}
softc->internal_pool = internal_pool;
softc->emergency_pool = emergency_pool;
softc->othersc_pool = other_pool;
ctl_pool_acquire(internal_pool);
ctl_pool_acquire(emergency_pool);
ctl_pool_acquire(other_pool);
/*
* We used to allocate a processor LUN here. The new scheme is to
* just let the user allocate LUNs as he sees fit.
*/
#if 0
mtx_lock(&softc->ctl_lock);
ctl_alloc_lun(softc, lun, /*be_lun*/NULL, /*target*/softc->target);
mtx_unlock(&softc->ctl_lock);
#endif
error = kproc_create(ctl_work_thread, softc, &softc->work_thread, 0, 0,
"ctl_thrd");
if (error != 0) {
printf("error creating CTL work thread!\n");
ctl_free_lun(lun);
ctl_pool_free(softc, internal_pool);
ctl_pool_free(softc, emergency_pool);
ctl_pool_free(softc, other_pool);
return (error);
}
printf("ctl: CAM Target Layer loaded\n");
/*
* Initialize the initiator and portname mappings
*/
memset(softc->wwpn_iid, 0, sizeof(softc->wwpn_iid));
/*
* Initialize the ioctl front end.
*/
fe = &softc->ioctl_info.fe;
sprintf(softc->ioctl_info.port_name, "CTL ioctl");
fe->port_type = CTL_PORT_IOCTL;
fe->num_requested_ctl_io = 100;
fe->port_name = softc->ioctl_info.port_name;
fe->port_online = ctl_ioctl_online;
fe->port_offline = ctl_ioctl_offline;
fe->onoff_arg = &softc->ioctl_info;
fe->targ_enable = ctl_ioctl_targ_enable;
fe->targ_disable = ctl_ioctl_targ_disable;
fe->lun_enable = ctl_ioctl_lun_enable;
fe->lun_disable = ctl_ioctl_lun_disable;
fe->targ_lun_arg = &softc->ioctl_info;
fe->fe_datamove = ctl_ioctl_datamove;
fe->fe_done = ctl_ioctl_done;
fe->max_targets = 15;
fe->max_target_id = 15;
if (ctl_frontend_register(&softc->ioctl_info.fe,
(softc->flags & CTL_FLAG_MASTER_SHELF)) != 0) {
printf("ctl: ioctl front end registration failed, will "
"continue anyway\n");
}
#ifdef CTL_IO_DELAY
if (sizeof(struct callout) > CTL_TIMER_BYTES) {
printf("sizeof(struct callout) %zd > CTL_TIMER_BYTES %zd\n",
sizeof(struct callout), CTL_TIMER_BYTES);
return (EINVAL);
}
#endif /* CTL_IO_DELAY */
return (0);
}
void
ctl_shutdown(void)
{
struct ctl_softc *softc;
struct ctl_lun *lun, *next_lun;
struct ctl_io_pool *pool, *next_pool;
softc = (struct ctl_softc *)control_softc;
if (ctl_frontend_deregister(&softc->ioctl_info.fe) != 0)
printf("ctl: ioctl front end deregistration failed\n");
mtx_lock(&softc->ctl_lock);
/*
* Free up each LUN.
*/
for (lun = STAILQ_FIRST(&softc->lun_list); lun != NULL; lun = next_lun){
next_lun = STAILQ_NEXT(lun, links);
ctl_free_lun(lun);
}
/*
* This will rip the rug out from under any FETDs or anyone else
* that has a pool allocated. Since we increment our module
* refcount any time someone outside the main CTL module allocates
* a pool, we shouldn't have any problems here. The user won't be
* able to unload the CTL module until client modules have
* successfully unloaded.
*/
for (pool = STAILQ_FIRST(&softc->io_pools); pool != NULL;
pool = next_pool) {
next_pool = STAILQ_NEXT(pool, links);
ctl_pool_free(softc, pool);
}
mtx_unlock(&softc->ctl_lock);
#if 0
ctl_shutdown_thread(softc->work_thread);
#endif
mtx_destroy(&softc->ctl_lock);
destroy_dev(softc->dev);
sysctl_ctx_free(&softc->sysctl_ctx);
free(control_softc, M_DEVBUF);
control_softc = NULL;
printf("ctl: CAM Target Layer unloaded\n");
}
static int
ctl_module_event_handler(module_t mod, int what, void *arg)
{
switch (what) {
case MOD_LOAD:
return (ctl_init());
case MOD_UNLOAD:
return (EBUSY);
default:
return (EOPNOTSUPP);
}
}
/*
* XXX KDM should we do some access checks here? Bump a reference count to
* prevent a CTL module from being unloaded while someone has it open?
*/
static int
ctl_open(struct cdev *dev, int flags, int fmt, struct thread *td)
{
return (0);
}
static int
ctl_close(struct cdev *dev, int flags, int fmt, struct thread *td)
{
return (0);
}
int
ctl_port_enable(ctl_port_type port_type)
{
struct ctl_softc *softc;
struct ctl_frontend *fe;
if (ctl_is_single == 0) {
union ctl_ha_msg msg_info;
int isc_retval;
#if 0
printf("%s: HA mode, synchronizing frontend enable\n",
__func__);
#endif
msg_info.hdr.msg_type = CTL_MSG_SYNC_FE;
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info), 1 )) > CTL_HA_STATUS_SUCCESS) {
printf("Sync msg send error retval %d\n", isc_retval);
}
if (!rcv_sync_msg) {
isc_retval=ctl_ha_msg_recv(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info), 1);
}
#if 0
printf("CTL:Frontend Enable\n");
} else {
printf("%s: single mode, skipping frontend synchronization\n",
__func__);
#endif
}
softc = control_softc;
STAILQ_FOREACH(fe, &softc->fe_list, links) {
if (port_type & fe->port_type)
{
#if 0
printf("port %d\n", fe->targ_port);
#endif
ctl_frontend_online(fe);
}
}
return (0);
}
int
ctl_port_disable(ctl_port_type port_type)
{
struct ctl_softc *softc;
struct ctl_frontend *fe;
softc = control_softc;
STAILQ_FOREACH(fe, &softc->fe_list, links) {
if (port_type & fe->port_type)
ctl_frontend_offline(fe);
}
return (0);
}
/*
* Returns 0 for success, 1 for failure.
* Currently the only failure mode is if there aren't enough entries
* allocated. So, in case of a failure, look at num_entries_dropped,
* reallocate and try again.
*/
int
ctl_port_list(struct ctl_port_entry *entries, int num_entries_alloced,
int *num_entries_filled, int *num_entries_dropped,
ctl_port_type port_type, int no_virtual)
{
struct ctl_softc *softc;
struct ctl_frontend *fe;
int entries_dropped, entries_filled;
int retval;
int i;
softc = control_softc;
retval = 0;
entries_filled = 0;
entries_dropped = 0;
i = 0;
mtx_lock(&softc->ctl_lock);
STAILQ_FOREACH(fe, &softc->fe_list, links) {
struct ctl_port_entry *entry;
if ((fe->port_type & port_type) == 0)
continue;
if ((no_virtual != 0)
&& (fe->virtual_port != 0))
continue;
if (entries_filled >= num_entries_alloced) {
entries_dropped++;
continue;
}
entry = &entries[i];
entry->port_type = fe->port_type;
strlcpy(entry->port_name, fe->port_name,
sizeof(entry->port_name));
entry->physical_port = fe->physical_port;
entry->virtual_port = fe->virtual_port;
entry->wwnn = fe->wwnn;
entry->wwpn = fe->wwpn;
i++;
entries_filled++;
}
mtx_unlock(&softc->ctl_lock);
if (entries_dropped > 0)
retval = 1;
*num_entries_dropped = entries_dropped;
*num_entries_filled = entries_filled;
return (retval);
}
static void
ctl_ioctl_online(void *arg)
{
struct ctl_ioctl_info *ioctl_info;
ioctl_info = (struct ctl_ioctl_info *)arg;
ioctl_info->flags |= CTL_IOCTL_FLAG_ENABLED;
}
static void
ctl_ioctl_offline(void *arg)
{
struct ctl_ioctl_info *ioctl_info;
ioctl_info = (struct ctl_ioctl_info *)arg;
ioctl_info->flags &= ~CTL_IOCTL_FLAG_ENABLED;
}
/*
* Remove an initiator by port number and initiator ID.
* Returns 0 for success, 1 for failure.
* Assumes the caller does NOT hold the CTL lock.
*/
int
ctl_remove_initiator(int32_t targ_port, uint32_t iid)
{
struct ctl_softc *softc;
softc = control_softc;
if ((targ_port < 0)
|| (targ_port > CTL_MAX_PORTS)) {
printf("%s: invalid port number %d\n", __func__, targ_port);
return (1);
}
if (iid > CTL_MAX_INIT_PER_PORT) {
printf("%s: initiator ID %u > maximun %u!\n",
__func__, iid, CTL_MAX_INIT_PER_PORT);
return (1);
}
mtx_lock(&softc->ctl_lock);
softc->wwpn_iid[targ_port][iid].in_use = 0;
mtx_unlock(&softc->ctl_lock);
return (0);
}
/*
* Add an initiator to the initiator map.
* Returns 0 for success, 1 for failure.
* Assumes the caller does NOT hold the CTL lock.
*/
int
ctl_add_initiator(uint64_t wwpn, int32_t targ_port, uint32_t iid)
{
struct ctl_softc *softc;
int retval;
softc = control_softc;
retval = 0;
if ((targ_port < 0)
|| (targ_port > CTL_MAX_PORTS)) {
printf("%s: invalid port number %d\n", __func__, targ_port);
return (1);
}
if (iid > CTL_MAX_INIT_PER_PORT) {
printf("%s: WWPN %#jx initiator ID %u > maximun %u!\n",
__func__, wwpn, iid, CTL_MAX_INIT_PER_PORT);
return (1);
}
mtx_lock(&softc->ctl_lock);
if (softc->wwpn_iid[targ_port][iid].in_use != 0) {
/*
* We don't treat this as an error.
*/
if (softc->wwpn_iid[targ_port][iid].wwpn == wwpn) {
printf("%s: port %d iid %u WWPN %#jx arrived again?\n",
__func__, targ_port, iid, (uintmax_t)wwpn);
goto bailout;
}
/*
* This is an error, but what do we do about it? The
* driver is telling us we have a new WWPN for this
* initiator ID, so we pretty much need to use it.
*/
printf("%s: port %d iid %u WWPN %#jx arrived, WWPN %#jx is "
"still at that address\n", __func__, targ_port, iid,
(uintmax_t)wwpn,
(uintmax_t)softc->wwpn_iid[targ_port][iid].wwpn);
/*
* XXX KDM clear have_ca and ua_pending on each LUN for
* this initiator.
*/
}
softc->wwpn_iid[targ_port][iid].in_use = 1;
softc->wwpn_iid[targ_port][iid].iid = iid;
softc->wwpn_iid[targ_port][iid].wwpn = wwpn;
softc->wwpn_iid[targ_port][iid].port = targ_port;
bailout:
mtx_unlock(&softc->ctl_lock);
return (retval);
}
/*
* XXX KDM should we pretend to do something in the target/lun
* enable/disable functions?
*/
static int
ctl_ioctl_targ_enable(void *arg, struct ctl_id targ_id)
{
return (0);
}
static int
ctl_ioctl_targ_disable(void *arg, struct ctl_id targ_id)
{
return (0);
}
static int
ctl_ioctl_lun_enable(void *arg, struct ctl_id targ_id, int lun_id)
{
return (0);
}
static int
ctl_ioctl_lun_disable(void *arg, struct ctl_id targ_id, int lun_id)
{
return (0);
}
/*
* Data movement routine for the CTL ioctl frontend port.
*/
static int
ctl_ioctl_do_datamove(struct ctl_scsiio *ctsio)
{
struct ctl_sg_entry *ext_sglist, *kern_sglist;
struct ctl_sg_entry ext_entry, kern_entry;
int ext_sglen, ext_sg_entries, kern_sg_entries;
int ext_sg_start, ext_offset;
int len_to_copy, len_copied;
int kern_watermark, ext_watermark;
int ext_sglist_malloced;
int i, j;
ext_sglist_malloced = 0;
ext_sg_start = 0;
ext_offset = 0;
CTL_DEBUG_PRINT(("ctl_ioctl_do_datamove\n"));
/*
* If this flag is set, fake the data transfer.
*/
if (ctsio->io_hdr.flags & CTL_FLAG_NO_DATAMOVE) {
ctsio->ext_data_filled = ctsio->ext_data_len;
goto bailout;
}
/*
* To simplify things here, if we have a single buffer, stick it in
* a S/G entry and just make it a single entry S/G list.
*/
if (ctsio->io_hdr.flags & CTL_FLAG_EDPTR_SGLIST) {
int len_seen;
ext_sglen = ctsio->ext_sg_entries * sizeof(*ext_sglist);
ext_sglist = (struct ctl_sg_entry *)malloc(ext_sglen, M_CTL,
M_WAITOK);
ext_sglist_malloced = 1;
if (copyin(ctsio->ext_data_ptr, ext_sglist,
ext_sglen) != 0) {
ctl_set_internal_failure(ctsio,
/*sks_valid*/ 0,
/*retry_count*/ 0);
goto bailout;
}
ext_sg_entries = ctsio->ext_sg_entries;
len_seen = 0;
for (i = 0; i < ext_sg_entries; i++) {
if ((len_seen + ext_sglist[i].len) >=
ctsio->ext_data_filled) {
ext_sg_start = i;
ext_offset = ctsio->ext_data_filled - len_seen;
break;
}
len_seen += ext_sglist[i].len;
}
} else {
ext_sglist = &ext_entry;
ext_sglist->addr = ctsio->ext_data_ptr;
ext_sglist->len = ctsio->ext_data_len;
ext_sg_entries = 1;
ext_sg_start = 0;
ext_offset = ctsio->ext_data_filled;
}
if (ctsio->kern_sg_entries > 0) {
kern_sglist = (struct ctl_sg_entry *)ctsio->kern_data_ptr;
kern_sg_entries = ctsio->kern_sg_entries;
} else {
kern_sglist = &kern_entry;
kern_sglist->addr = ctsio->kern_data_ptr;
kern_sglist->len = ctsio->kern_data_len;
kern_sg_entries = 1;
}
kern_watermark = 0;
ext_watermark = ext_offset;
len_copied = 0;
for (i = ext_sg_start, j = 0;
i < ext_sg_entries && j < kern_sg_entries;) {
uint8_t *ext_ptr, *kern_ptr;
len_to_copy = ctl_min(ext_sglist[i].len - ext_watermark,
kern_sglist[j].len - kern_watermark);
ext_ptr = (uint8_t *)ext_sglist[i].addr;
ext_ptr = ext_ptr + ext_watermark;
if (ctsio->io_hdr.flags & CTL_FLAG_BUS_ADDR) {
/*
* XXX KDM fix this!
*/
panic("need to implement bus address support");
#if 0
kern_ptr = bus_to_virt(kern_sglist[j].addr);
#endif
} else
kern_ptr = (uint8_t *)kern_sglist[j].addr;
kern_ptr = kern_ptr + kern_watermark;
kern_watermark += len_to_copy;
ext_watermark += len_to_copy;
if ((ctsio->io_hdr.flags & CTL_FLAG_DATA_MASK) ==
CTL_FLAG_DATA_IN) {
CTL_DEBUG_PRINT(("ctl_ioctl_do_datamove: copying %d "
"bytes to user\n", len_to_copy));
CTL_DEBUG_PRINT(("ctl_ioctl_do_datamove: from %p "
"to %p\n", kern_ptr, ext_ptr));
if (copyout(kern_ptr, ext_ptr, len_to_copy) != 0) {
ctl_set_internal_failure(ctsio,
/*sks_valid*/ 0,
/*retry_count*/ 0);
goto bailout;
}
} else {
CTL_DEBUG_PRINT(("ctl_ioctl_do_datamove: copying %d "
"bytes from user\n", len_to_copy));
CTL_DEBUG_PRINT(("ctl_ioctl_do_datamove: from %p "
"to %p\n", ext_ptr, kern_ptr));
if (copyin(ext_ptr, kern_ptr, len_to_copy)!= 0){
ctl_set_internal_failure(ctsio,
/*sks_valid*/ 0,
/*retry_count*/0);
goto bailout;
}
}
len_copied += len_to_copy;
if (ext_sglist[i].len == ext_watermark) {
i++;
ext_watermark = 0;
}
if (kern_sglist[j].len == kern_watermark) {
j++;
kern_watermark = 0;
}
}
ctsio->ext_data_filled += len_copied;
CTL_DEBUG_PRINT(("ctl_ioctl_do_datamove: ext_sg_entries: %d, "
"kern_sg_entries: %d\n", ext_sg_entries,
kern_sg_entries));
CTL_DEBUG_PRINT(("ctl_ioctl_do_datamove: ext_data_len = %d, "
"kern_data_len = %d\n", ctsio->ext_data_len,
ctsio->kern_data_len));
/* XXX KDM set residual?? */
bailout:
if (ext_sglist_malloced != 0)
free(ext_sglist, M_CTL);
return (CTL_RETVAL_COMPLETE);
}
/*
* Serialize a command that went down the "wrong" side, and so was sent to
* this controller for execution. The logic is a little different than the
* standard case in ctl_scsiio_precheck(). Errors in this case need to get
* sent back to the other side, but in the success case, we execute the
* command on this side (XFER mode) or tell the other side to execute it
* (SER_ONLY mode).
*/
static int
ctl_serialize_other_sc_cmd(struct ctl_scsiio *ctsio, int have_lock)
{
struct ctl_softc *ctl_softc;
union ctl_ha_msg msg_info;
struct ctl_lun *lun;
int retval = 0;
ctl_softc = control_softc;
if (have_lock == 0)
mtx_lock(&ctl_softc->ctl_lock);
lun = ctl_softc->ctl_luns[ctsio->io_hdr.nexus.targ_lun];
if (lun==NULL)
{
/*
* Why isn't LUN defined? The other side wouldn't
* send a cmd if the LUN is undefined.
*/
printf("%s: Bad JUJU!, LUN is NULL!\n", __func__);
/* "Logical unit not supported" */
ctl_set_sense_data(&msg_info.scsi.sense_data,
lun,
/*sense_format*/SSD_TYPE_NONE,
/*current_error*/ 1,
/*sense_key*/ SSD_KEY_ILLEGAL_REQUEST,
/*asc*/ 0x25,
/*ascq*/ 0x00,
SSD_ELEM_NONE);
msg_info.scsi.sense_len = SSD_FULL_SIZE;
msg_info.scsi.scsi_status = SCSI_STATUS_CHECK_COND;
msg_info.hdr.status = CTL_SCSI_ERROR | CTL_AUTOSENSE;
msg_info.hdr.original_sc = ctsio->io_hdr.original_sc;
msg_info.hdr.serializing_sc = NULL;
msg_info.hdr.msg_type = CTL_MSG_BAD_JUJU;
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info), 0 ) > CTL_HA_STATUS_SUCCESS) {
}
if (have_lock == 0)
mtx_unlock(&ctl_softc->ctl_lock);
return(1);
}
TAILQ_INSERT_TAIL(&lun->ooa_queue, &ctsio->io_hdr, ooa_links);
switch (ctl_check_ooa(lun, (union ctl_io *)ctsio,
(union ctl_io *)TAILQ_PREV(&ctsio->io_hdr, ctl_ooaq,
ooa_links))) {
case CTL_ACTION_BLOCK:
ctsio->io_hdr.flags |= CTL_FLAG_BLOCKED;
TAILQ_INSERT_TAIL(&lun->blocked_queue, &ctsio->io_hdr,
blocked_links);
break;
case CTL_ACTION_PASS:
case CTL_ACTION_SKIP:
if (ctl_softc->ha_mode == CTL_HA_MODE_XFER) {
ctsio->io_hdr.flags |= CTL_FLAG_IS_WAS_ON_RTR;
STAILQ_INSERT_TAIL(&ctl_softc->rtr_queue,
&ctsio->io_hdr, links);
} else {
/* send msg back to other side */
msg_info.hdr.original_sc = ctsio->io_hdr.original_sc;
msg_info.hdr.serializing_sc = (union ctl_io *)ctsio;
msg_info.hdr.msg_type = CTL_MSG_R2R;
#if 0
printf("2. pOrig %x\n", (int)msg_info.hdr.original_sc);
#endif
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info), 0 ) > CTL_HA_STATUS_SUCCESS) {
}
}
break;
case CTL_ACTION_OVERLAP:
/* OVERLAPPED COMMANDS ATTEMPTED */
ctl_set_sense_data(&msg_info.scsi.sense_data,
lun,
/*sense_format*/SSD_TYPE_NONE,
/*current_error*/ 1,
/*sense_key*/ SSD_KEY_ILLEGAL_REQUEST,
/*asc*/ 0x4E,
/*ascq*/ 0x00,
SSD_ELEM_NONE);
msg_info.scsi.sense_len = SSD_FULL_SIZE;
msg_info.scsi.scsi_status = SCSI_STATUS_CHECK_COND;
msg_info.hdr.status = CTL_SCSI_ERROR | CTL_AUTOSENSE;
msg_info.hdr.original_sc = ctsio->io_hdr.original_sc;
msg_info.hdr.serializing_sc = NULL;
msg_info.hdr.msg_type = CTL_MSG_BAD_JUJU;
#if 0
printf("BAD JUJU:Major Bummer Overlap\n");
#endif
TAILQ_REMOVE(&lun->ooa_queue, &ctsio->io_hdr, ooa_links);
retval = 1;
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info), 0 ) > CTL_HA_STATUS_SUCCESS) {
}
break;
case CTL_ACTION_OVERLAP_TAG:
/* TAGGED OVERLAPPED COMMANDS (NN = QUEUE TAG) */
ctl_set_sense_data(&msg_info.scsi.sense_data,
lun,
/*sense_format*/SSD_TYPE_NONE,
/*current_error*/ 1,
/*sense_key*/ SSD_KEY_ILLEGAL_REQUEST,
/*asc*/ 0x4D,
/*ascq*/ ctsio->tag_num & 0xff,
SSD_ELEM_NONE);
msg_info.scsi.sense_len = SSD_FULL_SIZE;
msg_info.scsi.scsi_status = SCSI_STATUS_CHECK_COND;
msg_info.hdr.status = CTL_SCSI_ERROR | CTL_AUTOSENSE;
msg_info.hdr.original_sc = ctsio->io_hdr.original_sc;
msg_info.hdr.serializing_sc = NULL;
msg_info.hdr.msg_type = CTL_MSG_BAD_JUJU;
#if 0
printf("BAD JUJU:Major Bummer Overlap Tag\n");
#endif
TAILQ_REMOVE(&lun->ooa_queue, &ctsio->io_hdr, ooa_links);
retval = 1;
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info), 0 ) > CTL_HA_STATUS_SUCCESS) {
}
break;
case CTL_ACTION_ERROR:
default:
/* "Internal target failure" */
ctl_set_sense_data(&msg_info.scsi.sense_data,
lun,
/*sense_format*/SSD_TYPE_NONE,
/*current_error*/ 1,
/*sense_key*/ SSD_KEY_HARDWARE_ERROR,
/*asc*/ 0x44,
/*ascq*/ 0x00,
SSD_ELEM_NONE);
msg_info.scsi.sense_len = SSD_FULL_SIZE;
msg_info.scsi.scsi_status = SCSI_STATUS_CHECK_COND;
msg_info.hdr.status = CTL_SCSI_ERROR | CTL_AUTOSENSE;
msg_info.hdr.original_sc = ctsio->io_hdr.original_sc;
msg_info.hdr.serializing_sc = NULL;
msg_info.hdr.msg_type = CTL_MSG_BAD_JUJU;
#if 0
printf("BAD JUJU:Major Bummer HW Error\n");
#endif
TAILQ_REMOVE(&lun->ooa_queue, &ctsio->io_hdr, ooa_links);
retval = 1;
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_info,
sizeof(msg_info), 0 ) > CTL_HA_STATUS_SUCCESS) {
}
break;
}
if (have_lock == 0)
mtx_unlock(&ctl_softc->ctl_lock);
return (retval);
}
static int
ctl_ioctl_submit_wait(union ctl_io *io)
{
struct ctl_fe_ioctl_params params;
ctl_fe_ioctl_state last_state;
int done, retval;
retval = 0;
bzero(&params, sizeof(params));
mtx_init(&params.ioctl_mtx, "ctliocmtx", NULL, MTX_DEF);
cv_init(&params.sem, "ctlioccv");
params.state = CTL_IOCTL_INPROG;
last_state = params.state;
io->io_hdr.ctl_private[CTL_PRIV_FRONTEND].ptr = &params;
CTL_DEBUG_PRINT(("ctl_ioctl_submit_wait\n"));
/* This shouldn't happen */
if ((retval = ctl_queue(io)) != CTL_RETVAL_COMPLETE)
return (retval);
done = 0;
do {
mtx_lock(&params.ioctl_mtx);
/*
* Check the state here, and don't sleep if the state has
* already changed (i.e. wakeup has already occured, but we
* weren't waiting yet).
*/
if (params.state == last_state) {
/* XXX KDM cv_wait_sig instead? */
cv_wait(&params.sem, &params.ioctl_mtx);
}
last_state = params.state;
switch (params.state) {
case CTL_IOCTL_INPROG:
/* Why did we wake up? */
/* XXX KDM error here? */
mtx_unlock(&params.ioctl_mtx);
break;
case CTL_IOCTL_DATAMOVE:
CTL_DEBUG_PRINT(("got CTL_IOCTL_DATAMOVE\n"));
/*
* change last_state back to INPROG to avoid
* deadlock on subsequent data moves.
*/
params.state = last_state = CTL_IOCTL_INPROG;
mtx_unlock(&params.ioctl_mtx);
ctl_ioctl_do_datamove(&io->scsiio);
/*
* Note that in some cases, most notably writes,
* this will queue the I/O and call us back later.
* In other cases, generally reads, this routine
* will immediately call back and wake us up,
* probably using our own context.
*/
io->scsiio.be_move_done(io);
break;
case CTL_IOCTL_DONE:
mtx_unlock(&params.ioctl_mtx);
CTL_DEBUG_PRINT(("got CTL_IOCTL_DONE\n"));
done = 1;
break;
default:
mtx_unlock(&params.ioctl_mtx);
/* XXX KDM error here? */
break;
}
} while (done == 0);
mtx_destroy(&params.ioctl_mtx);
cv_destroy(&params.sem);
return (CTL_RETVAL_COMPLETE);
}
static void
ctl_ioctl_datamove(union ctl_io *io)
{
struct ctl_fe_ioctl_params *params;
params = (struct ctl_fe_ioctl_params *)
io->io_hdr.ctl_private[CTL_PRIV_FRONTEND].ptr;
mtx_lock(&params->ioctl_mtx);
params->state = CTL_IOCTL_DATAMOVE;
cv_broadcast(&params->sem);
mtx_unlock(&params->ioctl_mtx);
}
static void
ctl_ioctl_done(union ctl_io *io)
{
struct ctl_fe_ioctl_params *params;
params = (struct ctl_fe_ioctl_params *)
io->io_hdr.ctl_private[CTL_PRIV_FRONTEND].ptr;
mtx_lock(&params->ioctl_mtx);
params->state = CTL_IOCTL_DONE;
cv_broadcast(&params->sem);
mtx_unlock(&params->ioctl_mtx);
}
static void
ctl_ioctl_hard_startstop_callback(void *arg, struct cfi_metatask *metatask)
{
struct ctl_fe_ioctl_startstop_info *sd_info;
sd_info = (struct ctl_fe_ioctl_startstop_info *)arg;
sd_info->hs_info.status = metatask->status;
sd_info->hs_info.total_luns = metatask->taskinfo.startstop.total_luns;
sd_info->hs_info.luns_complete =
metatask->taskinfo.startstop.luns_complete;
sd_info->hs_info.luns_failed = metatask->taskinfo.startstop.luns_failed;
cv_broadcast(&sd_info->sem);
}
static void
ctl_ioctl_bbrread_callback(void *arg, struct cfi_metatask *metatask)
{
struct ctl_fe_ioctl_bbrread_info *fe_bbr_info;
fe_bbr_info = (struct ctl_fe_ioctl_bbrread_info *)arg;
mtx_lock(fe_bbr_info->lock);
fe_bbr_info->bbr_info->status = metatask->status;
fe_bbr_info->bbr_info->bbr_status = metatask->taskinfo.bbrread.status;
fe_bbr_info->wakeup_done = 1;
mtx_unlock(fe_bbr_info->lock);
cv_broadcast(&fe_bbr_info->sem);
}
/*
* Must be called with the ctl_lock held.
* Returns 0 for success, errno for failure.
*/
static int
ctl_ioctl_fill_ooa(struct ctl_lun *lun, uint32_t *cur_fill_num,
struct ctl_ooa *ooa_hdr, struct ctl_ooa_entry *kern_entries)
{
union ctl_io *io;
int retval;
retval = 0;
for (io = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue); (io != NULL);
(*cur_fill_num)++, io = (union ctl_io *)TAILQ_NEXT(&io->io_hdr,
ooa_links)) {
struct ctl_ooa_entry *entry;
/*
* If we've got more than we can fit, just count the
* remaining entries.
*/
if (*cur_fill_num >= ooa_hdr->alloc_num)
continue;
entry = &kern_entries[*cur_fill_num];
entry->tag_num = io->scsiio.tag_num;
entry->lun_num = lun->lun;
#ifdef CTL_TIME_IO
entry->start_bt = io->io_hdr.start_bt;
#endif
bcopy(io->scsiio.cdb, entry->cdb, io->scsiio.cdb_len);
entry->cdb_len = io->scsiio.cdb_len;
if (io->io_hdr.flags & CTL_FLAG_BLOCKED)
entry->cmd_flags |= CTL_OOACMD_FLAG_BLOCKED;
if (io->io_hdr.flags & CTL_FLAG_DMA_INPROG)
entry->cmd_flags |= CTL_OOACMD_FLAG_DMA;
if (io->io_hdr.flags & CTL_FLAG_ABORT)
entry->cmd_flags |= CTL_OOACMD_FLAG_ABORT;
if (io->io_hdr.flags & CTL_FLAG_IS_WAS_ON_RTR)
entry->cmd_flags |= CTL_OOACMD_FLAG_RTR;
if (io->io_hdr.flags & CTL_FLAG_DMA_QUEUED)
entry->cmd_flags |= CTL_OOACMD_FLAG_DMA_QUEUED;
}
return (retval);
}
static void *
ctl_copyin_alloc(void *user_addr, int len, char *error_str,
size_t error_str_len)
{
void *kptr;
kptr = malloc(len, M_CTL, M_WAITOK | M_ZERO);
if (copyin(user_addr, kptr, len) != 0) {
snprintf(error_str, error_str_len, "Error copying %d bytes "
"from user address %p to kernel address %p", len,
user_addr, kptr);
free(kptr, M_CTL);
return (NULL);
}
return (kptr);
}
static void
ctl_free_args(int num_be_args, struct ctl_be_arg *be_args)
{
int i;
if (be_args == NULL)
return;
for (i = 0; i < num_be_args; i++) {
free(be_args[i].kname, M_CTL);
free(be_args[i].kvalue, M_CTL);
}
free(be_args, M_CTL);
}
static struct ctl_be_arg *
ctl_copyin_args(int num_be_args, struct ctl_be_arg *be_args,
char *error_str, size_t error_str_len)
{
struct ctl_be_arg *args;
int i;
args = ctl_copyin_alloc(be_args, num_be_args * sizeof(*be_args),
error_str, error_str_len);
if (args == NULL)
goto bailout;
for (i = 0; i < num_be_args; i++) {
args[i].kname = NULL;
args[i].kvalue = NULL;
}
for (i = 0; i < num_be_args; i++) {
uint8_t *tmpptr;
args[i].kname = ctl_copyin_alloc(args[i].name,
args[i].namelen, error_str, error_str_len);
if (args[i].kname == NULL)
goto bailout;
if (args[i].kname[args[i].namelen - 1] != '\0') {
snprintf(error_str, error_str_len, "Argument %d "
"name is not NUL-terminated", i);
goto bailout;
}
args[i].kvalue = NULL;
tmpptr = ctl_copyin_alloc(args[i].value,
args[i].vallen, error_str, error_str_len);
if (tmpptr == NULL)
goto bailout;
args[i].kvalue = tmpptr;
if ((args[i].flags & CTL_BEARG_ASCII)
&& (tmpptr[args[i].vallen - 1] != '\0')) {
snprintf(error_str, error_str_len, "Argument %d "
"value is not NUL-terminated", i);
goto bailout;
}
}
return (args);
bailout:
ctl_free_args(num_be_args, args);
return (NULL);
}
/*
* Escape characters that are illegal or not recommended in XML.
*/
int
ctl_sbuf_printf_esc(struct sbuf *sb, char *str)
{
int retval;
retval = 0;
for (; *str; str++) {
switch (*str) {
case '&':
retval = sbuf_printf(sb, "&amp;");
break;
case '>':
retval = sbuf_printf(sb, "&gt;");
break;
case '<':
retval = sbuf_printf(sb, "&lt;");
break;
default:
retval = sbuf_putc(sb, *str);
break;
}
if (retval != 0)
break;
}
return (retval);
}
static int
ctl_ioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag,
struct thread *td)
{
struct ctl_softc *softc;
int retval;
softc = control_softc;
retval = 0;
switch (cmd) {
case CTL_IO: {
union ctl_io *io;
void *pool_tmp;
/*
* If we haven't been "enabled", don't allow any SCSI I/O
* to this FETD.
*/
if ((softc->ioctl_info.flags & CTL_IOCTL_FLAG_ENABLED) == 0) {
retval = -EPERM;
break;
}
io = ctl_alloc_io(softc->ioctl_info.fe.ctl_pool_ref);
if (io == NULL) {
printf("ctl_ioctl: can't allocate ctl_io!\n");
retval = -ENOSPC;
break;
}
/*
* Need to save the pool reference so it doesn't get
* spammed by the user's ctl_io.
*/
pool_tmp = io->io_hdr.pool;
memcpy(io, (void *)addr, sizeof(*io));
io->io_hdr.pool = pool_tmp;
/*
* No status yet, so make sure the status is set properly.
*/
io->io_hdr.status = CTL_STATUS_NONE;
/*
* The user sets the initiator ID, target and LUN IDs.
*/
io->io_hdr.nexus.targ_port = softc->ioctl_info.fe.targ_port;
io->io_hdr.flags |= CTL_FLAG_USER_REQ;
if ((io->io_hdr.io_type == CTL_IO_SCSI)
&& (io->scsiio.tag_type != CTL_TAG_UNTAGGED))
io->scsiio.tag_num = softc->ioctl_info.cur_tag_num++;
retval = ctl_ioctl_submit_wait(io);
if (retval != 0) {
ctl_free_io(io);
break;
}
memcpy((void *)addr, io, sizeof(*io));
/* return this to our pool */
ctl_free_io(io);
break;
}
case CTL_ENABLE_PORT:
case CTL_DISABLE_PORT:
case CTL_SET_PORT_WWNS: {
struct ctl_frontend *fe;
struct ctl_port_entry *entry;
entry = (struct ctl_port_entry *)addr;
mtx_lock(&softc->ctl_lock);
STAILQ_FOREACH(fe, &softc->fe_list, links) {
int action, done;
action = 0;
done = 0;
if ((entry->port_type == CTL_PORT_NONE)
&& (entry->targ_port == fe->targ_port)) {
/*
* If the user only wants to enable or
* disable or set WWNs on a specific port,
* do the operation and we're done.
*/
action = 1;
done = 1;
} else if (entry->port_type & fe->port_type) {
/*
* Compare the user's type mask with the
* particular frontend type to see if we
* have a match.
*/
action = 1;
done = 0;
/*
* Make sure the user isn't trying to set
* WWNs on multiple ports at the same time.
*/
if (cmd == CTL_SET_PORT_WWNS) {
printf("%s: Can't set WWNs on "
"multiple ports\n", __func__);
retval = EINVAL;
break;
}
}
if (action != 0) {
/*
* XXX KDM we have to drop the lock here,
* because the online/offline operations
* can potentially block. We need to
* reference count the frontends so they
* can't go away,
*/
mtx_unlock(&softc->ctl_lock);
if (cmd == CTL_ENABLE_PORT) {
struct ctl_lun *lun;
STAILQ_FOREACH(lun, &softc->lun_list,
links) {
fe->lun_enable(fe->targ_lun_arg,
lun->target,
lun->lun);
}
ctl_frontend_online(fe);
} else if (cmd == CTL_DISABLE_PORT) {
struct ctl_lun *lun;
ctl_frontend_offline(fe);
STAILQ_FOREACH(lun, &softc->lun_list,
links) {
fe->lun_disable(
fe->targ_lun_arg,
lun->target,
lun->lun);
}
}
mtx_lock(&softc->ctl_lock);
if (cmd == CTL_SET_PORT_WWNS)
ctl_frontend_set_wwns(fe,
(entry->flags & CTL_PORT_WWNN_VALID) ?
1 : 0, entry->wwnn,
(entry->flags & CTL_PORT_WWPN_VALID) ?
1 : 0, entry->wwpn);
}
if (done != 0)
break;
}
mtx_unlock(&softc->ctl_lock);
break;
}
case CTL_GET_PORT_LIST: {
struct ctl_frontend *fe;
struct ctl_port_list *list;
int i;
list = (struct ctl_port_list *)addr;
if (list->alloc_len != (list->alloc_num *
sizeof(struct ctl_port_entry))) {
printf("%s: CTL_GET_PORT_LIST: alloc_len %u != "
"alloc_num %u * sizeof(struct ctl_port_entry) "
"%zu\n", __func__, list->alloc_len,
list->alloc_num, sizeof(struct ctl_port_entry));
retval = EINVAL;
break;
}
list->fill_len = 0;
list->fill_num = 0;
list->dropped_num = 0;
i = 0;
mtx_lock(&softc->ctl_lock);
STAILQ_FOREACH(fe, &softc->fe_list, links) {
struct ctl_port_entry entry, *list_entry;
if (list->fill_num >= list->alloc_num) {
list->dropped_num++;
continue;
}
entry.port_type = fe->port_type;
strlcpy(entry.port_name, fe->port_name,
sizeof(entry.port_name));
entry.targ_port = fe->targ_port;
entry.physical_port = fe->physical_port;
entry.virtual_port = fe->virtual_port;
entry.wwnn = fe->wwnn;
entry.wwpn = fe->wwpn;
if (fe->status & CTL_PORT_STATUS_ONLINE)
entry.online = 1;
else
entry.online = 0;
list_entry = &list->entries[i];
retval = copyout(&entry, list_entry, sizeof(entry));
if (retval != 0) {
printf("%s: CTL_GET_PORT_LIST: copyout "
"returned %d\n", __func__, retval);
break;
}
i++;
list->fill_num++;
list->fill_len += sizeof(entry);
}
mtx_unlock(&softc->ctl_lock);
/*
* If this is non-zero, we had a copyout fault, so there's
* probably no point in attempting to set the status inside
* the structure.
*/
if (retval != 0)
break;
if (list->dropped_num > 0)
list->status = CTL_PORT_LIST_NEED_MORE_SPACE;
else
list->status = CTL_PORT_LIST_OK;
break;
}
case CTL_DUMP_OOA: {
struct ctl_lun *lun;
union ctl_io *io;
char printbuf[128];
struct sbuf sb;
mtx_lock(&softc->ctl_lock);
printf("Dumping OOA queues:\n");
STAILQ_FOREACH(lun, &softc->lun_list, links) {
for (io = (union ctl_io *)TAILQ_FIRST(
&lun->ooa_queue); io != NULL;
io = (union ctl_io *)TAILQ_NEXT(&io->io_hdr,
ooa_links)) {
sbuf_new(&sb, printbuf, sizeof(printbuf),
SBUF_FIXEDLEN);
sbuf_printf(&sb, "LUN %jd tag 0x%04x%s%s%s%s: ",
(intmax_t)lun->lun,
io->scsiio.tag_num,
(io->io_hdr.flags &
CTL_FLAG_BLOCKED) ? "" : " BLOCKED",
(io->io_hdr.flags &
CTL_FLAG_DMA_INPROG) ? " DMA" : "",
(io->io_hdr.flags &
CTL_FLAG_ABORT) ? " ABORT" : "",
(io->io_hdr.flags &
CTL_FLAG_IS_WAS_ON_RTR) ? " RTR" : "");
ctl_scsi_command_string(&io->scsiio, NULL, &sb);
sbuf_finish(&sb);
printf("%s\n", sbuf_data(&sb));
}
}
printf("OOA queues dump done\n");
mtx_unlock(&softc->ctl_lock);
break;
}
case CTL_GET_OOA: {
struct ctl_lun *lun;
struct ctl_ooa *ooa_hdr;
struct ctl_ooa_entry *entries;
uint32_t cur_fill_num;
ooa_hdr = (struct ctl_ooa *)addr;
if ((ooa_hdr->alloc_len == 0)
|| (ooa_hdr->alloc_num == 0)) {
printf("%s: CTL_GET_OOA: alloc len %u and alloc num %u "
"must be non-zero\n", __func__,
ooa_hdr->alloc_len, ooa_hdr->alloc_num);
retval = EINVAL;
break;
}
if (ooa_hdr->alloc_len != (ooa_hdr->alloc_num *
sizeof(struct ctl_ooa_entry))) {
printf("%s: CTL_GET_OOA: alloc len %u must be alloc "
"num %d * sizeof(struct ctl_ooa_entry) %zd\n",
__func__, ooa_hdr->alloc_len,
ooa_hdr->alloc_num,sizeof(struct ctl_ooa_entry));
retval = EINVAL;
break;
}
entries = malloc(ooa_hdr->alloc_len, M_CTL, M_WAITOK | M_ZERO);
if (entries == NULL) {
printf("%s: could not allocate %d bytes for OOA "
"dump\n", __func__, ooa_hdr->alloc_len);
retval = ENOMEM;
break;
}
mtx_lock(&softc->ctl_lock);
if (((ooa_hdr->flags & CTL_OOA_FLAG_ALL_LUNS) == 0)
&& ((ooa_hdr->lun_num > CTL_MAX_LUNS)
|| (softc->ctl_luns[ooa_hdr->lun_num] == NULL))) {
mtx_unlock(&softc->ctl_lock);
free(entries, M_CTL);
printf("%s: CTL_GET_OOA: invalid LUN %ju\n",
__func__, (uintmax_t)ooa_hdr->lun_num);
retval = EINVAL;
break;
}
cur_fill_num = 0;
if (ooa_hdr->flags & CTL_OOA_FLAG_ALL_LUNS) {
STAILQ_FOREACH(lun, &softc->lun_list, links) {
retval = ctl_ioctl_fill_ooa(lun, &cur_fill_num,
ooa_hdr, entries);
if (retval != 0)
break;
}
if (retval != 0) {
mtx_unlock(&softc->ctl_lock);
free(entries, M_CTL);
break;
}
} else {
lun = softc->ctl_luns[ooa_hdr->lun_num];
retval = ctl_ioctl_fill_ooa(lun, &cur_fill_num,ooa_hdr,
entries);
}
mtx_unlock(&softc->ctl_lock);
ooa_hdr->fill_num = min(cur_fill_num, ooa_hdr->alloc_num);
ooa_hdr->fill_len = ooa_hdr->fill_num *
sizeof(struct ctl_ooa_entry);
retval = copyout(entries, ooa_hdr->entries, ooa_hdr->fill_len);
if (retval != 0) {
printf("%s: error copying out %d bytes for OOA dump\n",
__func__, ooa_hdr->fill_len);
}
getbintime(&ooa_hdr->cur_bt);
if (cur_fill_num > ooa_hdr->alloc_num) {
ooa_hdr->dropped_num = cur_fill_num -ooa_hdr->alloc_num;
ooa_hdr->status = CTL_OOA_NEED_MORE_SPACE;
} else {
ooa_hdr->dropped_num = 0;
ooa_hdr->status = CTL_OOA_OK;
}
free(entries, M_CTL);
break;
}
case CTL_CHECK_OOA: {
union ctl_io *io;
struct ctl_lun *lun;
struct ctl_ooa_info *ooa_info;
ooa_info = (struct ctl_ooa_info *)addr;
if (ooa_info->lun_id >= CTL_MAX_LUNS) {
ooa_info->status = CTL_OOA_INVALID_LUN;
break;
}
mtx_lock(&softc->ctl_lock);
lun = softc->ctl_luns[ooa_info->lun_id];
if (lun == NULL) {
mtx_unlock(&softc->ctl_lock);
ooa_info->status = CTL_OOA_INVALID_LUN;
break;
}
ooa_info->num_entries = 0;
for (io = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue);
io != NULL; io = (union ctl_io *)TAILQ_NEXT(
&io->io_hdr, ooa_links)) {
ooa_info->num_entries++;
}
mtx_unlock(&softc->ctl_lock);
ooa_info->status = CTL_OOA_SUCCESS;
break;
}
case CTL_HARD_START:
case CTL_HARD_STOP: {
struct ctl_fe_ioctl_startstop_info ss_info;
struct cfi_metatask *metatask;
struct mtx hs_mtx;
mtx_init(&hs_mtx, "HS Mutex", NULL, MTX_DEF);
cv_init(&ss_info.sem, "hard start/stop cv" );
metatask = cfi_alloc_metatask(/*can_wait*/ 1);
if (metatask == NULL) {
retval = ENOMEM;
mtx_destroy(&hs_mtx);
break;
}
if (cmd == CTL_HARD_START)
metatask->tasktype = CFI_TASK_STARTUP;
else
metatask->tasktype = CFI_TASK_SHUTDOWN;
metatask->callback = ctl_ioctl_hard_startstop_callback;
metatask->callback_arg = &ss_info;
cfi_action(metatask);
/* Wait for the callback */
mtx_lock(&hs_mtx);
cv_wait_sig(&ss_info.sem, &hs_mtx);
mtx_unlock(&hs_mtx);
/*
* All information has been copied from the metatask by the
* time cv_broadcast() is called, so we free the metatask here.
*/
cfi_free_metatask(metatask);
memcpy((void *)addr, &ss_info.hs_info, sizeof(ss_info.hs_info));
mtx_destroy(&hs_mtx);
break;
}
case CTL_BBRREAD: {
struct ctl_bbrread_info *bbr_info;
struct ctl_fe_ioctl_bbrread_info fe_bbr_info;
struct mtx bbr_mtx;
struct cfi_metatask *metatask;
bbr_info = (struct ctl_bbrread_info *)addr;
bzero(&fe_bbr_info, sizeof(fe_bbr_info));
bzero(&bbr_mtx, sizeof(bbr_mtx));
mtx_init(&bbr_mtx, "BBR Mutex", NULL, MTX_DEF);
fe_bbr_info.bbr_info = bbr_info;
fe_bbr_info.lock = &bbr_mtx;
cv_init(&fe_bbr_info.sem, "BBR read cv");
metatask = cfi_alloc_metatask(/*can_wait*/ 1);
if (metatask == NULL) {
mtx_destroy(&bbr_mtx);
cv_destroy(&fe_bbr_info.sem);
retval = ENOMEM;
break;
}
metatask->tasktype = CFI_TASK_BBRREAD;
metatask->callback = ctl_ioctl_bbrread_callback;
metatask->callback_arg = &fe_bbr_info;
metatask->taskinfo.bbrread.lun_num = bbr_info->lun_num;
metatask->taskinfo.bbrread.lba = bbr_info->lba;
metatask->taskinfo.bbrread.len = bbr_info->len;
cfi_action(metatask);
mtx_lock(&bbr_mtx);
while (fe_bbr_info.wakeup_done == 0)
cv_wait_sig(&fe_bbr_info.sem, &bbr_mtx);
mtx_unlock(&bbr_mtx);
bbr_info->status = metatask->status;
bbr_info->bbr_status = metatask->taskinfo.bbrread.status;
bbr_info->scsi_status = metatask->taskinfo.bbrread.scsi_status;
memcpy(&bbr_info->sense_data,
&metatask->taskinfo.bbrread.sense_data,
ctl_min(sizeof(bbr_info->sense_data),
sizeof(metatask->taskinfo.bbrread.sense_data)));
cfi_free_metatask(metatask);
mtx_destroy(&bbr_mtx);
cv_destroy(&fe_bbr_info.sem);
break;
}
case CTL_DELAY_IO: {
struct ctl_io_delay_info *delay_info;
#ifdef CTL_IO_DELAY
struct ctl_lun *lun;
#endif /* CTL_IO_DELAY */
delay_info = (struct ctl_io_delay_info *)addr;
#ifdef CTL_IO_DELAY
mtx_lock(&softc->ctl_lock);
if ((delay_info->lun_id > CTL_MAX_LUNS)
|| (softc->ctl_luns[delay_info->lun_id] == NULL)) {
delay_info->status = CTL_DELAY_STATUS_INVALID_LUN;
} else {
lun = softc->ctl_luns[delay_info->lun_id];
delay_info->status = CTL_DELAY_STATUS_OK;
switch (delay_info->delay_type) {
case CTL_DELAY_TYPE_CONT:
break;
case CTL_DELAY_TYPE_ONESHOT:
break;
default:
delay_info->status =
CTL_DELAY_STATUS_INVALID_TYPE;
break;
}
switch (delay_info->delay_loc) {
case CTL_DELAY_LOC_DATAMOVE:
lun->delay_info.datamove_type =
delay_info->delay_type;
lun->delay_info.datamove_delay =
delay_info->delay_secs;
break;
case CTL_DELAY_LOC_DONE:
lun->delay_info.done_type =
delay_info->delay_type;
lun->delay_info.done_delay =
delay_info->delay_secs;
break;
default:
delay_info->status =
CTL_DELAY_STATUS_INVALID_LOC;
break;
}
}
mtx_unlock(&softc->ctl_lock);
#else
delay_info->status = CTL_DELAY_STATUS_NOT_IMPLEMENTED;
#endif /* CTL_IO_DELAY */
break;
}
case CTL_REALSYNC_SET: {
int *syncstate;
syncstate = (int *)addr;
mtx_lock(&softc->ctl_lock);
switch (*syncstate) {
case 0:
softc->flags &= ~CTL_FLAG_REAL_SYNC;
break;
case 1:
softc->flags |= CTL_FLAG_REAL_SYNC;
break;
default:
retval = -EINVAL;
break;
}
mtx_unlock(&softc->ctl_lock);
break;
}
case CTL_REALSYNC_GET: {
int *syncstate;
syncstate = (int*)addr;
mtx_lock(&softc->ctl_lock);
if (softc->flags & CTL_FLAG_REAL_SYNC)
*syncstate = 1;
else
*syncstate = 0;
mtx_unlock(&softc->ctl_lock);
break;
}
case CTL_SETSYNC:
case CTL_GETSYNC: {
struct ctl_sync_info *sync_info;
struct ctl_lun *lun;
sync_info = (struct ctl_sync_info *)addr;
mtx_lock(&softc->ctl_lock);
lun = softc->ctl_luns[sync_info->lun_id];
if (lun == NULL) {
mtx_unlock(&softc->ctl_lock);
sync_info->status = CTL_GS_SYNC_NO_LUN;
}
/*
* Get or set the sync interval. We're not bounds checking
* in the set case, hopefully the user won't do something
* silly.
*/
if (cmd == CTL_GETSYNC)
sync_info->sync_interval = lun->sync_interval;
else
lun->sync_interval = sync_info->sync_interval;
mtx_unlock(&softc->ctl_lock);
sync_info->status = CTL_GS_SYNC_OK;
break;
}
case CTL_GETSTATS: {
struct ctl_stats *stats;
struct ctl_lun *lun;
int i;
stats = (struct ctl_stats *)addr;
if ((sizeof(struct ctl_lun_io_stats) * softc->num_luns) >
stats->alloc_len) {
stats->status = CTL_SS_NEED_MORE_SPACE;
stats->num_luns = softc->num_luns;
break;
}
/*
* XXX KDM no locking here. If the LUN list changes,
* things can blow up.
*/
for (i = 0, lun = STAILQ_FIRST(&softc->lun_list); lun != NULL;
i++, lun = STAILQ_NEXT(lun, links)) {
retval = copyout(&lun->stats, &stats->lun_stats[i],
sizeof(lun->stats));
if (retval != 0)
break;
}
stats->num_luns = softc->num_luns;
stats->fill_len = sizeof(struct ctl_lun_io_stats) *
softc->num_luns;
stats->status = CTL_SS_OK;
#ifdef CTL_TIME_IO
stats->flags = CTL_STATS_FLAG_TIME_VALID;
#else
stats->flags = CTL_STATS_FLAG_NONE;
#endif
getnanouptime(&stats->timestamp);
break;
}
case CTL_ERROR_INJECT: {
struct ctl_error_desc *err_desc, *new_err_desc;
struct ctl_lun *lun;
err_desc = (struct ctl_error_desc *)addr;
new_err_desc = malloc(sizeof(*new_err_desc), M_CTL,
M_WAITOK | M_ZERO);
bcopy(err_desc, new_err_desc, sizeof(*new_err_desc));
mtx_lock(&softc->ctl_lock);
lun = softc->ctl_luns[err_desc->lun_id];
if (lun == NULL) {
mtx_unlock(&softc->ctl_lock);
printf("%s: CTL_ERROR_INJECT: invalid LUN %ju\n",
__func__, (uintmax_t)err_desc->lun_id);
retval = EINVAL;
break;
}
/*
* We could do some checking here to verify the validity
* of the request, but given the complexity of error
* injection requests, the checking logic would be fairly
* complex.
*
* For now, if the request is invalid, it just won't get
* executed and might get deleted.
*/
STAILQ_INSERT_TAIL(&lun->error_list, new_err_desc, links);
/*
* XXX KDM check to make sure the serial number is unique,
* in case we somehow manage to wrap. That shouldn't
* happen for a very long time, but it's the right thing to
* do.
*/
new_err_desc->serial = lun->error_serial;
err_desc->serial = lun->error_serial;
lun->error_serial++;
mtx_unlock(&softc->ctl_lock);
break;
}
case CTL_ERROR_INJECT_DELETE: {
struct ctl_error_desc *delete_desc, *desc, *desc2;
struct ctl_lun *lun;
int delete_done;
delete_desc = (struct ctl_error_desc *)addr;
delete_done = 0;
mtx_lock(&softc->ctl_lock);
lun = softc->ctl_luns[delete_desc->lun_id];
if (lun == NULL) {
mtx_unlock(&softc->ctl_lock);
printf("%s: CTL_ERROR_INJECT_DELETE: invalid LUN %ju\n",
__func__, (uintmax_t)delete_desc->lun_id);
retval = EINVAL;
break;
}
STAILQ_FOREACH_SAFE(desc, &lun->error_list, links, desc2) {
if (desc->serial != delete_desc->serial)
continue;
STAILQ_REMOVE(&lun->error_list, desc, ctl_error_desc,
links);
free(desc, M_CTL);
delete_done = 1;
}
mtx_unlock(&softc->ctl_lock);
if (delete_done == 0) {
printf("%s: CTL_ERROR_INJECT_DELETE: can't find "
"error serial %ju on LUN %u\n", __func__,
delete_desc->serial, delete_desc->lun_id);
retval = EINVAL;
break;
}
break;
}
case CTL_DUMP_STRUCTS: {
int i, j, k;
struct ctl_frontend *fe;
printf("CTL IID to WWPN map start:\n");
for (i = 0; i < CTL_MAX_PORTS; i++) {
for (j = 0; j < CTL_MAX_INIT_PER_PORT; j++) {
if (softc->wwpn_iid[i][j].in_use == 0)
continue;
printf("port %d iid %u WWPN %#jx\n",
softc->wwpn_iid[i][j].port,
softc->wwpn_iid[i][j].iid,
(uintmax_t)softc->wwpn_iid[i][j].wwpn);
}
}
printf("CTL IID to WWPN map end\n");
printf("CTL Persistent Reservation information start:\n");
for (i = 0; i < CTL_MAX_LUNS; i++) {
struct ctl_lun *lun;
lun = softc->ctl_luns[i];
if ((lun == NULL)
|| ((lun->flags & CTL_LUN_DISABLED) != 0))
continue;
for (j = 0; j < (CTL_MAX_PORTS * 2); j++) {
for (k = 0; k < CTL_MAX_INIT_PER_PORT; k++){
if (lun->per_res[j+k].registered == 0)
continue;
printf("LUN %d port %d iid %d key "
"%#jx\n", i, j, k,
(uintmax_t)scsi_8btou64(
lun->per_res[j+k].res_key.key));
}
}
}
printf("CTL Persistent Reservation information end\n");
printf("CTL Frontends:\n");
/*
* XXX KDM calling this without a lock. We'd likely want
* to drop the lock before calling the frontend's dump
* routine anyway.
*/
STAILQ_FOREACH(fe, &softc->fe_list, links) {
printf("Frontend %s Type %u pport %d vport %d WWNN "
"%#jx WWPN %#jx\n", fe->port_name, fe->port_type,
fe->physical_port, fe->virtual_port,
(uintmax_t)fe->wwnn, (uintmax_t)fe->wwpn);
/*
* Frontends are not required to support the dump
* routine.
*/
if (fe->fe_dump == NULL)
continue;
fe->fe_dump();
}
printf("CTL Frontend information end\n");
break;
}
case CTL_LUN_REQ: {
struct ctl_lun_req *lun_req;
struct ctl_backend_driver *backend;
lun_req = (struct ctl_lun_req *)addr;
backend = ctl_backend_find(lun_req->backend);
if (backend == NULL) {
lun_req->status = CTL_LUN_ERROR;
snprintf(lun_req->error_str,
sizeof(lun_req->error_str),
"Backend \"%s\" not found.",
lun_req->backend);
break;
}
if (lun_req->num_be_args > 0) {
lun_req->kern_be_args = ctl_copyin_args(
lun_req->num_be_args,
lun_req->be_args,
lun_req->error_str,
sizeof(lun_req->error_str));
if (lun_req->kern_be_args == NULL) {
lun_req->status = CTL_LUN_ERROR;
break;
}
}
retval = backend->ioctl(dev, cmd, addr, flag, td);
if (lun_req->num_be_args > 0) {
ctl_free_args(lun_req->num_be_args,
lun_req->kern_be_args);
}
break;
}
case CTL_LUN_LIST: {
struct sbuf *sb;
struct ctl_lun *lun;
struct ctl_lun_list *list;
list = (struct ctl_lun_list *)addr;
/*
* Allocate a fixed length sbuf here, based on the length
* of the user's buffer. We could allocate an auto-extending
* buffer, and then tell the user how much larger our
* amount of data is than his buffer, but that presents
* some problems:
*
* 1. The sbuf(9) routines use a blocking malloc, and so
* we can't hold a lock while calling them with an
* auto-extending buffer.
*
* 2. There is not currently a LUN reference counting
* mechanism, outside of outstanding transactions on
* the LUN's OOA queue. So a LUN could go away on us
* while we're getting the LUN number, backend-specific
* information, etc. Thus, given the way things
* currently work, we need to hold the CTL lock while
* grabbing LUN information.
*
* So, from the user's standpoint, the best thing to do is
* allocate what he thinks is a reasonable buffer length,
* and then if he gets a CTL_LUN_LIST_NEED_MORE_SPACE error,
* double the buffer length and try again. (And repeat
* that until he succeeds.)
*/
sb = sbuf_new(NULL, NULL, list->alloc_len, SBUF_FIXEDLEN);
if (sb == NULL) {
list->status = CTL_LUN_LIST_ERROR;
snprintf(list->error_str, sizeof(list->error_str),
"Unable to allocate %d bytes for LUN list",
list->alloc_len);
break;
}
sbuf_printf(sb, "<ctllunlist>\n");
mtx_lock(&softc->ctl_lock);
STAILQ_FOREACH(lun, &softc->lun_list, links) {
retval = sbuf_printf(sb, "<lun id=\"%ju\">\n",
(uintmax_t)lun->lun);
/*
* Bail out as soon as we see that we've overfilled
* the buffer.
*/
if (retval != 0)
break;
retval = sbuf_printf(sb, "<backend_type>%s"
"</backend_type>\n",
(lun->backend == NULL) ? "none" :
lun->backend->name);
if (retval != 0)
break;
retval = sbuf_printf(sb, "<lun_type>%d</lun_type>\n",
lun->be_lun->lun_type);
if (retval != 0)
break;
if (lun->backend == NULL) {
retval = sbuf_printf(sb, "</lun>\n");
if (retval != 0)
break;
continue;
}
retval = sbuf_printf(sb, "<size>%ju</size>\n",
(lun->be_lun->maxlba > 0) ?
lun->be_lun->maxlba + 1 : 0);
if (retval != 0)
break;
retval = sbuf_printf(sb, "<blocksize>%u</blocksize>\n",
lun->be_lun->blocksize);
if (retval != 0)
break;
retval = sbuf_printf(sb, "<serial_number>");
if (retval != 0)
break;
retval = ctl_sbuf_printf_esc(sb,
lun->be_lun->serial_num);
if (retval != 0)
break;
retval = sbuf_printf(sb, "</serial_number>\n");
if (retval != 0)
break;
retval = sbuf_printf(sb, "<device_id>");
if (retval != 0)
break;
retval = ctl_sbuf_printf_esc(sb,lun->be_lun->device_id);
if (retval != 0)
break;
retval = sbuf_printf(sb, "</device_id>\n");
if (retval != 0)
break;
if (lun->backend->lun_info == NULL) {
retval = sbuf_printf(sb, "</lun>\n");
if (retval != 0)
break;
continue;
}
retval =lun->backend->lun_info(lun->be_lun->be_lun, sb);
if (retval != 0)
break;
retval = sbuf_printf(sb, "</lun>\n");
if (retval != 0)
break;
}
mtx_unlock(&softc->ctl_lock);
if ((retval != 0)
|| ((retval = sbuf_printf(sb, "</ctllunlist>\n")) != 0)) {
retval = 0;
sbuf_delete(sb);
list->status = CTL_LUN_LIST_NEED_MORE_SPACE;
snprintf(list->error_str, sizeof(list->error_str),
"Out of space, %d bytes is too small",
list->alloc_len);
break;
}
sbuf_finish(sb);
retval = copyout(sbuf_data(sb), list->lun_xml,
sbuf_len(sb) + 1);
list->fill_len = sbuf_len(sb) + 1;
list->status = CTL_LUN_LIST_OK;
sbuf_delete(sb);
break;
}
default: {
/* XXX KDM should we fix this? */
#if 0
struct ctl_backend_driver *backend;
unsigned int type;
int found;
found = 0;
/*
* We encode the backend type as the ioctl type for backend
* ioctls. So parse it out here, and then search for a
* backend of this type.
*/
type = _IOC_TYPE(cmd);
STAILQ_FOREACH(backend, &softc->be_list, links) {
if (backend->type == type) {
found = 1;
break;
}
}
if (found == 0) {
printf("ctl: unknown ioctl command %#lx or backend "
"%d\n", cmd, type);
retval = -EINVAL;
break;
}
retval = backend->ioctl(dev, cmd, addr, flag, td);
#endif
retval = ENOTTY;
break;
}
}
return (retval);
}
uint32_t
ctl_get_initindex(struct ctl_nexus *nexus)
{
if (nexus->targ_port < CTL_MAX_PORTS)
return (nexus->initid.id +
(nexus->targ_port * CTL_MAX_INIT_PER_PORT));
else
return (nexus->initid.id +
((nexus->targ_port - CTL_MAX_PORTS) *
CTL_MAX_INIT_PER_PORT));
}
uint32_t
ctl_get_resindex(struct ctl_nexus *nexus)
{
return (nexus->initid.id + (nexus->targ_port * CTL_MAX_INIT_PER_PORT));
}
uint32_t
ctl_port_idx(int port_num)
{
if (port_num < CTL_MAX_PORTS)
return(port_num);
else
return(port_num - CTL_MAX_PORTS);
}
/*
* Note: This only works for bitmask sizes that are at least 32 bits, and
* that are a power of 2.
*/
int
ctl_ffz(uint32_t *mask, uint32_t size)
{
uint32_t num_chunks, num_pieces;
int i, j;
num_chunks = (size >> 5);
if (num_chunks == 0)
num_chunks++;
num_pieces = ctl_min((sizeof(uint32_t) * 8), size);
for (i = 0; i < num_chunks; i++) {
for (j = 0; j < num_pieces; j++) {
if ((mask[i] & (1 << j)) == 0)
return ((i << 5) + j);
}
}
return (-1);
}
int
ctl_set_mask(uint32_t *mask, uint32_t bit)
{
uint32_t chunk, piece;
chunk = bit >> 5;
piece = bit % (sizeof(uint32_t) * 8);
if ((mask[chunk] & (1 << piece)) != 0)
return (-1);
else
mask[chunk] |= (1 << piece);
return (0);
}
int
ctl_clear_mask(uint32_t *mask, uint32_t bit)
{
uint32_t chunk, piece;
chunk = bit >> 5;
piece = bit % (sizeof(uint32_t) * 8);
if ((mask[chunk] & (1 << piece)) == 0)
return (-1);
else
mask[chunk] &= ~(1 << piece);
return (0);
}
int
ctl_is_set(uint32_t *mask, uint32_t bit)
{
uint32_t chunk, piece;
chunk = bit >> 5;
piece = bit % (sizeof(uint32_t) * 8);
if ((mask[chunk] & (1 << piece)) == 0)
return (0);
else
return (1);
}
#ifdef unused
/*
* The bus, target and lun are optional, they can be filled in later.
* can_wait is used to determine whether we can wait on the malloc or not.
*/
union ctl_io*
ctl_malloc_io(ctl_io_type io_type, uint32_t targ_port, uint32_t targ_target,
uint32_t targ_lun, int can_wait)
{
union ctl_io *io;
if (can_wait)
io = (union ctl_io *)malloc(sizeof(*io), M_CTL, M_WAITOK);
else
io = (union ctl_io *)malloc(sizeof(*io), M_CTL, M_NOWAIT);
if (io != NULL) {
io->io_hdr.io_type = io_type;
io->io_hdr.targ_port = targ_port;
/*
* XXX KDM this needs to change/go away. We need to move
* to a preallocated pool of ctl_scsiio structures.
*/
io->io_hdr.nexus.targ_target.id = targ_target;
io->io_hdr.nexus.targ_lun = targ_lun;
}
return (io);
}
void
ctl_kfree_io(union ctl_io *io)
{
free(io, M_CTL);
}
#endif /* unused */
/*
* ctl_softc, pool_type, total_ctl_io are passed in.
* npool is passed out.
*/
int
ctl_pool_create(struct ctl_softc *ctl_softc, ctl_pool_type pool_type,
uint32_t total_ctl_io, struct ctl_io_pool **npool)
{
uint32_t i;
union ctl_io *cur_io, *next_io;
struct ctl_io_pool *pool;
int retval;
retval = 0;
pool = (struct ctl_io_pool *)malloc(sizeof(*pool), M_CTL,
M_NOWAIT | M_ZERO);
if (pool == NULL) {
retval = -ENOMEM;
goto bailout;
}
pool->type = pool_type;
pool->ctl_softc = ctl_softc;
mtx_lock(&ctl_softc->ctl_lock);
pool->id = ctl_softc->cur_pool_id++;
mtx_unlock(&ctl_softc->ctl_lock);
pool->flags = CTL_POOL_FLAG_NONE;
STAILQ_INIT(&pool->free_queue);
/*
* XXX KDM other options here:
* - allocate a page at a time
* - allocate one big chunk of memory.
* Page allocation might work well, but would take a little more
* tracking.
*/
for (i = 0; i < total_ctl_io; i++) {
cur_io = (union ctl_io *)malloc(sizeof(*cur_io), M_CTL,
M_NOWAIT);
if (cur_io == NULL) {
retval = ENOMEM;
break;
}
cur_io->io_hdr.pool = pool;
STAILQ_INSERT_TAIL(&pool->free_queue, &cur_io->io_hdr, links);
pool->total_ctl_io++;
pool->free_ctl_io++;
}
if (retval != 0) {
for (cur_io = (union ctl_io *)STAILQ_FIRST(&pool->free_queue);
cur_io != NULL; cur_io = next_io) {
next_io = (union ctl_io *)STAILQ_NEXT(&cur_io->io_hdr,
links);
STAILQ_REMOVE(&pool->free_queue, &cur_io->io_hdr,
ctl_io_hdr, links);
free(cur_io, M_CTL);
}
free(pool, M_CTL);
goto bailout;
}
mtx_lock(&ctl_softc->ctl_lock);
ctl_softc->num_pools++;
STAILQ_INSERT_TAIL(&ctl_softc->io_pools, pool, links);
/*
* Increment our usage count if this is an external consumer, so we
* can't get unloaded until the external consumer (most likely a
* FETD) unloads and frees his pool.
*
* XXX KDM will this increment the caller's module use count, or
* mine?
*/
#if 0
if ((pool_type != CTL_POOL_EMERGENCY)
&& (pool_type != CTL_POOL_INTERNAL)
&& (pool_type != CTL_POOL_IOCTL)
&& (pool_type != CTL_POOL_4OTHERSC))
MOD_INC_USE_COUNT;
#endif
mtx_unlock(&ctl_softc->ctl_lock);
*npool = pool;
bailout:
return (retval);
}
/*
* Caller must hold ctl_softc->ctl_lock.
*/
int
ctl_pool_acquire(struct ctl_io_pool *pool)
{
if (pool == NULL)
return (-EINVAL);
if (pool->flags & CTL_POOL_FLAG_INVALID)
return (-EINVAL);
pool->refcount++;
return (0);
}
/*
* Caller must hold ctl_softc->ctl_lock.
*/
int
ctl_pool_invalidate(struct ctl_io_pool *pool)
{
if (pool == NULL)
return (-EINVAL);
pool->flags |= CTL_POOL_FLAG_INVALID;
return (0);
}
/*
* Caller must hold ctl_softc->ctl_lock.
*/
int
ctl_pool_release(struct ctl_io_pool *pool)
{
if (pool == NULL)
return (-EINVAL);
if ((--pool->refcount == 0)
&& (pool->flags & CTL_POOL_FLAG_INVALID)) {
ctl_pool_free(pool->ctl_softc, pool);
}
return (0);
}
/*
* Must be called with ctl_softc->ctl_lock held.
*/
void
ctl_pool_free(struct ctl_softc *ctl_softc, struct ctl_io_pool *pool)
{
union ctl_io *cur_io, *next_io;
for (cur_io = (union ctl_io *)STAILQ_FIRST(&pool->free_queue);
cur_io != NULL; cur_io = next_io) {
next_io = (union ctl_io *)STAILQ_NEXT(&cur_io->io_hdr,
links);
STAILQ_REMOVE(&pool->free_queue, &cur_io->io_hdr, ctl_io_hdr,
links);
free(cur_io, M_CTL);
}
STAILQ_REMOVE(&ctl_softc->io_pools, pool, ctl_io_pool, links);
ctl_softc->num_pools--;
/*
* XXX KDM will this decrement the caller's usage count or mine?
*/
#if 0
if ((pool->type != CTL_POOL_EMERGENCY)
&& (pool->type != CTL_POOL_INTERNAL)
&& (pool->type != CTL_POOL_IOCTL))
MOD_DEC_USE_COUNT;
#endif
free(pool, M_CTL);
}
/*
* This routine does not block (except for spinlocks of course).
* It tries to allocate a ctl_io union from the caller's pool as quickly as
* possible.
*/
union ctl_io *
ctl_alloc_io(void *pool_ref)
{
union ctl_io *io;
struct ctl_softc *ctl_softc;
struct ctl_io_pool *pool, *npool;
struct ctl_io_pool *emergency_pool;
pool = (struct ctl_io_pool *)pool_ref;
if (pool == NULL) {
printf("%s: pool is NULL\n", __func__);
return (NULL);
}
emergency_pool = NULL;
ctl_softc = pool->ctl_softc;
mtx_lock(&ctl_softc->ctl_lock);
/*
* First, try to get the io structure from the user's pool.
*/
if (ctl_pool_acquire(pool) == 0) {
io = (union ctl_io *)STAILQ_FIRST(&pool->free_queue);
if (io != NULL) {
STAILQ_REMOVE_HEAD(&pool->free_queue, links);
pool->total_allocated++;
pool->free_ctl_io--;
mtx_unlock(&ctl_softc->ctl_lock);
return (io);
} else
ctl_pool_release(pool);
}
/*
* If he doesn't have any io structures left, search for an
* emergency pool and grab one from there.
*/
STAILQ_FOREACH(npool, &ctl_softc->io_pools, links) {
if (npool->type != CTL_POOL_EMERGENCY)
continue;
if (ctl_pool_acquire(npool) != 0)
continue;
emergency_pool = npool;
io = (union ctl_io *)STAILQ_FIRST(&npool->free_queue);
if (io != NULL) {
STAILQ_REMOVE_HEAD(&npool->free_queue, links);
npool->total_allocated++;
npool->free_ctl_io--;
mtx_unlock(&ctl_softc->ctl_lock);
return (io);
} else
ctl_pool_release(npool);
}
/* Drop the spinlock before we malloc */
mtx_unlock(&ctl_softc->ctl_lock);
/*
* The emergency pool (if it exists) didn't have one, so try an
* atomic (i.e. nonblocking) malloc and see if we get lucky.
*/
io = (union ctl_io *)malloc(sizeof(*io), M_CTL, M_NOWAIT);
if (io != NULL) {
/*
* If the emergency pool exists but is empty, add this
* ctl_io to its list when it gets freed.
*/
if (emergency_pool != NULL) {
mtx_lock(&ctl_softc->ctl_lock);
if (ctl_pool_acquire(emergency_pool) == 0) {
io->io_hdr.pool = emergency_pool;
emergency_pool->total_ctl_io++;
/*
* Need to bump this, otherwise
* total_allocated and total_freed won't
* match when we no longer have anything
* outstanding.
*/
emergency_pool->total_allocated++;
}
mtx_unlock(&ctl_softc->ctl_lock);
} else
io->io_hdr.pool = NULL;
}
return (io);
}
static void
ctl_free_io_internal(union ctl_io *io, int have_lock)
{
if (io == NULL)
return;
/*
* If this ctl_io has a pool, return it to that pool.
*/
if (io->io_hdr.pool != NULL) {
struct ctl_io_pool *pool;
#if 0
struct ctl_softc *ctl_softc;
union ctl_io *tmp_io;
unsigned long xflags;
int i;
ctl_softc = control_softc;
#endif
pool = (struct ctl_io_pool *)io->io_hdr.pool;
if (have_lock == 0)
mtx_lock(&pool->ctl_softc->ctl_lock);
#if 0
save_flags(xflags);
for (i = 0, tmp_io = (union ctl_io *)STAILQ_FIRST(
&ctl_softc->task_queue); tmp_io != NULL; i++,
tmp_io = (union ctl_io *)STAILQ_NEXT(&tmp_io->io_hdr,
links)) {
if (tmp_io == io) {
printf("%s: %p is still on the task queue!\n",
__func__, tmp_io);
printf("%s: (%d): type %d "
"msg %d cdb %x iptl: "
"%d:%d:%d:%d tag 0x%04x "
"flg %#lx\n",
__func__, i,
tmp_io->io_hdr.io_type,
tmp_io->io_hdr.msg_type,
tmp_io->scsiio.cdb[0],
tmp_io->io_hdr.nexus.initid.id,
tmp_io->io_hdr.nexus.targ_port,
tmp_io->io_hdr.nexus.targ_target.id,
tmp_io->io_hdr.nexus.targ_lun,
(tmp_io->io_hdr.io_type ==
CTL_IO_TASK) ?
tmp_io->taskio.tag_num :
tmp_io->scsiio.tag_num,
xflags);
panic("I/O still on the task queue!");
}
}
#endif
io->io_hdr.io_type = 0xff;
STAILQ_INSERT_TAIL(&pool->free_queue, &io->io_hdr, links);
pool->total_freed++;
pool->free_ctl_io++;
ctl_pool_release(pool);
if (have_lock == 0)
mtx_unlock(&pool->ctl_softc->ctl_lock);
} else {
/*
* Otherwise, just free it. We probably malloced it and
* the emergency pool wasn't available.
*/
free(io, M_CTL);
}
}
void
ctl_free_io(union ctl_io *io)
{
ctl_free_io_internal(io, /*have_lock*/ 0);
}
void
ctl_zero_io(union ctl_io *io)
{
void *pool_ref;
if (io == NULL)
return;
/*
* May need to preserve linked list pointers at some point too.
*/
pool_ref = io->io_hdr.pool;
memset(io, 0, sizeof(*io));
io->io_hdr.pool = pool_ref;
}
/*
* This routine is currently used for internal copies of ctl_ios that need
* to persist for some reason after we've already returned status to the
* FETD. (Thus the flag set.)
*
* XXX XXX
* Note that this makes a blind copy of all fields in the ctl_io, except
* for the pool reference. This includes any memory that has been
* allocated! That memory will no longer be valid after done has been
* called, so this would be VERY DANGEROUS for command that actually does
* any reads or writes. Right now (11/7/2005), this is only used for immediate
* start and stop commands, which don't transfer any data, so this is not a
* problem. If it is used for anything else, the caller would also need to
* allocate data buffer space and this routine would need to be modified to
* copy the data buffer(s) as well.
*/
void
ctl_copy_io(union ctl_io *src, union ctl_io *dest)
{
void *pool_ref;
if ((src == NULL)
|| (dest == NULL))
return;
/*
* May need to preserve linked list pointers at some point too.
*/
pool_ref = dest->io_hdr.pool;
memcpy(dest, src, ctl_min(sizeof(*src), sizeof(*dest)));
dest->io_hdr.pool = pool_ref;
/*
* We need to know that this is an internal copy, and doesn't need
* to get passed back to the FETD that allocated it.
*/
dest->io_hdr.flags |= CTL_FLAG_INT_COPY;
}
#ifdef NEEDTOPORT
static void
ctl_update_power_subpage(struct copan_power_subpage *page)
{
int num_luns, num_partitions, config_type;
struct ctl_softc *softc;
cs_BOOL_t aor_present, shelf_50pct_power;
cs_raidset_personality_t rs_type;
int max_active_luns;
softc = control_softc;
/* subtract out the processor LUN */
num_luns = softc->num_luns - 1;
/*
* Default to 7 LUNs active, which was the only number we allowed
* in the past.
*/
max_active_luns = 7;
num_partitions = config_GetRsPartitionInfo();
config_type = config_GetConfigType();
shelf_50pct_power = config_GetShelfPowerMode();
aor_present = config_IsAorRsPresent();
rs_type = ddb_GetRsRaidType(1);
if ((rs_type != CS_RAIDSET_PERSONALITY_RAID5)
&& (rs_type != CS_RAIDSET_PERSONALITY_RAID1)) {
EPRINT(0, "Unsupported RS type %d!", rs_type);
}
page->total_luns = num_luns;
switch (config_type) {
case 40:
/*
* In a 40 drive configuration, it doesn't matter what DC
* cards we have, whether we have AOR enabled or not,
* partitioning or not, or what type of RAIDset we have.
* In that scenario, we can power up every LUN we present
* to the user.
*/
max_active_luns = num_luns;
break;
case 64:
if (shelf_50pct_power == CS_FALSE) {
/* 25% power */
if (aor_present == CS_TRUE) {
if (rs_type ==
CS_RAIDSET_PERSONALITY_RAID5) {
max_active_luns = 7;
} else if (rs_type ==
CS_RAIDSET_PERSONALITY_RAID1){
max_active_luns = 14;
} else {
/* XXX KDM now what?? */
}
} else {
if (rs_type ==
CS_RAIDSET_PERSONALITY_RAID5) {
max_active_luns = 8;
} else if (rs_type ==
CS_RAIDSET_PERSONALITY_RAID1){
max_active_luns = 16;
} else {
/* XXX KDM now what?? */
}
}
} else {
/* 50% power */
/*
* With 50% power in a 64 drive configuration, we
* can power all LUNs we present.
*/
max_active_luns = num_luns;
}
break;
case 112:
if (shelf_50pct_power == CS_FALSE) {
/* 25% power */
if (aor_present == CS_TRUE) {
if (rs_type ==
CS_RAIDSET_PERSONALITY_RAID5) {
max_active_luns = 7;
} else if (rs_type ==
CS_RAIDSET_PERSONALITY_RAID1){
max_active_luns = 14;
} else {
/* XXX KDM now what?? */
}
} else {
if (rs_type ==
CS_RAIDSET_PERSONALITY_RAID5) {
max_active_luns = 8;
} else if (rs_type ==
CS_RAIDSET_PERSONALITY_RAID1){
max_active_luns = 16;
} else {
/* XXX KDM now what?? */
}
}
} else {
/* 50% power */
if (aor_present == CS_TRUE) {
if (rs_type ==
CS_RAIDSET_PERSONALITY_RAID5) {
max_active_luns = 14;
} else if (rs_type ==
CS_RAIDSET_PERSONALITY_RAID1){
/*
* We're assuming here that disk
* caching is enabled, and so we're
* able to power up half of each
* LUN, and cache all writes.
*/
max_active_luns = num_luns;
} else {
/* XXX KDM now what?? */
}
} else {
if (rs_type ==
CS_RAIDSET_PERSONALITY_RAID5) {
max_active_luns = 15;
} else if (rs_type ==
CS_RAIDSET_PERSONALITY_RAID1){
max_active_luns = 30;
} else {
/* XXX KDM now what?? */
}
}
}
break;
default:
/*
* In this case, we have an unknown configuration, so we
* just use the default from above.
*/
break;
}
page->max_active_luns = max_active_luns;
#if 0
printk("%s: total_luns = %d, max_active_luns = %d\n", __func__,
page->total_luns, page->max_active_luns);
#endif
}
#endif /* NEEDTOPORT */
/*
* This routine could be used in the future to load default and/or saved
* mode page parameters for a particuar lun.
*/
static int
ctl_init_page_index(struct ctl_lun *lun)
{
int i;
struct ctl_page_index *page_index;
struct ctl_softc *softc;
memcpy(&lun->mode_pages.index, page_index_template,
sizeof(page_index_template));
softc = lun->ctl_softc;
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
page_index = &lun->mode_pages.index[i];
/*
* If this is a disk-only mode page, there's no point in
* setting it up. For some pages, we have to have some
* basic information about the disk in order to calculate the
* mode page data.
*/
if ((lun->be_lun->lun_type != T_DIRECT)
&& (page_index->page_flags & CTL_PAGE_FLAG_DISK_ONLY))
continue;
switch (page_index->page_code & SMPH_PC_MASK) {
case SMS_FORMAT_DEVICE_PAGE: {
struct scsi_format_page *format_page;
if (page_index->subpage != SMS_SUBPAGE_PAGE_0)
panic("subpage is incorrect!");
/*
* Sectors per track are set above. Bytes per
* sector need to be set here on a per-LUN basis.
*/
memcpy(&lun->mode_pages.format_page[CTL_PAGE_CURRENT],
&format_page_default,
sizeof(format_page_default));
memcpy(&lun->mode_pages.format_page[
CTL_PAGE_CHANGEABLE], &format_page_changeable,
sizeof(format_page_changeable));
memcpy(&lun->mode_pages.format_page[CTL_PAGE_DEFAULT],
&format_page_default,
sizeof(format_page_default));
memcpy(&lun->mode_pages.format_page[CTL_PAGE_SAVED],
&format_page_default,
sizeof(format_page_default));
format_page = &lun->mode_pages.format_page[
CTL_PAGE_CURRENT];
scsi_ulto2b(lun->be_lun->blocksize,
format_page->bytes_per_sector);
format_page = &lun->mode_pages.format_page[
CTL_PAGE_DEFAULT];
scsi_ulto2b(lun->be_lun->blocksize,
format_page->bytes_per_sector);
format_page = &lun->mode_pages.format_page[
CTL_PAGE_SAVED];
scsi_ulto2b(lun->be_lun->blocksize,
format_page->bytes_per_sector);
page_index->page_data =
(uint8_t *)lun->mode_pages.format_page;
break;
}
case SMS_RIGID_DISK_PAGE: {
struct scsi_rigid_disk_page *rigid_disk_page;
uint32_t sectors_per_cylinder;
uint64_t cylinders;
#ifndef __XSCALE__
int shift;
#endif /* !__XSCALE__ */
if (page_index->subpage != SMS_SUBPAGE_PAGE_0)
panic("invalid subpage value %d",
page_index->subpage);
/*
* Rotation rate and sectors per track are set
* above. We calculate the cylinders here based on
* capacity. Due to the number of heads and
* sectors per track we're using, smaller arrays
* may turn out to have 0 cylinders. Linux and
* FreeBSD don't pay attention to these mode pages
* to figure out capacity, but Solaris does. It
* seems to deal with 0 cylinders just fine, and
* works out a fake geometry based on the capacity.
*/
memcpy(&lun->mode_pages.rigid_disk_page[
CTL_PAGE_CURRENT], &rigid_disk_page_default,
sizeof(rigid_disk_page_default));
memcpy(&lun->mode_pages.rigid_disk_page[
CTL_PAGE_CHANGEABLE],&rigid_disk_page_changeable,
sizeof(rigid_disk_page_changeable));
memcpy(&lun->mode_pages.rigid_disk_page[
CTL_PAGE_DEFAULT], &rigid_disk_page_default,
sizeof(rigid_disk_page_default));
memcpy(&lun->mode_pages.rigid_disk_page[
CTL_PAGE_SAVED], &rigid_disk_page_default,
sizeof(rigid_disk_page_default));
sectors_per_cylinder = CTL_DEFAULT_SECTORS_PER_TRACK *
CTL_DEFAULT_HEADS;
/*
* The divide method here will be more accurate,
* probably, but results in floating point being
* used in the kernel on i386 (__udivdi3()). On the
* XScale, though, __udivdi3() is implemented in
* software.
*
* The shift method for cylinder calculation is
* accurate if sectors_per_cylinder is a power of
* 2. Otherwise it might be slightly off -- you
* might have a bit of a truncation problem.
*/
#ifdef __XSCALE__
cylinders = (lun->be_lun->maxlba + 1) /
sectors_per_cylinder;
#else
for (shift = 31; shift > 0; shift--) {
if (sectors_per_cylinder & (1 << shift))
break;
}
cylinders = (lun->be_lun->maxlba + 1) >> shift;
#endif
/*
* We've basically got 3 bytes, or 24 bits for the
* cylinder size in the mode page. If we're over,
* just round down to 2^24.
*/
if (cylinders > 0xffffff)
cylinders = 0xffffff;
rigid_disk_page = &lun->mode_pages.rigid_disk_page[
CTL_PAGE_CURRENT];
scsi_ulto3b(cylinders, rigid_disk_page->cylinders);
rigid_disk_page = &lun->mode_pages.rigid_disk_page[
CTL_PAGE_DEFAULT];
scsi_ulto3b(cylinders, rigid_disk_page->cylinders);
rigid_disk_page = &lun->mode_pages.rigid_disk_page[
CTL_PAGE_SAVED];
scsi_ulto3b(cylinders, rigid_disk_page->cylinders);
page_index->page_data =
(uint8_t *)lun->mode_pages.rigid_disk_page;
break;
}
case SMS_CACHING_PAGE: {
if (page_index->subpage != SMS_SUBPAGE_PAGE_0)
panic("invalid subpage value %d",
page_index->subpage);
/*
* Defaults should be okay here, no calculations
* needed.
*/
memcpy(&lun->mode_pages.caching_page[CTL_PAGE_CURRENT],
&caching_page_default,
sizeof(caching_page_default));
memcpy(&lun->mode_pages.caching_page[
CTL_PAGE_CHANGEABLE], &caching_page_changeable,
sizeof(caching_page_changeable));
memcpy(&lun->mode_pages.caching_page[CTL_PAGE_DEFAULT],
&caching_page_default,
sizeof(caching_page_default));
memcpy(&lun->mode_pages.caching_page[CTL_PAGE_SAVED],
&caching_page_default,
sizeof(caching_page_default));
page_index->page_data =
(uint8_t *)lun->mode_pages.caching_page;
break;
}
case SMS_CONTROL_MODE_PAGE: {
if (page_index->subpage != SMS_SUBPAGE_PAGE_0)
panic("invalid subpage value %d",
page_index->subpage);
/*
* Defaults should be okay here, no calculations
* needed.
*/
memcpy(&lun->mode_pages.control_page[CTL_PAGE_CURRENT],
&control_page_default,
sizeof(control_page_default));
memcpy(&lun->mode_pages.control_page[
CTL_PAGE_CHANGEABLE], &control_page_changeable,
sizeof(control_page_changeable));
memcpy(&lun->mode_pages.control_page[CTL_PAGE_DEFAULT],
&control_page_default,
sizeof(control_page_default));
memcpy(&lun->mode_pages.control_page[CTL_PAGE_SAVED],
&control_page_default,
sizeof(control_page_default));
page_index->page_data =
(uint8_t *)lun->mode_pages.control_page;
break;
}
case SMS_VENDOR_SPECIFIC_PAGE:{
switch (page_index->subpage) {
case PWR_SUBPAGE_CODE: {
struct copan_power_subpage *current_page,
*saved_page;
memcpy(&lun->mode_pages.power_subpage[
CTL_PAGE_CURRENT],
&power_page_default,
sizeof(power_page_default));
memcpy(&lun->mode_pages.power_subpage[
CTL_PAGE_CHANGEABLE],
&power_page_changeable,
sizeof(power_page_changeable));
memcpy(&lun->mode_pages.power_subpage[
CTL_PAGE_DEFAULT],
&power_page_default,
sizeof(power_page_default));
memcpy(&lun->mode_pages.power_subpage[
CTL_PAGE_SAVED],
&power_page_default,
sizeof(power_page_default));
page_index->page_data =
(uint8_t *)lun->mode_pages.power_subpage;
current_page = (struct copan_power_subpage *)
(page_index->page_data +
(page_index->page_len *
CTL_PAGE_CURRENT));
saved_page = (struct copan_power_subpage *)
(page_index->page_data +
(page_index->page_len *
CTL_PAGE_SAVED));
break;
}
case APS_SUBPAGE_CODE: {
struct copan_aps_subpage *current_page,
*saved_page;
// This gets set multiple times but
// it should always be the same. It's
// only done during init so who cares.
index_to_aps_page = i;
memcpy(&lun->mode_pages.aps_subpage[
CTL_PAGE_CURRENT],
&aps_page_default,
sizeof(aps_page_default));
memcpy(&lun->mode_pages.aps_subpage[
CTL_PAGE_CHANGEABLE],
&aps_page_changeable,
sizeof(aps_page_changeable));
memcpy(&lun->mode_pages.aps_subpage[
CTL_PAGE_DEFAULT],
&aps_page_default,
sizeof(aps_page_default));
memcpy(&lun->mode_pages.aps_subpage[
CTL_PAGE_SAVED],
&aps_page_default,
sizeof(aps_page_default));
page_index->page_data =
(uint8_t *)lun->mode_pages.aps_subpage;
current_page = (struct copan_aps_subpage *)
(page_index->page_data +
(page_index->page_len *
CTL_PAGE_CURRENT));
saved_page = (struct copan_aps_subpage *)
(page_index->page_data +
(page_index->page_len *
CTL_PAGE_SAVED));
break;
}
case DBGCNF_SUBPAGE_CODE: {
struct copan_debugconf_subpage *current_page,
*saved_page;
memcpy(&lun->mode_pages.debugconf_subpage[
CTL_PAGE_CURRENT],
&debugconf_page_default,
sizeof(debugconf_page_default));
memcpy(&lun->mode_pages.debugconf_subpage[
CTL_PAGE_CHANGEABLE],
&debugconf_page_changeable,
sizeof(debugconf_page_changeable));
memcpy(&lun->mode_pages.debugconf_subpage[
CTL_PAGE_DEFAULT],
&debugconf_page_default,
sizeof(debugconf_page_default));
memcpy(&lun->mode_pages.debugconf_subpage[
CTL_PAGE_SAVED],
&debugconf_page_default,
sizeof(debugconf_page_default));
page_index->page_data =
(uint8_t *)lun->mode_pages.debugconf_subpage;
current_page = (struct copan_debugconf_subpage *)
(page_index->page_data +
(page_index->page_len *
CTL_PAGE_CURRENT));
saved_page = (struct copan_debugconf_subpage *)
(page_index->page_data +
(page_index->page_len *
CTL_PAGE_SAVED));
break;
}
default:
panic("invalid subpage value %d",
page_index->subpage);
break;
}
break;
}
default:
panic("invalid page value %d",
page_index->page_code & SMPH_PC_MASK);
break;
}
}
return (CTL_RETVAL_COMPLETE);
}
/*
* LUN allocation.
*
* Requirements:
* - caller allocates and zeros LUN storage, or passes in a NULL LUN if he
* wants us to allocate the LUN and he can block.
* - ctl_softc is always set
* - be_lun is set if the LUN has a backend (needed for disk LUNs)
*
* Returns 0 for success, non-zero (errno) for failure.
*/
static int
ctl_alloc_lun(struct ctl_softc *ctl_softc, struct ctl_lun *ctl_lun,
struct ctl_be_lun *const be_lun, struct ctl_id target_id)
{
struct ctl_lun *nlun, *lun;
struct ctl_frontend *fe;
int lun_number, i, lun_malloced;
if (be_lun == NULL)
return (EINVAL);
/*
* We currently only support Direct Access or Processor LUN types.
*/
switch (be_lun->lun_type) {
case T_DIRECT:
break;
case T_PROCESSOR:
break;
case T_SEQUENTIAL:
case T_CHANGER:
default:
be_lun->lun_config_status(be_lun->be_lun,
CTL_LUN_CONFIG_FAILURE);
break;
}
if (ctl_lun == NULL) {
lun = malloc(sizeof(*lun), M_CTL, M_WAITOK);
lun_malloced = 1;
} else {
lun_malloced = 0;
lun = ctl_lun;
}
memset(lun, 0, sizeof(*lun));
if (lun_malloced)
lun->flags = CTL_LUN_MALLOCED;
mtx_lock(&ctl_softc->ctl_lock);
/*
* See if the caller requested a particular LUN number. If so, see
* if it is available. Otherwise, allocate the first available LUN.
*/
if (be_lun->flags & CTL_LUN_FLAG_ID_REQ) {
if ((be_lun->req_lun_id > (CTL_MAX_LUNS - 1))
|| (ctl_is_set(ctl_softc->ctl_lun_mask, be_lun->req_lun_id))) {
mtx_unlock(&ctl_softc->ctl_lock);
if (be_lun->req_lun_id > (CTL_MAX_LUNS - 1)) {
printf("ctl: requested LUN ID %d is higher "
"than CTL_MAX_LUNS - 1 (%d)\n",
be_lun->req_lun_id, CTL_MAX_LUNS - 1);
} else {
/*
* XXX KDM return an error, or just assign
* another LUN ID in this case??
*/
printf("ctl: requested LUN ID %d is already "
"in use\n", be_lun->req_lun_id);
}
if (lun->flags & CTL_LUN_MALLOCED)
free(lun, M_CTL);
be_lun->lun_config_status(be_lun->be_lun,
CTL_LUN_CONFIG_FAILURE);
return (ENOSPC);
}
lun_number = be_lun->req_lun_id;
} else {
lun_number = ctl_ffz(ctl_softc->ctl_lun_mask, CTL_MAX_LUNS);
if (lun_number == -1) {
mtx_unlock(&ctl_softc->ctl_lock);
printf("ctl: can't allocate LUN on target %ju, out of "
"LUNs\n", (uintmax_t)target_id.id);
if (lun->flags & CTL_LUN_MALLOCED)
free(lun, M_CTL);
be_lun->lun_config_status(be_lun->be_lun,
CTL_LUN_CONFIG_FAILURE);
return (ENOSPC);
}
}
ctl_set_mask(ctl_softc->ctl_lun_mask, lun_number);
lun->target = target_id;
lun->lun = lun_number;
lun->be_lun = be_lun;
/*
* The processor LUN is always enabled. Disk LUNs come on line
* disabled, and must be enabled by the backend.
*/
lun->flags |= CTL_LUN_DISABLED;
lun->backend = be_lun->be;
be_lun->ctl_lun = lun;
be_lun->lun_id = lun_number;
atomic_add_int(&be_lun->be->num_luns, 1);
if (be_lun->flags & CTL_LUN_FLAG_POWERED_OFF)
lun->flags |= CTL_LUN_STOPPED;
if (be_lun->flags & CTL_LUN_FLAG_INOPERABLE)
lun->flags |= CTL_LUN_INOPERABLE;
if (be_lun->flags & CTL_LUN_FLAG_PRIMARY)
lun->flags |= CTL_LUN_PRIMARY_SC;
lun->ctl_softc = ctl_softc;
TAILQ_INIT(&lun->ooa_queue);
TAILQ_INIT(&lun->blocked_queue);
STAILQ_INIT(&lun->error_list);
/*
* Initialize the mode page index.
*/
ctl_init_page_index(lun);
/*
* Set the poweron UA for all initiators on this LUN only.
*/
for (i = 0; i < CTL_MAX_INITIATORS; i++)
lun->pending_sense[i].ua_pending = CTL_UA_POWERON;
/*
* Now, before we insert this lun on the lun list, set the lun
* inventory changed UA for all other luns.
*/
STAILQ_FOREACH(nlun, &ctl_softc->lun_list, links) {
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
nlun->pending_sense[i].ua_pending |= CTL_UA_LUN_CHANGE;
}
}
STAILQ_INSERT_TAIL(&ctl_softc->lun_list, lun, links);
ctl_softc->ctl_luns[lun_number] = lun;
ctl_softc->num_luns++;
/* Setup statistics gathering */
lun->stats.device_type = be_lun->lun_type;
lun->stats.lun_number = lun_number;
if (lun->stats.device_type == T_DIRECT)
lun->stats.blocksize = be_lun->blocksize;
else
lun->stats.flags = CTL_LUN_STATS_NO_BLOCKSIZE;
for (i = 0;i < CTL_MAX_PORTS;i++)
lun->stats.ports[i].targ_port = i;
mtx_unlock(&ctl_softc->ctl_lock);
lun->be_lun->lun_config_status(lun->be_lun->be_lun, CTL_LUN_CONFIG_OK);
/*
* Run through each registered FETD and bring it online if it isn't
* already. Enable the target ID if it hasn't been enabled, and
* enable this particular LUN.
*/
STAILQ_FOREACH(fe, &ctl_softc->fe_list, links) {
int retval;
/*
* XXX KDM this only works for ONE TARGET ID. We'll need
* to do things differently if we go to a multiple target
* ID scheme.
*/
if ((fe->status & CTL_PORT_STATUS_TARG_ONLINE) == 0) {
retval = fe->targ_enable(fe->targ_lun_arg, target_id);
if (retval != 0) {
printf("ctl_alloc_lun: FETD %s port %d "
"returned error %d for targ_enable on "
"target %ju\n", fe->port_name,
fe->targ_port, retval,
(uintmax_t)target_id.id);
} else
fe->status |= CTL_PORT_STATUS_TARG_ONLINE;
}
retval = fe->lun_enable(fe->targ_lun_arg, target_id,lun_number);
if (retval != 0) {
printf("ctl_alloc_lun: FETD %s port %d returned error "
"%d for lun_enable on target %ju lun %d\n",
fe->port_name, fe->targ_port, retval,
(uintmax_t)target_id.id, lun_number);
} else
fe->status |= CTL_PORT_STATUS_LUN_ONLINE;
}
return (0);
}
/*
* Delete a LUN.
* Assumptions:
* - caller holds ctl_softc->ctl_lock.
* - LUN has already been marked invalid and any pending I/O has been taken
* care of.
*/
static int
ctl_free_lun(struct ctl_lun *lun)
{
struct ctl_softc *softc;
#if 0
struct ctl_frontend *fe;
#endif
struct ctl_lun *nlun;
union ctl_io *io, *next_io;
int i;
softc = lun->ctl_softc;
STAILQ_REMOVE(&softc->lun_list, lun, ctl_lun, links);
ctl_clear_mask(softc->ctl_lun_mask, lun->lun);
softc->ctl_luns[lun->lun] = NULL;
if (TAILQ_FIRST(&lun->ooa_queue) != NULL) {
printf("ctl_free_lun: aieee!! freeing a LUN with "
"outstanding I/O!!\n");
}
/*
* If we have anything pending on the RtR queue, remove it.
*/
for (io = (union ctl_io *)STAILQ_FIRST(&softc->rtr_queue); io != NULL;
io = next_io) {
next_io = (union ctl_io *)STAILQ_NEXT(&io->io_hdr, links);
if ((io->io_hdr.nexus.targ_target.id == lun->target.id)
&& (io->io_hdr.nexus.targ_lun == lun->lun))
STAILQ_REMOVE(&softc->rtr_queue, &io->io_hdr,
ctl_io_hdr, links);
}
/*
* Then remove everything from the blocked queue.
*/
for (io = (union ctl_io *)TAILQ_FIRST(&lun->blocked_queue); io != NULL;
io = next_io) {
next_io = (union ctl_io *)TAILQ_NEXT(&io->io_hdr,blocked_links);
TAILQ_REMOVE(&lun->blocked_queue, &io->io_hdr, blocked_links);
io->io_hdr.flags &= ~CTL_FLAG_BLOCKED;
}
/*
* Now clear out the OOA queue, and free all the I/O.
* XXX KDM should we notify the FETD here? We probably need to
* quiesce the LUN before deleting it.
*/
for (io = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue); io != NULL;
io = next_io) {
next_io = (union ctl_io *)TAILQ_NEXT(&io->io_hdr, ooa_links);
TAILQ_REMOVE(&lun->ooa_queue, &io->io_hdr, ooa_links);
ctl_free_io_internal(io, /*have_lock*/ 1);
}
softc->num_luns--;
/*
* XXX KDM this scheme only works for a single target/multiple LUN
* setup. It needs to be revamped for a multiple target scheme.
*
* XXX KDM this results in fe->lun_disable() getting called twice,
* once when ctl_disable_lun() is called, and a second time here.
* We really need to re-think the LUN disable semantics. There
* should probably be several steps/levels to LUN removal:
* - disable
* - invalidate
* - free
*
* Right now we only have a disable method when communicating to
* the front end ports, at least for individual LUNs.
*/
#if 0
STAILQ_FOREACH(fe, &softc->fe_list, links) {
int retval;
retval = fe->lun_disable(fe->targ_lun_arg, lun->target,
lun->lun);
if (retval != 0) {
printf("ctl_free_lun: FETD %s port %d returned error "
"%d for lun_disable on target %ju lun %jd\n",
fe->port_name, fe->targ_port, retval,
(uintmax_t)lun->target.id, (intmax_t)lun->lun);
}
if (STAILQ_FIRST(&softc->lun_list) == NULL) {
fe->status &= ~CTL_PORT_STATUS_LUN_ONLINE;
retval = fe->targ_disable(fe->targ_lun_arg,lun->target);
if (retval != 0) {
printf("ctl_free_lun: FETD %s port %d "
"returned error %d for targ_disable on "
"target %ju\n", fe->port_name,
fe->targ_port, retval,
(uintmax_t)lun->target.id);
} else
fe->status &= ~CTL_PORT_STATUS_TARG_ONLINE;
if ((fe->status & CTL_PORT_STATUS_TARG_ONLINE) != 0)
continue;
#if 0
fe->port_offline(fe->onoff_arg);
fe->status &= ~CTL_PORT_STATUS_ONLINE;
#endif
}
}
#endif
/*
* Tell the backend to free resources, if this LUN has a backend.
*/
atomic_subtract_int(&lun->be_lun->be->num_luns, 1);
lun->be_lun->lun_shutdown(lun->be_lun->be_lun);
if (lun->flags & CTL_LUN_MALLOCED)
free(lun, M_CTL);
STAILQ_FOREACH(nlun, &softc->lun_list, links) {
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
nlun->pending_sense[i].ua_pending |= CTL_UA_LUN_CHANGE;
}
}
return (0);
}
static void
ctl_create_lun(struct ctl_be_lun *be_lun)
{
struct ctl_softc *ctl_softc;
ctl_softc = control_softc;
/*
* ctl_alloc_lun() should handle all potential failure cases.
*/
ctl_alloc_lun(ctl_softc, NULL, be_lun, ctl_softc->target);
}
int
ctl_add_lun(struct ctl_be_lun *be_lun)
{
struct ctl_softc *ctl_softc;
ctl_softc = control_softc;
mtx_lock(&ctl_softc->ctl_lock);
STAILQ_INSERT_TAIL(&ctl_softc->pending_lun_queue, be_lun, links);
mtx_unlock(&ctl_softc->ctl_lock);
ctl_wakeup_thread();
return (0);
}
int
ctl_enable_lun(struct ctl_be_lun *be_lun)
{
struct ctl_softc *ctl_softc;
struct ctl_frontend *fe, *nfe;
struct ctl_lun *lun;
int retval;
ctl_softc = control_softc;
lun = (struct ctl_lun *)be_lun->ctl_lun;
mtx_lock(&ctl_softc->ctl_lock);
if ((lun->flags & CTL_LUN_DISABLED) == 0) {
/*
* eh? Why did we get called if the LUN is already
* enabled?
*/
mtx_unlock(&ctl_softc->ctl_lock);
return (0);
}
lun->flags &= ~CTL_LUN_DISABLED;
for (fe = STAILQ_FIRST(&ctl_softc->fe_list); fe != NULL; fe = nfe) {
nfe = STAILQ_NEXT(fe, links);
/*
* Drop the lock while we call the FETD's enable routine.
* This can lead to a callback into CTL (at least in the
* case of the internal initiator frontend.
*/
mtx_unlock(&ctl_softc->ctl_lock);
retval = fe->lun_enable(fe->targ_lun_arg, lun->target,lun->lun);
mtx_lock(&ctl_softc->ctl_lock);
if (retval != 0) {
printf("%s: FETD %s port %d returned error "
"%d for lun_enable on target %ju lun %jd\n",
__func__, fe->port_name, fe->targ_port, retval,
(uintmax_t)lun->target.id, (intmax_t)lun->lun);
}
#if 0
else {
/* NOTE: TODO: why does lun enable affect port status? */
fe->status |= CTL_PORT_STATUS_LUN_ONLINE;
}
#endif
}
mtx_unlock(&ctl_softc->ctl_lock);
return (0);
}
int
ctl_disable_lun(struct ctl_be_lun *be_lun)
{
struct ctl_softc *ctl_softc;
struct ctl_frontend *fe;
struct ctl_lun *lun;
int retval;
ctl_softc = control_softc;
lun = (struct ctl_lun *)be_lun->ctl_lun;
mtx_lock(&ctl_softc->ctl_lock);
if (lun->flags & CTL_LUN_DISABLED) {
mtx_unlock(&ctl_softc->ctl_lock);
return (0);
}
lun->flags |= CTL_LUN_DISABLED;
STAILQ_FOREACH(fe, &ctl_softc->fe_list, links) {
mtx_unlock(&ctl_softc->ctl_lock);
/*
* Drop the lock before we call the frontend's disable
* routine, to avoid lock order reversals.
*
* XXX KDM what happens if the frontend list changes while
* we're traversing it? It's unlikely, but should be handled.
*/
retval = fe->lun_disable(fe->targ_lun_arg, lun->target,
lun->lun);
mtx_lock(&ctl_softc->ctl_lock);
if (retval != 0) {
printf("ctl_alloc_lun: FETD %s port %d returned error "
"%d for lun_disable on target %ju lun %jd\n",
fe->port_name, fe->targ_port, retval,
(uintmax_t)lun->target.id, (intmax_t)lun->lun);
}
}
mtx_unlock(&ctl_softc->ctl_lock);
return (0);
}
int
ctl_start_lun(struct ctl_be_lun *be_lun)
{
struct ctl_softc *ctl_softc;
struct ctl_lun *lun;
ctl_softc = control_softc;
lun = (struct ctl_lun *)be_lun->ctl_lun;
mtx_lock(&ctl_softc->ctl_lock);
lun->flags &= ~CTL_LUN_STOPPED;
mtx_unlock(&ctl_softc->ctl_lock);
return (0);
}
int
ctl_stop_lun(struct ctl_be_lun *be_lun)
{
struct ctl_softc *ctl_softc;
struct ctl_lun *lun;
ctl_softc = control_softc;
lun = (struct ctl_lun *)be_lun->ctl_lun;
mtx_lock(&ctl_softc->ctl_lock);
lun->flags |= CTL_LUN_STOPPED;
mtx_unlock(&ctl_softc->ctl_lock);
return (0);
}
int
ctl_lun_offline(struct ctl_be_lun *be_lun)
{
struct ctl_softc *ctl_softc;
struct ctl_lun *lun;
ctl_softc = control_softc;
lun = (struct ctl_lun *)be_lun->ctl_lun;
mtx_lock(&ctl_softc->ctl_lock);
lun->flags |= CTL_LUN_OFFLINE;
mtx_unlock(&ctl_softc->ctl_lock);
return (0);
}
int
ctl_lun_online(struct ctl_be_lun *be_lun)
{
struct ctl_softc *ctl_softc;
struct ctl_lun *lun;
ctl_softc = control_softc;
lun = (struct ctl_lun *)be_lun->ctl_lun;
mtx_lock(&ctl_softc->ctl_lock);
lun->flags &= ~CTL_LUN_OFFLINE;
mtx_unlock(&ctl_softc->ctl_lock);
return (0);
}
int
ctl_invalidate_lun(struct ctl_be_lun *be_lun)
{
struct ctl_softc *ctl_softc;
struct ctl_lun *lun;
ctl_softc = control_softc;
lun = (struct ctl_lun *)be_lun->ctl_lun;
mtx_lock(&ctl_softc->ctl_lock);
/*
* The LUN needs to be disabled before it can be marked invalid.
*/
if ((lun->flags & CTL_LUN_DISABLED) == 0) {
mtx_unlock(&ctl_softc->ctl_lock);
return (-1);
}
/*
* Mark the LUN invalid.
*/
lun->flags |= CTL_LUN_INVALID;
/*
* If there is nothing in the OOA queue, go ahead and free the LUN.
* If we have something in the OOA queue, we'll free it when the
* last I/O completes.
*/
if (TAILQ_FIRST(&lun->ooa_queue) == NULL)
ctl_free_lun(lun);
mtx_unlock(&ctl_softc->ctl_lock);
return (0);
}
int
ctl_lun_inoperable(struct ctl_be_lun *be_lun)
{
struct ctl_softc *ctl_softc;
struct ctl_lun *lun;
ctl_softc = control_softc;
lun = (struct ctl_lun *)be_lun->ctl_lun;
mtx_lock(&ctl_softc->ctl_lock);
lun->flags |= CTL_LUN_INOPERABLE;
mtx_unlock(&ctl_softc->ctl_lock);
return (0);
}
int
ctl_lun_operable(struct ctl_be_lun *be_lun)
{
struct ctl_softc *ctl_softc;
struct ctl_lun *lun;
ctl_softc = control_softc;
lun = (struct ctl_lun *)be_lun->ctl_lun;
mtx_lock(&ctl_softc->ctl_lock);
lun->flags &= ~CTL_LUN_INOPERABLE;
mtx_unlock(&ctl_softc->ctl_lock);
return (0);
}
int
ctl_lun_power_lock(struct ctl_be_lun *be_lun, struct ctl_nexus *nexus,
int lock)
{
struct ctl_softc *softc;
struct ctl_lun *lun;
struct copan_aps_subpage *current_sp;
struct ctl_page_index *page_index;
int i;
softc = control_softc;
mtx_lock(&softc->ctl_lock);
lun = (struct ctl_lun *)be_lun->ctl_lun;
page_index = NULL;
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
if ((lun->mode_pages.index[i].page_code & SMPH_PC_MASK) !=
APS_PAGE_CODE)
continue;
if (lun->mode_pages.index[i].subpage != APS_SUBPAGE_CODE)
continue;
page_index = &lun->mode_pages.index[i];
}
if (page_index == NULL) {
mtx_unlock(&softc->ctl_lock);
printf("%s: APS subpage not found for lun %ju!\n", __func__,
(uintmax_t)lun->lun);
return (1);
}
#if 0
if ((softc->aps_locked_lun != 0)
&& (softc->aps_locked_lun != lun->lun)) {
printf("%s: attempt to lock LUN %llu when %llu is already "
"locked\n");
mtx_unlock(&softc->ctl_lock);
return (1);
}
#endif
current_sp = (struct copan_aps_subpage *)(page_index->page_data +
(page_index->page_len * CTL_PAGE_CURRENT));
if (lock != 0) {
current_sp->lock_active = APS_LOCK_ACTIVE;
softc->aps_locked_lun = lun->lun;
} else {
current_sp->lock_active = 0;
softc->aps_locked_lun = 0;
}
/*
* If we're in HA mode, try to send the lock message to the other
* side.
*/
if (ctl_is_single == 0) {
int isc_retval;
union ctl_ha_msg lock_msg;
lock_msg.hdr.nexus = *nexus;
lock_msg.hdr.msg_type = CTL_MSG_APS_LOCK;
if (lock != 0)
lock_msg.aps.lock_flag = 1;
else
lock_msg.aps.lock_flag = 0;
isc_retval = ctl_ha_msg_send(CTL_HA_CHAN_CTL, &lock_msg,
sizeof(lock_msg), 0);
if (isc_retval > CTL_HA_STATUS_SUCCESS) {
printf("%s: APS (lock=%d) error returned from "
"ctl_ha_msg_send: %d\n", __func__, lock, isc_retval);
mtx_unlock(&softc->ctl_lock);
return (1);
}
}
mtx_unlock(&softc->ctl_lock);
return (0);
}
void
ctl_lun_capacity_changed(struct ctl_be_lun *be_lun)
{
struct ctl_lun *lun;
struct ctl_softc *softc;
int i;
softc = control_softc;
mtx_lock(&softc->ctl_lock);
lun = (struct ctl_lun *)be_lun->ctl_lun;
for (i = 0; i < CTL_MAX_INITIATORS; i++)
lun->pending_sense[i].ua_pending |= CTL_UA_CAPACITY_CHANGED;
mtx_unlock(&softc->ctl_lock);
}
/*
* Backend "memory move is complete" callback for requests that never
* make it down to say RAIDCore's configuration code.
*/
int
ctl_config_move_done(union ctl_io *io)
{
int retval;
retval = CTL_RETVAL_COMPLETE;
CTL_DEBUG_PRINT(("ctl_config_move_done\n"));
/*
* XXX KDM this shouldn't happen, but what if it does?
*/
if (io->io_hdr.io_type != CTL_IO_SCSI)
panic("I/O type isn't CTL_IO_SCSI!");
if ((io->io_hdr.port_status == 0)
&& ((io->io_hdr.flags & CTL_FLAG_ABORT) == 0)
&& ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_STATUS_NONE))
io->io_hdr.status = CTL_SUCCESS;
else if ((io->io_hdr.port_status != 0)
&& ((io->io_hdr.flags & CTL_FLAG_ABORT) == 0)
&& ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_STATUS_NONE)){
/*
* For hardware error sense keys, the sense key
* specific value is defined to be a retry count,
* but we use it to pass back an internal FETD
* error code. XXX KDM Hopefully the FETD is only
* using 16 bits for an error code, since that's
* all the space we have in the sks field.
*/
ctl_set_internal_failure(&io->scsiio,
/*sks_valid*/ 1,
/*retry_count*/
io->io_hdr.port_status);
free(io->scsiio.kern_data_ptr, M_CTL);
ctl_done(io);
goto bailout;
}
if (((io->io_hdr.flags & CTL_FLAG_DATA_MASK) == CTL_FLAG_DATA_IN)
|| ((io->io_hdr.status & CTL_STATUS_MASK) != CTL_SUCCESS)
|| ((io->io_hdr.flags & CTL_FLAG_ABORT) != 0)) {
/*
* XXX KDM just assuming a single pointer here, and not a
* S/G list. If we start using S/G lists for config data,
* we'll need to know how to clean them up here as well.
*/
free(io->scsiio.kern_data_ptr, M_CTL);
/* Hopefully the user has already set the status... */
ctl_done(io);
} else {
/*
* XXX KDM now we need to continue data movement. Some
* options:
* - call ctl_scsiio() again? We don't do this for data
* writes, because for those at least we know ahead of
* time where the write will go and how long it is. For
* config writes, though, that information is largely
* contained within the write itself, thus we need to
* parse out the data again.
*
* - Call some other function once the data is in?
*/
/*
* XXX KDM call ctl_scsiio() again for now, and check flag
* bits to see whether we're allocated or not.
*/
retval = ctl_scsiio(&io->scsiio);
}
bailout:
return (retval);
}
/*
* This gets called by a backend driver when it is done with a
* configuration write.
*/
void
ctl_config_write_done(union ctl_io *io)
{
/*
* If the IO_CONT flag is set, we need to call the supplied
* function to continue processing the I/O, instead of completing
* the I/O just yet.
*
* If there is an error, though, we don't want to keep processing.
* Instead, just send status back to the initiator.
*/
if ((io->io_hdr.flags & CTL_FLAG_IO_CONT)
&& (((io->io_hdr.status & CTL_STATUS_MASK) == CTL_STATUS_NONE)
|| ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS))) {
io->scsiio.io_cont(io);
return;
}
/*
* Since a configuration write can be done for commands that actually
* have data allocated, like write buffer, and commands that have
* no data, like start/stop unit, we need to check here.
*/
if ((io->io_hdr.flags & CTL_FLAG_DATA_MASK) == CTL_FLAG_DATA_OUT)
free(io->scsiio.kern_data_ptr, M_CTL);
ctl_done(io);
}
/*
* SCSI release command.
*/
int
ctl_scsi_release(struct ctl_scsiio *ctsio)
{
int length, longid, thirdparty_id, resv_id;
struct ctl_softc *ctl_softc;
struct ctl_lun *lun;
length = 0;
resv_id = 0;
CTL_DEBUG_PRINT(("ctl_scsi_release\n"));
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
ctl_softc = control_softc;
switch (ctsio->cdb[0]) {
case RELEASE: {
struct scsi_release *cdb;
cdb = (struct scsi_release *)ctsio->cdb;
if ((cdb->byte2 & 0x1f) != 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
break;
}
case RELEASE_10: {
struct scsi_release_10 *cdb;
cdb = (struct scsi_release_10 *)ctsio->cdb;
if ((cdb->byte2 & SR10_EXTENT) != 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 1,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if ((cdb->byte2 & SR10_3RDPTY) != 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 1,
/*bit*/ 4);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if (cdb->byte2 & SR10_LONGID)
longid = 1;
else
thirdparty_id = cdb->thirdparty_id;
resv_id = cdb->resv_id;
length = scsi_2btoul(cdb->length);
break;
}
}
/*
* XXX KDM right now, we only support LUN reservation. We don't
* support 3rd party reservations, or extent reservations, which
* might actually need the parameter list. If we've gotten this
* far, we've got a LUN reservation. Anything else got kicked out
* above. So, according to SPC, ignore the length.
*/
length = 0;
if (((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0)
&& (length > 0)) {
ctsio->kern_data_ptr = malloc(length, M_CTL, M_WAITOK);
ctsio->kern_data_len = length;
ctsio->kern_total_len = length;
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if (length > 0)
thirdparty_id = scsi_8btou64(ctsio->kern_data_ptr);
mtx_lock(&ctl_softc->ctl_lock);
/*
* According to SPC, it is not an error for an intiator to attempt
* to release a reservation on a LUN that isn't reserved, or that
* is reserved by another initiator. The reservation can only be
* released, though, by the initiator who made it or by one of
* several reset type events.
*/
if (lun->flags & CTL_LUN_RESERVED) {
if ((ctsio->io_hdr.nexus.initid.id == lun->rsv_nexus.initid.id)
&& (ctsio->io_hdr.nexus.targ_port == lun->rsv_nexus.targ_port)
&& (ctsio->io_hdr.nexus.targ_target.id ==
lun->rsv_nexus.targ_target.id)) {
lun->flags &= ~CTL_LUN_RESERVED;
}
}
ctsio->scsi_status = SCSI_STATUS_OK;
ctsio->io_hdr.status = CTL_SUCCESS;
if (ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) {
free(ctsio->kern_data_ptr, M_CTL);
ctsio->io_hdr.flags &= ~CTL_FLAG_ALLOCATED;
}
mtx_unlock(&ctl_softc->ctl_lock);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_scsi_reserve(struct ctl_scsiio *ctsio)
{
int extent, thirdparty, longid;
int resv_id, length;
uint64_t thirdparty_id;
struct ctl_softc *ctl_softc;
struct ctl_lun *lun;
extent = 0;
thirdparty = 0;
longid = 0;
resv_id = 0;
length = 0;
thirdparty_id = 0;
CTL_DEBUG_PRINT(("ctl_reserve\n"));
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
ctl_softc = control_softc;
switch (ctsio->cdb[0]) {
case RESERVE: {
struct scsi_reserve *cdb;
cdb = (struct scsi_reserve *)ctsio->cdb;
if ((cdb->byte2 & 0x1f) != 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
resv_id = cdb->resv_id;
length = scsi_2btoul(cdb->length);
break;
}
case RESERVE_10: {
struct scsi_reserve_10 *cdb;
cdb = (struct scsi_reserve_10 *)ctsio->cdb;
if ((cdb->byte2 & SR10_EXTENT) != 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 1,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if ((cdb->byte2 & SR10_3RDPTY) != 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 1,
/*bit*/ 4);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if (cdb->byte2 & SR10_LONGID)
longid = 1;
else
thirdparty_id = cdb->thirdparty_id;
resv_id = cdb->resv_id;
length = scsi_2btoul(cdb->length);
break;
}
}
/*
* XXX KDM right now, we only support LUN reservation. We don't
* support 3rd party reservations, or extent reservations, which
* might actually need the parameter list. If we've gotten this
* far, we've got a LUN reservation. Anything else got kicked out
* above. So, according to SPC, ignore the length.
*/
length = 0;
if (((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0)
&& (length > 0)) {
ctsio->kern_data_ptr = malloc(length, M_CTL, M_WAITOK);
ctsio->kern_data_len = length;
ctsio->kern_total_len = length;
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if (length > 0)
thirdparty_id = scsi_8btou64(ctsio->kern_data_ptr);
mtx_lock(&ctl_softc->ctl_lock);
if (lun->flags & CTL_LUN_RESERVED) {
if ((ctsio->io_hdr.nexus.initid.id != lun->rsv_nexus.initid.id)
|| (ctsio->io_hdr.nexus.targ_port != lun->rsv_nexus.targ_port)
|| (ctsio->io_hdr.nexus.targ_target.id !=
lun->rsv_nexus.targ_target.id)) {
ctsio->scsi_status = SCSI_STATUS_RESERV_CONFLICT;
ctsio->io_hdr.status = CTL_SCSI_ERROR;
goto bailout;
}
}
lun->flags |= CTL_LUN_RESERVED;
lun->rsv_nexus = ctsio->io_hdr.nexus;
ctsio->scsi_status = SCSI_STATUS_OK;
ctsio->io_hdr.status = CTL_SUCCESS;
bailout:
if (ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) {
free(ctsio->kern_data_ptr, M_CTL);
ctsio->io_hdr.flags &= ~CTL_FLAG_ALLOCATED;
}
mtx_unlock(&ctl_softc->ctl_lock);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_start_stop(struct ctl_scsiio *ctsio)
{
struct scsi_start_stop_unit *cdb;
struct ctl_lun *lun;
struct ctl_softc *ctl_softc;
int retval;
CTL_DEBUG_PRINT(("ctl_start_stop\n"));
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
ctl_softc = control_softc;
retval = 0;
cdb = (struct scsi_start_stop_unit *)ctsio->cdb;
/*
* XXX KDM
* We don't support the immediate bit on a stop unit. In order to
* do that, we would need to code up a way to know that a stop is
* pending, and hold off any new commands until it completes, one
* way or another. Then we could accept or reject those commands
* depending on its status. We would almost need to do the reverse
* of what we do below for an immediate start -- return the copy of
* the ctl_io to the FETD with status to send to the host (and to
* free the copy!) and then free the original I/O once the stop
* actually completes. That way, the OOA queue mechanism can work
* to block commands that shouldn't proceed. Another alternative
* would be to put the copy in the queue in place of the original,
* and return the original back to the caller. That could be
* slightly safer..
*/
if ((cdb->byte2 & SSS_IMMED)
&& ((cdb->how & SSS_START) == 0)) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 1,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* We don't support the power conditions field. We need to check
* this prior to checking the load/eject and start/stop bits.
*/
if ((cdb->how & SSS_PC_MASK) != SSS_PC_START_VALID) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 4,
/*bit_valid*/ 1,
/*bit*/ 4);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* Media isn't removable, so we can't load or eject it.
*/
if ((cdb->how & SSS_LOEJ) != 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 4,
/*bit_valid*/ 1,
/*bit*/ 1);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if ((lun->flags & CTL_LUN_PR_RESERVED)
&& ((cdb->how & SSS_START)==0)) {
uint32_t residx;
residx = ctl_get_resindex(&ctsio->io_hdr.nexus);
if (!lun->per_res[residx].registered
|| (lun->pr_res_idx!=residx && lun->res_type < 4)) {
ctl_set_reservation_conflict(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
}
/*
* If there is no backend on this device, we can't start or stop
* it. In theory we shouldn't get any start/stop commands in the
* first place at this level if the LUN doesn't have a backend.
* That should get stopped by the command decode code.
*/
if (lun->backend == NULL) {
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* XXX KDM Copan-specific offline behavior.
* Figure out a reasonable way to port this?
*/
#ifdef NEEDTOPORT
mtx_lock(&ctl_softc->ctl_lock);
if (((cdb->byte2 & SSS_ONOFFLINE) == 0)
&& (lun->flags & CTL_LUN_OFFLINE)) {
/*
* If the LUN is offline, and the on/offline bit isn't set,
* reject the start or stop. Otherwise, let it through.
*/
mtx_unlock(&ctl_softc->ctl_lock);
ctl_set_lun_not_ready(ctsio);
ctl_done((union ctl_io *)ctsio);
} else {
mtx_unlock(&ctl_softc->ctl_lock);
#endif /* NEEDTOPORT */
/*
* This could be a start or a stop when we're online,
* or a stop/offline or start/online. A start or stop when
* we're offline is covered in the case above.
*/
/*
* In the non-immediate case, we send the request to
* the backend and return status to the user when
* it is done.
*
* In the immediate case, we allocate a new ctl_io
* to hold a copy of the request, and send that to
* the backend. We then set good status on the
* user's request and return it immediately.
*/
if (cdb->byte2 & SSS_IMMED) {
union ctl_io *new_io;
new_io = ctl_alloc_io(ctsio->io_hdr.pool);
if (new_io == NULL) {
ctl_set_busy(ctsio);
ctl_done((union ctl_io *)ctsio);
} else {
ctl_copy_io((union ctl_io *)ctsio,
new_io);
retval = lun->backend->config_write(new_io);
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
}
} else {
retval = lun->backend->config_write(
(union ctl_io *)ctsio);
}
#ifdef NEEDTOPORT
}
#endif
return (retval);
}
/*
* We support the SYNCHRONIZE CACHE command (10 and 16 byte versions), but
* we don't really do anything with the LBA and length fields if the user
* passes them in. Instead we'll just flush out the cache for the entire
* LUN.
*/
int
ctl_sync_cache(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun;
struct ctl_softc *ctl_softc;
uint64_t starting_lba;
uint32_t block_count;
int reladr, immed;
int retval;
CTL_DEBUG_PRINT(("ctl_sync_cache\n"));
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
ctl_softc = control_softc;
retval = 0;
reladr = 0;
immed = 0;
switch (ctsio->cdb[0]) {
case SYNCHRONIZE_CACHE: {
struct scsi_sync_cache *cdb;
cdb = (struct scsi_sync_cache *)ctsio->cdb;
if (cdb->byte2 & SSC_RELADR)
reladr = 1;
if (cdb->byte2 & SSC_IMMED)
immed = 1;
starting_lba = scsi_4btoul(cdb->begin_lba);
block_count = scsi_2btoul(cdb->lb_count);
break;
}
case SYNCHRONIZE_CACHE_16: {
struct scsi_sync_cache_16 *cdb;
cdb = (struct scsi_sync_cache_16 *)ctsio->cdb;
if (cdb->byte2 & SSC_RELADR)
reladr = 1;
if (cdb->byte2 & SSC_IMMED)
immed = 1;
starting_lba = scsi_8btou64(cdb->begin_lba);
block_count = scsi_4btoul(cdb->lb_count);
break;
}
default:
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
goto bailout;
break; /* NOTREACHED */
}
if (immed) {
/*
* We don't support the immediate bit. Since it's in the
* same place for the 10 and 16 byte SYNCHRONIZE CACHE
* commands, we can just return the same error in either
* case.
*/
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 1,
/*bit*/ 1);
ctl_done((union ctl_io *)ctsio);
goto bailout;
}
if (reladr) {
/*
* We don't support the reladr bit either. It can only be
* used with linked commands, and we don't support linked
* commands. Since the bit is in the same place for the
* 10 and 16 byte SYNCHRONIZE CACHE * commands, we can
* just return the same error in either case.
*/
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 1,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
goto bailout;
}
/*
* We check the LBA and length, but don't do anything with them.
* A SYNCHRONIZE CACHE will cause the entire cache for this lun to
* get flushed. This check will just help satisfy anyone who wants
* to see an error for an out of range LBA.
*/
if ((starting_lba + block_count) > (lun->be_lun->maxlba + 1)) {
ctl_set_lba_out_of_range(ctsio);
ctl_done((union ctl_io *)ctsio);
goto bailout;
}
/*
* If this LUN has no backend, we can't flush the cache anyway.
*/
if (lun->backend == NULL) {
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
goto bailout;
}
/*
* Check to see whether we're configured to send the SYNCHRONIZE
* CACHE command directly to the back end.
*/
mtx_lock(&ctl_softc->ctl_lock);
if ((ctl_softc->flags & CTL_FLAG_REAL_SYNC)
&& (++(lun->sync_count) >= lun->sync_interval)) {
lun->sync_count = 0;
mtx_unlock(&ctl_softc->ctl_lock);
retval = lun->backend->config_write((union ctl_io *)ctsio);
} else {
mtx_unlock(&ctl_softc->ctl_lock);
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
}
bailout:
return (retval);
}
int
ctl_format(struct ctl_scsiio *ctsio)
{
struct scsi_format *cdb;
struct ctl_lun *lun;
struct ctl_softc *ctl_softc;
int length, defect_list_len;
CTL_DEBUG_PRINT(("ctl_format\n"));
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
ctl_softc = control_softc;
cdb = (struct scsi_format *)ctsio->cdb;
length = 0;
if (cdb->byte2 & SF_FMTDATA) {
if (cdb->byte2 & SF_LONGLIST)
length = sizeof(struct scsi_format_header_long);
else
length = sizeof(struct scsi_format_header_short);
}
if (((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0)
&& (length > 0)) {
ctsio->kern_data_ptr = malloc(length, M_CTL, M_WAITOK);
ctsio->kern_data_len = length;
ctsio->kern_total_len = length;
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
defect_list_len = 0;
if (cdb->byte2 & SF_FMTDATA) {
if (cdb->byte2 & SF_LONGLIST) {
struct scsi_format_header_long *header;
header = (struct scsi_format_header_long *)
ctsio->kern_data_ptr;
defect_list_len = scsi_4btoul(header->defect_list_len);
if (defect_list_len != 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 0,
/*field*/ 2,
/*bit_valid*/ 0,
/*bit*/ 0);
goto bailout;
}
} else {
struct scsi_format_header_short *header;
header = (struct scsi_format_header_short *)
ctsio->kern_data_ptr;
defect_list_len = scsi_2btoul(header->defect_list_len);
if (defect_list_len != 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 0,
/*field*/ 2,
/*bit_valid*/ 0,
/*bit*/ 0);
goto bailout;
}
}
}
/*
* The format command will clear out the "Medium format corrupted"
* status if set by the configuration code. That status is really
* just a way to notify the host that we have lost the media, and
* get them to issue a command that will basically make them think
* they're blowing away the media.
*/
mtx_lock(&ctl_softc->ctl_lock);
lun->flags &= ~CTL_LUN_INOPERABLE;
mtx_unlock(&ctl_softc->ctl_lock);
ctsio->scsi_status = SCSI_STATUS_OK;
ctsio->io_hdr.status = CTL_SUCCESS;
bailout:
if (ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) {
free(ctsio->kern_data_ptr, M_CTL);
ctsio->io_hdr.flags &= ~CTL_FLAG_ALLOCATED;
}
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_write_buffer(struct ctl_scsiio *ctsio)
{
struct scsi_write_buffer *cdb;
struct copan_page_header *header;
struct ctl_lun *lun;
struct ctl_softc *ctl_softc;
int buffer_offset, len;
int retval;
header = NULL;
retval = CTL_RETVAL_COMPLETE;
CTL_DEBUG_PRINT(("ctl_write_buffer\n"));
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
ctl_softc = control_softc;
cdb = (struct scsi_write_buffer *)ctsio->cdb;
if ((cdb->byte2 & RWB_MODE) != RWB_MODE_DATA) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 1,
/*bit*/ 4);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if (cdb->buffer_id != 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
len = scsi_3btoul(cdb->length);
buffer_offset = scsi_3btoul(cdb->offset);
if (len > sizeof(lun->write_buffer)) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 6,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if (buffer_offset != 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 3,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* If we've got a kernel request that hasn't been malloced yet,
* malloc it and tell the caller the data buffer is here.
*/
if ((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0) {
ctsio->kern_data_ptr = lun->write_buffer;
ctsio->kern_data_len = len;
ctsio->kern_total_len = len;
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* Note that this function currently doesn't actually do anything inside
* CTL to enforce things if the DQue bit is turned on.
*
* Also note that this function can't be used in the default case, because
* the DQue bit isn't set in the changeable mask for the control mode page
* anyway. This is just here as an example for how to implement a page
* handler, and a placeholder in case we want to allow the user to turn
* tagged queueing on and off.
*
* The D_SENSE bit handling is functional, however, and will turn
* descriptor sense on and off for a given LUN.
*/
int
ctl_control_page_handler(struct ctl_scsiio *ctsio,
struct ctl_page_index *page_index, uint8_t *page_ptr)
{
struct scsi_control_page *current_cp, *saved_cp, *user_cp;
struct ctl_lun *lun;
struct ctl_softc *softc;
int set_ua;
uint32_t initidx;
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
initidx = ctl_get_initindex(&ctsio->io_hdr.nexus);
set_ua = 0;
user_cp = (struct scsi_control_page *)page_ptr;
current_cp = (struct scsi_control_page *)
(page_index->page_data + (page_index->page_len *
CTL_PAGE_CURRENT));
saved_cp = (struct scsi_control_page *)
(page_index->page_data + (page_index->page_len *
CTL_PAGE_SAVED));
softc = control_softc;
mtx_lock(&softc->ctl_lock);
if (((current_cp->rlec & SCP_DSENSE) == 0)
&& ((user_cp->rlec & SCP_DSENSE) != 0)) {
/*
* Descriptor sense is currently turned off and the user
* wants to turn it on.
*/
current_cp->rlec |= SCP_DSENSE;
saved_cp->rlec |= SCP_DSENSE;
lun->flags |= CTL_LUN_SENSE_DESC;
set_ua = 1;
} else if (((current_cp->rlec & SCP_DSENSE) != 0)
&& ((user_cp->rlec & SCP_DSENSE) == 0)) {
/*
* Descriptor sense is currently turned on, and the user
* wants to turn it off.
*/
current_cp->rlec &= ~SCP_DSENSE;
saved_cp->rlec &= ~SCP_DSENSE;
lun->flags &= ~CTL_LUN_SENSE_DESC;
set_ua = 1;
}
if (current_cp->queue_flags & SCP_QUEUE_DQUE) {
if (user_cp->queue_flags & SCP_QUEUE_DQUE) {
#ifdef NEEDTOPORT
csevent_log(CSC_CTL | CSC_SHELF_SW |
CTL_UNTAG_TO_UNTAG,
csevent_LogType_Trace,
csevent_Severity_Information,
csevent_AlertLevel_Green,
csevent_FRU_Firmware,
csevent_FRU_Unknown,
"Received untagged to untagged transition");
#endif /* NEEDTOPORT */
} else {
#ifdef NEEDTOPORT
csevent_log(CSC_CTL | CSC_SHELF_SW |
CTL_UNTAG_TO_TAG,
csevent_LogType_ConfigChange,
csevent_Severity_Information,
csevent_AlertLevel_Green,
csevent_FRU_Firmware,
csevent_FRU_Unknown,
"Received untagged to tagged "
"queueing transition");
#endif /* NEEDTOPORT */
current_cp->queue_flags &= ~SCP_QUEUE_DQUE;
saved_cp->queue_flags &= ~SCP_QUEUE_DQUE;
set_ua = 1;
}
} else {
if (user_cp->queue_flags & SCP_QUEUE_DQUE) {
#ifdef NEEDTOPORT
csevent_log(CSC_CTL | CSC_SHELF_SW |
CTL_TAG_TO_UNTAG,
csevent_LogType_ConfigChange,
csevent_Severity_Warning,
csevent_AlertLevel_Yellow,
csevent_FRU_Firmware,
csevent_FRU_Unknown,
"Received tagged queueing to untagged "
"transition");
#endif /* NEEDTOPORT */
current_cp->queue_flags |= SCP_QUEUE_DQUE;
saved_cp->queue_flags |= SCP_QUEUE_DQUE;
set_ua = 1;
} else {
#ifdef NEEDTOPORT
csevent_log(CSC_CTL | CSC_SHELF_SW |
CTL_TAG_TO_TAG,
csevent_LogType_Trace,
csevent_Severity_Information,
csevent_AlertLevel_Green,
csevent_FRU_Firmware,
csevent_FRU_Unknown,
"Received tagged queueing to tagged "
"queueing transition");
#endif /* NEEDTOPORT */
}
}
if (set_ua != 0) {
int i;
/*
* Let other initiators know that the mode
* parameters for this LUN have changed.
*/
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
if (i == initidx)
continue;
lun->pending_sense[i].ua_pending |=
CTL_UA_MODE_CHANGE;
}
}
mtx_unlock(&softc->ctl_lock);
return (0);
}
int
ctl_power_sp_handler(struct ctl_scsiio *ctsio,
struct ctl_page_index *page_index, uint8_t *page_ptr)
{
return (0);
}
int
ctl_power_sp_sense_handler(struct ctl_scsiio *ctsio,
struct ctl_page_index *page_index, int pc)
{
struct copan_power_subpage *page;
page = (struct copan_power_subpage *)page_index->page_data +
(page_index->page_len * pc);
switch (pc) {
case SMS_PAGE_CTRL_CHANGEABLE >> 6:
/*
* We don't update the changable bits for this page.
*/
break;
case SMS_PAGE_CTRL_CURRENT >> 6:
case SMS_PAGE_CTRL_DEFAULT >> 6:
case SMS_PAGE_CTRL_SAVED >> 6:
#ifdef NEEDTOPORT
ctl_update_power_subpage(page);
#endif
break;
default:
#ifdef NEEDTOPORT
EPRINT(0, "Invalid PC %d!!", pc);
#endif
break;
}
return (0);
}
int
ctl_aps_sp_handler(struct ctl_scsiio *ctsio,
struct ctl_page_index *page_index, uint8_t *page_ptr)
{
struct copan_aps_subpage *user_sp;
struct copan_aps_subpage *current_sp;
union ctl_modepage_info *modepage_info;
struct ctl_softc *softc;
struct ctl_lun *lun;
int retval;
retval = CTL_RETVAL_COMPLETE;
current_sp = (struct copan_aps_subpage *)(page_index->page_data +
(page_index->page_len * CTL_PAGE_CURRENT));
softc = control_softc;
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
user_sp = (struct copan_aps_subpage *)page_ptr;
modepage_info = (union ctl_modepage_info *)
ctsio->io_hdr.ctl_private[CTL_PRIV_MODEPAGE].bytes;
modepage_info->header.page_code = page_index->page_code & SMPH_PC_MASK;
modepage_info->header.subpage = page_index->subpage;
modepage_info->aps.lock_active = user_sp->lock_active;
mtx_lock(&softc->ctl_lock);
/*
* If there is a request to lock the LUN and another LUN is locked
* this is an error. If the requested LUN is already locked ignore
* the request. If no LUN is locked attempt to lock it.
* if there is a request to unlock the LUN and the LUN is currently
* locked attempt to unlock it. Otherwise ignore the request. i.e.
* if another LUN is locked or no LUN is locked.
*/
if (user_sp->lock_active & APS_LOCK_ACTIVE) {
if (softc->aps_locked_lun == lun->lun) {
/*
* This LUN is already locked, so we're done.
*/
retval = CTL_RETVAL_COMPLETE;
} else if (softc->aps_locked_lun == 0) {
/*
* No one has the lock, pass the request to the
* backend.
*/
retval = lun->backend->config_write(
(union ctl_io *)ctsio);
} else {
/*
* Someone else has the lock, throw out the request.
*/
ctl_set_already_locked(ctsio);
free(ctsio->kern_data_ptr, M_CTL);
ctl_done((union ctl_io *)ctsio);
/*
* Set the return value so that ctl_do_mode_select()
* won't try to complete the command. We already
* completed it here.
*/
retval = CTL_RETVAL_ERROR;
}
} else if (softc->aps_locked_lun == lun->lun) {
/*
* This LUN is locked, so pass the unlock request to the
* backend.
*/
retval = lun->backend->config_write((union ctl_io *)ctsio);
}
mtx_unlock(&softc->ctl_lock);
return (retval);
}
int
ctl_debugconf_sp_select_handler(struct ctl_scsiio *ctsio,
struct ctl_page_index *page_index,
uint8_t *page_ptr)
{
uint8_t *c;
int i;
c = ((struct copan_debugconf_subpage *)page_ptr)->ctl_time_io_secs;
ctl_time_io_secs =
(c[0] << 8) |
(c[1] << 0) |
0;
CTL_DEBUG_PRINT(("set ctl_time_io_secs to %d\n", ctl_time_io_secs));
printf("set ctl_time_io_secs to %d\n", ctl_time_io_secs);
printf("page data:");
for (i=0; i<8; i++)
printf(" %.2x",page_ptr[i]);
printf("\n");
return (0);
}
int
ctl_debugconf_sp_sense_handler(struct ctl_scsiio *ctsio,
struct ctl_page_index *page_index,
int pc)
{
struct copan_debugconf_subpage *page;
page = (struct copan_debugconf_subpage *)page_index->page_data +
(page_index->page_len * pc);
switch (pc) {
case SMS_PAGE_CTRL_CHANGEABLE >> 6:
case SMS_PAGE_CTRL_DEFAULT >> 6:
case SMS_PAGE_CTRL_SAVED >> 6:
/*
* We don't update the changable or default bits for this page.
*/
break;
case SMS_PAGE_CTRL_CURRENT >> 6:
page->ctl_time_io_secs[0] = ctl_time_io_secs >> 8;
page->ctl_time_io_secs[1] = ctl_time_io_secs >> 0;
break;
default:
#ifdef NEEDTOPORT
EPRINT(0, "Invalid PC %d!!", pc);
#endif /* NEEDTOPORT */
break;
}
return (0);
}
static int
ctl_do_mode_select(union ctl_io *io)
{
struct scsi_mode_page_header *page_header;
struct ctl_page_index *page_index;
struct ctl_scsiio *ctsio;
int control_dev, page_len;
int page_len_offset, page_len_size;
union ctl_modepage_info *modepage_info;
struct ctl_lun *lun;
int *len_left, *len_used;
int retval, i;
ctsio = &io->scsiio;
page_index = NULL;
page_len = 0;
retval = CTL_RETVAL_COMPLETE;
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
if (lun->be_lun->lun_type != T_DIRECT)
control_dev = 1;
else
control_dev = 0;
modepage_info = (union ctl_modepage_info *)
ctsio->io_hdr.ctl_private[CTL_PRIV_MODEPAGE].bytes;
len_left = &modepage_info->header.len_left;
len_used = &modepage_info->header.len_used;
do_next_page:
page_header = (struct scsi_mode_page_header *)
(ctsio->kern_data_ptr + *len_used);
if (*len_left == 0) {
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
} else if (*len_left < sizeof(struct scsi_mode_page_header)) {
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_param_len_error(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
} else if ((page_header->page_code & SMPH_SPF)
&& (*len_left < sizeof(struct scsi_mode_page_header_sp))) {
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_param_len_error(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* XXX KDM should we do something with the block descriptor?
*/
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
if ((control_dev != 0)
&& (lun->mode_pages.index[i].page_flags &
CTL_PAGE_FLAG_DISK_ONLY))
continue;
if ((lun->mode_pages.index[i].page_code & SMPH_PC_MASK) !=
(page_header->page_code & SMPH_PC_MASK))
continue;
/*
* If neither page has a subpage code, then we've got a
* match.
*/
if (((lun->mode_pages.index[i].page_code & SMPH_SPF) == 0)
&& ((page_header->page_code & SMPH_SPF) == 0)) {
page_index = &lun->mode_pages.index[i];
page_len = page_header->page_length;
break;
}
/*
* If both pages have subpages, then the subpage numbers
* have to match.
*/
if ((lun->mode_pages.index[i].page_code & SMPH_SPF)
&& (page_header->page_code & SMPH_SPF)) {
struct scsi_mode_page_header_sp *sph;
sph = (struct scsi_mode_page_header_sp *)page_header;
if (lun->mode_pages.index[i].subpage ==
sph->subpage) {
page_index = &lun->mode_pages.index[i];
page_len = scsi_2btoul(sph->page_length);
break;
}
}
}
/*
* If we couldn't find the page, or if we don't have a mode select
* handler for it, send back an error to the user.
*/
if ((page_index == NULL)
|| (page_index->select_handler == NULL)) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 0,
/*field*/ *len_used,
/*bit_valid*/ 0,
/*bit*/ 0);
free(ctsio->kern_data_ptr, M_CTL);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if (page_index->page_code & SMPH_SPF) {
page_len_offset = 2;
page_len_size = 2;
} else {
page_len_size = 1;
page_len_offset = 1;
}
/*
* If the length the initiator gives us isn't the one we specify in
* the mode page header, or if they didn't specify enough data in
* the CDB to avoid truncating this page, kick out the request.
*/
if ((page_len != (page_index->page_len - page_len_offset -
page_len_size))
|| (*len_left < page_index->page_len)) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 0,
/*field*/ *len_used + page_len_offset,
/*bit_valid*/ 0,
/*bit*/ 0);
free(ctsio->kern_data_ptr, M_CTL);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* Run through the mode page, checking to make sure that the bits
* the user changed are actually legal for him to change.
*/
for (i = 0; i < page_index->page_len; i++) {
uint8_t *user_byte, *change_mask, *current_byte;
int bad_bit;
int j;
user_byte = (uint8_t *)page_header + i;
change_mask = page_index->page_data +
(page_index->page_len * CTL_PAGE_CHANGEABLE) + i;
current_byte = page_index->page_data +
(page_index->page_len * CTL_PAGE_CURRENT) + i;
/*
* Check to see whether the user set any bits in this byte
* that he is not allowed to set.
*/
if ((*user_byte & ~(*change_mask)) ==
(*current_byte & ~(*change_mask)))
continue;
/*
* Go through bit by bit to determine which one is illegal.
*/
bad_bit = 0;
for (j = 7; j >= 0; j--) {
if ((((1 << i) & ~(*change_mask)) & *user_byte) !=
(((1 << i) & ~(*change_mask)) & *current_byte)) {
bad_bit = i;
break;
}
}
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 0,
/*field*/ *len_used + i,
/*bit_valid*/ 1,
/*bit*/ bad_bit);
free(ctsio->kern_data_ptr, M_CTL);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* Decrement these before we call the page handler, since we may
* end up getting called back one way or another before the handler
* returns to this context.
*/
*len_left -= page_index->page_len;
*len_used += page_index->page_len;
retval = page_index->select_handler(ctsio, page_index,
(uint8_t *)page_header);
/*
* If the page handler returns CTL_RETVAL_QUEUED, then we need to
* wait until this queued command completes to finish processing
* the mode page. If it returns anything other than
* CTL_RETVAL_COMPLETE (e.g. CTL_RETVAL_ERROR), then it should have
* already set the sense information, freed the data pointer, and
* completed the io for us.
*/
if (retval != CTL_RETVAL_COMPLETE)
goto bailout_no_done;
/*
* If the initiator sent us more than one page, parse the next one.
*/
if (*len_left > 0)
goto do_next_page;
ctl_set_success(ctsio);
free(ctsio->kern_data_ptr, M_CTL);
ctl_done((union ctl_io *)ctsio);
bailout_no_done:
return (CTL_RETVAL_COMPLETE);
}
int
ctl_mode_select(struct ctl_scsiio *ctsio)
{
int param_len, pf, sp;
int header_size, bd_len;
int len_left, len_used;
struct ctl_page_index *page_index;
struct ctl_lun *lun;
int control_dev, page_len;
union ctl_modepage_info *modepage_info;
int retval;
pf = 0;
sp = 0;
page_len = 0;
len_used = 0;
len_left = 0;
retval = 0;
bd_len = 0;
page_index = NULL;
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
if (lun->be_lun->lun_type != T_DIRECT)
control_dev = 1;
else
control_dev = 0;
switch (ctsio->cdb[0]) {
case MODE_SELECT_6: {
struct scsi_mode_select_6 *cdb;
cdb = (struct scsi_mode_select_6 *)ctsio->cdb;
pf = (cdb->byte2 & SMS_PF) ? 1 : 0;
sp = (cdb->byte2 & SMS_SP) ? 1 : 0;
param_len = cdb->length;
header_size = sizeof(struct scsi_mode_header_6);
break;
}
case MODE_SELECT_10: {
struct scsi_mode_select_10 *cdb;
cdb = (struct scsi_mode_select_10 *)ctsio->cdb;
pf = (cdb->byte2 & SMS_PF) ? 1 : 0;
sp = (cdb->byte2 & SMS_SP) ? 1 : 0;
param_len = scsi_2btoul(cdb->length);
header_size = sizeof(struct scsi_mode_header_10);
break;
}
default:
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
break; /* NOTREACHED */
}
/*
* From SPC-3:
* "A parameter list length of zero indicates that the Data-Out Buffer
* shall be empty. This condition shall not be considered as an error."
*/
if (param_len == 0) {
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* Since we'll hit this the first time through, prior to
* allocation, we don't need to free a data buffer here.
*/
if (param_len < header_size) {
ctl_set_param_len_error(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* Allocate the data buffer and grab the user's data. In theory,
* we shouldn't have to sanity check the parameter list length here
* because the maximum size is 64K. We should be able to malloc
* that much without too many problems.
*/
if ((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0) {
ctsio->kern_data_ptr = malloc(param_len, M_CTL, M_WAITOK);
ctsio->kern_data_len = param_len;
ctsio->kern_total_len = param_len;
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
switch (ctsio->cdb[0]) {
case MODE_SELECT_6: {
struct scsi_mode_header_6 *mh6;
mh6 = (struct scsi_mode_header_6 *)ctsio->kern_data_ptr;
bd_len = mh6->blk_desc_len;
break;
}
case MODE_SELECT_10: {
struct scsi_mode_header_10 *mh10;
mh10 = (struct scsi_mode_header_10 *)ctsio->kern_data_ptr;
bd_len = scsi_2btoul(mh10->blk_desc_len);
break;
}
default:
panic("Invalid CDB type %#x", ctsio->cdb[0]);
break;
}
if (param_len < (header_size + bd_len)) {
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_param_len_error(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* Set the IO_CONT flag, so that if this I/O gets passed to
* ctl_config_write_done(), it'll get passed back to
* ctl_do_mode_select() for further processing, or completion if
* we're all done.
*/
ctsio->io_hdr.flags |= CTL_FLAG_IO_CONT;
ctsio->io_cont = ctl_do_mode_select;
modepage_info = (union ctl_modepage_info *)
ctsio->io_hdr.ctl_private[CTL_PRIV_MODEPAGE].bytes;
memset(modepage_info, 0, sizeof(*modepage_info));
len_left = param_len - header_size - bd_len;
len_used = header_size + bd_len;
modepage_info->header.len_left = len_left;
modepage_info->header.len_used = len_used;
return (ctl_do_mode_select((union ctl_io *)ctsio));
}
int
ctl_mode_sense(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun;
int pc, page_code, dbd, llba, subpage;
int alloc_len, page_len, header_len, total_len;
struct scsi_mode_block_descr *block_desc;
struct ctl_page_index *page_index;
int control_dev;
dbd = 0;
llba = 0;
block_desc = NULL;
page_index = NULL;
CTL_DEBUG_PRINT(("ctl_mode_sense\n"));
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
if (lun->be_lun->lun_type != T_DIRECT)
control_dev = 1;
else
control_dev = 0;
switch (ctsio->cdb[0]) {
case MODE_SENSE_6: {
struct scsi_mode_sense_6 *cdb;
cdb = (struct scsi_mode_sense_6 *)ctsio->cdb;
header_len = sizeof(struct scsi_mode_hdr_6);
if (cdb->byte2 & SMS_DBD)
dbd = 1;
else
header_len += sizeof(struct scsi_mode_block_descr);
pc = (cdb->page & SMS_PAGE_CTRL_MASK) >> 6;
page_code = cdb->page & SMS_PAGE_CODE;
subpage = cdb->subpage;
alloc_len = cdb->length;
break;
}
case MODE_SENSE_10: {
struct scsi_mode_sense_10 *cdb;
cdb = (struct scsi_mode_sense_10 *)ctsio->cdb;
header_len = sizeof(struct scsi_mode_hdr_10);
if (cdb->byte2 & SMS_DBD)
dbd = 1;
else
header_len += sizeof(struct scsi_mode_block_descr);
if (cdb->byte2 & SMS10_LLBAA)
llba = 1;
pc = (cdb->page & SMS_PAGE_CTRL_MASK) >> 6;
page_code = cdb->page & SMS_PAGE_CODE;
subpage = cdb->subpage;
alloc_len = scsi_2btoul(cdb->length);
break;
}
default:
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
break; /* NOTREACHED */
}
/*
* We have to make a first pass through to calculate the size of
* the pages that match the user's query. Then we allocate enough
* memory to hold it, and actually copy the data into the buffer.
*/
switch (page_code) {
case SMS_ALL_PAGES_PAGE: {
int i;
page_len = 0;
/*
* At the moment, values other than 0 and 0xff here are
* reserved according to SPC-3.
*/
if ((subpage != SMS_SUBPAGE_PAGE_0)
&& (subpage != SMS_SUBPAGE_ALL)) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 3,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
if ((control_dev != 0)
&& (lun->mode_pages.index[i].page_flags &
CTL_PAGE_FLAG_DISK_ONLY))
continue;
/*
* We don't use this subpage if the user didn't
* request all subpages.
*/
if ((lun->mode_pages.index[i].subpage != 0)
&& (subpage == SMS_SUBPAGE_PAGE_0))
continue;
#if 0
printf("found page %#x len %d\n",
lun->mode_pages.index[i].page_code &
SMPH_PC_MASK,
lun->mode_pages.index[i].page_len);
#endif
page_len += lun->mode_pages.index[i].page_len;
}
break;
}
default: {
int i;
page_len = 0;
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
/* Look for the right page code */
if ((lun->mode_pages.index[i].page_code &
SMPH_PC_MASK) != page_code)
continue;
/* Look for the right subpage or the subpage wildcard*/
if ((lun->mode_pages.index[i].subpage != subpage)
&& (subpage != SMS_SUBPAGE_ALL))
continue;
/* Make sure the page is supported for this dev type */
if ((control_dev != 0)
&& (lun->mode_pages.index[i].page_flags &
CTL_PAGE_FLAG_DISK_ONLY))
continue;
#if 0
printf("found page %#x len %d\n",
lun->mode_pages.index[i].page_code &
SMPH_PC_MASK,
lun->mode_pages.index[i].page_len);
#endif
page_len += lun->mode_pages.index[i].page_len;
}
if (page_len == 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 5);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
break;
}
}
total_len = header_len + page_len;
#if 0
printf("header_len = %d, page_len = %d, total_len = %d\n",
header_len, page_len, total_len);
#endif
ctsio->kern_data_ptr = malloc(total_len, M_CTL, M_WAITOK | M_ZERO);
ctsio->kern_sg_entries = 0;
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
if (total_len < alloc_len) {
ctsio->residual = alloc_len - total_len;
ctsio->kern_data_len = total_len;
ctsio->kern_total_len = total_len;
} else {
ctsio->residual = 0;
ctsio->kern_data_len = alloc_len;
ctsio->kern_total_len = alloc_len;
}
switch (ctsio->cdb[0]) {
case MODE_SENSE_6: {
struct scsi_mode_hdr_6 *header;
header = (struct scsi_mode_hdr_6 *)ctsio->kern_data_ptr;
header->datalen = ctl_min(total_len - 1, 254);
if (dbd)
header->block_descr_len = 0;
else
header->block_descr_len =
sizeof(struct scsi_mode_block_descr);
block_desc = (struct scsi_mode_block_descr *)&header[1];
break;
}
case MODE_SENSE_10: {
struct scsi_mode_hdr_10 *header;
int datalen;
header = (struct scsi_mode_hdr_10 *)ctsio->kern_data_ptr;
datalen = ctl_min(total_len - 2, 65533);
scsi_ulto2b(datalen, header->datalen);
if (dbd)
scsi_ulto2b(0, header->block_descr_len);
else
scsi_ulto2b(sizeof(struct scsi_mode_block_descr),
header->block_descr_len);
block_desc = (struct scsi_mode_block_descr *)&header[1];
break;
}
default:
panic("invalid CDB type %#x", ctsio->cdb[0]);
break; /* NOTREACHED */
}
/*
* If we've got a disk, use its blocksize in the block
* descriptor. Otherwise, just set it to 0.
*/
if (dbd == 0) {
if (control_dev != 0)
scsi_ulto3b(lun->be_lun->blocksize,
block_desc->block_len);
else
scsi_ulto3b(0, block_desc->block_len);
}
switch (page_code) {
case SMS_ALL_PAGES_PAGE: {
int i, data_used;
data_used = header_len;
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
struct ctl_page_index *page_index;
page_index = &lun->mode_pages.index[i];
if ((control_dev != 0)
&& (page_index->page_flags &
CTL_PAGE_FLAG_DISK_ONLY))
continue;
/*
* We don't use this subpage if the user didn't
* request all subpages. We already checked (above)
* to make sure the user only specified a subpage
* of 0 or 0xff in the SMS_ALL_PAGES_PAGE case.
*/
if ((page_index->subpage != 0)
&& (subpage == SMS_SUBPAGE_PAGE_0))
continue;
/*
* Call the handler, if it exists, to update the
* page to the latest values.
*/
if (page_index->sense_handler != NULL)
page_index->sense_handler(ctsio, page_index,pc);
memcpy(ctsio->kern_data_ptr + data_used,
page_index->page_data +
(page_index->page_len * pc),
page_index->page_len);
data_used += page_index->page_len;
}
break;
}
default: {
int i, data_used;
data_used = header_len;
for (i = 0; i < CTL_NUM_MODE_PAGES; i++) {
struct ctl_page_index *page_index;
page_index = &lun->mode_pages.index[i];
/* Look for the right page code */
if ((page_index->page_code & SMPH_PC_MASK) != page_code)
continue;
/* Look for the right subpage or the subpage wildcard*/
if ((page_index->subpage != subpage)
&& (subpage != SMS_SUBPAGE_ALL))
continue;
/* Make sure the page is supported for this dev type */
if ((control_dev != 0)
&& (page_index->page_flags &
CTL_PAGE_FLAG_DISK_ONLY))
continue;
/*
* Call the handler, if it exists, to update the
* page to the latest values.
*/
if (page_index->sense_handler != NULL)
page_index->sense_handler(ctsio, page_index,pc);
memcpy(ctsio->kern_data_ptr + data_used,
page_index->page_data +
(page_index->page_len * pc),
page_index->page_len);
data_used += page_index->page_len;
}
break;
}
}
ctsio->scsi_status = SCSI_STATUS_OK;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_read_capacity(struct ctl_scsiio *ctsio)
{
struct scsi_read_capacity *cdb;
struct scsi_read_capacity_data *data;
struct ctl_lun *lun;
uint32_t lba;
CTL_DEBUG_PRINT(("ctl_read_capacity\n"));
cdb = (struct scsi_read_capacity *)ctsio->cdb;
lba = scsi_4btoul(cdb->addr);
if (((cdb->pmi & SRC_PMI) == 0)
&& (lba != 0)) {
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
ctsio->kern_data_ptr = malloc(sizeof(*data), M_CTL, M_WAITOK | M_ZERO);
data = (struct scsi_read_capacity_data *)ctsio->kern_data_ptr;
ctsio->residual = 0;
ctsio->kern_data_len = sizeof(*data);
ctsio->kern_total_len = sizeof(*data);
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
/*
* If the maximum LBA is greater than 0xfffffffe, the user must
* issue a SERVICE ACTION IN (16) command, with the read capacity
* serivce action set.
*/
if (lun->be_lun->maxlba > 0xfffffffe)
scsi_ulto4b(0xffffffff, data->addr);
else
scsi_ulto4b(lun->be_lun->maxlba, data->addr);
/*
* XXX KDM this may not be 512 bytes...
*/
scsi_ulto4b(lun->be_lun->blocksize, data->length);
ctsio->scsi_status = SCSI_STATUS_OK;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
static int
ctl_read_capacity_16(struct ctl_scsiio *ctsio)
{
struct scsi_read_capacity_16 *cdb;
struct scsi_read_capacity_data_long *data;
struct ctl_lun *lun;
uint64_t lba;
uint32_t alloc_len;
CTL_DEBUG_PRINT(("ctl_read_capacity_16\n"));
cdb = (struct scsi_read_capacity_16 *)ctsio->cdb;
alloc_len = scsi_4btoul(cdb->alloc_len);
lba = scsi_8btou64(cdb->addr);
if ((cdb->reladr & SRC16_PMI)
&& (lba != 0)) {
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
ctsio->kern_data_ptr = malloc(sizeof(*data), M_CTL, M_WAITOK | M_ZERO);
data = (struct scsi_read_capacity_data_long *)ctsio->kern_data_ptr;
if (sizeof(*data) < alloc_len) {
ctsio->residual = alloc_len - sizeof(*data);
ctsio->kern_data_len = sizeof(*data);
ctsio->kern_total_len = sizeof(*data);
} else {
ctsio->residual = 0;
ctsio->kern_data_len = alloc_len;
ctsio->kern_total_len = alloc_len;
}
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
scsi_u64to8b(lun->be_lun->maxlba, data->addr);
/* XXX KDM this may not be 512 bytes... */
scsi_ulto4b(lun->be_lun->blocksize, data->length);
ctsio->scsi_status = SCSI_STATUS_OK;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_service_action_in(struct ctl_scsiio *ctsio)
{
struct scsi_service_action_in *cdb;
int retval;
CTL_DEBUG_PRINT(("ctl_service_action_in\n"));
cdb = (struct scsi_service_action_in *)ctsio->cdb;
retval = CTL_RETVAL_COMPLETE;
switch (cdb->service_action) {
case SRC16_SERVICE_ACTION:
retval = ctl_read_capacity_16(ctsio);
break;
default:
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 1,
/*bit*/ 4);
ctl_done((union ctl_io *)ctsio);
break;
}
return (retval);
}
int
ctl_maintenance_in(struct ctl_scsiio *ctsio)
{
struct scsi_maintenance_in *cdb;
int retval;
int alloc_len, total_len = 0;
int num_target_port_groups, single;
struct ctl_lun *lun;
struct ctl_softc *softc;
struct scsi_target_group_data *rtg_ptr;
struct scsi_target_port_group_descriptor *tpg_desc_ptr1, *tpg_desc_ptr2;
struct scsi_target_port_descriptor *tp_desc_ptr1_1, *tp_desc_ptr1_2,
*tp_desc_ptr2_1, *tp_desc_ptr2_2;
CTL_DEBUG_PRINT(("ctl_maintenance_in\n"));
cdb = (struct scsi_maintenance_in *)ctsio->cdb;
softc = control_softc;
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
retval = CTL_RETVAL_COMPLETE;
if ((cdb->byte2 & SERVICE_ACTION_MASK) != SA_RPRT_TRGT_GRP) {
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 1,
/*bit*/ 4);
ctl_done((union ctl_io *)ctsio);
return(retval);
}
mtx_lock(&softc->ctl_lock);
single = ctl_is_single;
mtx_unlock(&softc->ctl_lock);
if (single)
num_target_port_groups = NUM_TARGET_PORT_GROUPS - 1;
else
num_target_port_groups = NUM_TARGET_PORT_GROUPS;
total_len = sizeof(struct scsi_target_group_data) +
sizeof(struct scsi_target_port_group_descriptor) *
num_target_port_groups +
sizeof(struct scsi_target_port_descriptor) *
NUM_PORTS_PER_GRP * num_target_port_groups;
alloc_len = scsi_4btoul(cdb->length);
ctsio->kern_data_ptr = malloc(total_len, M_CTL, M_WAITOK | M_ZERO);
ctsio->kern_sg_entries = 0;
if (total_len < alloc_len) {
ctsio->residual = alloc_len - total_len;
ctsio->kern_data_len = total_len;
ctsio->kern_total_len = total_len;
} else {
ctsio->residual = 0;
ctsio->kern_data_len = alloc_len;
ctsio->kern_total_len = alloc_len;
}
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
rtg_ptr = (struct scsi_target_group_data *)ctsio->kern_data_ptr;
tpg_desc_ptr1 = &rtg_ptr->groups[0];
tp_desc_ptr1_1 = &tpg_desc_ptr1->descriptors[0];
tp_desc_ptr1_2 = (struct scsi_target_port_descriptor *)
&tp_desc_ptr1_1->desc_list[0];
if (single == 0) {
tpg_desc_ptr2 = (struct scsi_target_port_group_descriptor *)
&tp_desc_ptr1_2->desc_list[0];
tp_desc_ptr2_1 = &tpg_desc_ptr2->descriptors[0];
tp_desc_ptr2_2 = (struct scsi_target_port_descriptor *)
&tp_desc_ptr2_1->desc_list[0];
} else {
tpg_desc_ptr2 = NULL;
tp_desc_ptr2_1 = NULL;
tp_desc_ptr2_2 = NULL;
}
scsi_ulto4b(total_len - 4, rtg_ptr->length);
if (single == 0) {
if (ctsio->io_hdr.nexus.targ_port < CTL_MAX_PORTS) {
if (lun->flags & CTL_LUN_PRIMARY_SC) {
tpg_desc_ptr1->pref_state = TPG_PRIMARY;
tpg_desc_ptr2->pref_state =
TPG_ASYMMETRIC_ACCESS_NONOPTIMIZED;
} else {
tpg_desc_ptr1->pref_state =
TPG_ASYMMETRIC_ACCESS_NONOPTIMIZED;
tpg_desc_ptr2->pref_state = TPG_PRIMARY;
}
} else {
if (lun->flags & CTL_LUN_PRIMARY_SC) {
tpg_desc_ptr1->pref_state =
TPG_ASYMMETRIC_ACCESS_NONOPTIMIZED;
tpg_desc_ptr2->pref_state = TPG_PRIMARY;
} else {
tpg_desc_ptr1->pref_state = TPG_PRIMARY;
tpg_desc_ptr2->pref_state =
TPG_ASYMMETRIC_ACCESS_NONOPTIMIZED;
}
}
} else {
tpg_desc_ptr1->pref_state = TPG_PRIMARY;
}
tpg_desc_ptr1->support = 0;
tpg_desc_ptr1->target_port_group[1] = 1;
tpg_desc_ptr1->status = TPG_IMPLICIT;
tpg_desc_ptr1->target_port_count= NUM_PORTS_PER_GRP;
if (single == 0) {
tpg_desc_ptr2->support = 0;
tpg_desc_ptr2->target_port_group[1] = 2;
tpg_desc_ptr2->status = TPG_IMPLICIT;
tpg_desc_ptr2->target_port_count = NUM_PORTS_PER_GRP;
tp_desc_ptr1_1->relative_target_port_identifier[1] = 1;
tp_desc_ptr1_2->relative_target_port_identifier[1] = 2;
tp_desc_ptr2_1->relative_target_port_identifier[1] = 9;
tp_desc_ptr2_2->relative_target_port_identifier[1] = 10;
} else {
if (ctsio->io_hdr.nexus.targ_port < CTL_MAX_PORTS) {
tp_desc_ptr1_1->relative_target_port_identifier[1] = 1;
tp_desc_ptr1_2->relative_target_port_identifier[1] = 2;
} else {
tp_desc_ptr1_1->relative_target_port_identifier[1] = 9;
tp_desc_ptr1_2->relative_target_port_identifier[1] = 10;
}
}
ctsio->be_move_done = ctl_config_move_done;
CTL_DEBUG_PRINT(("buf = %x %x %x %x %x %x %x %x\n",
ctsio->kern_data_ptr[0], ctsio->kern_data_ptr[1],
ctsio->kern_data_ptr[2], ctsio->kern_data_ptr[3],
ctsio->kern_data_ptr[4], ctsio->kern_data_ptr[5],
ctsio->kern_data_ptr[6], ctsio->kern_data_ptr[7]));
ctl_datamove((union ctl_io *)ctsio);
return(retval);
}
int
ctl_persistent_reserve_in(struct ctl_scsiio *ctsio)
{
struct scsi_per_res_in *cdb;
int alloc_len, total_len = 0;
/* struct scsi_per_res_in_rsrv in_data; */
struct ctl_lun *lun;
struct ctl_softc *softc;
CTL_DEBUG_PRINT(("ctl_persistent_reserve_in\n"));
softc = control_softc;
cdb = (struct scsi_per_res_in *)ctsio->cdb;
alloc_len = scsi_2btoul(cdb->length);
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
retry:
mtx_lock(&softc->ctl_lock);
switch (cdb->action) {
case SPRI_RK: /* read keys */
total_len = sizeof(struct scsi_per_res_in_keys) +
lun->pr_key_count *
sizeof(struct scsi_per_res_key);
break;
case SPRI_RR: /* read reservation */
if (lun->flags & CTL_LUN_PR_RESERVED)
total_len = sizeof(struct scsi_per_res_in_rsrv);
else
total_len = sizeof(struct scsi_per_res_in_header);
break;
case SPRI_RC: /* report capabilities */
total_len = sizeof(struct scsi_per_res_cap);
break;
case SPRI_RS: /* read full status */
default:
mtx_unlock(&softc->ctl_lock);
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 1,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
break; /* NOTREACHED */
}
mtx_unlock(&softc->ctl_lock);
ctsio->kern_data_ptr = malloc(total_len, M_CTL, M_WAITOK | M_ZERO);
if (total_len < alloc_len) {
ctsio->residual = alloc_len - total_len;
ctsio->kern_data_len = total_len;
ctsio->kern_total_len = total_len;
} else {
ctsio->residual = 0;
ctsio->kern_data_len = alloc_len;
ctsio->kern_total_len = alloc_len;
}
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
mtx_lock(&softc->ctl_lock);
switch (cdb->action) {
case SPRI_RK: { // read keys
struct scsi_per_res_in_keys *res_keys;
int i, key_count;
res_keys = (struct scsi_per_res_in_keys*)ctsio->kern_data_ptr;
/*
* We had to drop the lock to allocate our buffer, which
* leaves time for someone to come in with another
* persistent reservation. (That is unlikely, though,
* since this should be the only persistent reservation
* command active right now.)
*/
if (total_len != (sizeof(struct scsi_per_res_in_keys) +
(lun->pr_key_count *
sizeof(struct scsi_per_res_key)))){
mtx_unlock(&softc->ctl_lock);
free(ctsio->kern_data_ptr, M_CTL);
printf("%s: reservation length changed, retrying\n",
__func__);
goto retry;
}
scsi_ulto4b(lun->PRGeneration, res_keys->header.generation);
scsi_ulto4b(sizeof(struct scsi_per_res_key) *
lun->pr_key_count, res_keys->header.length);
for (i = 0, key_count = 0; i < 2*CTL_MAX_INITIATORS; i++) {
if (!lun->per_res[i].registered)
continue;
/*
* We used lun->pr_key_count to calculate the
* size to allocate. If it turns out the number of
* initiators with the registered flag set is
* larger than that (i.e. they haven't been kept in
* sync), we've got a problem.
*/
if (key_count >= lun->pr_key_count) {
#ifdef NEEDTOPORT
csevent_log(CSC_CTL | CSC_SHELF_SW |
CTL_PR_ERROR,
csevent_LogType_Fault,
csevent_AlertLevel_Yellow,
csevent_FRU_ShelfController,
csevent_FRU_Firmware,
csevent_FRU_Unknown,
"registered keys %d >= key "
"count %d", key_count,
lun->pr_key_count);
#endif
key_count++;
continue;
}
memcpy(res_keys->keys[key_count].key,
lun->per_res[i].res_key.key,
ctl_min(sizeof(res_keys->keys[key_count].key),
sizeof(lun->per_res[i].res_key)));
key_count++;
}
break;
}
case SPRI_RR: { // read reservation
struct scsi_per_res_in_rsrv *res;
int tmp_len, header_only;
res = (struct scsi_per_res_in_rsrv *)ctsio->kern_data_ptr;
scsi_ulto4b(lun->PRGeneration, res->header.generation);
if (lun->flags & CTL_LUN_PR_RESERVED)
{
tmp_len = sizeof(struct scsi_per_res_in_rsrv);
scsi_ulto4b(sizeof(struct scsi_per_res_in_rsrv_data),
res->header.length);
header_only = 0;
} else {
tmp_len = sizeof(struct scsi_per_res_in_header);
scsi_ulto4b(0, res->header.length);
header_only = 1;
}
/*
* We had to drop the lock to allocate our buffer, which
* leaves time for someone to come in with another
* persistent reservation. (That is unlikely, though,
* since this should be the only persistent reservation
* command active right now.)
*/
if (tmp_len != total_len) {
mtx_unlock(&softc->ctl_lock);
free(ctsio->kern_data_ptr, M_CTL);
printf("%s: reservation status changed, retrying\n",
__func__);
goto retry;
}
/*
* No reservation held, so we're done.
*/
if (header_only != 0)
break;
/*
* If the registration is an All Registrants type, the key
* is 0, since it doesn't really matter.
*/
if (lun->pr_res_idx != CTL_PR_ALL_REGISTRANTS) {
memcpy(res->data.reservation,
&lun->per_res[lun->pr_res_idx].res_key,
sizeof(struct scsi_per_res_key));
}
res->data.scopetype = lun->res_type;
break;
}
case SPRI_RC: //report capabilities
{
struct scsi_per_res_cap *res_cap;
uint16_t type_mask;
res_cap = (struct scsi_per_res_cap *)ctsio->kern_data_ptr;
scsi_ulto2b(sizeof(*res_cap), res_cap->length);
res_cap->flags2 |= SPRI_TMV;
type_mask = SPRI_TM_WR_EX_AR |
SPRI_TM_EX_AC_RO |
SPRI_TM_WR_EX_RO |
SPRI_TM_EX_AC |
SPRI_TM_WR_EX |
SPRI_TM_EX_AC_AR;
scsi_ulto2b(type_mask, res_cap->type_mask);
break;
}
case SPRI_RS: //read full status
default:
/*
* This is a bug, because we just checked for this above,
* and should have returned an error.
*/
panic("Invalid PR type %x", cdb->action);
break; /* NOTREACHED */
}
mtx_unlock(&softc->ctl_lock);
ctsio->be_move_done = ctl_config_move_done;
CTL_DEBUG_PRINT(("buf = %x %x %x %x %x %x %x %x\n",
ctsio->kern_data_ptr[0], ctsio->kern_data_ptr[1],
ctsio->kern_data_ptr[2], ctsio->kern_data_ptr[3],
ctsio->kern_data_ptr[4], ctsio->kern_data_ptr[5],
ctsio->kern_data_ptr[6], ctsio->kern_data_ptr[7]));
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* Returns 0 if ctl_persistent_reserve_out() should continue, non-zero if
* it should return.
*/
static int
ctl_pro_preempt(struct ctl_softc *softc, struct ctl_lun *lun, uint64_t res_key,
uint64_t sa_res_key, uint8_t type, uint32_t residx,
struct ctl_scsiio *ctsio, struct scsi_per_res_out *cdb,
struct scsi_per_res_out_parms* param)
{
union ctl_ha_msg persis_io;
int retval, i;
int isc_retval;
retval = 0;
if (sa_res_key == 0) {
mtx_lock(&softc->ctl_lock);
if (lun->pr_res_idx == CTL_PR_ALL_REGISTRANTS) {
/* validate scope and type */
if ((cdb->scope_type & SPR_SCOPE_MASK) !=
SPR_LU_SCOPE) {
mtx_unlock(&softc->ctl_lock);
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 4);
ctl_done((union ctl_io *)ctsio);
return (1);
}
if (type>8 || type==2 || type==4 || type==0) {
mtx_unlock(&softc->ctl_lock);
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (1);
}
/* temporarily unregister this nexus */
lun->per_res[residx].registered = 0;
/*
* Unregister everybody else and build UA for
* them
*/
for(i=0; i < 2*CTL_MAX_INITIATORS; i++) {
if (lun->per_res[i].registered == 0)
continue;
if (!persis_offset
&& i <CTL_MAX_INITIATORS)
lun->pending_sense[i].ua_pending |=
CTL_UA_REG_PREEMPT;
else if (persis_offset
&& i >= persis_offset)
lun->pending_sense[i-persis_offset
].ua_pending |=
CTL_UA_REG_PREEMPT;
lun->per_res[i].registered = 0;
memset(&lun->per_res[i].res_key, 0,
sizeof(struct scsi_per_res_key));
}
lun->per_res[residx].registered = 1;
lun->pr_key_count = 1;
lun->res_type = type;
if (lun->res_type != SPR_TYPE_WR_EX_AR
&& lun->res_type != SPR_TYPE_EX_AC_AR)
lun->pr_res_idx = residx;
mtx_unlock(&softc->ctl_lock);
/* send msg to other side */
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_PREEMPT;
persis_io.pr.pr_info.residx = lun->pr_res_idx;
persis_io.pr.pr_info.res_type = type;
memcpy(persis_io.pr.pr_info.sa_res_key,
param->serv_act_res_key,
sizeof(param->serv_act_res_key));
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL,
&persis_io, sizeof(persis_io), 0)) >
CTL_HA_STATUS_SUCCESS) {
printf("CTL:Persis Out error returned "
"from ctl_ha_msg_send %d\n",
isc_retval);
}
} else {
/* not all registrants */
mtx_unlock(&softc->ctl_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 0,
/*field*/ 8,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (1);
}
} else if (lun->pr_res_idx == CTL_PR_ALL_REGISTRANTS
|| !(lun->flags & CTL_LUN_PR_RESERVED)) {
int found = 0;
mtx_lock(&softc->ctl_lock);
if (res_key == sa_res_key) {
/* special case */
/*
* The spec implies this is not good but doesn't
* say what to do. There are two choices either
* generate a res conflict or check condition
* with illegal field in parameter data. Since
* that is what is done when the sa_res_key is
* zero I'll take that approach since this has
* to do with the sa_res_key.
*/
mtx_unlock(&softc->ctl_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 0,
/*field*/ 8,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (1);
}
for (i=0; i < 2*CTL_MAX_INITIATORS; i++) {
if (lun->per_res[i].registered
&& memcmp(param->serv_act_res_key,
lun->per_res[i].res_key.key,
sizeof(struct scsi_per_res_key)) != 0)
continue;
found = 1;
lun->per_res[i].registered = 0;
memset(&lun->per_res[i].res_key, 0,
sizeof(struct scsi_per_res_key));
lun->pr_key_count--;
if (!persis_offset
&& i < CTL_MAX_INITIATORS)
lun->pending_sense[i].ua_pending |=
CTL_UA_REG_PREEMPT;
else if (persis_offset
&& i >= persis_offset)
lun->pending_sense[i-persis_offset].ua_pending|=
CTL_UA_REG_PREEMPT;
}
mtx_unlock(&softc->ctl_lock);
if (!found) {
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_reservation_conflict(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/* send msg to other side */
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_PREEMPT;
persis_io.pr.pr_info.residx = lun->pr_res_idx;
persis_io.pr.pr_info.res_type = type;
memcpy(persis_io.pr.pr_info.sa_res_key,
param->serv_act_res_key,
sizeof(param->serv_act_res_key));
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL,
&persis_io, sizeof(persis_io), 0)) >
CTL_HA_STATUS_SUCCESS) {
printf("CTL:Persis Out error returned from "
"ctl_ha_msg_send %d\n", isc_retval);
}
} else {
/* Reserved but not all registrants */
/* sa_res_key is res holder */
if (memcmp(param->serv_act_res_key,
lun->per_res[lun->pr_res_idx].res_key.key,
sizeof(struct scsi_per_res_key)) == 0) {
/* validate scope and type */
if ((cdb->scope_type & SPR_SCOPE_MASK) !=
SPR_LU_SCOPE) {
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 4);
ctl_done((union ctl_io *)ctsio);
return (1);
}
if (type>8 || type==2 || type==4 || type==0) {
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (1);
}
/*
* Do the following:
* if sa_res_key != res_key remove all
* registrants w/sa_res_key and generate UA
* for these registrants(Registrations
* Preempted) if it wasn't an exclusive
* reservation generate UA(Reservations
* Preempted) for all other registered nexuses
* if the type has changed. Establish the new
* reservation and holder. If res_key and
* sa_res_key are the same do the above
* except don't unregister the res holder.
*/
/*
* Temporarily unregister so it won't get
* removed or UA generated
*/
lun->per_res[residx].registered = 0;
for(i=0; i < 2*CTL_MAX_INITIATORS; i++) {
if (lun->per_res[i].registered == 0)
continue;
if (memcmp(param->serv_act_res_key,
lun->per_res[i].res_key.key,
sizeof(struct scsi_per_res_key)) == 0) {
lun->per_res[i].registered = 0;
memset(&lun->per_res[i].res_key,
0,
sizeof(struct scsi_per_res_key));
lun->pr_key_count--;
if (!persis_offset
&& i < CTL_MAX_INITIATORS)
lun->pending_sense[i
].ua_pending |=
CTL_UA_REG_PREEMPT;
else if (persis_offset
&& i >= persis_offset)
lun->pending_sense[
i-persis_offset].ua_pending |=
CTL_UA_REG_PREEMPT;
} else if (type != lun->res_type
&& (lun->res_type == SPR_TYPE_WR_EX_RO
|| lun->res_type ==SPR_TYPE_EX_AC_RO)){
if (!persis_offset
&& i < CTL_MAX_INITIATORS)
lun->pending_sense[i
].ua_pending |=
CTL_UA_RES_RELEASE;
else if (persis_offset
&& i >= persis_offset)
lun->pending_sense[
i-persis_offset
].ua_pending |=
CTL_UA_RES_RELEASE;
}
}
lun->per_res[residx].registered = 1;
lun->res_type = type;
if (lun->res_type != SPR_TYPE_WR_EX_AR
&& lun->res_type != SPR_TYPE_EX_AC_AR)
lun->pr_res_idx = residx;
else
lun->pr_res_idx =
CTL_PR_ALL_REGISTRANTS;
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_PREEMPT;
persis_io.pr.pr_info.residx = lun->pr_res_idx;
persis_io.pr.pr_info.res_type = type;
memcpy(persis_io.pr.pr_info.sa_res_key,
param->serv_act_res_key,
sizeof(param->serv_act_res_key));
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL,
&persis_io, sizeof(persis_io), 0)) >
CTL_HA_STATUS_SUCCESS) {
printf("CTL:Persis Out error returned "
"from ctl_ha_msg_send %d\n",
isc_retval);
}
} else {
/*
* sa_res_key is not the res holder just
* remove registrants
*/
int found=0;
mtx_lock(&softc->ctl_lock);
for (i=0; i < 2*CTL_MAX_INITIATORS; i++) {
if (memcmp(param->serv_act_res_key,
lun->per_res[i].res_key.key,
sizeof(struct scsi_per_res_key)) != 0)
continue;
found = 1;
lun->per_res[i].registered = 0;
memset(&lun->per_res[i].res_key, 0,
sizeof(struct scsi_per_res_key));
lun->pr_key_count--;
if (!persis_offset
&& i < CTL_MAX_INITIATORS)
lun->pending_sense[i].ua_pending |=
CTL_UA_REG_PREEMPT;
else if (persis_offset
&& i >= persis_offset)
lun->pending_sense[
i-persis_offset].ua_pending |=
CTL_UA_REG_PREEMPT;
}
if (!found) {
mtx_unlock(&softc->ctl_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_reservation_conflict(ctsio);
ctl_done((union ctl_io *)ctsio);
return (1);
}
mtx_unlock(&softc->ctl_lock);
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_PREEMPT;
persis_io.pr.pr_info.residx = lun->pr_res_idx;
persis_io.pr.pr_info.res_type = type;
memcpy(persis_io.pr.pr_info.sa_res_key,
param->serv_act_res_key,
sizeof(param->serv_act_res_key));
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL,
&persis_io, sizeof(persis_io), 0)) >
CTL_HA_STATUS_SUCCESS) {
printf("CTL:Persis Out error returned "
"from ctl_ha_msg_send %d\n",
isc_retval);
}
}
}
lun->PRGeneration++;
return (retval);
}
static void
ctl_pro_preempt_other(struct ctl_lun *lun, union ctl_ha_msg *msg)
{
int i;
if (lun->pr_res_idx == CTL_PR_ALL_REGISTRANTS
|| lun->pr_res_idx == CTL_PR_NO_RESERVATION
|| memcmp(&lun->per_res[lun->pr_res_idx].res_key,
msg->pr.pr_info.sa_res_key,
sizeof(struct scsi_per_res_key)) != 0) {
uint64_t sa_res_key;
sa_res_key = scsi_8btou64(msg->pr.pr_info.sa_res_key);
if (sa_res_key == 0) {
/* temporarily unregister this nexus */
lun->per_res[msg->pr.pr_info.residx].registered = 0;
/*
* Unregister everybody else and build UA for
* them
*/
for(i=0; i < 2*CTL_MAX_INITIATORS; i++) {
if (lun->per_res[i].registered == 0)
continue;
if (!persis_offset
&& i < CTL_MAX_INITIATORS)
lun->pending_sense[i].ua_pending |=
CTL_UA_REG_PREEMPT;
else if (persis_offset && i >= persis_offset)
lun->pending_sense[i -
persis_offset].ua_pending |=
CTL_UA_REG_PREEMPT;
lun->per_res[i].registered = 0;
memset(&lun->per_res[i].res_key, 0,
sizeof(struct scsi_per_res_key));
}
lun->per_res[msg->pr.pr_info.residx].registered = 1;
lun->pr_key_count = 1;
lun->res_type = msg->pr.pr_info.res_type;
if (lun->res_type != SPR_TYPE_WR_EX_AR
&& lun->res_type != SPR_TYPE_EX_AC_AR)
lun->pr_res_idx = msg->pr.pr_info.residx;
} else {
for (i=0; i < 2*CTL_MAX_INITIATORS; i++) {
if (memcmp(msg->pr.pr_info.sa_res_key,
lun->per_res[i].res_key.key,
sizeof(struct scsi_per_res_key)) != 0)
continue;
lun->per_res[i].registered = 0;
memset(&lun->per_res[i].res_key, 0,
sizeof(struct scsi_per_res_key));
lun->pr_key_count--;
if (!persis_offset
&& i < persis_offset)
lun->pending_sense[i].ua_pending |=
CTL_UA_REG_PREEMPT;
else if (persis_offset
&& i >= persis_offset)
lun->pending_sense[i -
persis_offset].ua_pending |=
CTL_UA_REG_PREEMPT;
}
}
} else {
/*
* Temporarily unregister so it won't get removed
* or UA generated
*/
lun->per_res[msg->pr.pr_info.residx].registered = 0;
for (i=0; i < 2*CTL_MAX_INITIATORS; i++) {
if (lun->per_res[i].registered == 0)
continue;
if (memcmp(msg->pr.pr_info.sa_res_key,
lun->per_res[i].res_key.key,
sizeof(struct scsi_per_res_key)) == 0) {
lun->per_res[i].registered = 0;
memset(&lun->per_res[i].res_key, 0,
sizeof(struct scsi_per_res_key));
lun->pr_key_count--;
if (!persis_offset
&& i < CTL_MAX_INITIATORS)
lun->pending_sense[i].ua_pending |=
CTL_UA_REG_PREEMPT;
else if (persis_offset
&& i >= persis_offset)
lun->pending_sense[i -
persis_offset].ua_pending |=
CTL_UA_REG_PREEMPT;
} else if (msg->pr.pr_info.res_type != lun->res_type
&& (lun->res_type == SPR_TYPE_WR_EX_RO
|| lun->res_type == SPR_TYPE_EX_AC_RO)) {
if (!persis_offset
&& i < persis_offset)
lun->pending_sense[i
].ua_pending |=
CTL_UA_RES_RELEASE;
else if (persis_offset
&& i >= persis_offset)
lun->pending_sense[i -
persis_offset].ua_pending |=
CTL_UA_RES_RELEASE;
}
}
lun->per_res[msg->pr.pr_info.residx].registered = 1;
lun->res_type = msg->pr.pr_info.res_type;
if (lun->res_type != SPR_TYPE_WR_EX_AR
&& lun->res_type != SPR_TYPE_EX_AC_AR)
lun->pr_res_idx = msg->pr.pr_info.residx;
else
lun->pr_res_idx = CTL_PR_ALL_REGISTRANTS;
}
lun->PRGeneration++;
}
int
ctl_persistent_reserve_out(struct ctl_scsiio *ctsio)
{
int retval;
int isc_retval;
u_int32_t param_len;
struct scsi_per_res_out *cdb;
struct ctl_lun *lun;
struct scsi_per_res_out_parms* param;
struct ctl_softc *softc;
uint32_t residx;
uint64_t res_key, sa_res_key;
uint8_t type;
union ctl_ha_msg persis_io;
int i;
CTL_DEBUG_PRINT(("ctl_persistent_reserve_out\n"));
retval = CTL_RETVAL_COMPLETE;
softc = control_softc;
cdb = (struct scsi_per_res_out *)ctsio->cdb;
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
/*
* We only support whole-LUN scope. The scope & type are ignored for
* register, register and ignore existing key and clear.
* We sometimes ignore scope and type on preempts too!!
* Verify reservation type here as well.
*/
type = cdb->scope_type & SPR_TYPE_MASK;
if ((cdb->action == SPRO_RESERVE)
|| (cdb->action == SPRO_RELEASE)) {
if ((cdb->scope_type & SPR_SCOPE_MASK) != SPR_LU_SCOPE) {
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 4);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if (type>8 || type==2 || type==4 || type==0) {
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 1,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
}
switch (cdb->action & SPRO_ACTION_MASK) {
case SPRO_REGISTER:
case SPRO_RESERVE:
case SPRO_RELEASE:
case SPRO_CLEAR:
case SPRO_PREEMPT:
case SPRO_REG_IGNO:
break;
case SPRO_REG_MOVE:
case SPRO_PRE_ABO:
default:
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 1,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
break; /* NOTREACHED */
}
param_len = scsi_4btoul(cdb->length);
if ((ctsio->io_hdr.flags & CTL_FLAG_ALLOCATED) == 0) {
ctsio->kern_data_ptr = malloc(param_len, M_CTL, M_WAITOK);
ctsio->kern_data_len = param_len;
ctsio->kern_total_len = param_len;
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
ctsio->io_hdr.flags |= CTL_FLAG_ALLOCATED;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
param = (struct scsi_per_res_out_parms *)ctsio->kern_data_ptr;
residx = ctl_get_resindex(&ctsio->io_hdr.nexus);
res_key = scsi_8btou64(param->res_key.key);
sa_res_key = scsi_8btou64(param->serv_act_res_key);
/*
* Validate the reservation key here except for SPRO_REG_IGNO
* This must be done for all other service actions
*/
if ((cdb->action & SPRO_ACTION_MASK) != SPRO_REG_IGNO) {
mtx_lock(&softc->ctl_lock);
if (lun->per_res[residx].registered) {
if (memcmp(param->res_key.key,
lun->per_res[residx].res_key.key,
ctl_min(sizeof(param->res_key),
sizeof(lun->per_res[residx].res_key))) != 0) {
/*
* The current key passed in doesn't match
* the one the initiator previously
* registered.
*/
mtx_unlock(&softc->ctl_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_reservation_conflict(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
} else if ((cdb->action & SPRO_ACTION_MASK) != SPRO_REGISTER) {
/*
* We are not registered
*/
mtx_unlock(&softc->ctl_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_reservation_conflict(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
} else if (res_key != 0) {
/*
* We are not registered and trying to register but
* the register key isn't zero.
*/
mtx_unlock(&softc->ctl_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_reservation_conflict(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
mtx_unlock(&softc->ctl_lock);
}
switch (cdb->action & SPRO_ACTION_MASK) {
case SPRO_REGISTER:
case SPRO_REG_IGNO: {
#if 0
printf("Registration received\n");
#endif
/*
* We don't support any of these options, as we report in
* the read capabilities request (see
* ctl_persistent_reserve_in(), above).
*/
if ((param->flags & SPR_SPEC_I_PT)
|| (param->flags & SPR_ALL_TG_PT)
|| (param->flags & SPR_APTPL)) {
int bit_ptr;
if (param->flags & SPR_APTPL)
bit_ptr = 0;
else if (param->flags & SPR_ALL_TG_PT)
bit_ptr = 2;
else /* SPR_SPEC_I_PT */
bit_ptr = 3;
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 0,
/*field*/ 20,
/*bit_valid*/ 1,
/*bit*/ bit_ptr);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
mtx_lock(&softc->ctl_lock);
/*
* The initiator wants to clear the
* key/unregister.
*/
if (sa_res_key == 0) {
if ((res_key == 0
&& (cdb->action & SPRO_ACTION_MASK) == SPRO_REGISTER)
|| ((cdb->action & SPRO_ACTION_MASK) == SPRO_REG_IGNO
&& !lun->per_res[residx].registered)) {
mtx_unlock(&softc->ctl_lock);
goto done;
}
lun->per_res[residx].registered = 0;
memset(&lun->per_res[residx].res_key,
0, sizeof(lun->per_res[residx].res_key));
lun->pr_key_count--;
if (residx == lun->pr_res_idx) {
lun->flags &= ~CTL_LUN_PR_RESERVED;
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
if ((lun->res_type == SPR_TYPE_WR_EX_RO
|| lun->res_type == SPR_TYPE_EX_AC_RO)
&& lun->pr_key_count) {
/*
* If the reservation is a registrants
* only type we need to generate a UA
* for other registered inits. The
* sense code should be RESERVATIONS
* RELEASED
*/
for (i = 0; i < CTL_MAX_INITIATORS;i++){
if (lun->per_res[
i+persis_offset].registered
== 0)
continue;
lun->pending_sense[i
].ua_pending |=
CTL_UA_RES_RELEASE;
}
}
lun->res_type = 0;
} else if (lun->pr_res_idx == CTL_PR_ALL_REGISTRANTS) {
if (lun->pr_key_count==0) {
lun->flags &= ~CTL_LUN_PR_RESERVED;
lun->res_type = 0;
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
}
}
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_UNREG_KEY;
persis_io.pr.pr_info.residx = residx;
if ((isc_retval = ctl_ha_msg_send(CTL_HA_CHAN_CTL,
&persis_io, sizeof(persis_io), 0 )) >
CTL_HA_STATUS_SUCCESS) {
printf("CTL:Persis Out error returned from "
"ctl_ha_msg_send %d\n", isc_retval);
}
mtx_unlock(&softc->ctl_lock);
} else /* sa_res_key != 0 */ {
/*
* If we aren't registered currently then increment
* the key count and set the registered flag.
*/
if (!lun->per_res[residx].registered) {
lun->pr_key_count++;
lun->per_res[residx].registered = 1;
}
memcpy(&lun->per_res[residx].res_key,
param->serv_act_res_key,
ctl_min(sizeof(param->serv_act_res_key),
sizeof(lun->per_res[residx].res_key)));
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_REG_KEY;
persis_io.pr.pr_info.residx = residx;
memcpy(persis_io.pr.pr_info.sa_res_key,
param->serv_act_res_key,
sizeof(param->serv_act_res_key));
mtx_unlock(&softc->ctl_lock);
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL,
&persis_io, sizeof(persis_io), 0)) >
CTL_HA_STATUS_SUCCESS) {
printf("CTL:Persis Out error returned from "
"ctl_ha_msg_send %d\n", isc_retval);
}
}
lun->PRGeneration++;
break;
}
case SPRO_RESERVE:
#if 0
printf("Reserve executed type %d\n", type);
#endif
mtx_lock(&softc->ctl_lock);
if (lun->flags & CTL_LUN_PR_RESERVED) {
/*
* if this isn't the reservation holder and it's
* not a "all registrants" type or if the type is
* different then we have a conflict
*/
if ((lun->pr_res_idx != residx
&& lun->pr_res_idx != CTL_PR_ALL_REGISTRANTS)
|| lun->res_type != type) {
mtx_unlock(&softc->ctl_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_reservation_conflict(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
} else /* create a reservation */ {
/*
* If it's not an "all registrants" type record
* reservation holder
*/
if (type != SPR_TYPE_WR_EX_AR
&& type != SPR_TYPE_EX_AC_AR)
lun->pr_res_idx = residx; /* Res holder */
else
lun->pr_res_idx = CTL_PR_ALL_REGISTRANTS;
lun->flags |= CTL_LUN_PR_RESERVED;
lun->res_type = type;
mtx_unlock(&softc->ctl_lock);
/* send msg to other side */
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_RESERVE;
persis_io.pr.pr_info.residx = lun->pr_res_idx;
persis_io.pr.pr_info.res_type = type;
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL,
&persis_io, sizeof(persis_io), 0)) >
CTL_HA_STATUS_SUCCESS) {
printf("CTL:Persis Out error returned from "
"ctl_ha_msg_send %d\n", isc_retval);
}
}
break;
case SPRO_RELEASE:
mtx_lock(&softc->ctl_lock);
if ((lun->flags & CTL_LUN_PR_RESERVED) == 0) {
/* No reservation exists return good status */
mtx_unlock(&softc->ctl_lock);
goto done;
}
/*
* Is this nexus a reservation holder?
*/
if (lun->pr_res_idx != residx
&& lun->pr_res_idx != CTL_PR_ALL_REGISTRANTS) {
/*
* not a res holder return good status but
* do nothing
*/
mtx_unlock(&softc->ctl_lock);
goto done;
}
if (lun->res_type != type) {
mtx_unlock(&softc->ctl_lock);
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_illegal_pr_release(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/* okay to release */
lun->flags &= ~CTL_LUN_PR_RESERVED;
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
lun->res_type = 0;
/*
* if this isn't an exclusive access
* res generate UA for all other
* registrants.
*/
if (type != SPR_TYPE_EX_AC
&& type != SPR_TYPE_WR_EX) {
/*
* temporarily unregister so we don't generate UA
*/
lun->per_res[residx].registered = 0;
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
if (lun->per_res[i+persis_offset].registered
== 0)
continue;
lun->pending_sense[i].ua_pending |=
CTL_UA_RES_RELEASE;
}
lun->per_res[residx].registered = 1;
}
mtx_unlock(&softc->ctl_lock);
/* Send msg to other side */
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_RELEASE;
if ((isc_retval=ctl_ha_msg_send( CTL_HA_CHAN_CTL, &persis_io,
sizeof(persis_io), 0)) > CTL_HA_STATUS_SUCCESS) {
printf("CTL:Persis Out error returned from "
"ctl_ha_msg_send %d\n", isc_retval);
}
break;
case SPRO_CLEAR:
/* send msg to other side */
mtx_lock(&softc->ctl_lock);
lun->flags &= ~CTL_LUN_PR_RESERVED;
lun->res_type = 0;
lun->pr_key_count = 0;
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
memset(&lun->per_res[residx].res_key,
0, sizeof(lun->per_res[residx].res_key));
lun->per_res[residx].registered = 0;
for (i=0; i < 2*CTL_MAX_INITIATORS; i++)
if (lun->per_res[i].registered) {
if (!persis_offset && i < CTL_MAX_INITIATORS)
lun->pending_sense[i].ua_pending |=
CTL_UA_RES_PREEMPT;
else if (persis_offset && i >= persis_offset)
lun->pending_sense[i-persis_offset
].ua_pending |= CTL_UA_RES_PREEMPT;
memset(&lun->per_res[i].res_key,
0, sizeof(struct scsi_per_res_key));
lun->per_res[i].registered = 0;
}
lun->PRGeneration++;
mtx_unlock(&softc->ctl_lock);
persis_io.hdr.nexus = ctsio->io_hdr.nexus;
persis_io.hdr.msg_type = CTL_MSG_PERS_ACTION;
persis_io.pr.pr_info.action = CTL_PR_CLEAR;
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL, &persis_io,
sizeof(persis_io), 0)) > CTL_HA_STATUS_SUCCESS) {
printf("CTL:Persis Out error returned from "
"ctl_ha_msg_send %d\n", isc_retval);
}
break;
case SPRO_PREEMPT: {
int nretval;
nretval = ctl_pro_preempt(softc, lun, res_key, sa_res_key, type,
residx, ctsio, cdb, param);
if (nretval != 0)
return (CTL_RETVAL_COMPLETE);
break;
}
case SPRO_REG_MOVE:
case SPRO_PRE_ABO:
default:
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_invalid_field(/*ctsio*/ ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 1,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
break; /* NOTREACHED */
}
done:
free(ctsio->kern_data_ptr, M_CTL);
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
return (retval);
}
/*
* This routine is for handling a message from the other SC pertaining to
* persistent reserve out. All the error checking will have been done
* so only perorming the action need be done here to keep the two
* in sync.
*/
static void
ctl_hndl_per_res_out_on_other_sc(union ctl_ha_msg *msg)
{
struct ctl_lun *lun;
struct ctl_softc *softc;
int i;
softc = control_softc;
mtx_lock(&softc->ctl_lock);
lun = softc->ctl_luns[msg->hdr.nexus.targ_lun];
switch(msg->pr.pr_info.action) {
case CTL_PR_REG_KEY:
if (!lun->per_res[msg->pr.pr_info.residx].registered) {
lun->per_res[msg->pr.pr_info.residx].registered = 1;
lun->pr_key_count++;
}
lun->PRGeneration++;
memcpy(&lun->per_res[msg->pr.pr_info.residx].res_key,
msg->pr.pr_info.sa_res_key,
sizeof(struct scsi_per_res_key));
break;
case CTL_PR_UNREG_KEY:
lun->per_res[msg->pr.pr_info.residx].registered = 0;
memset(&lun->per_res[msg->pr.pr_info.residx].res_key,
0, sizeof(struct scsi_per_res_key));
lun->pr_key_count--;
/* XXX Need to see if the reservation has been released */
/* if so do we need to generate UA? */
if (msg->pr.pr_info.residx == lun->pr_res_idx) {
lun->flags &= ~CTL_LUN_PR_RESERVED;
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
if ((lun->res_type == SPR_TYPE_WR_EX_RO
|| lun->res_type == SPR_TYPE_EX_AC_RO)
&& lun->pr_key_count) {
/*
* If the reservation is a registrants
* only type we need to generate a UA
* for other registered inits. The
* sense code should be RESERVATIONS
* RELEASED
*/
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
if (lun->per_res[i+
persis_offset].registered == 0)
continue;
lun->pending_sense[i
].ua_pending |=
CTL_UA_RES_RELEASE;
}
}
lun->res_type = 0;
} else if (lun->pr_res_idx == CTL_PR_ALL_REGISTRANTS) {
if (lun->pr_key_count==0) {
lun->flags &= ~CTL_LUN_PR_RESERVED;
lun->res_type = 0;
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
}
}
lun->PRGeneration++;
break;
case CTL_PR_RESERVE:
lun->flags |= CTL_LUN_PR_RESERVED;
lun->res_type = msg->pr.pr_info.res_type;
lun->pr_res_idx = msg->pr.pr_info.residx;
break;
case CTL_PR_RELEASE:
/*
* if this isn't an exclusive access res generate UA for all
* other registrants.
*/
if (lun->res_type != SPR_TYPE_EX_AC
&& lun->res_type != SPR_TYPE_WR_EX) {
for (i = 0; i < CTL_MAX_INITIATORS; i++)
if (lun->per_res[i+persis_offset].registered)
lun->pending_sense[i].ua_pending |=
CTL_UA_RES_RELEASE;
}
lun->flags &= ~CTL_LUN_PR_RESERVED;
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
lun->res_type = 0;
break;
case CTL_PR_PREEMPT:
ctl_pro_preempt_other(lun, msg);
break;
case CTL_PR_CLEAR:
lun->flags &= ~CTL_LUN_PR_RESERVED;
lun->res_type = 0;
lun->pr_key_count = 0;
lun->pr_res_idx = CTL_PR_NO_RESERVATION;
for (i=0; i < 2*CTL_MAX_INITIATORS; i++) {
if (lun->per_res[i].registered == 0)
continue;
if (!persis_offset
&& i < CTL_MAX_INITIATORS)
lun->pending_sense[i].ua_pending |=
CTL_UA_RES_PREEMPT;
else if (persis_offset
&& i >= persis_offset)
lun->pending_sense[i-persis_offset].ua_pending|=
CTL_UA_RES_PREEMPT;
memset(&lun->per_res[i].res_key, 0,
sizeof(struct scsi_per_res_key));
lun->per_res[i].registered = 0;
}
lun->PRGeneration++;
break;
}
mtx_unlock(&softc->ctl_lock);
}
int
ctl_read_write(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun;
struct ctl_lba_len lbalen;
uint64_t lba;
uint32_t num_blocks;
int reladdr, fua, dpo, ebp;
int retval;
int isread;
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
CTL_DEBUG_PRINT(("ctl_read_write: command: %#x\n", ctsio->cdb[0]));
reladdr = 0;
fua = 0;
dpo = 0;
ebp = 0;
retval = CTL_RETVAL_COMPLETE;
isread = ctsio->cdb[0] == READ_6 || ctsio->cdb[0] == READ_10
|| ctsio->cdb[0] == READ_12 || ctsio->cdb[0] == READ_16;
if (lun->flags & CTL_LUN_PR_RESERVED && isread) {
uint32_t residx;
/*
* XXX KDM need a lock here.
*/
residx = ctl_get_resindex(&ctsio->io_hdr.nexus);
if ((lun->res_type == SPR_TYPE_EX_AC
&& residx != lun->pr_res_idx)
|| ((lun->res_type == SPR_TYPE_EX_AC_RO
|| lun->res_type == SPR_TYPE_EX_AC_AR)
&& !lun->per_res[residx].registered)) {
ctl_set_reservation_conflict(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
}
switch (ctsio->cdb[0]) {
case READ_6:
case WRITE_6: {
struct scsi_rw_6 *cdb;
cdb = (struct scsi_rw_6 *)ctsio->cdb;
lba = scsi_3btoul(cdb->addr);
/* only 5 bits are valid in the most significant address byte */
lba &= 0x1fffff;
num_blocks = cdb->length;
/*
* This is correct according to SBC-2.
*/
if (num_blocks == 0)
num_blocks = 256;
break;
}
case READ_10:
case WRITE_10: {
struct scsi_rw_10 *cdb;
cdb = (struct scsi_rw_10 *)ctsio->cdb;
if (cdb->byte2 & SRW10_RELADDR)
reladdr = 1;
if (cdb->byte2 & SRW10_FUA)
fua = 1;
if (cdb->byte2 & SRW10_DPO)
dpo = 1;
if ((cdb->opcode == WRITE_10)
&& (cdb->byte2 & SRW10_EBP))
ebp = 1;
lba = scsi_4btoul(cdb->addr);
num_blocks = scsi_2btoul(cdb->length);
break;
}
case WRITE_VERIFY_10: {
struct scsi_write_verify_10 *cdb;
cdb = (struct scsi_write_verify_10 *)ctsio->cdb;
/*
* XXX KDM we should do actual write verify support at some
* point. This is obviously fake, we're just translating
* things to a write. So we don't even bother checking the
* BYTCHK field, since we don't do any verification. If
* the user asks for it, we'll just pretend we did it.
*/
if (cdb->byte2 & SWV_DPO)
dpo = 1;
lba = scsi_4btoul(cdb->addr);
num_blocks = scsi_2btoul(cdb->length);
break;
}
case READ_12:
case WRITE_12: {
struct scsi_rw_12 *cdb;
cdb = (struct scsi_rw_12 *)ctsio->cdb;
if (cdb->byte2 & SRW12_RELADDR)
reladdr = 1;
if (cdb->byte2 & SRW12_FUA)
fua = 1;
if (cdb->byte2 & SRW12_DPO)
dpo = 1;
lba = scsi_4btoul(cdb->addr);
num_blocks = scsi_4btoul(cdb->length);
break;
}
case WRITE_VERIFY_12: {
struct scsi_write_verify_12 *cdb;
cdb = (struct scsi_write_verify_12 *)ctsio->cdb;
if (cdb->byte2 & SWV_DPO)
dpo = 1;
lba = scsi_4btoul(cdb->addr);
num_blocks = scsi_4btoul(cdb->length);
break;
}
case READ_16:
case WRITE_16: {
struct scsi_rw_16 *cdb;
cdb = (struct scsi_rw_16 *)ctsio->cdb;
if (cdb->byte2 & SRW12_RELADDR)
reladdr = 1;
if (cdb->byte2 & SRW12_FUA)
fua = 1;
if (cdb->byte2 & SRW12_DPO)
dpo = 1;
lba = scsi_8btou64(cdb->addr);
num_blocks = scsi_4btoul(cdb->length);
break;
}
case WRITE_VERIFY_16: {
struct scsi_write_verify_16 *cdb;
cdb = (struct scsi_write_verify_16 *)ctsio->cdb;
if (cdb->byte2 & SWV_DPO)
dpo = 1;
lba = scsi_8btou64(cdb->addr);
num_blocks = scsi_4btoul(cdb->length);
break;
}
default:
/*
* We got a command we don't support. This shouldn't
* happen, commands should be filtered out above us.
*/
ctl_set_invalid_opcode(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
break; /* NOTREACHED */
}
/*
* XXX KDM what do we do with the DPO and FUA bits? FUA might be
* interesting for us, but if RAIDCore is in write-back mode,
* getting it to do write-through for a particular transaction may
* not be possible.
*/
/*
* We don't support relative addressing. That also requires
* supporting linked commands, which we don't do.
*/
if (reladdr != 0) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 1,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* The first check is to make sure we're in bounds, the second
* check is to catch wrap-around problems. If the lba + num blocks
* is less than the lba, then we've wrapped around and the block
* range is invalid anyway.
*/
if (((lba + num_blocks) > (lun->be_lun->maxlba + 1))
|| ((lba + num_blocks) < lba)) {
ctl_set_lba_out_of_range(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
/*
* According to SBC-3, a transfer length of 0 is not an error.
* Note that this cannot happen with WRITE(6) or READ(6), since 0
* translates to 256 blocks for those commands.
*/
if (num_blocks == 0) {
ctl_set_success(ctsio);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
lbalen.lba = lba;
lbalen.len = num_blocks;
memcpy(ctsio->io_hdr.ctl_private[CTL_PRIV_LBA_LEN].bytes, &lbalen,
sizeof(lbalen));
CTL_DEBUG_PRINT(("ctl_read_write: calling data_submit()\n"));
retval = lun->backend->data_submit((union ctl_io *)ctsio);
return (retval);
}
int
ctl_report_luns(struct ctl_scsiio *ctsio)
{
struct scsi_report_luns *cdb;
struct scsi_report_luns_data *lun_data;
struct ctl_lun *lun, *request_lun;
int num_luns, retval;
uint32_t alloc_len, lun_datalen;
int num_filled, well_known;
uint32_t initidx;
retval = CTL_RETVAL_COMPLETE;
well_known = 0;
cdb = (struct scsi_report_luns *)ctsio->cdb;
CTL_DEBUG_PRINT(("ctl_report_luns\n"));
mtx_lock(&control_softc->ctl_lock);
num_luns = control_softc->num_luns;
mtx_unlock(&control_softc->ctl_lock);
switch (cdb->select_report) {
case RPL_REPORT_DEFAULT:
case RPL_REPORT_ALL:
break;
case RPL_REPORT_WELLKNOWN:
well_known = 1;
num_luns = 0;
break;
default:
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (retval);
break; /* NOTREACHED */
}
alloc_len = scsi_4btoul(cdb->length);
/*
* The initiator has to allocate at least 16 bytes for this request,
* so he can at least get the header and the first LUN. Otherwise
* we reject the request (per SPC-3 rev 14, section 6.21).
*/
if (alloc_len < (sizeof(struct scsi_report_luns_data) +
sizeof(struct scsi_report_luns_lundata))) {
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 6,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
return (retval);
}
request_lun = (struct ctl_lun *)
ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
lun_datalen = sizeof(*lun_data) +
(num_luns * sizeof(struct scsi_report_luns_lundata));
ctsio->kern_data_ptr = malloc(lun_datalen, M_CTL, M_WAITOK | M_ZERO);
lun_data = (struct scsi_report_luns_data *)ctsio->kern_data_ptr;
ctsio->kern_sg_entries = 0;
if (lun_datalen < alloc_len) {
ctsio->residual = alloc_len - lun_datalen;
ctsio->kern_data_len = lun_datalen;
ctsio->kern_total_len = lun_datalen;
} else {
ctsio->residual = 0;
ctsio->kern_data_len = alloc_len;
ctsio->kern_total_len = alloc_len;
}
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
initidx = ctl_get_initindex(&ctsio->io_hdr.nexus);
/*
* We set this to the actual data length, regardless of how much
* space we actually have to return results. If the user looks at
* this value, he'll know whether or not he allocated enough space
* and reissue the command if necessary. We don't support well
* known logical units, so if the user asks for that, return none.
*/
scsi_ulto4b(lun_datalen - 8, lun_data->length);
mtx_lock(&control_softc->ctl_lock);
for (num_filled = 0, lun = STAILQ_FIRST(&control_softc->lun_list);
(lun != NULL) && (num_filled < num_luns);
lun = STAILQ_NEXT(lun, links)) {
if (lun->lun <= 0xff) {
/*
* Peripheral addressing method, bus number 0.
*/
lun_data->luns[num_filled].lundata[0] =
RPL_LUNDATA_ATYP_PERIPH;
lun_data->luns[num_filled].lundata[1] = lun->lun;
num_filled++;
} else if (lun->lun <= 0x3fff) {
/*
* Flat addressing method.
*/
lun_data->luns[num_filled].lundata[0] =
RPL_LUNDATA_ATYP_FLAT |
(lun->lun & RPL_LUNDATA_FLAT_LUN_MASK);
#ifdef OLDCTLHEADERS
(SRLD_ADDR_FLAT << SRLD_ADDR_SHIFT) |
(lun->lun & SRLD_BUS_LUN_MASK);
#endif
lun_data->luns[num_filled].lundata[1] =
#ifdef OLDCTLHEADERS
lun->lun >> SRLD_BUS_LUN_BITS;
#endif
lun->lun >> RPL_LUNDATA_FLAT_LUN_BITS;
num_filled++;
} else {
printf("ctl_report_luns: bogus LUN number %jd, "
"skipping\n", (intmax_t)lun->lun);
}
/*
* According to SPC-3, rev 14 section 6.21:
*
* "The execution of a REPORT LUNS command to any valid and
* installed logical unit shall clear the REPORTED LUNS DATA
* HAS CHANGED unit attention condition for all logical
* units of that target with respect to the requesting
* initiator. A valid and installed logical unit is one
* having a PERIPHERAL QUALIFIER of 000b in the standard
* INQUIRY data (see 6.4.2)."
*
* If request_lun is NULL, the LUN this report luns command
* was issued to is either disabled or doesn't exist. In that
* case, we shouldn't clear any pending lun change unit
* attention.
*/
if (request_lun != NULL)
lun->pending_sense[initidx].ua_pending &=
~CTL_UA_LUN_CHANGE;
}
mtx_unlock(&control_softc->ctl_lock);
/*
* We can only return SCSI_STATUS_CHECK_COND when we can't satisfy
* this request.
*/
ctsio->scsi_status = SCSI_STATUS_OK;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (retval);
}
int
ctl_request_sense(struct ctl_scsiio *ctsio)
{
struct scsi_request_sense *cdb;
struct scsi_sense_data *sense_ptr;
struct ctl_lun *lun;
uint32_t initidx;
int have_error;
scsi_sense_data_type sense_format;
cdb = (struct scsi_request_sense *)ctsio->cdb;
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
CTL_DEBUG_PRINT(("ctl_request_sense\n"));
/*
* Determine which sense format the user wants.
*/
if (cdb->byte2 & SRS_DESC)
sense_format = SSD_TYPE_DESC;
else
sense_format = SSD_TYPE_FIXED;
ctsio->kern_data_ptr = malloc(sizeof(*sense_ptr), M_CTL, M_WAITOK);
sense_ptr = (struct scsi_sense_data *)ctsio->kern_data_ptr;
ctsio->kern_sg_entries = 0;
/*
* struct scsi_sense_data, which is currently set to 256 bytes, is
* larger than the largest allowed value for the length field in the
* REQUEST SENSE CDB, which is 252 bytes as of SPC-4.
*/
ctsio->residual = 0;
ctsio->kern_data_len = cdb->length;
ctsio->kern_total_len = cdb->length;
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
/*
* If we don't have a LUN, we don't have any pending sense.
*/
if (lun == NULL)
goto no_sense;
have_error = 0;
initidx = ctl_get_initindex(&ctsio->io_hdr.nexus);
/*
* Check for pending sense, and then for pending unit attentions.
* Pending sense gets returned first, then pending unit attentions.
*/
mtx_lock(&lun->ctl_softc->ctl_lock);
if (ctl_is_set(lun->have_ca, initidx)) {
scsi_sense_data_type stored_format;
/*
* Check to see which sense format was used for the stored
* sense data.
*/
stored_format = scsi_sense_type(
&lun->pending_sense[initidx].sense);
/*
* If the user requested a different sense format than the
* one we stored, then we need to convert it to the other
* format. If we're going from descriptor to fixed format
* sense data, we may lose things in translation, depending
* on what options were used.
*
* If the stored format is SSD_TYPE_NONE (i.e. invalid),
* for some reason we'll just copy it out as-is.
*/
if ((stored_format == SSD_TYPE_FIXED)
&& (sense_format == SSD_TYPE_DESC))
ctl_sense_to_desc((struct scsi_sense_data_fixed *)
&lun->pending_sense[initidx].sense,
(struct scsi_sense_data_desc *)sense_ptr);
else if ((stored_format == SSD_TYPE_DESC)
&& (sense_format == SSD_TYPE_FIXED))
ctl_sense_to_fixed((struct scsi_sense_data_desc *)
&lun->pending_sense[initidx].sense,
(struct scsi_sense_data_fixed *)sense_ptr);
else
memcpy(sense_ptr, &lun->pending_sense[initidx].sense,
ctl_min(sizeof(*sense_ptr),
sizeof(lun->pending_sense[initidx].sense)));
ctl_clear_mask(lun->have_ca, initidx);
have_error = 1;
} else if (lun->pending_sense[initidx].ua_pending != CTL_UA_NONE) {
ctl_ua_type ua_type;
ua_type = ctl_build_ua(lun->pending_sense[initidx].ua_pending,
sense_ptr, sense_format);
if (ua_type != CTL_UA_NONE) {
have_error = 1;
/* We're reporting this UA, so clear it */
lun->pending_sense[initidx].ua_pending &= ~ua_type;
}
}
mtx_unlock(&lun->ctl_softc->ctl_lock);
/*
* We already have a pending error, return it.
*/
if (have_error != 0) {
/*
* We report the SCSI status as OK, since the status of the
* request sense command itself is OK.
*/
ctsio->scsi_status = SCSI_STATUS_OK;
/*
* We report 0 for the sense length, because we aren't doing
* autosense in this case. We're reporting sense as
* parameter data.
*/
ctsio->sense_len = 0;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
no_sense:
/*
* No sense information to report, so we report that everything is
* okay.
*/
ctl_set_sense_data(sense_ptr,
lun,
sense_format,
/*current_error*/ 1,
/*sense_key*/ SSD_KEY_NO_SENSE,
/*asc*/ 0x00,
/*ascq*/ 0x00,
SSD_ELEM_NONE);
ctsio->scsi_status = SCSI_STATUS_OK;
/*
* We report 0 for the sense length, because we aren't doing
* autosense in this case. We're reporting sense as parameter data.
*/
ctsio->sense_len = 0;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
int
ctl_tur(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun;
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
CTL_DEBUG_PRINT(("ctl_tur\n"));
if (lun == NULL)
return (-EINVAL);
ctsio->scsi_status = SCSI_STATUS_OK;
ctsio->io_hdr.status = CTL_SUCCESS;
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
#ifdef notyet
static int
ctl_cmddt_inquiry(struct ctl_scsiio *ctsio)
{
}
#endif
static int
ctl_inquiry_evpd_supported(struct ctl_scsiio *ctsio, int alloc_len)
{
struct scsi_vpd_supported_pages *pages;
int sup_page_size;
struct ctl_lun *lun;
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
sup_page_size = sizeof(struct scsi_vpd_supported_pages) +
SCSI_EVPD_NUM_SUPPORTED_PAGES;
/*
* XXX KDM GFP_??? We probably don't want to wait here,
* unless we end up having a process/thread context.
*/
ctsio->kern_data_ptr = malloc(sup_page_size, M_CTL, M_WAITOK | M_ZERO);
if (ctsio->kern_data_ptr == NULL) {
ctsio->io_hdr.status = CTL_SCSI_ERROR;
ctsio->scsi_status = SCSI_STATUS_BUSY;
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
pages = (struct scsi_vpd_supported_pages *)ctsio->kern_data_ptr;
ctsio->kern_sg_entries = 0;
if (sup_page_size < alloc_len) {
ctsio->residual = alloc_len - sup_page_size;
ctsio->kern_data_len = sup_page_size;
ctsio->kern_total_len = sup_page_size;
} else {
ctsio->residual = 0;
ctsio->kern_data_len = alloc_len;
ctsio->kern_total_len = alloc_len;
}
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
/*
* The control device is always connected. The disk device, on the
* other hand, may not be online all the time. Need to change this
* to figure out whether the disk device is actually online or not.
*/
if (lun != NULL)
pages->device = (SID_QUAL_LU_CONNECTED << 5) |
lun->be_lun->lun_type;
else
pages->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
pages->length = SCSI_EVPD_NUM_SUPPORTED_PAGES;
/* Supported VPD pages */
pages->page_list[0] = SVPD_SUPPORTED_PAGES;
/* Serial Number */
pages->page_list[1] = SVPD_UNIT_SERIAL_NUMBER;
/* Device Identification */
pages->page_list[2] = SVPD_DEVICE_ID;
ctsio->scsi_status = SCSI_STATUS_OK;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
static int
ctl_inquiry_evpd_serial(struct ctl_scsiio *ctsio, int alloc_len)
{
struct scsi_vpd_unit_serial_number *sn_ptr;
struct ctl_lun *lun;
#ifndef CTL_USE_BACKEND_SN
char tmpstr[32];
#endif
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
/* XXX KDM which malloc flags here?? */
ctsio->kern_data_ptr = malloc(sizeof(*sn_ptr), M_CTL, M_WAITOK | M_ZERO);
if (ctsio->kern_data_ptr == NULL) {
ctsio->io_hdr.status = CTL_SCSI_ERROR;
ctsio->scsi_status = SCSI_STATUS_BUSY;
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
sn_ptr = (struct scsi_vpd_unit_serial_number *)ctsio->kern_data_ptr;
ctsio->kern_sg_entries = 0;
if (sizeof(*sn_ptr) < alloc_len) {
ctsio->residual = alloc_len - sizeof(*sn_ptr);
ctsio->kern_data_len = sizeof(*sn_ptr);
ctsio->kern_total_len = sizeof(*sn_ptr);
} else {
ctsio->residual = 0;
ctsio->kern_data_len = alloc_len;
ctsio->kern_total_len = alloc_len;
}
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
/*
* The control device is always connected. The disk device, on the
* other hand, may not be online all the time. Need to change this
* to figure out whether the disk device is actually online or not.
*/
if (lun != NULL)
sn_ptr->device = (SID_QUAL_LU_CONNECTED << 5) |
lun->be_lun->lun_type;
else
sn_ptr->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
sn_ptr->page_code = SVPD_UNIT_SERIAL_NUMBER;
sn_ptr->length = ctl_min(sizeof(*sn_ptr) - 4, CTL_SN_LEN);
#ifdef CTL_USE_BACKEND_SN
/*
* If we don't have a LUN, we just leave the serial number as
* all spaces.
*/
memset(sn_ptr->serial_num, 0x20, sizeof(sn_ptr->serial_num));
if (lun != NULL) {
strncpy((char *)sn_ptr->serial_num,
(char *)lun->be_lun->serial_num, CTL_SN_LEN);
}
#else
/*
* Note that we're using a non-unique serial number here,
*/
snprintf(tmpstr, sizeof(tmpstr), "MYSERIALNUMIS000");
memset(sn_ptr->serial_num, 0x20, sizeof(sn_ptr->serial_num));
strncpy(sn_ptr->serial_num, tmpstr, ctl_min(CTL_SN_LEN,
ctl_min(sizeof(tmpstr), sizeof(*sn_ptr) - 4)));
#endif
ctsio->scsi_status = SCSI_STATUS_OK;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
static int
ctl_inquiry_evpd_devid(struct ctl_scsiio *ctsio, int alloc_len)
{
struct scsi_vpd_device_id *devid_ptr;
struct scsi_vpd_id_descriptor *desc, *desc1;
struct scsi_vpd_id_descriptor *desc2, *desc3; /* for types 4h and 5h */
struct scsi_vpd_id_t10 *t10id;
struct ctl_softc *ctl_softc;
struct ctl_lun *lun;
struct ctl_frontend *fe;
#ifndef CTL_USE_BACKEND_SN
char tmpstr[32];
#endif /* CTL_USE_BACKEND_SN */
int devid_len;
ctl_softc = control_softc;
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
devid_len = sizeof(struct scsi_vpd_device_id) +
sizeof(struct scsi_vpd_id_descriptor) +
sizeof(struct scsi_vpd_id_t10) + CTL_DEVID_LEN +
sizeof(struct scsi_vpd_id_descriptor) + CTL_WWPN_LEN +
sizeof(struct scsi_vpd_id_descriptor) +
sizeof(struct scsi_vpd_id_rel_trgt_port_id) +
sizeof(struct scsi_vpd_id_descriptor) +
sizeof(struct scsi_vpd_id_trgt_port_grp_id);
/* XXX KDM which malloc flags here ?? */
ctsio->kern_data_ptr = malloc(devid_len, M_CTL, M_WAITOK | M_ZERO);
if (ctsio->kern_data_ptr == NULL) {
ctsio->io_hdr.status = CTL_SCSI_ERROR;
ctsio->scsi_status = SCSI_STATUS_BUSY;
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
devid_ptr = (struct scsi_vpd_device_id *)ctsio->kern_data_ptr;
ctsio->kern_sg_entries = 0;
if (devid_len < alloc_len) {
ctsio->residual = alloc_len - devid_len;
ctsio->kern_data_len = devid_len;
ctsio->kern_total_len = devid_len;
} else {
ctsio->residual = 0;
ctsio->kern_data_len = alloc_len;
ctsio->kern_total_len = alloc_len;
}
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
ctsio->kern_sg_entries = 0;
desc = (struct scsi_vpd_id_descriptor *)devid_ptr->desc_list;
t10id = (struct scsi_vpd_id_t10 *)&desc->identifier[0];
desc1 = (struct scsi_vpd_id_descriptor *)(&desc->identifier[0] +
sizeof(struct scsi_vpd_id_t10) + CTL_DEVID_LEN);
desc2 = (struct scsi_vpd_id_descriptor *)(&desc1->identifier[0] +
CTL_WWPN_LEN);
desc3 = (struct scsi_vpd_id_descriptor *)(&desc2->identifier[0] +
sizeof(struct scsi_vpd_id_rel_trgt_port_id));
/*
* The control device is always connected. The disk device, on the
* other hand, may not be online all the time.
*/
if (lun != NULL)
devid_ptr->device = (SID_QUAL_LU_CONNECTED << 5) |
lun->be_lun->lun_type;
else
devid_ptr->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
devid_ptr->page_code = SVPD_DEVICE_ID;
scsi_ulto2b(devid_len - 4, devid_ptr->length);
mtx_lock(&ctl_softc->ctl_lock);
fe = ctl_softc->ctl_ports[ctl_port_idx(ctsio->io_hdr.nexus.targ_port)];
/*
* For Fibre channel,
*/
if (fe->port_type == CTL_PORT_FC)
{
desc->proto_codeset = (SCSI_PROTO_FC << 4) |
SVPD_ID_CODESET_ASCII;
desc1->proto_codeset = (SCSI_PROTO_FC << 4) |
SVPD_ID_CODESET_BINARY;
}
else
{
desc->proto_codeset = (SCSI_PROTO_SPI << 4) |
SVPD_ID_CODESET_ASCII;
desc1->proto_codeset = (SCSI_PROTO_SPI << 4) |
SVPD_ID_CODESET_BINARY;
}
desc2->proto_codeset = desc3->proto_codeset = desc1->proto_codeset;
mtx_unlock(&ctl_softc->ctl_lock);
/*
* We're using a LUN association here. i.e., this device ID is a
* per-LUN identifier.
*/
desc->id_type = SVPD_ID_PIV | SVPD_ID_ASSOC_LUN | SVPD_ID_TYPE_T10;
desc->length = sizeof(*t10id) + CTL_DEVID_LEN;
strncpy((char *)t10id->vendor, CTL_VENDOR, sizeof(t10id->vendor));
/*
* desc1 is for the WWPN which is a port asscociation.
*/
desc1->id_type = SVPD_ID_PIV | SVPD_ID_ASSOC_PORT | SVPD_ID_TYPE_NAA;
desc1->length = CTL_WWPN_LEN;
/* XXX Call Reggie's get_WWNN func here then add port # to the end */
/* For testing just create the WWPN */
#if 0
ddb_GetWWNN((char *)desc1->identifier);
/* NOTE: if the port is 0 or 8 we don't want to subtract 1 */
/* This is so Copancontrol will return something sane */
if (ctsio->io_hdr.nexus.targ_port!=0 &&
ctsio->io_hdr.nexus.targ_port!=8)
desc1->identifier[7] += ctsio->io_hdr.nexus.targ_port-1;
else
desc1->identifier[7] += ctsio->io_hdr.nexus.targ_port;
#endif
be64enc(desc1->identifier, fe->wwpn);
/*
* desc2 is for the Relative Target Port(type 4h) identifier
*/
desc2->id_type = SVPD_ID_PIV | SVPD_ID_ASSOC_PORT
| SVPD_ID_TYPE_RELTARG;
desc2->length = 4;
//#if 0
/* NOTE: if the port is 0 or 8 we don't want to subtract 1 */
/* This is so Copancontrol will return something sane */
if (ctsio->io_hdr.nexus.targ_port!=0 &&
ctsio->io_hdr.nexus.targ_port!=8)
desc2->identifier[3] = ctsio->io_hdr.nexus.targ_port - 1;
else
desc2->identifier[3] = ctsio->io_hdr.nexus.targ_port;
//#endif
/*
* desc3 is for the Target Port Group(type 5h) identifier
*/
desc3->id_type = SVPD_ID_PIV | SVPD_ID_ASSOC_PORT
| SVPD_ID_TYPE_TPORTGRP;
desc3->length = 4;
if (ctsio->io_hdr.nexus.targ_port < CTL_MAX_PORTS || ctl_is_single)
desc3->identifier[3] = 1;
else
desc3->identifier[3] = 2;
#ifdef CTL_USE_BACKEND_SN
/*
* If we've actually got a backend, copy the device id from the
* per-LUN data. Otherwise, set it to all spaces.
*/
if (lun != NULL) {
/*
* Copy the backend's LUN ID.
*/
strncpy((char *)t10id->vendor_spec_id,
(char *)lun->be_lun->device_id, CTL_DEVID_LEN);
} else {
/*
* No backend, set this to spaces.
*/
memset(t10id->vendor_spec_id, 0x20, CTL_DEVID_LEN);
}
#else
snprintf(tmpstr, sizeof(tmpstr), "MYDEVICEIDIS%4d",
(lun != NULL) ? (int)lun->lun : 0);
strncpy(t10id->vendor_spec_id, tmpstr, ctl_min(CTL_DEVID_LEN,
sizeof(tmpstr)));
#endif
ctsio->scsi_status = SCSI_STATUS_OK;
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
static int
ctl_inquiry_evpd(struct ctl_scsiio *ctsio)
{
struct scsi_inquiry *cdb;
int alloc_len, retval;
cdb = (struct scsi_inquiry *)ctsio->cdb;
retval = CTL_RETVAL_COMPLETE;
alloc_len = scsi_2btoul(cdb->length);
switch (cdb->page_code) {
case SVPD_SUPPORTED_PAGES:
retval = ctl_inquiry_evpd_supported(ctsio, alloc_len);
break;
case SVPD_UNIT_SERIAL_NUMBER:
retval = ctl_inquiry_evpd_serial(ctsio, alloc_len);
break;
case SVPD_DEVICE_ID:
retval = ctl_inquiry_evpd_devid(ctsio, alloc_len);
break;
default:
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 2,
/*bit_valid*/ 0,
/*bit*/ 0);
ctl_done((union ctl_io *)ctsio);
retval = CTL_RETVAL_COMPLETE;
break;
}
return (retval);
}
static int
ctl_inquiry_std(struct ctl_scsiio *ctsio)
{
struct scsi_inquiry_data *inq_ptr;
struct scsi_inquiry *cdb;
struct ctl_softc *ctl_softc;
struct ctl_lun *lun;
uint32_t alloc_len;
int is_fc;
ctl_softc = control_softc;
/*
* Figure out whether we're talking to a Fibre Channel port or not.
* We treat the ioctl front end, and any SCSI adapters, as packetized
* SCSI front ends.
*/
mtx_lock(&ctl_softc->ctl_lock);
if (ctl_softc->ctl_ports[ctl_port_idx(ctsio->io_hdr.nexus.targ_port)]->port_type !=
CTL_PORT_FC)
is_fc = 0;
else
is_fc = 1;
mtx_unlock(&ctl_softc->ctl_lock);
lun = ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
cdb = (struct scsi_inquiry *)ctsio->cdb;
alloc_len = scsi_2btoul(cdb->length);
/*
* We malloc the full inquiry data size here and fill it
* in. If the user only asks for less, we'll give him
* that much.
*/
/* XXX KDM what malloc flags should we use here?? */
ctsio->kern_data_ptr = malloc(sizeof(*inq_ptr), M_CTL, M_WAITOK | M_ZERO);
if (ctsio->kern_data_ptr == NULL) {
ctsio->io_hdr.status = CTL_SCSI_ERROR;
ctsio->scsi_status = SCSI_STATUS_BUSY;
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
inq_ptr = (struct scsi_inquiry_data *)ctsio->kern_data_ptr;
ctsio->kern_sg_entries = 0;
ctsio->kern_data_resid = 0;
ctsio->kern_rel_offset = 0;
if (sizeof(*inq_ptr) < alloc_len) {
ctsio->residual = alloc_len - sizeof(*inq_ptr);
ctsio->kern_data_len = sizeof(*inq_ptr);
ctsio->kern_total_len = sizeof(*inq_ptr);
} else {
ctsio->residual = 0;
ctsio->kern_data_len = alloc_len;
ctsio->kern_total_len = alloc_len;
}
/*
* If we have a LUN configured, report it as connected. Otherwise,
* report that it is offline or no device is supported, depending
* on the value of inquiry_pq_no_lun.
*
* According to the spec (SPC-4 r34), the peripheral qualifier
* SID_QUAL_LU_OFFLINE (001b) is used in the following scenario:
*
* "A peripheral device having the specified peripheral device type
* is not connected to this logical unit. However, the device
* server is capable of supporting the specified peripheral device
* type on this logical unit."
*
* According to the same spec, the peripheral qualifier
* SID_QUAL_BAD_LU (011b) is used in this scenario:
*
* "The device server is not capable of supporting a peripheral
* device on this logical unit. For this peripheral qualifier the
* peripheral device type shall be set to 1Fh. All other peripheral
* device type values are reserved for this peripheral qualifier."
*
* Given the text, it would seem that we probably want to report that
* the LUN is offline here. There is no LUN connected, but we can
* support a LUN at the given LUN number.
*
* In the real world, though, it sounds like things are a little
* different:
*
* - Linux, when presented with a LUN with the offline peripheral
* qualifier, will create an sg driver instance for it. So when
* you attach it to CTL, you wind up with a ton of sg driver
* instances. (One for every LUN that Linux bothered to probe.)
* Linux does this despite the fact that it issues a REPORT LUNs
* to LUN 0 to get the inventory of supported LUNs.
*
* - There is other anecdotal evidence (from Emulex folks) about
* arrays that use the offline peripheral qualifier for LUNs that
* are on the "passive" path in an active/passive array.
*
* So the solution is provide a hopefully reasonable default
* (return bad/no LUN) and allow the user to change the behavior
* with a tunable/sysctl variable.
*/
if (lun != NULL)
inq_ptr->device = (SID_QUAL_LU_CONNECTED << 5) |
lun->be_lun->lun_type;
else if (ctl_softc->inquiry_pq_no_lun == 0)
inq_ptr->device = (SID_QUAL_LU_OFFLINE << 5) | T_DIRECT;
else
inq_ptr->device = (SID_QUAL_BAD_LU << 5) | T_NODEVICE;
/* RMB in byte 2 is 0 */
inq_ptr->version = SCSI_REV_SPC3;
/*
* According to SAM-3, even if a device only supports a single
* level of LUN addressing, it should still set the HISUP bit:
*
* 4.9.1 Logical unit numbers overview
*
* All logical unit number formats described in this standard are
* hierarchical in structure even when only a single level in that
* hierarchy is used. The HISUP bit shall be set to one in the
* standard INQUIRY data (see SPC-2) when any logical unit number
* format described in this standard is used. Non-hierarchical
* formats are outside the scope of this standard.
*
* Therefore we set the HiSup bit here.
*
* The reponse format is 2, per SPC-3.
*/
inq_ptr->response_format = SID_HiSup | 2;
inq_ptr->additional_length = sizeof(*inq_ptr) - 4;
CTL_DEBUG_PRINT(("additional_length = %d\n",
inq_ptr->additional_length));
inq_ptr->spc3_flags = SPC3_SID_TPGS_IMPLICIT;
/* 16 bit addressing */
if (is_fc == 0)
inq_ptr->spc2_flags = SPC2_SID_ADDR16;
/* XXX set the SID_MultiP bit here if we're actually going to
respond on multiple ports */
inq_ptr->spc2_flags |= SPC2_SID_MultiP;
/* 16 bit data bus, synchronous transfers */
/* XXX these flags don't apply for FC */
if (is_fc == 0)
inq_ptr->flags = SID_WBus16 | SID_Sync;
/*
* XXX KDM do we want to support tagged queueing on the control
* device at all?
*/
if ((lun == NULL)
|| (lun->be_lun->lun_type != T_PROCESSOR))
inq_ptr->flags |= SID_CmdQue;
/*
* Per SPC-3, unused bytes in ASCII strings are filled with spaces.
* We have 8 bytes for the vendor name, and 16 bytes for the device
* name and 4 bytes for the revision.
*/
strncpy(inq_ptr->vendor, CTL_VENDOR, sizeof(inq_ptr->vendor));
if (lun == NULL) {
strcpy(inq_ptr->product, CTL_DIRECT_PRODUCT);
} else {
switch (lun->be_lun->lun_type) {
case T_DIRECT:
strcpy(inq_ptr->product, CTL_DIRECT_PRODUCT);
break;
case T_PROCESSOR:
strcpy(inq_ptr->product, CTL_PROCESSOR_PRODUCT);
break;
default:
strcpy(inq_ptr->product, CTL_UNKNOWN_PRODUCT);
break;
}
}
/*
* XXX make this a macro somewhere so it automatically gets
* incremented when we make changes.
*/
strncpy(inq_ptr->revision, "0001", sizeof(inq_ptr->revision));
/*
* For parallel SCSI, we support double transition and single
* transition clocking. We also support QAS (Quick Arbitration
* and Selection) and Information Unit transfers on both the
* control and array devices.
*/
if (is_fc == 0)
inq_ptr->spi3data = SID_SPI_CLOCK_DT_ST | SID_SPI_QAS |
SID_SPI_IUS;
/* SAM-3 */
scsi_ulto2b(0x0060, inq_ptr->version1);
/* SPC-3 (no version claimed) XXX should we claim a version? */
scsi_ulto2b(0x0300, inq_ptr->version2);
if (is_fc) {
/* FCP-2 ANSI INCITS.350:2003 */
scsi_ulto2b(0x0917, inq_ptr->version3);
} else {
/* SPI-4 ANSI INCITS.362:200x */
scsi_ulto2b(0x0B56, inq_ptr->version3);
}
if (lun == NULL) {
/* SBC-2 (no version claimed) XXX should we claim a version? */
scsi_ulto2b(0x0320, inq_ptr->version4);
} else {
switch (lun->be_lun->lun_type) {
case T_DIRECT:
/*
* SBC-2 (no version claimed) XXX should we claim a
* version?
*/
scsi_ulto2b(0x0320, inq_ptr->version4);
break;
case T_PROCESSOR:
default:
break;
}
}
ctsio->scsi_status = SCSI_STATUS_OK;
if (ctsio->kern_data_len > 0) {
ctsio->be_move_done = ctl_config_move_done;
ctl_datamove((union ctl_io *)ctsio);
} else {
ctsio->io_hdr.status = CTL_SUCCESS;
ctl_done((union ctl_io *)ctsio);
}
return (CTL_RETVAL_COMPLETE);
}
int
ctl_inquiry(struct ctl_scsiio *ctsio)
{
struct scsi_inquiry *cdb;
int retval;
cdb = (struct scsi_inquiry *)ctsio->cdb;
retval = 0;
CTL_DEBUG_PRINT(("ctl_inquiry\n"));
/*
* Right now, we don't support the CmdDt inquiry information.
* This would be nice to support in the future. When we do
* support it, we should change this test so that it checks to make
* sure SI_EVPD and SI_CMDDT aren't both set at the same time.
*/
#ifdef notyet
if (((cdb->byte2 & SI_EVPD)
&& (cdb->byte2 & SI_CMDDT)))
#endif
if (cdb->byte2 & SI_CMDDT) {
/*
* Point to the SI_CMDDT bit. We might change this
* when we support SI_CMDDT, but since both bits would be
* "wrong", this should probably just stay as-is then.
*/
ctl_set_invalid_field(ctsio,
/*sks_valid*/ 1,
/*command*/ 1,
/*field*/ 1,
/*bit_valid*/ 1,
/*bit*/ 1);
ctl_done((union ctl_io *)ctsio);
return (CTL_RETVAL_COMPLETE);
}
if (cdb->byte2 & SI_EVPD)
retval = ctl_inquiry_evpd(ctsio);
#ifdef notyet
else if (cdb->byte2 & SI_CMDDT)
retval = ctl_inquiry_cmddt(ctsio);
#endif
else
retval = ctl_inquiry_std(ctsio);
return (retval);
}
/*
* For known CDB types, parse the LBA and length.
*/
static int
ctl_get_lba_len(union ctl_io *io, uint64_t *lba, uint32_t *len)
{
if (io->io_hdr.io_type != CTL_IO_SCSI)
return (1);
switch (io->scsiio.cdb[0]) {
case READ_6:
case WRITE_6: {
struct scsi_rw_6 *cdb;
cdb = (struct scsi_rw_6 *)io->scsiio.cdb;
*lba = scsi_3btoul(cdb->addr);
/* only 5 bits are valid in the most significant address byte */
*lba &= 0x1fffff;
*len = cdb->length;
break;
}
case READ_10:
case WRITE_10: {
struct scsi_rw_10 *cdb;
cdb = (struct scsi_rw_10 *)io->scsiio.cdb;
*lba = scsi_4btoul(cdb->addr);
*len = scsi_2btoul(cdb->length);
break;
}
case WRITE_VERIFY_10: {
struct scsi_write_verify_10 *cdb;
cdb = (struct scsi_write_verify_10 *)io->scsiio.cdb;
*lba = scsi_4btoul(cdb->addr);
*len = scsi_2btoul(cdb->length);
break;
}
case READ_12:
case WRITE_12: {
struct scsi_rw_12 *cdb;
cdb = (struct scsi_rw_12 *)io->scsiio.cdb;
*lba = scsi_4btoul(cdb->addr);
*len = scsi_4btoul(cdb->length);
break;
}
case WRITE_VERIFY_12: {
struct scsi_write_verify_12 *cdb;
cdb = (struct scsi_write_verify_12 *)io->scsiio.cdb;
*lba = scsi_4btoul(cdb->addr);
*len = scsi_4btoul(cdb->length);
break;
}
case READ_16:
case WRITE_16: {
struct scsi_rw_16 *cdb;
cdb = (struct scsi_rw_16 *)io->scsiio.cdb;
*lba = scsi_8btou64(cdb->addr);
*len = scsi_4btoul(cdb->length);
break;
}
case WRITE_VERIFY_16: {
struct scsi_write_verify_16 *cdb;
cdb = (struct scsi_write_verify_16 *)io->scsiio.cdb;
*lba = scsi_8btou64(cdb->addr);
*len = scsi_4btoul(cdb->length);
break;
}
default:
return (1);
break; /* NOTREACHED */
}
return (0);
}
static ctl_action
ctl_extent_check_lba(uint64_t lba1, uint32_t len1, uint64_t lba2, uint32_t len2)
{
uint64_t endlba1, endlba2;
endlba1 = lba1 + len1 - 1;
endlba2 = lba2 + len2 - 1;
if ((endlba1 < lba2)
|| (endlba2 < lba1))
return (CTL_ACTION_PASS);
else
return (CTL_ACTION_BLOCK);
}
static ctl_action
ctl_extent_check(union ctl_io *io1, union ctl_io *io2)
{
uint64_t lba1, lba2;
uint32_t len1, len2;
int retval;
retval = ctl_get_lba_len(io1, &lba1, &len1);
if (retval != 0)
return (CTL_ACTION_ERROR);
retval = ctl_get_lba_len(io2, &lba2, &len2);
if (retval != 0)
return (CTL_ACTION_ERROR);
return (ctl_extent_check_lba(lba1, len1, lba2, len2));
}
static ctl_action
ctl_check_for_blockage(union ctl_io *pending_io, union ctl_io *ooa_io)
{
struct ctl_cmd_entry *pending_entry, *ooa_entry;
ctl_serialize_action *serialize_row;
/*
* The initiator attempted multiple untagged commands at the same
* time. Can't do that.
*/
if ((pending_io->scsiio.tag_type == CTL_TAG_UNTAGGED)
&& (ooa_io->scsiio.tag_type == CTL_TAG_UNTAGGED)
&& ((pending_io->io_hdr.nexus.targ_port ==
ooa_io->io_hdr.nexus.targ_port)
&& (pending_io->io_hdr.nexus.initid.id ==
ooa_io->io_hdr.nexus.initid.id))
&& ((ooa_io->io_hdr.flags & CTL_FLAG_ABORT) == 0))
return (CTL_ACTION_OVERLAP);
/*
* The initiator attempted to send multiple tagged commands with
* the same ID. (It's fine if different initiators have the same
* tag ID.)
*
* Even if all of those conditions are true, we don't kill the I/O
* if the command ahead of us has been aborted. We won't end up
* sending it to the FETD, and it's perfectly legal to resend a
* command with the same tag number as long as the previous
* instance of this tag number has been aborted somehow.
*/
if ((pending_io->scsiio.tag_type != CTL_TAG_UNTAGGED)
&& (ooa_io->scsiio.tag_type != CTL_TAG_UNTAGGED)
&& (pending_io->scsiio.tag_num == ooa_io->scsiio.tag_num)
&& ((pending_io->io_hdr.nexus.targ_port ==
ooa_io->io_hdr.nexus.targ_port)
&& (pending_io->io_hdr.nexus.initid.id ==
ooa_io->io_hdr.nexus.initid.id))
&& ((ooa_io->io_hdr.flags & CTL_FLAG_ABORT) == 0))
return (CTL_ACTION_OVERLAP_TAG);
/*
* If we get a head of queue tag, SAM-3 says that we should
* immediately execute it.
*
* What happens if this command would normally block for some other
* reason? e.g. a request sense with a head of queue tag
* immediately after a write. Normally that would block, but this
* will result in its getting executed immediately...
*
* We currently return "pass" instead of "skip", so we'll end up
* going through the rest of the queue to check for overlapped tags.
*
* XXX KDM check for other types of blockage first??
*/
if (pending_io->scsiio.tag_type == CTL_TAG_HEAD_OF_QUEUE)
return (CTL_ACTION_PASS);
/*
* Ordered tags have to block until all items ahead of them
* have completed. If we get called with an ordered tag, we always
* block, if something else is ahead of us in the queue.
*/
if (pending_io->scsiio.tag_type == CTL_TAG_ORDERED)
return (CTL_ACTION_BLOCK);
/*
* Simple tags get blocked until all head of queue and ordered tags
* ahead of them have completed. I'm lumping untagged commands in
* with simple tags here. XXX KDM is that the right thing to do?
*/
if (((pending_io->scsiio.tag_type == CTL_TAG_UNTAGGED)
|| (pending_io->scsiio.tag_type == CTL_TAG_SIMPLE))
&& ((ooa_io->scsiio.tag_type == CTL_TAG_HEAD_OF_QUEUE)
|| (ooa_io->scsiio.tag_type == CTL_TAG_ORDERED)))
return (CTL_ACTION_BLOCK);
pending_entry = &ctl_cmd_table[pending_io->scsiio.cdb[0]];
ooa_entry = &ctl_cmd_table[ooa_io->scsiio.cdb[0]];
serialize_row = ctl_serialize_table[ooa_entry->seridx];
switch (serialize_row[pending_entry->seridx]) {
case CTL_SER_BLOCK:
return (CTL_ACTION_BLOCK);
break; /* NOTREACHED */
case CTL_SER_EXTENT:
return (ctl_extent_check(pending_io, ooa_io));
break; /* NOTREACHED */
case CTL_SER_PASS:
return (CTL_ACTION_PASS);
break; /* NOTREACHED */
case CTL_SER_SKIP:
return (CTL_ACTION_SKIP);
break;
default:
panic("invalid serialization value %d",
serialize_row[pending_entry->seridx]);
break; /* NOTREACHED */
}
return (CTL_ACTION_ERROR);
}
/*
* Check for blockage or overlaps against the OOA (Order Of Arrival) queue.
* Assumptions:
* - caller holds ctl_lock
* - pending_io is generally either incoming, or on the blocked queue
* - starting I/O is the I/O we want to start the check with.
*/
static ctl_action
ctl_check_ooa(struct ctl_lun *lun, union ctl_io *pending_io,
union ctl_io *starting_io)
{
union ctl_io *ooa_io;
ctl_action action;
/*
* Run back along the OOA queue, starting with the current
* blocked I/O and going through every I/O before it on the
* queue. If starting_io is NULL, we'll just end up returning
* CTL_ACTION_PASS.
*/
for (ooa_io = starting_io; ooa_io != NULL;
ooa_io = (union ctl_io *)TAILQ_PREV(&ooa_io->io_hdr, ctl_ooaq,
ooa_links)){
/*
* This routine just checks to see whether
* cur_blocked is blocked by ooa_io, which is ahead
* of it in the queue. It doesn't queue/dequeue
* cur_blocked.
*/
action = ctl_check_for_blockage(pending_io, ooa_io);
switch (action) {
case CTL_ACTION_BLOCK:
case CTL_ACTION_OVERLAP:
case CTL_ACTION_OVERLAP_TAG:
case CTL_ACTION_SKIP:
case CTL_ACTION_ERROR:
return (action);
break; /* NOTREACHED */
case CTL_ACTION_PASS:
break;
default:
panic("invalid action %d", action);
break; /* NOTREACHED */
}
}
return (CTL_ACTION_PASS);
}
/*
* Assumptions:
* - An I/O has just completed, and has been removed from the per-LUN OOA
* queue, so some items on the blocked queue may now be unblocked.
* - The caller holds ctl_softc->ctl_lock
*/
static int
ctl_check_blocked(struct ctl_lun *lun)
{
union ctl_io *cur_blocked, *next_blocked;
/*
* Run forward from the head of the blocked queue, checking each
* entry against the I/Os prior to it on the OOA queue to see if
* there is still any blockage.
*
* We cannot use the TAILQ_FOREACH() macro, because it can't deal
* with our removing a variable on it while it is traversing the
* list.
*/
for (cur_blocked = (union ctl_io *)TAILQ_FIRST(&lun->blocked_queue);
cur_blocked != NULL; cur_blocked = next_blocked) {
union ctl_io *prev_ooa;
ctl_action action;
next_blocked = (union ctl_io *)TAILQ_NEXT(&cur_blocked->io_hdr,
blocked_links);
prev_ooa = (union ctl_io *)TAILQ_PREV(&cur_blocked->io_hdr,
ctl_ooaq, ooa_links);
/*
* If cur_blocked happens to be the first item in the OOA
* queue now, prev_ooa will be NULL, and the action
* returned will just be CTL_ACTION_PASS.
*/
action = ctl_check_ooa(lun, cur_blocked, prev_ooa);
switch (action) {
case CTL_ACTION_BLOCK:
/* Nothing to do here, still blocked */
break;
case CTL_ACTION_OVERLAP:
case CTL_ACTION_OVERLAP_TAG:
/*
* This shouldn't happen! In theory we've already
* checked this command for overlap...
*/
break;
case CTL_ACTION_PASS:
case CTL_ACTION_SKIP: {
struct ctl_softc *softc;
struct ctl_cmd_entry *entry;
uint32_t initidx;
uint8_t opcode;
int isc_retval;
/*
* The skip case shouldn't happen, this transaction
* should have never made it onto the blocked queue.
*/
/*
* This I/O is no longer blocked, we can remove it
* from the blocked queue. Since this is a TAILQ
* (doubly linked list), we can do O(1) removals
* from any place on the list.
*/
TAILQ_REMOVE(&lun->blocked_queue, &cur_blocked->io_hdr,
blocked_links);
cur_blocked->io_hdr.flags &= ~CTL_FLAG_BLOCKED;
if (cur_blocked->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC){
/*
* Need to send IO back to original side to
* run
*/
union ctl_ha_msg msg_info;
msg_info.hdr.original_sc =
cur_blocked->io_hdr.original_sc;
msg_info.hdr.serializing_sc = cur_blocked;
msg_info.hdr.msg_type = CTL_MSG_R2R;
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL,
&msg_info, sizeof(msg_info), 0)) >
CTL_HA_STATUS_SUCCESS) {
printf("CTL:Check Blocked error from "
"ctl_ha_msg_send %d\n",
isc_retval);
}
break;
}
opcode = cur_blocked->scsiio.cdb[0];
entry = &ctl_cmd_table[opcode];
softc = control_softc;
initidx = ctl_get_initindex(&cur_blocked->io_hdr.nexus);
/*
* Check this I/O for LUN state changes that may
* have happened while this command was blocked.
* The LUN state may have been changed by a command
* ahead of us in the queue, so we need to re-check
* for any states that can be caused by SCSI
* commands.
*/
if (ctl_scsiio_lun_check(softc, lun, entry,
&cur_blocked->scsiio) == 0) {
cur_blocked->io_hdr.flags |=
CTL_FLAG_IS_WAS_ON_RTR;
STAILQ_INSERT_TAIL(&lun->ctl_softc->rtr_queue,
&cur_blocked->io_hdr, links);
/*
* In the non CTL_DONE_THREAD case, we need
* to wake up the work thread here. When
* we're processing completed requests from
* the work thread context, we'll pop back
* around and end up pulling things off the
* RtR queue. When we aren't processing
* things from the work thread context,
* though, we won't ever check the RtR queue.
* So we need to wake up the thread to clear
* things off the queue. Otherwise this
* transaction will just sit on the RtR queue
* until a new I/O comes in. (Which may or
* may not happen...)
*/
#ifndef CTL_DONE_THREAD
ctl_wakeup_thread();
#endif
} else
ctl_done_lock(cur_blocked, /*have_lock*/ 1);
break;
}
default:
/*
* This probably shouldn't happen -- we shouldn't
* get CTL_ACTION_ERROR, or anything else.
*/
break;
}
}
return (CTL_RETVAL_COMPLETE);
}
/*
* This routine (with one exception) checks LUN flags that can be set by
* commands ahead of us in the OOA queue. These flags have to be checked
* when a command initially comes in, and when we pull a command off the
* blocked queue and are preparing to execute it. The reason we have to
* check these flags for commands on the blocked queue is that the LUN
* state may have been changed by a command ahead of us while we're on the
* blocked queue.
*
* Ordering is somewhat important with these checks, so please pay
* careful attention to the placement of any new checks.
*/
static int
ctl_scsiio_lun_check(struct ctl_softc *ctl_softc, struct ctl_lun *lun,
struct ctl_cmd_entry *entry, struct ctl_scsiio *ctsio)
{
int retval;
retval = 0;
/*
* If this shelf is a secondary shelf controller, we have to reject
* any media access commands.
*/
#if 0
/* No longer needed for HA */
if (((ctl_softc->flags & CTL_FLAG_MASTER_SHELF) == 0)
&& ((entry->flags & CTL_CMD_FLAG_OK_ON_SECONDARY) == 0)) {
ctl_set_lun_standby(ctsio);
retval = 1;
goto bailout;
}
#endif
/*
* Check for a reservation conflict. If this command isn't allowed
* even on reserved LUNs, and if this initiator isn't the one who
* reserved us, reject the command with a reservation conflict.
*/
if ((lun->flags & CTL_LUN_RESERVED)
&& ((entry->flags & CTL_CMD_FLAG_ALLOW_ON_RESV) == 0)) {
if ((ctsio->io_hdr.nexus.initid.id != lun->rsv_nexus.initid.id)
|| (ctsio->io_hdr.nexus.targ_port != lun->rsv_nexus.targ_port)
|| (ctsio->io_hdr.nexus.targ_target.id !=
lun->rsv_nexus.targ_target.id)) {
ctsio->scsi_status = SCSI_STATUS_RESERV_CONFLICT;
ctsio->io_hdr.status = CTL_SCSI_ERROR;
retval = 1;
goto bailout;
}
}
if ( (lun->flags & CTL_LUN_PR_RESERVED)
&& ((entry->flags & CTL_CMD_FLAG_ALLOW_ON_PR_RESV) == 0)) {
uint32_t residx;
residx = ctl_get_resindex(&ctsio->io_hdr.nexus);
/*
* if we aren't registered or it's a res holder type
* reservation and this isn't the res holder then set a
* conflict.
* NOTE: Commands which might be allowed on write exclusive
* type reservations are checked in the particular command
* for a conflict. Read and SSU are the only ones.
*/
if (!lun->per_res[residx].registered
|| (residx != lun->pr_res_idx && lun->res_type < 4)) {
ctsio->scsi_status = SCSI_STATUS_RESERV_CONFLICT;
ctsio->io_hdr.status = CTL_SCSI_ERROR;
retval = 1;
goto bailout;
}
}
if ((lun->flags & CTL_LUN_OFFLINE)
&& ((entry->flags & CTL_CMD_FLAG_OK_ON_OFFLINE) == 0)) {
ctl_set_lun_not_ready(ctsio);
retval = 1;
goto bailout;
}
/*
* If the LUN is stopped, see if this particular command is allowed
* for a stopped lun. Otherwise, reject it with 0x04,0x02.
*/
if ((lun->flags & CTL_LUN_STOPPED)
&& ((entry->flags & CTL_CMD_FLAG_OK_ON_STOPPED) == 0)) {
/* "Logical unit not ready, initializing cmd. required" */
ctl_set_lun_stopped(ctsio);
retval = 1;
goto bailout;
}
if ((lun->flags & CTL_LUN_INOPERABLE)
&& ((entry->flags & CTL_CMD_FLAG_OK_ON_INOPERABLE) == 0)) {
/* "Medium format corrupted" */
ctl_set_medium_format_corrupted(ctsio);
retval = 1;
goto bailout;
}
bailout:
return (retval);
}
static void
ctl_failover_io(union ctl_io *io, int have_lock)
{
ctl_set_busy(&io->scsiio);
ctl_done_lock(io, have_lock);
}
static void
ctl_failover(void)
{
struct ctl_lun *lun;
struct ctl_softc *ctl_softc;
union ctl_io *next_io, *pending_io;
union ctl_io *io;
int lun_idx;
int i;
ctl_softc = control_softc;
mtx_lock(&ctl_softc->ctl_lock);
/*
* Remove any cmds from the other SC from the rtr queue. These
* will obviously only be for LUNs for which we're the primary.
* We can't send status or get/send data for these commands.
* Since they haven't been executed yet, we can just remove them.
* We'll either abort them or delete them below, depending on
* which HA mode we're in.
*/
for (io = (union ctl_io *)STAILQ_FIRST(&ctl_softc->rtr_queue);
io != NULL; io = next_io) {
next_io = (union ctl_io *)STAILQ_NEXT(&io->io_hdr, links);
if (io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC)
STAILQ_REMOVE(&ctl_softc->rtr_queue, &io->io_hdr,
ctl_io_hdr, links);
}
for (lun_idx=0; lun_idx < ctl_softc->num_luns; lun_idx++) {
lun = ctl_softc->ctl_luns[lun_idx];
if (lun==NULL)
continue;
/*
* Processor LUNs are primary on both sides.
* XXX will this always be true?
*/
if (lun->be_lun->lun_type == T_PROCESSOR)
continue;
if ((lun->flags & CTL_LUN_PRIMARY_SC)
&& (ctl_softc->ha_mode == CTL_HA_MODE_SER_ONLY)) {
printf("FAILOVER: primary lun %d\n", lun_idx);
/*
* Remove all commands from the other SC. First from the
* blocked queue then from the ooa queue. Once we have
* removed them. Call ctl_check_blocked to see if there
* is anything that can run.
*/
for (io = (union ctl_io *)TAILQ_FIRST(
&lun->blocked_queue); io != NULL; io = next_io) {
next_io = (union ctl_io *)TAILQ_NEXT(
&io->io_hdr, blocked_links);
if (io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC) {
TAILQ_REMOVE(&lun->blocked_queue,
&io->io_hdr,blocked_links);
io->io_hdr.flags &= ~CTL_FLAG_BLOCKED;
TAILQ_REMOVE(&lun->ooa_queue,
&io->io_hdr, ooa_links);
ctl_free_io_internal(io, 1);
}
}
for (io = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue);
io != NULL; io = next_io) {
next_io = (union ctl_io *)TAILQ_NEXT(
&io->io_hdr, ooa_links);
if (io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC) {
TAILQ_REMOVE(&lun->ooa_queue,
&io->io_hdr,
ooa_links);
ctl_free_io_internal(io, 1);
}
}
ctl_check_blocked(lun);
} else if ((lun->flags & CTL_LUN_PRIMARY_SC)
&& (ctl_softc->ha_mode == CTL_HA_MODE_XFER)) {
printf("FAILOVER: primary lun %d\n", lun_idx);
/*
* Abort all commands from the other SC. We can't
* send status back for them now. These should get
* cleaned up when they are completed or come out
* for a datamove operation.
*/
for (io = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue);
io != NULL; io = next_io) {
next_io = (union ctl_io *)TAILQ_NEXT(
&io->io_hdr, ooa_links);
if (io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC)
io->io_hdr.flags |= CTL_FLAG_ABORT;
}
} else if (((lun->flags & CTL_LUN_PRIMARY_SC) == 0)
&& (ctl_softc->ha_mode == CTL_HA_MODE_XFER)) {
printf("FAILOVER: secondary lun %d\n", lun_idx);
lun->flags |= CTL_LUN_PRIMARY_SC;
/*
* We send all I/O that was sent to this controller
* and redirected to the other side back with
* busy status, and have the initiator retry it.
* Figuring out how much data has been transferred,
* etc. and picking up where we left off would be
* very tricky.
*
* XXX KDM need to remove I/O from the blocked
* queue as well!
*/
for (pending_io = (union ctl_io *)TAILQ_FIRST(
&lun->ooa_queue); pending_io != NULL;
pending_io = next_io) {
next_io = (union ctl_io *)TAILQ_NEXT(
&pending_io->io_hdr, ooa_links);
pending_io->io_hdr.flags &=
~CTL_FLAG_SENT_2OTHER_SC;
if (pending_io->io_hdr.flags &
CTL_FLAG_IO_ACTIVE) {
pending_io->io_hdr.flags |=
CTL_FLAG_FAILOVER;
} else {
ctl_set_busy(&pending_io->scsiio);
ctl_done_lock(pending_io,
/*have_lock*/1);
}
}
/*
* Build Unit Attention
*/
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
lun->pending_sense[i].ua_pending |=
CTL_UA_ASYM_ACC_CHANGE;
}
} else if (((lun->flags & CTL_LUN_PRIMARY_SC) == 0)
&& (ctl_softc->ha_mode == CTL_HA_MODE_SER_ONLY)) {
printf("FAILOVER: secondary lun %d\n", lun_idx);
/*
* if the first io on the OOA is not on the RtR queue
* add it.
*/
lun->flags |= CTL_LUN_PRIMARY_SC;
pending_io = (union ctl_io *)TAILQ_FIRST(
&lun->ooa_queue);
if (pending_io==NULL) {
printf("Nothing on OOA queue\n");
continue;
}
pending_io->io_hdr.flags &= ~CTL_FLAG_SENT_2OTHER_SC;
if ((pending_io->io_hdr.flags &
CTL_FLAG_IS_WAS_ON_RTR) == 0) {
pending_io->io_hdr.flags |=
CTL_FLAG_IS_WAS_ON_RTR;
STAILQ_INSERT_TAIL(&ctl_softc->rtr_queue,
&pending_io->io_hdr, links);
}
#if 0
else
{
printf("Tag 0x%04x is running\n",
pending_io->scsiio.tag_num);
}
#endif
next_io = (union ctl_io *)TAILQ_NEXT(
&pending_io->io_hdr, ooa_links);
for (pending_io=next_io; pending_io != NULL;
pending_io = next_io) {
pending_io->io_hdr.flags &=
~CTL_FLAG_SENT_2OTHER_SC;
next_io = (union ctl_io *)TAILQ_NEXT(
&pending_io->io_hdr, ooa_links);
if (pending_io->io_hdr.flags &
CTL_FLAG_IS_WAS_ON_RTR) {
#if 0
printf("Tag 0x%04x is running\n",
pending_io->scsiio.tag_num);
#endif
continue;
}
switch (ctl_check_ooa(lun, pending_io,
(union ctl_io *)TAILQ_PREV(
&pending_io->io_hdr, ctl_ooaq,
ooa_links))) {
case CTL_ACTION_BLOCK:
TAILQ_INSERT_TAIL(&lun->blocked_queue,
&pending_io->io_hdr,
blocked_links);
pending_io->io_hdr.flags |=
CTL_FLAG_BLOCKED;
break;
case CTL_ACTION_PASS:
case CTL_ACTION_SKIP:
pending_io->io_hdr.flags |=
CTL_FLAG_IS_WAS_ON_RTR;
STAILQ_INSERT_TAIL(
&ctl_softc->rtr_queue,
&pending_io->io_hdr, links);
break;
case CTL_ACTION_OVERLAP:
ctl_set_overlapped_cmd(
(struct ctl_scsiio *)pending_io);
ctl_done_lock(pending_io,
/*have_lock*/ 1);
break;
case CTL_ACTION_OVERLAP_TAG:
ctl_set_overlapped_tag(
(struct ctl_scsiio *)pending_io,
pending_io->scsiio.tag_num & 0xff);
ctl_done_lock(pending_io,
/*have_lock*/ 1);
break;
case CTL_ACTION_ERROR:
default:
ctl_set_internal_failure(
(struct ctl_scsiio *)pending_io,
0, // sks_valid
0); //retry count
ctl_done_lock(pending_io,
/*have_lock*/ 1);
break;
}
}
/*
* Build Unit Attention
*/
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
lun->pending_sense[i].ua_pending |=
CTL_UA_ASYM_ACC_CHANGE;
}
} else {
panic("Unhandled HA mode failover, LUN flags = %#x, "
"ha_mode = #%x", lun->flags, ctl_softc->ha_mode);
}
}
ctl_pause_rtr = 0;
mtx_unlock(&ctl_softc->ctl_lock);
}
static int
ctl_scsiio_precheck(struct ctl_softc *ctl_softc, struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun;
struct ctl_cmd_entry *entry;
uint8_t opcode;
uint32_t initidx;
int retval;
retval = 0;
lun = NULL;
opcode = ctsio->cdb[0];
mtx_lock(&ctl_softc->ctl_lock);
if ((ctsio->io_hdr.nexus.targ_lun < CTL_MAX_LUNS)
&& (ctl_softc->ctl_luns[ctsio->io_hdr.nexus.targ_lun] != NULL)) {
lun = ctl_softc->ctl_luns[ctsio->io_hdr.nexus.targ_lun];
/*
* If the LUN is invalid, pretend that it doesn't exist.
* It will go away as soon as all pending I/O has been
* completed.
*/
if (lun->flags & CTL_LUN_DISABLED) {
lun = NULL;
} else {
ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr = lun;
ctsio->io_hdr.ctl_private[CTL_PRIV_BACKEND_LUN].ptr =
lun->be_lun;
if (lun->be_lun->lun_type == T_PROCESSOR) {
ctsio->io_hdr.flags |= CTL_FLAG_CONTROL_DEV;
}
}
} else {
ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr = NULL;
ctsio->io_hdr.ctl_private[CTL_PRIV_BACKEND_LUN].ptr = NULL;
}
entry = &ctl_cmd_table[opcode];
ctsio->io_hdr.flags &= ~CTL_FLAG_DATA_MASK;
ctsio->io_hdr.flags |= entry->flags & CTL_FLAG_DATA_MASK;
/*
* Check to see whether we can send this command to LUNs that don't
* exist. This should pretty much only be the case for inquiry
* and request sense. Further checks, below, really require having
* a LUN, so we can't really check the command anymore. Just put
* it on the rtr queue.
*/
if (lun == NULL) {
if (entry->flags & CTL_CMD_FLAG_OK_ON_ALL_LUNS)
goto queue_rtr;
ctl_set_unsupported_lun(ctsio);
mtx_unlock(&ctl_softc->ctl_lock);
ctl_done((union ctl_io *)ctsio);
goto bailout;
} else {
/*
* Every I/O goes into the OOA queue for a particular LUN, and
* stays there until completion.
*/
TAILQ_INSERT_TAIL(&lun->ooa_queue, &ctsio->io_hdr, ooa_links);
/*
* Make sure we support this particular command on this LUN.
* e.g., we don't support writes to the control LUN.
*/
switch (lun->be_lun->lun_type) {
case T_PROCESSOR:
if (((entry->flags & CTL_CMD_FLAG_OK_ON_PROC) == 0)
&& ((entry->flags & CTL_CMD_FLAG_OK_ON_ALL_LUNS)
== 0)) {
ctl_set_invalid_opcode(ctsio);
mtx_unlock(&ctl_softc->ctl_lock);
ctl_done((union ctl_io *)ctsio);
goto bailout;
}
break;
case T_DIRECT:
if (((entry->flags & CTL_CMD_FLAG_OK_ON_SLUN) == 0)
&& ((entry->flags & CTL_CMD_FLAG_OK_ON_ALL_LUNS)
== 0)){
ctl_set_invalid_opcode(ctsio);
mtx_unlock(&ctl_softc->ctl_lock);
ctl_done((union ctl_io *)ctsio);
goto bailout;
}
break;
default:
printf("Unsupported CTL LUN type %d\n",
lun->be_lun->lun_type);
panic("Unsupported CTL LUN type %d\n",
lun->be_lun->lun_type);
break; /* NOTREACHED */
}
}
initidx = ctl_get_initindex(&ctsio->io_hdr.nexus);
/*
* If we've got a request sense, it'll clear the contingent
* allegiance condition. Otherwise, if we have a CA condition for
* this initiator, clear it, because it sent down a command other
* than request sense.
*/
if ((opcode != REQUEST_SENSE)
&& (ctl_is_set(lun->have_ca, initidx)))
ctl_clear_mask(lun->have_ca, initidx);
/*
* If the command has this flag set, it handles its own unit
* attention reporting, we shouldn't do anything. Otherwise we
* check for any pending unit attentions, and send them back to the
* initiator. We only do this when a command initially comes in,
* not when we pull it off the blocked queue.
*
* According to SAM-3, section 5.3.2, the order that things get
* presented back to the host is basically unit attentions caused
* by some sort of reset event, busy status, reservation conflicts
* or task set full, and finally any other status.
*
* One issue here is that some of the unit attentions we report
* don't fall into the "reset" category (e.g. "reported luns data
* has changed"). So reporting it here, before the reservation
* check, may be technically wrong. I guess the only thing to do
* would be to check for and report the reset events here, and then
* check for the other unit attention types after we check for a
* reservation conflict.
*
* XXX KDM need to fix this
*/
if ((entry->flags & CTL_CMD_FLAG_NO_SENSE) == 0) {
ctl_ua_type ua_type;
ua_type = lun->pending_sense[initidx].ua_pending;
if (ua_type != CTL_UA_NONE) {
scsi_sense_data_type sense_format;
if (lun != NULL)
sense_format = (lun->flags &
CTL_LUN_SENSE_DESC) ? SSD_TYPE_DESC :
SSD_TYPE_FIXED;
else
sense_format = SSD_TYPE_FIXED;
ua_type = ctl_build_ua(ua_type, &ctsio->sense_data,
sense_format);
if (ua_type != CTL_UA_NONE) {
ctsio->scsi_status = SCSI_STATUS_CHECK_COND;
ctsio->io_hdr.status = CTL_SCSI_ERROR |
CTL_AUTOSENSE;
ctsio->sense_len = SSD_FULL_SIZE;
lun->pending_sense[initidx].ua_pending &=
~ua_type;
mtx_unlock(&ctl_softc->ctl_lock);
ctl_done((union ctl_io *)ctsio);
goto bailout;
}
}
}
if (ctl_scsiio_lun_check(ctl_softc, lun, entry, ctsio) != 0) {
mtx_unlock(&ctl_softc->ctl_lock);
ctl_done((union ctl_io *)ctsio);
goto bailout;
}
/*
* XXX CHD this is where we want to send IO to other side if
* this LUN is secondary on this SC. We will need to make a copy
* of the IO and flag the IO on this side as SENT_2OTHER and the flag
* the copy we send as FROM_OTHER.
* We also need to stuff the address of the original IO so we can
* find it easily. Something similar will need be done on the other
* side so when we are done we can find the copy.
*/
if ((lun->flags & CTL_LUN_PRIMARY_SC) == 0) {
union ctl_ha_msg msg_info;
int isc_retval;
ctsio->io_hdr.flags |= CTL_FLAG_SENT_2OTHER_SC;
msg_info.hdr.msg_type = CTL_MSG_SERIALIZE;
msg_info.hdr.original_sc = (union ctl_io *)ctsio;
#if 0
printf("1. ctsio %p\n", ctsio);
#endif
msg_info.hdr.serializing_sc = NULL;
msg_info.hdr.nexus = ctsio->io_hdr.nexus;
msg_info.scsi.tag_num = ctsio->tag_num;
msg_info.scsi.tag_type = ctsio->tag_type;
memcpy(msg_info.scsi.cdb, ctsio->cdb, CTL_MAX_CDBLEN);
ctsio->io_hdr.flags &= ~CTL_FLAG_IO_ACTIVE;
if ((isc_retval=ctl_ha_msg_send(CTL_HA_CHAN_CTL,
(void *)&msg_info, sizeof(msg_info), 0)) >
CTL_HA_STATUS_SUCCESS) {
printf("CTL:precheck, ctl_ha_msg_send returned %d\n",
isc_retval);
printf("CTL:opcode is %x\n",opcode);
} else {
#if 0
printf("CTL:Precheck sent msg, opcode is %x\n",opcode);
#endif
}
/*
* XXX KDM this I/O is off the incoming queue, but hasn't
* been inserted on any other queue. We may need to come
* up with a holding queue while we wait for serialization
* so that we have an idea of what we're waiting for from
* the other side.
*/
goto bailout_unlock;
}
switch (ctl_check_ooa(lun, (union ctl_io *)ctsio,
(union ctl_io *)TAILQ_PREV(&ctsio->io_hdr,
ctl_ooaq, ooa_links))) {
case CTL_ACTION_BLOCK:
ctsio->io_hdr.flags |= CTL_FLAG_BLOCKED;
TAILQ_INSERT_TAIL(&lun->blocked_queue, &ctsio->io_hdr,
blocked_links);
goto bailout_unlock;
break; /* NOTREACHED */
case CTL_ACTION_PASS:
case CTL_ACTION_SKIP:
goto queue_rtr;
break; /* NOTREACHED */
case CTL_ACTION_OVERLAP:
ctl_set_overlapped_cmd(ctsio);
mtx_unlock(&ctl_softc->ctl_lock);
ctl_done((union ctl_io *)ctsio);
goto bailout;
break; /* NOTREACHED */
case CTL_ACTION_OVERLAP_TAG:
ctl_set_overlapped_tag(ctsio, ctsio->tag_num & 0xff);
mtx_unlock(&ctl_softc->ctl_lock);
ctl_done((union ctl_io *)ctsio);
goto bailout;
break; /* NOTREACHED */
case CTL_ACTION_ERROR:
default:
ctl_set_internal_failure(ctsio,
/*sks_valid*/ 0,
/*retry_count*/ 0);
mtx_unlock(&ctl_softc->ctl_lock);
ctl_done((union ctl_io *)ctsio);
goto bailout;
break; /* NOTREACHED */
}
goto bailout_unlock;
queue_rtr:
ctsio->io_hdr.flags |= CTL_FLAG_IS_WAS_ON_RTR;
STAILQ_INSERT_TAIL(&ctl_softc->rtr_queue, &ctsio->io_hdr, links);
bailout_unlock:
mtx_unlock(&ctl_softc->ctl_lock);
bailout:
return (retval);
}
static int
ctl_scsiio(struct ctl_scsiio *ctsio)
{
int retval;
struct ctl_cmd_entry *entry;
retval = CTL_RETVAL_COMPLETE;
CTL_DEBUG_PRINT(("ctl_scsiio cdb[0]=%02X\n", ctsio->cdb[0]));
entry = &ctl_cmd_table[ctsio->cdb[0]];
/*
* If this I/O has been aborted, just send it straight to
* ctl_done() without executing it.
*/
if (ctsio->io_hdr.flags & CTL_FLAG_ABORT) {
ctl_done((union ctl_io *)ctsio);
goto bailout;
}
/*
* All the checks should have been handled by ctl_scsiio_precheck().
* We should be clear now to just execute the I/O.
*/
retval = entry->execute(ctsio);
bailout:
return (retval);
}
/*
* Since we only implement one target right now, a bus reset simply resets
* our single target.
*/
static int
ctl_bus_reset(struct ctl_softc *ctl_softc, union ctl_io *io)
{
return(ctl_target_reset(ctl_softc, io, CTL_UA_BUS_RESET));
}
static int
ctl_target_reset(struct ctl_softc *ctl_softc, union ctl_io *io,
ctl_ua_type ua_type)
{
struct ctl_lun *lun;
int retval;
if (!(io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC)) {
union ctl_ha_msg msg_info;
io->io_hdr.flags |= CTL_FLAG_SENT_2OTHER_SC;
msg_info.hdr.nexus = io->io_hdr.nexus;
if (ua_type==CTL_UA_TARG_RESET)
msg_info.task.task_action = CTL_TASK_TARGET_RESET;
else
msg_info.task.task_action = CTL_TASK_BUS_RESET;
msg_info.hdr.msg_type = CTL_MSG_MANAGE_TASKS;
msg_info.hdr.original_sc = NULL;
msg_info.hdr.serializing_sc = NULL;
if (CTL_HA_STATUS_SUCCESS != ctl_ha_msg_send(CTL_HA_CHAN_CTL,
(void *)&msg_info, sizeof(msg_info), 0)) {
}
}
retval = 0;
STAILQ_FOREACH(lun, &ctl_softc->lun_list, links)
retval += ctl_lun_reset(lun, io, ua_type);
return (retval);
}
/*
* The LUN should always be set. The I/O is optional, and is used to
* distinguish between I/Os sent by this initiator, and by other
* initiators. We set unit attention for initiators other than this one.
* SAM-3 is vague on this point. It does say that a unit attention should
* be established for other initiators when a LUN is reset (see section
* 5.7.3), but it doesn't specifically say that the unit attention should
* be established for this particular initiator when a LUN is reset. Here
* is the relevant text, from SAM-3 rev 8:
*
* 5.7.2 When a SCSI initiator port aborts its own tasks
*
* When a SCSI initiator port causes its own task(s) to be aborted, no
* notification that the task(s) have been aborted shall be returned to
* the SCSI initiator port other than the completion response for the
* command or task management function action that caused the task(s) to
* be aborted and notification(s) associated with related effects of the
* action (e.g., a reset unit attention condition).
*
* XXX KDM for now, we're setting unit attention for all initiators.
*/
static int
ctl_lun_reset(struct ctl_lun *lun, union ctl_io *io, ctl_ua_type ua_type)
{
union ctl_io *xio;
#if 0
uint32_t initindex;
#endif
int i;
/*
* Run through the OOA queue and abort each I/O.
*/
#if 0
TAILQ_FOREACH((struct ctl_io_hdr *)xio, &lun->ooa_queue, ooa_links) {
#endif
for (xio = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue); xio != NULL;
xio = (union ctl_io *)TAILQ_NEXT(&xio->io_hdr, ooa_links)) {
xio->io_hdr.flags |= CTL_FLAG_ABORT;
}
/*
* This version sets unit attention for every
*/
#if 0
initindex = ctl_get_initindex(&io->io_hdr.nexus);
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
if (initindex == i)
continue;
lun->pending_sense[i].ua_pending |= ua_type;
}
#endif
/*
* A reset (any kind, really) clears reservations established with
* RESERVE/RELEASE. It does not clear reservations established
* with PERSISTENT RESERVE OUT, but we don't support that at the
* moment anyway. See SPC-2, section 5.6. SPC-3 doesn't address
* reservations made with the RESERVE/RELEASE commands, because
* those commands are obsolete in SPC-3.
*/
lun->flags &= ~CTL_LUN_RESERVED;
for (i = 0; i < CTL_MAX_INITIATORS; i++) {
ctl_clear_mask(lun->have_ca, i);
lun->pending_sense[i].ua_pending |= ua_type;
}
return (0);
}
static int
ctl_abort_task(union ctl_io *io)
{
union ctl_io *xio;
struct ctl_lun *lun;
struct ctl_softc *ctl_softc;
#if 0
struct sbuf sb;
char printbuf[128];
#endif
int found;
ctl_softc = control_softc;
found = 0;
/*
* Look up the LUN.
*/
if ((io->io_hdr.nexus.targ_lun < CTL_MAX_LUNS)
&& (ctl_softc->ctl_luns[io->io_hdr.nexus.targ_lun] != NULL))
lun = ctl_softc->ctl_luns[io->io_hdr.nexus.targ_lun];
else
goto bailout;
#if 0
printf("ctl_abort_task: called for lun %lld, tag %d type %d\n",
lun->lun, io->taskio.tag_num, io->taskio.tag_type);
#endif
/*
* Run through the OOA queue and attempt to find the given I/O.
* The target port, initiator ID, tag type and tag number have to
* match the values that we got from the initiator. If we have an
* untagged command to abort, simply abort the first untagged command
* we come to. We only allow one untagged command at a time of course.
*/
#if 0
TAILQ_FOREACH((struct ctl_io_hdr *)xio, &lun->ooa_queue, ooa_links) {
#endif
for (xio = (union ctl_io *)TAILQ_FIRST(&lun->ooa_queue); xio != NULL;
xio = (union ctl_io *)TAILQ_NEXT(&xio->io_hdr, ooa_links)) {
#if 0
sbuf_new(&sb, printbuf, sizeof(printbuf), SBUF_FIXEDLEN);
sbuf_printf(&sb, "LUN %lld tag %d type %d%s%s%s%s: ",
lun->lun, xio->scsiio.tag_num,
xio->scsiio.tag_type,
(xio->io_hdr.blocked_links.tqe_prev
== NULL) ? "" : " BLOCKED",
(xio->io_hdr.flags &
CTL_FLAG_DMA_INPROG) ? " DMA" : "",
(xio->io_hdr.flags &
CTL_FLAG_ABORT) ? " ABORT" : "",
(xio->io_hdr.flags &
CTL_FLAG_IS_WAS_ON_RTR ? " RTR" : ""));
ctl_scsi_command_string(&xio->scsiio, NULL, &sb);
sbuf_finish(&sb);
printf("%s\n", sbuf_data(&sb));
#endif
if ((xio->io_hdr.nexus.targ_port == io->io_hdr.nexus.targ_port)
&& (xio->io_hdr.nexus.initid.id ==
io->io_hdr.nexus.initid.id)) {
/*
* If the abort says that the task is untagged, the
* task in the queue must be untagged. Otherwise,
* we just check to see whether the tag numbers
* match. This is because the QLogic firmware
* doesn't pass back the tag type in an abort
* request.
*/
#if 0
if (((xio->scsiio.tag_type == CTL_TAG_UNTAGGED)
&& (io->taskio.tag_type == CTL_TAG_UNTAGGED))
|| (xio->scsiio.tag_num == io->taskio.tag_num)) {
#endif
/*
* XXX KDM we've got problems with FC, because it
* doesn't send down a tag type with aborts. So we
* can only really go by the tag number...
* This may cause problems with parallel SCSI.
* Need to figure that out!!
*/
if (xio->scsiio.tag_num == io->taskio.tag_num) {
xio->io_hdr.flags |= CTL_FLAG_ABORT;
found = 1;
if ((io->io_hdr.flags &
CTL_FLAG_FROM_OTHER_SC) == 0 &&
!(lun->flags & CTL_LUN_PRIMARY_SC)) {
union ctl_ha_msg msg_info;
io->io_hdr.flags |=
CTL_FLAG_SENT_2OTHER_SC;
msg_info.hdr.nexus = io->io_hdr.nexus;
msg_info.task.task_action =
CTL_TASK_ABORT_TASK;
msg_info.task.tag_num =
io->taskio.tag_num;
msg_info.task.tag_type =
io->taskio.tag_type;
msg_info.hdr.msg_type =
CTL_MSG_MANAGE_TASKS;
msg_info.hdr.original_sc = NULL;
msg_info.hdr.serializing_sc = NULL;
#if 0
printf("Sent Abort to other side\n");
#endif
if (CTL_HA_STATUS_SUCCESS !=
ctl_ha_msg_send(CTL_HA_CHAN_CTL,
(void *)&msg_info,
sizeof(msg_info), 0)) {
}
}
#if 0
printf("ctl_abort_task: found I/O to abort\n");
#endif
break;
}
}
}
bailout:
if (found == 0) {
/*
* This isn't really an error. It's entirely possible for
* the abort and command completion to cross on the wire.
* This is more of an informative/diagnostic error.
*/
#if 0
printf("ctl_abort_task: ABORT sent for nonexistent I/O: "
"%d:%d:%d:%d tag %d type %d\n",
io->io_hdr.nexus.initid.id,
io->io_hdr.nexus.targ_port,
io->io_hdr.nexus.targ_target.id,
io->io_hdr.nexus.targ_lun, io->taskio.tag_num,
io->taskio.tag_type);
#endif
return (1);
} else
return (0);
}
/*
* Assumptions: caller holds ctl_softc->ctl_lock
*
* This routine cannot block! It must be callable from an interrupt
* handler as well as from the work thread.
*/
static void
ctl_run_task_queue(struct ctl_softc *ctl_softc)
{
union ctl_io *io, *next_io;
CTL_DEBUG_PRINT(("ctl_run_task_queue\n"));
for (io = (union ctl_io *)STAILQ_FIRST(&ctl_softc->task_queue);
io != NULL; io = next_io) {
int retval;
const char *task_desc;
next_io = (union ctl_io *)STAILQ_NEXT(&io->io_hdr, links);
retval = 0;
switch (io->io_hdr.io_type) {
case CTL_IO_TASK: {
task_desc = ctl_scsi_task_string(&io->taskio);
if (task_desc != NULL) {
#ifdef NEEDTOPORT
csevent_log(CSC_CTL | CSC_SHELF_SW |
CTL_TASK_REPORT,
csevent_LogType_Trace,
csevent_Severity_Information,
csevent_AlertLevel_Green,
csevent_FRU_Firmware,
csevent_FRU_Unknown,
"CTL: received task: %s",task_desc);
#endif
} else {
#ifdef NEEDTOPORT
csevent_log(CSC_CTL | CSC_SHELF_SW |
CTL_TASK_REPORT,
csevent_LogType_Trace,
csevent_Severity_Information,
csevent_AlertLevel_Green,
csevent_FRU_Firmware,
csevent_FRU_Unknown,
"CTL: received unknown task "
"type: %d (%#x)",
io->taskio.task_action,
io->taskio.task_action);
#endif
}
switch (io->taskio.task_action) {
case CTL_TASK_ABORT_TASK:
retval = ctl_abort_task(io);
break;
case CTL_TASK_ABORT_TASK_SET:
break;
case CTL_TASK_CLEAR_ACA:
break;
case CTL_TASK_CLEAR_TASK_SET:
break;
case CTL_TASK_LUN_RESET: {
struct ctl_lun *lun;
uint32_t targ_lun;
int retval;
targ_lun = io->io_hdr.nexus.targ_lun;
if ((targ_lun < CTL_MAX_LUNS)
&& (ctl_softc->ctl_luns[targ_lun] != NULL))
lun = ctl_softc->ctl_luns[targ_lun];
else {
retval = 1;
break;
}
if (!(io->io_hdr.flags &
CTL_FLAG_FROM_OTHER_SC)) {
union ctl_ha_msg msg_info;
io->io_hdr.flags |=
CTL_FLAG_SENT_2OTHER_SC;
msg_info.hdr.msg_type =
CTL_MSG_MANAGE_TASKS;
msg_info.hdr.nexus = io->io_hdr.nexus;
msg_info.task.task_action =
CTL_TASK_LUN_RESET;
msg_info.hdr.original_sc = NULL;
msg_info.hdr.serializing_sc = NULL;
if (CTL_HA_STATUS_SUCCESS !=
ctl_ha_msg_send(CTL_HA_CHAN_CTL,
(void *)&msg_info,
sizeof(msg_info), 0)) {
}
}
retval = ctl_lun_reset(lun, io,
CTL_UA_LUN_RESET);
break;
}
case CTL_TASK_TARGET_RESET:
retval = ctl_target_reset(ctl_softc, io,
CTL_UA_TARG_RESET);
break;
case CTL_TASK_BUS_RESET:
retval = ctl_bus_reset(ctl_softc, io);
break;
case CTL_TASK_PORT_LOGIN:
break;
case CTL_TASK_PORT_LOGOUT:
break;
default:
printf("ctl_run_task_queue: got unknown task "
"management event %d\n",
io->taskio.task_action);
break;
}
if (retval == 0)
io->io_hdr.status = CTL_SUCCESS;
else
io->io_hdr.status = CTL_ERROR;
STAILQ_REMOVE(&ctl_softc->task_queue, &io->io_hdr,
ctl_io_hdr, links);
/*
* This will queue this I/O to the done queue, but the
* work thread won't be able to process it until we
* return and the lock is released.
*/
ctl_done_lock(io, /*have_lock*/ 1);
break;
}
default: {
printf("%s: invalid I/O type %d msg %d cdb %x"
" iptl: %ju:%d:%ju:%d tag 0x%04x\n",
__func__, io->io_hdr.io_type,
io->io_hdr.msg_type, io->scsiio.cdb[0],
(uintmax_t)io->io_hdr.nexus.initid.id,
io->io_hdr.nexus.targ_port,
(uintmax_t)io->io_hdr.nexus.targ_target.id,
io->io_hdr.nexus.targ_lun,
(io->io_hdr.io_type == CTL_IO_TASK) ?
io->taskio.tag_num : io->scsiio.tag_num);
STAILQ_REMOVE(&ctl_softc->task_queue, &io->io_hdr,
ctl_io_hdr, links);
ctl_free_io_internal(io, 1);
break;
}
}
}
ctl_softc->flags &= ~CTL_FLAG_TASK_PENDING;
}
/*
* For HA operation. Handle commands that come in from the other
* controller.
*/
static void
ctl_handle_isc(union ctl_io *io)
{
int free_io;
struct ctl_lun *lun;
struct ctl_softc *ctl_softc;
ctl_softc = control_softc;
lun = ctl_softc->ctl_luns[io->io_hdr.nexus.targ_lun];
switch (io->io_hdr.msg_type) {
case CTL_MSG_SERIALIZE:
free_io = ctl_serialize_other_sc_cmd(&io->scsiio,
/*have_lock*/ 0);
break;
case CTL_MSG_R2R: {
uint8_t opcode;
struct ctl_cmd_entry *entry;
/*
* This is only used in SER_ONLY mode.
*/
free_io = 0;
opcode = io->scsiio.cdb[0];
entry = &ctl_cmd_table[opcode];
mtx_lock(&ctl_softc->ctl_lock);
if (ctl_scsiio_lun_check(ctl_softc, lun,
entry, (struct ctl_scsiio *)io) != 0) {
ctl_done_lock(io, /*have_lock*/ 1);
mtx_unlock(&ctl_softc->ctl_lock);
break;
}
io->io_hdr.flags |= CTL_FLAG_IS_WAS_ON_RTR;
STAILQ_INSERT_TAIL(&ctl_softc->rtr_queue,
&io->io_hdr, links);
mtx_unlock(&ctl_softc->ctl_lock);
break;
}
case CTL_MSG_FINISH_IO:
if (ctl_softc->ha_mode == CTL_HA_MODE_XFER) {
free_io = 0;
ctl_done_lock(io, /*have_lock*/ 0);
} else {
free_io = 1;
mtx_lock(&ctl_softc->ctl_lock);
TAILQ_REMOVE(&lun->ooa_queue, &io->io_hdr,
ooa_links);
STAILQ_REMOVE(&ctl_softc->task_queue,
&io->io_hdr, ctl_io_hdr, links);
ctl_check_blocked(lun);
mtx_unlock(&ctl_softc->ctl_lock);
}
break;
case CTL_MSG_PERS_ACTION:
ctl_hndl_per_res_out_on_other_sc(
(union ctl_ha_msg *)&io->presio.pr_msg);
free_io = 1;
break;
case CTL_MSG_BAD_JUJU:
free_io = 0;
ctl_done_lock(io, /*have_lock*/ 0);
break;
case CTL_MSG_DATAMOVE:
/* Only used in XFER mode */
free_io = 0;
ctl_datamove_remote(io);
break;
case CTL_MSG_DATAMOVE_DONE:
/* Only used in XFER mode */
free_io = 0;
io->scsiio.be_move_done(io);
break;
default:
free_io = 1;
printf("%s: Invalid message type %d\n",
__func__, io->io_hdr.msg_type);
break;
}
if (free_io)
ctl_free_io_internal(io, 0);
}
/*
* Returns the match type in the case of a match, or CTL_LUN_PAT_NONE if
* there is no match.
*/
static ctl_lun_error_pattern
ctl_cmd_pattern_match(struct ctl_scsiio *ctsio, struct ctl_error_desc *desc)
{
struct ctl_cmd_entry *entry;
ctl_lun_error_pattern filtered_pattern, pattern;
uint8_t opcode;
pattern = desc->error_pattern;
/*
* XXX KDM we need more data passed into this function to match a
* custom pattern, and we actually need to implement custom pattern
* matching.
*/
if (pattern & CTL_LUN_PAT_CMD)
return (CTL_LUN_PAT_CMD);
if ((pattern & CTL_LUN_PAT_MASK) == CTL_LUN_PAT_ANY)
return (CTL_LUN_PAT_ANY);
opcode = ctsio->cdb[0];
entry = &ctl_cmd_table[opcode];
filtered_pattern = entry->pattern & pattern;
/*
* If the user requested specific flags in the pattern (e.g.
* CTL_LUN_PAT_RANGE), make sure the command supports all of those
* flags.
*
* If the user did not specify any flags, it doesn't matter whether
* or not the command supports the flags.
*/
if ((filtered_pattern & ~CTL_LUN_PAT_MASK) !=
(pattern & ~CTL_LUN_PAT_MASK))
return (CTL_LUN_PAT_NONE);
/*
* If the user asked for a range check, see if the requested LBA
* range overlaps with this command's LBA range.
*/
if (filtered_pattern & CTL_LUN_PAT_RANGE) {
uint64_t lba1;
uint32_t len1;
ctl_action action;
int retval;
retval = ctl_get_lba_len((union ctl_io *)ctsio, &lba1, &len1);
if (retval != 0)
return (CTL_LUN_PAT_NONE);
action = ctl_extent_check_lba(lba1, len1, desc->lba_range.lba,
desc->lba_range.len);
/*
* A "pass" means that the LBA ranges don't overlap, so
* this doesn't match the user's range criteria.
*/
if (action == CTL_ACTION_PASS)
return (CTL_LUN_PAT_NONE);
}
return (filtered_pattern);
}
/*
* Called with the CTL lock held.
*/
static void
ctl_inject_error(struct ctl_lun *lun, union ctl_io *io)
{
struct ctl_error_desc *desc, *desc2;
STAILQ_FOREACH_SAFE(desc, &lun->error_list, links, desc2) {
ctl_lun_error_pattern pattern;
/*
* Check to see whether this particular command matches
* the pattern in the descriptor.
*/
pattern = ctl_cmd_pattern_match(&io->scsiio, desc);
if ((pattern & CTL_LUN_PAT_MASK) == CTL_LUN_PAT_NONE)
continue;
switch (desc->lun_error & CTL_LUN_INJ_TYPE) {
case CTL_LUN_INJ_ABORTED:
ctl_set_aborted(&io->scsiio);
break;
case CTL_LUN_INJ_MEDIUM_ERR:
ctl_set_medium_error(&io->scsiio);
break;
case CTL_LUN_INJ_UA:
/* 29h/00h POWER ON, RESET, OR BUS DEVICE RESET
* OCCURRED */
ctl_set_ua(&io->scsiio, 0x29, 0x00);
break;
case CTL_LUN_INJ_CUSTOM:
/*
* We're assuming the user knows what he is doing.
* Just copy the sense information without doing
* checks.
*/
bcopy(&desc->custom_sense, &io->scsiio.sense_data,
ctl_min(sizeof(desc->custom_sense),
sizeof(io->scsiio.sense_data)));
io->scsiio.scsi_status = SCSI_STATUS_CHECK_COND;
io->scsiio.sense_len = SSD_FULL_SIZE;
io->io_hdr.status = CTL_SCSI_ERROR | CTL_AUTOSENSE;
break;
case CTL_LUN_INJ_NONE:
default:
/*
* If this is an error injection type we don't know
* about, clear the continuous flag (if it is set)
* so it will get deleted below.
*/
desc->lun_error &= ~CTL_LUN_INJ_CONTINUOUS;
break;
}
/*
* By default, each error injection action is a one-shot
*/
if (desc->lun_error & CTL_LUN_INJ_CONTINUOUS)
continue;
STAILQ_REMOVE(&lun->error_list, desc, ctl_error_desc, links);
free(desc, M_CTL);
}
}
#ifdef CTL_IO_DELAY
static void
ctl_datamove_timer_wakeup(void *arg)
{
union ctl_io *io;
io = (union ctl_io *)arg;
ctl_datamove(io);
}
#endif /* CTL_IO_DELAY */
/*
* Assumption: caller does NOT hold ctl_lock
*/
void
ctl_datamove(union ctl_io *io)
{
void (*fe_datamove)(union ctl_io *io);
CTL_DEBUG_PRINT(("ctl_datamove\n"));
#ifdef CTL_TIME_IO
if ((time_uptime - io->io_hdr.start_time) > ctl_time_io_secs) {
char str[256];
char path_str[64];
struct sbuf sb;
ctl_scsi_path_string(io, path_str, sizeof(path_str));
sbuf_new(&sb, str, sizeof(str), SBUF_FIXEDLEN);
sbuf_cat(&sb, path_str);
switch (io->io_hdr.io_type) {
case CTL_IO_SCSI:
ctl_scsi_command_string(&io->scsiio, NULL, &sb);
sbuf_printf(&sb, "\n");
sbuf_cat(&sb, path_str);
sbuf_printf(&sb, "Tag: 0x%04x, type %d\n",
io->scsiio.tag_num, io->scsiio.tag_type);
break;
case CTL_IO_TASK:
sbuf_printf(&sb, "Task I/O type: %d, Tag: 0x%04x, "
"Tag Type: %d\n", io->taskio.task_action,
io->taskio.tag_num, io->taskio.tag_type);
break;
default:
printf("Invalid CTL I/O type %d\n", io->io_hdr.io_type);
panic("Invalid CTL I/O type %d\n", io->io_hdr.io_type);
break;
}
sbuf_cat(&sb, path_str);
sbuf_printf(&sb, "ctl_datamove: %jd seconds\n",
(intmax_t)time_uptime - io->io_hdr.start_time);
sbuf_finish(&sb);
printf("%s", sbuf_data(&sb));
}
#endif /* CTL_TIME_IO */
mtx_lock(&control_softc->ctl_lock);
#ifdef CTL_IO_DELAY
if (io->io_hdr.flags & CTL_FLAG_DELAY_DONE) {
struct ctl_lun *lun;
lun =(struct ctl_lun *)io->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
io->io_hdr.flags &= ~CTL_FLAG_DELAY_DONE;
} else {
struct ctl_lun *lun;
lun =(struct ctl_lun *)io->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
if ((lun != NULL)
&& (lun->delay_info.datamove_delay > 0)) {
struct callout *callout;
callout = (struct callout *)&io->io_hdr.timer_bytes;
callout_init(callout, /*mpsafe*/ 1);
io->io_hdr.flags |= CTL_FLAG_DELAY_DONE;
callout_reset(callout,
lun->delay_info.datamove_delay * hz,
ctl_datamove_timer_wakeup, io);
if (lun->delay_info.datamove_type ==
CTL_DELAY_TYPE_ONESHOT)
lun->delay_info.datamove_delay = 0;
mtx_unlock(&control_softc->ctl_lock);
return;
}
}
#endif
/*
* If we have any pending task management commands, process them
* first. This is necessary to eliminate a race condition with the
* FETD:
*
* - FETD submits a task management command, like an abort.
* - Back end calls fe_datamove() to move the data for the aborted
* command. The FETD can't really accept it, but if it did, it
* would end up transmitting data for a command that the initiator
* told us to abort.
*
* We close the race by processing all pending task management
* commands here (we can't block!), and then check this I/O to see
* if it has been aborted. If so, return it to the back end with
* bad status, so the back end can say return an error to the back end
* and then when the back end returns an error, we can return the
* aborted command to the FETD, so it can clean up its resources.
*/
if (control_softc->flags & CTL_FLAG_TASK_PENDING)
ctl_run_task_queue(control_softc);
/*
* This command has been aborted. Set the port status, so we fail
* the data move.
*/
if (io->io_hdr.flags & CTL_FLAG_ABORT) {
printf("ctl_datamove: tag 0x%04x on (%ju:%d:%ju:%d) aborted\n",
io->scsiio.tag_num,(uintmax_t)io->io_hdr.nexus.initid.id,
io->io_hdr.nexus.targ_port,
(uintmax_t)io->io_hdr.nexus.targ_target.id,
io->io_hdr.nexus.targ_lun);
io->io_hdr.status = CTL_CMD_ABORTED;
io->io_hdr.port_status = 31337;
mtx_unlock(&control_softc->ctl_lock);
/*
* Note that the backend, in this case, will get the
* callback in its context. In other cases it may get
* called in the frontend's interrupt thread context.
*/
io->scsiio.be_move_done(io);
return;
}
/*
* If we're in XFER mode and this I/O is from the other shelf
* controller, we need to send the DMA to the other side to
* actually transfer the data to/from the host. In serialize only
* mode the transfer happens below CTL and ctl_datamove() is only
* called on the machine that originally received the I/O.
*/
if ((control_softc->ha_mode == CTL_HA_MODE_XFER)
&& (io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC)) {
union ctl_ha_msg msg;
uint32_t sg_entries_sent;
int do_sg_copy;
int i;
memset(&msg, 0, sizeof(msg));
msg.hdr.msg_type = CTL_MSG_DATAMOVE;
msg.hdr.original_sc = io->io_hdr.original_sc;
msg.hdr.serializing_sc = io;
msg.hdr.nexus = io->io_hdr.nexus;
msg.dt.flags = io->io_hdr.flags;
/*
* We convert everything into a S/G list here. We can't
* pass by reference, only by value between controllers.
* So we can't pass a pointer to the S/G list, only as many
* S/G entries as we can fit in here. If it's possible for
* us to get more than CTL_HA_MAX_SG_ENTRIES S/G entries,
* then we need to break this up into multiple transfers.
*/
if (io->scsiio.kern_sg_entries == 0) {
msg.dt.kern_sg_entries = 1;
/*
* If this is in cached memory, flush the cache
* before we send the DMA request to the other
* controller. We want to do this in either the
* read or the write case. The read case is
* straightforward. In the write case, we want to
* make sure nothing is in the local cache that
* could overwrite the DMAed data.
*/
if ((io->io_hdr.flags & CTL_FLAG_NO_DATASYNC) == 0) {
/*
* XXX KDM use bus_dmamap_sync() here.
*/
}
/*
* Convert to a physical address if this is a
* virtual address.
*/
if (io->io_hdr.flags & CTL_FLAG_BUS_ADDR) {
msg.dt.sg_list[0].addr =
io->scsiio.kern_data_ptr;
} else {
/*
* XXX KDM use busdma here!
*/
#if 0
msg.dt.sg_list[0].addr = (void *)
vtophys(io->scsiio.kern_data_ptr);
#endif
}
msg.dt.sg_list[0].len = io->scsiio.kern_data_len;
do_sg_copy = 0;
} else {
struct ctl_sg_entry *sgl;
do_sg_copy = 1;
msg.dt.kern_sg_entries = io->scsiio.kern_sg_entries;
sgl = (struct ctl_sg_entry *)io->scsiio.kern_data_ptr;
if ((io->io_hdr.flags & CTL_FLAG_NO_DATASYNC) == 0) {
/*
* XXX KDM use bus_dmamap_sync() here.
*/
}
}
msg.dt.kern_data_len = io->scsiio.kern_data_len;
msg.dt.kern_total_len = io->scsiio.kern_total_len;
msg.dt.kern_data_resid = io->scsiio.kern_data_resid;
msg.dt.kern_rel_offset = io->scsiio.kern_rel_offset;
msg.dt.sg_sequence = 0;
/*
* Loop until we've sent all of the S/G entries. On the
* other end, we'll recompose these S/G entries into one
* contiguous list before passing it to the
*/
for (sg_entries_sent = 0; sg_entries_sent <
msg.dt.kern_sg_entries; msg.dt.sg_sequence++) {
msg.dt.cur_sg_entries = ctl_min((sizeof(msg.dt.sg_list)/
sizeof(msg.dt.sg_list[0])),
msg.dt.kern_sg_entries - sg_entries_sent);
if (do_sg_copy != 0) {
struct ctl_sg_entry *sgl;
int j;
sgl = (struct ctl_sg_entry *)
io->scsiio.kern_data_ptr;
/*
* If this is in cached memory, flush the cache
* before we send the DMA request to the other
* controller. We want to do this in either
* the * read or the write case. The read
* case is straightforward. In the write
* case, we want to make sure nothing is
* in the local cache that could overwrite
* the DMAed data.
*/
for (i = sg_entries_sent, j = 0;
i < msg.dt.cur_sg_entries; i++, j++) {
if ((io->io_hdr.flags &
CTL_FLAG_NO_DATASYNC) == 0) {
/*
* XXX KDM use bus_dmamap_sync()
*/
}
if ((io->io_hdr.flags &
CTL_FLAG_BUS_ADDR) == 0) {
/*
* XXX KDM use busdma.
*/
#if 0
msg.dt.sg_list[j].addr =(void *)
vtophys(sgl[i].addr);
#endif
} else {
msg.dt.sg_list[j].addr =
sgl[i].addr;
}
msg.dt.sg_list[j].len = sgl[i].len;
}
}
sg_entries_sent += msg.dt.cur_sg_entries;
if (sg_entries_sent >= msg.dt.kern_sg_entries)
msg.dt.sg_last = 1;
else
msg.dt.sg_last = 0;
/*
* XXX KDM drop and reacquire the lock here?
*/
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg,
sizeof(msg), 0) > CTL_HA_STATUS_SUCCESS) {
/*
* XXX do something here.
*/
}
msg.dt.sent_sg_entries = sg_entries_sent;
}
io->io_hdr.flags &= ~CTL_FLAG_IO_ACTIVE;
if (io->io_hdr.flags & CTL_FLAG_FAILOVER)
ctl_failover_io(io, /*have_lock*/ 1);
} else {
/*
* Lookup the fe_datamove() function for this particular
* front end.
*/
fe_datamove =
control_softc->ctl_ports[ctl_port_idx(io->io_hdr.nexus.targ_port)]->fe_datamove;
mtx_unlock(&control_softc->ctl_lock);
fe_datamove(io);
}
}
static void
ctl_send_datamove_done(union ctl_io *io, int have_lock)
{
union ctl_ha_msg msg;
int isc_status;
memset(&msg, 0, sizeof(msg));
msg.hdr.msg_type = CTL_MSG_DATAMOVE_DONE;
msg.hdr.original_sc = io;
msg.hdr.serializing_sc = io->io_hdr.serializing_sc;
msg.hdr.nexus = io->io_hdr.nexus;
msg.hdr.status = io->io_hdr.status;
msg.scsi.tag_num = io->scsiio.tag_num;
msg.scsi.tag_type = io->scsiio.tag_type;
msg.scsi.scsi_status = io->scsiio.scsi_status;
memcpy(&msg.scsi.sense_data, &io->scsiio.sense_data,
sizeof(io->scsiio.sense_data));
msg.scsi.sense_len = io->scsiio.sense_len;
msg.scsi.sense_residual = io->scsiio.sense_residual;
msg.scsi.fetd_status = io->io_hdr.port_status;
msg.scsi.residual = io->scsiio.residual;
io->io_hdr.flags &= ~CTL_FLAG_IO_ACTIVE;
if (io->io_hdr.flags & CTL_FLAG_FAILOVER) {
ctl_failover_io(io, /*have_lock*/ have_lock);
return;
}
isc_status = ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg, sizeof(msg), 0);
if (isc_status > CTL_HA_STATUS_SUCCESS) {
/* XXX do something if this fails */
}
}
/*
* The DMA to the remote side is done, now we need to tell the other side
* we're done so it can continue with its data movement.
*/
static void
ctl_datamove_remote_write_cb(struct ctl_ha_dt_req *rq)
{
union ctl_io *io;
io = rq->context;
if (rq->ret != CTL_HA_STATUS_SUCCESS) {
printf("%s: ISC DMA write failed with error %d", __func__,
rq->ret);
ctl_set_internal_failure(&io->scsiio,
/*sks_valid*/ 1,
/*retry_count*/ rq->ret);
}
ctl_dt_req_free(rq);
/*
* In this case, we had to malloc the memory locally. Free it.
*/
if ((io->io_hdr.flags & CTL_FLAG_AUTO_MIRROR) == 0) {
int i;
for (i = 0; i < io->scsiio.kern_sg_entries; i++)
free(io->io_hdr.local_sglist[i].addr, M_CTL);
}
/*
* The data is in local and remote memory, so now we need to send
* status (good or back) back to the other side.
*/
ctl_send_datamove_done(io, /*have_lock*/ 0);
}
/*
* We've moved the data from the host/controller into local memory. Now we
* need to push it over to the remote controller's memory.
*/
static int
ctl_datamove_remote_dm_write_cb(union ctl_io *io)
{
int retval;
retval = 0;
retval = ctl_datamove_remote_xfer(io, CTL_HA_DT_CMD_WRITE,
ctl_datamove_remote_write_cb);
return (retval);
}
static void
ctl_datamove_remote_write(union ctl_io *io)
{
int retval;
void (*fe_datamove)(union ctl_io *io);
/*
* - Get the data from the host/HBA into local memory.
* - DMA memory from the local controller to the remote controller.
* - Send status back to the remote controller.
*/
retval = ctl_datamove_remote_sgl_setup(io);
if (retval != 0)
return;
/* Switch the pointer over so the FETD knows what to do */
io->scsiio.kern_data_ptr = (uint8_t *)io->io_hdr.local_sglist;
/*
* Use a custom move done callback, since we need to send completion
* back to the other controller, not to the backend on this side.
*/
io->scsiio.be_move_done = ctl_datamove_remote_dm_write_cb;
fe_datamove = control_softc->ctl_ports[ctl_port_idx(io->io_hdr.nexus.targ_port)]->fe_datamove;
fe_datamove(io);
return;
}
static int
ctl_datamove_remote_dm_read_cb(union ctl_io *io)
{
#if 0
char str[256];
char path_str[64];
struct sbuf sb;
#endif
/*
* In this case, we had to malloc the memory locally. Free it.
*/
if ((io->io_hdr.flags & CTL_FLAG_AUTO_MIRROR) == 0) {
int i;
for (i = 0; i < io->scsiio.kern_sg_entries; i++)
free(io->io_hdr.local_sglist[i].addr, M_CTL);
}
#if 0
scsi_path_string(io, path_str, sizeof(path_str));
sbuf_new(&sb, str, sizeof(str), SBUF_FIXEDLEN);
sbuf_cat(&sb, path_str);
scsi_command_string(&io->scsiio, NULL, &sb);
sbuf_printf(&sb, "\n");
sbuf_cat(&sb, path_str);
sbuf_printf(&sb, "Tag: 0x%04x, type %d\n",
io->scsiio.tag_num, io->scsiio.tag_type);
sbuf_cat(&sb, path_str);
sbuf_printf(&sb, "%s: flags %#x, status %#x\n", __func__,
io->io_hdr.flags, io->io_hdr.status);
sbuf_finish(&sb);
printk("%s", sbuf_data(&sb));
#endif
/*
* The read is done, now we need to send status (good or bad) back
* to the other side.
*/
ctl_send_datamove_done(io, /*have_lock*/ 0);
return (0);
}
static void
ctl_datamove_remote_read_cb(struct ctl_ha_dt_req *rq)
{
union ctl_io *io;
void (*fe_datamove)(union ctl_io *io);
io = rq->context;
if (rq->ret != CTL_HA_STATUS_SUCCESS) {
printf("%s: ISC DMA read failed with error %d", __func__,
rq->ret);
ctl_set_internal_failure(&io->scsiio,
/*sks_valid*/ 1,
/*retry_count*/ rq->ret);
}
ctl_dt_req_free(rq);
/* Switch the pointer over so the FETD knows what to do */
io->scsiio.kern_data_ptr = (uint8_t *)io->io_hdr.local_sglist;
/*
* Use a custom move done callback, since we need to send completion
* back to the other controller, not to the backend on this side.
*/
io->scsiio.be_move_done = ctl_datamove_remote_dm_read_cb;
/* XXX KDM add checks like the ones in ctl_datamove? */
fe_datamove = control_softc->ctl_ports[ctl_port_idx(io->io_hdr.nexus.targ_port)]->fe_datamove;
fe_datamove(io);
}
static int
ctl_datamove_remote_sgl_setup(union ctl_io *io)
{
struct ctl_sg_entry *local_sglist, *remote_sglist;
struct ctl_sg_entry *local_dma_sglist, *remote_dma_sglist;
struct ctl_softc *softc;
int retval;
int i;
retval = 0;
softc = control_softc;
local_sglist = io->io_hdr.local_sglist;
local_dma_sglist = io->io_hdr.local_dma_sglist;
remote_sglist = io->io_hdr.remote_sglist;
remote_dma_sglist = io->io_hdr.remote_dma_sglist;
if (io->io_hdr.flags & CTL_FLAG_AUTO_MIRROR) {
for (i = 0; i < io->scsiio.kern_sg_entries; i++) {
local_sglist[i].len = remote_sglist[i].len;
/*
* XXX Detect the situation where the RS-level I/O
* redirector on the other side has already read the
* data off of the AOR RS on this side, and
* transferred it to remote (mirror) memory on the
* other side. Since we already have the data in
* memory here, we just need to use it.
*
* XXX KDM this can probably be removed once we
* get the cache device code in and take the
* current AOR implementation out.
*/
#ifdef NEEDTOPORT
if ((remote_sglist[i].addr >=
(void *)vtophys(softc->mirr->addr))
&& (remote_sglist[i].addr <
((void *)vtophys(softc->mirr->addr) +
CacheMirrorOffset))) {
local_sglist[i].addr = remote_sglist[i].addr -
CacheMirrorOffset;
if ((io->io_hdr.flags & CTL_FLAG_DATA_MASK) ==
CTL_FLAG_DATA_IN)
io->io_hdr.flags |= CTL_FLAG_REDIR_DONE;
} else {
local_sglist[i].addr = remote_sglist[i].addr +
CacheMirrorOffset;
}
#endif
#if 0
printf("%s: local %p, remote %p, len %d\n",
__func__, local_sglist[i].addr,
remote_sglist[i].addr, local_sglist[i].len);
#endif
}
} else {
uint32_t len_to_go;
/*
* In this case, we don't have automatically allocated
* memory for this I/O on this controller. This typically
* happens with internal CTL I/O -- e.g. inquiry, mode
* sense, etc. Anything coming from RAIDCore will have
* a mirror area available.
*/
len_to_go = io->scsiio.kern_data_len;
/*
* Clear the no datasync flag, we have to use malloced
* buffers.
*/
io->io_hdr.flags &= ~CTL_FLAG_NO_DATASYNC;
/*
* The difficult thing here is that the size of the various
* S/G segments may be different than the size from the
* remote controller. That'll make it harder when DMAing
* the data back to the other side.
*/
for (i = 0; (i < sizeof(io->io_hdr.remote_sglist) /
sizeof(io->io_hdr.remote_sglist[0])) &&
(len_to_go > 0); i++) {
local_sglist[i].len = ctl_min(len_to_go, 131072);
CTL_SIZE_8B(local_dma_sglist[i].len,
local_sglist[i].len);
local_sglist[i].addr =
malloc(local_dma_sglist[i].len, M_CTL,M_WAITOK);
local_dma_sglist[i].addr = local_sglist[i].addr;
if (local_sglist[i].addr == NULL) {
int j;
printf("malloc failed for %zd bytes!",
local_dma_sglist[i].len);
for (j = 0; j < i; j++) {
free(local_sglist[j].addr, M_CTL);
}
ctl_set_internal_failure(&io->scsiio,
/*sks_valid*/ 1,
/*retry_count*/ 4857);
retval = 1;
goto bailout_error;
}
/* XXX KDM do we need a sync here? */
len_to_go -= local_sglist[i].len;
}
/*
* Reset the number of S/G entries accordingly. The
* original number of S/G entries is available in
* rem_sg_entries.
*/
io->scsiio.kern_sg_entries = i;
#if 0
printf("%s: kern_sg_entries = %d\n", __func__,
io->scsiio.kern_sg_entries);
for (i = 0; i < io->scsiio.kern_sg_entries; i++)
printf("%s: sg[%d] = %p, %d (DMA: %d)\n", __func__, i,
local_sglist[i].addr, local_sglist[i].len,
local_dma_sglist[i].len);
#endif
}
return (retval);
bailout_error:
ctl_send_datamove_done(io, /*have_lock*/ 0);
return (retval);
}
static int
ctl_datamove_remote_xfer(union ctl_io *io, unsigned command,
ctl_ha_dt_cb callback)
{
struct ctl_ha_dt_req *rq;
struct ctl_sg_entry *remote_sglist, *local_sglist;
struct ctl_sg_entry *remote_dma_sglist, *local_dma_sglist;
uint32_t local_used, remote_used, total_used;
int retval;
int i, j;
retval = 0;
rq = ctl_dt_req_alloc();
/*
* If we failed to allocate the request, and if the DMA didn't fail
* anyway, set busy status. This is just a resource allocation
* failure.
*/
if ((rq == NULL)
&& ((io->io_hdr.status & CTL_STATUS_MASK) != CTL_STATUS_NONE))
ctl_set_busy(&io->scsiio);
if ((io->io_hdr.status & CTL_STATUS_MASK) != CTL_STATUS_NONE) {
if (rq != NULL)
ctl_dt_req_free(rq);
/*
* The data move failed. We need to return status back
* to the other controller. No point in trying to DMA
* data to the remote controller.
*/
ctl_send_datamove_done(io, /*have_lock*/ 0);
retval = 1;
goto bailout;
}
local_sglist = io->io_hdr.local_sglist;
local_dma_sglist = io->io_hdr.local_dma_sglist;
remote_sglist = io->io_hdr.remote_sglist;
remote_dma_sglist = io->io_hdr.remote_dma_sglist;
local_used = 0;
remote_used = 0;
total_used = 0;
if (io->io_hdr.flags & CTL_FLAG_REDIR_DONE) {
rq->ret = CTL_HA_STATUS_SUCCESS;
rq->context = io;
callback(rq);
goto bailout;
}
/*
* Pull/push the data over the wire from/to the other controller.
* This takes into account the possibility that the local and
* remote sglists may not be identical in terms of the size of
* the elements and the number of elements.
*
* One fundamental assumption here is that the length allocated for
* both the local and remote sglists is identical. Otherwise, we've
* essentially got a coding error of some sort.
*/
for (i = 0, j = 0; total_used < io->scsiio.kern_data_len; ) {
int isc_ret;
uint32_t cur_len, dma_length;
uint8_t *tmp_ptr;
rq->id = CTL_HA_DATA_CTL;
rq->command = command;
rq->context = io;
/*
* Both pointers should be aligned. But it is possible
* that the allocation length is not. They should both
* also have enough slack left over at the end, though,
* to round up to the next 8 byte boundary.
*/
cur_len = ctl_min(local_sglist[i].len - local_used,
remote_sglist[j].len - remote_used);
/*
* In this case, we have a size issue and need to decrease
* the size, except in the case where we actually have less
* than 8 bytes left. In that case, we need to increase
* the DMA length to get the last bit.
*/
if ((cur_len & 0x7) != 0) {
if (cur_len > 0x7) {
cur_len = cur_len - (cur_len & 0x7);
dma_length = cur_len;
} else {
CTL_SIZE_8B(dma_length, cur_len);
}
} else
dma_length = cur_len;
/*
* If we had to allocate memory for this I/O, instead of using
* the non-cached mirror memory, we'll need to flush the cache
* before trying to DMA to the other controller.
*
* We could end up doing this multiple times for the same
* segment if we have a larger local segment than remote
* segment. That shouldn't be an issue.
*/
if ((io->io_hdr.flags & CTL_FLAG_NO_DATASYNC) == 0) {
/*
* XXX KDM use bus_dmamap_sync() here.
*/
}
rq->size = dma_length;
tmp_ptr = (uint8_t *)local_sglist[i].addr;
tmp_ptr += local_used;
/* Use physical addresses when talking to ISC hardware */
if ((io->io_hdr.flags & CTL_FLAG_BUS_ADDR) == 0) {
/* XXX KDM use busdma */
#if 0
rq->local = vtophys(tmp_ptr);
#endif
} else
rq->local = tmp_ptr;
tmp_ptr = (uint8_t *)remote_sglist[j].addr;
tmp_ptr += remote_used;
rq->remote = tmp_ptr;
rq->callback = NULL;
local_used += cur_len;
if (local_used >= local_sglist[i].len) {
i++;
local_used = 0;
}
remote_used += cur_len;
if (remote_used >= remote_sglist[j].len) {
j++;
remote_used = 0;
}
total_used += cur_len;
if (total_used >= io->scsiio.kern_data_len)
rq->callback = callback;
if ((rq->size & 0x7) != 0) {
printf("%s: warning: size %d is not on 8b boundary\n",
__func__, rq->size);
}
if (((uintptr_t)rq->local & 0x7) != 0) {
printf("%s: warning: local %p not on 8b boundary\n",
__func__, rq->local);
}
if (((uintptr_t)rq->remote & 0x7) != 0) {
printf("%s: warning: remote %p not on 8b boundary\n",
__func__, rq->local);
}
#if 0
printf("%s: %s: local %#x remote %#x size %d\n", __func__,
(command == CTL_HA_DT_CMD_WRITE) ? "WRITE" : "READ",
rq->local, rq->remote, rq->size);
#endif
isc_ret = ctl_dt_single(rq);
if (isc_ret == CTL_HA_STATUS_WAIT)
continue;
if (isc_ret == CTL_HA_STATUS_DISCONNECT) {
rq->ret = CTL_HA_STATUS_SUCCESS;
} else {
rq->ret = isc_ret;
}
callback(rq);
goto bailout;
}
bailout:
return (retval);
}
static void
ctl_datamove_remote_read(union ctl_io *io)
{
int retval;
int i;
/*
* This will send an error to the other controller in the case of a
* failure.
*/
retval = ctl_datamove_remote_sgl_setup(io);
if (retval != 0)
return;
retval = ctl_datamove_remote_xfer(io, CTL_HA_DT_CMD_READ,
ctl_datamove_remote_read_cb);
if ((retval != 0)
&& ((io->io_hdr.flags & CTL_FLAG_AUTO_MIRROR) == 0)) {
/*
* Make sure we free memory if there was an error.. The
* ctl_datamove_remote_xfer() function will send the
* datamove done message, or call the callback with an
* error if there is a problem.
*/
for (i = 0; i < io->scsiio.kern_sg_entries; i++)
free(io->io_hdr.local_sglist[i].addr, M_CTL);
}
return;
}
/*
* Process a datamove request from the other controller. This is used for
* XFER mode only, not SER_ONLY mode. For writes, we DMA into local memory
* first. Once that is complete, the data gets DMAed into the remote
* controller's memory. For reads, we DMA from the remote controller's
* memory into our memory first, and then move it out to the FETD.
*
* Should be called without the ctl_lock held.
*/
static void
ctl_datamove_remote(union ctl_io *io)
{
struct ctl_softc *softc;
softc = control_softc;
/*
* Note that we look for an aborted I/O here, but don't do some of
* the other checks that ctl_datamove() normally does. We don't
* need to run the task queue, because this I/O is on the ISC
* queue, which is executed by the work thread after the task queue.
* We don't need to run the datamove delay code, since that should
* have been done if need be on the other controller.
*/
mtx_lock(&softc->ctl_lock);
if (io->io_hdr.flags & CTL_FLAG_ABORT) {
printf("%s: tag 0x%04x on (%d:%d:%d:%d) aborted\n", __func__,
io->scsiio.tag_num, io->io_hdr.nexus.initid.id,
io->io_hdr.nexus.targ_port,
io->io_hdr.nexus.targ_target.id,
io->io_hdr.nexus.targ_lun);
io->io_hdr.status = CTL_CMD_ABORTED;
io->io_hdr.port_status = 31338;
mtx_unlock(&softc->ctl_lock);
ctl_send_datamove_done(io, /*have_lock*/ 0);
return;
}
if ((io->io_hdr.flags & CTL_FLAG_DATA_MASK) == CTL_FLAG_DATA_OUT) {
mtx_unlock(&softc->ctl_lock);
ctl_datamove_remote_write(io);
} else if ((io->io_hdr.flags & CTL_FLAG_DATA_MASK) == CTL_FLAG_DATA_IN){
mtx_unlock(&softc->ctl_lock);
ctl_datamove_remote_read(io);
} else {
union ctl_ha_msg msg;
struct scsi_sense_data *sense;
uint8_t sks[3];
int retry_count;
memset(&msg, 0, sizeof(msg));
msg.hdr.msg_type = CTL_MSG_BAD_JUJU;
msg.hdr.status = CTL_SCSI_ERROR;
msg.scsi.scsi_status = SCSI_STATUS_CHECK_COND;
retry_count = 4243;
sense = &msg.scsi.sense_data;
sks[0] = SSD_SCS_VALID;
sks[1] = (retry_count >> 8) & 0xff;
sks[2] = retry_count & 0xff;
/* "Internal target failure" */
scsi_set_sense_data(sense,
/*sense_format*/ SSD_TYPE_NONE,
/*current_error*/ 1,
/*sense_key*/ SSD_KEY_HARDWARE_ERROR,
/*asc*/ 0x44,
/*ascq*/ 0x00,
/*type*/ SSD_ELEM_SKS,
/*size*/ sizeof(sks),
/*data*/ sks,
SSD_ELEM_NONE);
io->io_hdr.flags &= ~CTL_FLAG_IO_ACTIVE;
if (io->io_hdr.flags & CTL_FLAG_FAILOVER) {
ctl_failover_io(io, /*have_lock*/ 1);
mtx_unlock(&softc->ctl_lock);
return;
}
mtx_unlock(&softc->ctl_lock);
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg, sizeof(msg), 0) >
CTL_HA_STATUS_SUCCESS) {
/* XXX KDM what to do if this fails? */
}
return;
}
}
static int
ctl_process_done(union ctl_io *io, int have_lock)
{
struct ctl_lun *lun;
struct ctl_softc *ctl_softc;
void (*fe_done)(union ctl_io *io);
uint32_t targ_port = ctl_port_idx(io->io_hdr.nexus.targ_port);
CTL_DEBUG_PRINT(("ctl_process_done\n"));
fe_done =
control_softc->ctl_ports[targ_port]->fe_done;
#ifdef CTL_TIME_IO
if ((time_uptime - io->io_hdr.start_time) > ctl_time_io_secs) {
char str[256];
char path_str[64];
struct sbuf sb;
ctl_scsi_path_string(io, path_str, sizeof(path_str));
sbuf_new(&sb, str, sizeof(str), SBUF_FIXEDLEN);
sbuf_cat(&sb, path_str);
switch (io->io_hdr.io_type) {
case CTL_IO_SCSI:
ctl_scsi_command_string(&io->scsiio, NULL, &sb);
sbuf_printf(&sb, "\n");
sbuf_cat(&sb, path_str);
sbuf_printf(&sb, "Tag: 0x%04x, type %d\n",
io->scsiio.tag_num, io->scsiio.tag_type);
break;
case CTL_IO_TASK:
sbuf_printf(&sb, "Task I/O type: %d, Tag: 0x%04x, "
"Tag Type: %d\n", io->taskio.task_action,
io->taskio.tag_num, io->taskio.tag_type);
break;
default:
printf("Invalid CTL I/O type %d\n", io->io_hdr.io_type);
panic("Invalid CTL I/O type %d\n", io->io_hdr.io_type);
break;
}
sbuf_cat(&sb, path_str);
sbuf_printf(&sb, "ctl_process_done: %jd seconds\n",
(intmax_t)time_uptime - io->io_hdr.start_time);
sbuf_finish(&sb);
printf("%s", sbuf_data(&sb));
}
#endif /* CTL_TIME_IO */
switch (io->io_hdr.io_type) {
case CTL_IO_SCSI:
break;
case CTL_IO_TASK:
ctl_io_error_print(io, NULL);
if (io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC)
ctl_free_io_internal(io, /*have_lock*/ 0);
else
fe_done(io);
return (CTL_RETVAL_COMPLETE);
break;
default:
printf("ctl_process_done: invalid io type %d\n",
io->io_hdr.io_type);
panic("ctl_process_done: invalid io type %d\n",
io->io_hdr.io_type);
break; /* NOTREACHED */
}
lun = (struct ctl_lun *)io->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
if (lun == NULL) {
CTL_DEBUG_PRINT(("NULL LUN for lun %d\n",
io->io_hdr.nexus.targ_lun));
fe_done(io);
goto bailout;
}
ctl_softc = lun->ctl_softc;
/*
* Remove this from the OOA queue.
*/
if (have_lock == 0)
mtx_lock(&ctl_softc->ctl_lock);
/*
* Check to see if we have any errors to inject here. We only
* inject errors for commands that don't already have errors set.
*/
if ((STAILQ_FIRST(&lun->error_list) != NULL)
&& ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS))
ctl_inject_error(lun, io);
/*
* XXX KDM how do we treat commands that aren't completed
* successfully?
*
* XXX KDM should we also track I/O latency?
*/
if ((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SUCCESS) {
uint32_t blocksize;
#ifdef CTL_TIME_IO
struct bintime cur_bt;
#endif
if ((lun->be_lun != NULL)
&& (lun->be_lun->blocksize != 0))
blocksize = lun->be_lun->blocksize;
else
blocksize = 512;
switch (io->io_hdr.io_type) {
case CTL_IO_SCSI: {
int isread;
struct ctl_lba_len lbalen;
isread = 0;
switch (io->scsiio.cdb[0]) {
case READ_6:
case READ_10:
case READ_12:
case READ_16:
isread = 1;
/* FALLTHROUGH */
case WRITE_6:
case WRITE_10:
case WRITE_12:
case WRITE_16:
case WRITE_VERIFY_10:
case WRITE_VERIFY_12:
case WRITE_VERIFY_16:
memcpy(&lbalen, io->io_hdr.ctl_private[
CTL_PRIV_LBA_LEN].bytes, sizeof(lbalen));
if (isread) {
lun->stats.ports[targ_port].bytes[CTL_STATS_READ] +=
lbalen.len * blocksize;
lun->stats.ports[targ_port].operations[CTL_STATS_READ]++;
#ifdef CTL_TIME_IO
bintime_add(
&lun->stats.ports[targ_port].dma_time[CTL_STATS_READ],
&io->io_hdr.dma_bt);
lun->stats.ports[targ_port].num_dmas[CTL_STATS_READ] +=
io->io_hdr.num_dmas;
getbintime(&cur_bt);
bintime_sub(&cur_bt,
&io->io_hdr.start_bt);
bintime_add(
&lun->stats.ports[targ_port].time[CTL_STATS_READ],
&cur_bt);
#if 0
cs_prof_gettime(&cur_ticks);
lun->stats.time[CTL_STATS_READ] +=
cur_ticks -
io->io_hdr.start_ticks;
#endif
#if 0
lun->stats.time[CTL_STATS_READ] +=
jiffies - io->io_hdr.start_time;
#endif
#endif /* CTL_TIME_IO */
} else {
lun->stats.ports[targ_port].bytes[CTL_STATS_WRITE] +=
lbalen.len * blocksize;
lun->stats.ports[targ_port].operations[
CTL_STATS_WRITE]++;
#ifdef CTL_TIME_IO
bintime_add(
&lun->stats.ports[targ_port].dma_time[CTL_STATS_WRITE],
&io->io_hdr.dma_bt);
lun->stats.ports[targ_port].num_dmas[CTL_STATS_WRITE] +=
io->io_hdr.num_dmas;
getbintime(&cur_bt);
bintime_sub(&cur_bt,
&io->io_hdr.start_bt);
bintime_add(
&lun->stats.ports[targ_port].time[CTL_STATS_WRITE],
&cur_bt);
#if 0
cs_prof_gettime(&cur_ticks);
lun->stats.ports[targ_port].time[CTL_STATS_WRITE] +=
cur_ticks -
io->io_hdr.start_ticks;
lun->stats.ports[targ_port].time[CTL_STATS_WRITE] +=
jiffies - io->io_hdr.start_time;
#endif
#endif /* CTL_TIME_IO */
}
break;
default:
lun->stats.ports[targ_port].operations[CTL_STATS_NO_IO]++;
#ifdef CTL_TIME_IO
bintime_add(
&lun->stats.ports[targ_port].dma_time[CTL_STATS_NO_IO],
&io->io_hdr.dma_bt);
lun->stats.ports[targ_port].num_dmas[CTL_STATS_NO_IO] +=
io->io_hdr.num_dmas;
getbintime(&cur_bt);
bintime_sub(&cur_bt, &io->io_hdr.start_bt);
bintime_add(&lun->stats.ports[targ_port].time[CTL_STATS_NO_IO],
&cur_bt);
#if 0
cs_prof_gettime(&cur_ticks);
lun->stats.ports[targ_port].time[CTL_STATS_NO_IO] +=
cur_ticks -
io->io_hdr.start_ticks;
lun->stats.ports[targ_port].time[CTL_STATS_NO_IO] +=
jiffies - io->io_hdr.start_time;
#endif
#endif /* CTL_TIME_IO */
break;
}
break;
}
default:
break;
}
}
TAILQ_REMOVE(&lun->ooa_queue, &io->io_hdr, ooa_links);
/*
* Run through the blocked queue on this LUN and see if anything
* has become unblocked, now that this transaction is done.
*/
ctl_check_blocked(lun);
/*
* If the LUN has been invalidated, free it if there is nothing
* left on its OOA queue.
*/
if ((lun->flags & CTL_LUN_INVALID)
&& (TAILQ_FIRST(&lun->ooa_queue) == NULL))
ctl_free_lun(lun);
/*
* If this command has been aborted, make sure we set the status
* properly. The FETD is responsible for freeing the I/O and doing
* whatever it needs to do to clean up its state.
*/
if (io->io_hdr.flags & CTL_FLAG_ABORT)
io->io_hdr.status = CTL_CMD_ABORTED;
/*
* We print out status for every task management command. For SCSI
* commands, we filter out any unit attention errors; they happen
* on every boot, and would clutter up the log. Note: task
* management commands aren't printed here, they are printed above,
* since they should never even make it down here.
*/
switch (io->io_hdr.io_type) {
case CTL_IO_SCSI: {
int error_code, sense_key, asc, ascq;
sense_key = 0;
if (((io->io_hdr.status & CTL_STATUS_MASK) == CTL_SCSI_ERROR)
&& (io->scsiio.scsi_status == SCSI_STATUS_CHECK_COND)) {
/*
* Since this is just for printing, no need to
* show errors here.
*/
scsi_extract_sense_len(&io->scsiio.sense_data,
io->scsiio.sense_len,
&error_code,
&sense_key,
&asc,
&ascq,
/*show_errors*/ 0);
}
if (((io->io_hdr.status & CTL_STATUS_MASK) != CTL_SUCCESS)
&& (((io->io_hdr.status & CTL_STATUS_MASK) != CTL_SCSI_ERROR)
|| (io->scsiio.scsi_status != SCSI_STATUS_CHECK_COND)
|| (sense_key != SSD_KEY_UNIT_ATTENTION))) {
if ((time_uptime - ctl_softc->last_print_jiffies) <= 0){
ctl_softc->skipped_prints++;
if (have_lock == 0)
mtx_unlock(&ctl_softc->ctl_lock);
} else {
uint32_t skipped_prints;
skipped_prints = ctl_softc->skipped_prints;
ctl_softc->skipped_prints = 0;
ctl_softc->last_print_jiffies = time_uptime;
if (have_lock == 0)
mtx_unlock(&ctl_softc->ctl_lock);
if (skipped_prints > 0) {
#ifdef NEEDTOPORT
csevent_log(CSC_CTL | CSC_SHELF_SW |
CTL_ERROR_REPORT,
csevent_LogType_Trace,
csevent_Severity_Information,
csevent_AlertLevel_Green,
csevent_FRU_Firmware,
csevent_FRU_Unknown,
"High CTL error volume, %d prints "
"skipped", skipped_prints);
#endif
}
ctl_io_error_print(io, NULL);
}
} else {
if (have_lock == 0)
mtx_unlock(&ctl_softc->ctl_lock);
}
break;
}
case CTL_IO_TASK:
if (have_lock == 0)
mtx_unlock(&ctl_softc->ctl_lock);
ctl_io_error_print(io, NULL);
break;
default:
if (have_lock == 0)
mtx_unlock(&ctl_softc->ctl_lock);
break;
}
/*
* Tell the FETD or the other shelf controller we're done with this
* command. Note that only SCSI commands get to this point. Task
* management commands are completed above.
*
* We only send status to the other controller if we're in XFER
* mode. In SER_ONLY mode, the I/O is done on the controller that
* received the I/O (from CTL's perspective), and so the status is
* generated there.
*
* XXX KDM if we hold the lock here, we could cause a deadlock
* if the frontend comes back in in this context to queue
* something.
*/
if ((ctl_softc->ha_mode == CTL_HA_MODE_XFER)
&& (io->io_hdr.flags & CTL_FLAG_FROM_OTHER_SC)) {
union ctl_ha_msg msg;
memset(&msg, 0, sizeof(msg));
msg.hdr.msg_type = CTL_MSG_FINISH_IO;
msg.hdr.original_sc = io->io_hdr.original_sc;
msg.hdr.nexus = io->io_hdr.nexus;
msg.hdr.status = io->io_hdr.status;
msg.scsi.scsi_status = io->scsiio.scsi_status;
msg.scsi.tag_num = io->scsiio.tag_num;
msg.scsi.tag_type = io->scsiio.tag_type;
msg.scsi.sense_len = io->scsiio.sense_len;
msg.scsi.sense_residual = io->scsiio.sense_residual;
msg.scsi.residual = io->scsiio.residual;
memcpy(&msg.scsi.sense_data, &io->scsiio.sense_data,
sizeof(io->scsiio.sense_data));
/*
* We copy this whether or not this is an I/O-related
* command. Otherwise, we'd have to go and check to see
* whether it's a read/write command, and it really isn't
* worth it.
*/
memcpy(&msg.scsi.lbalen,
&io->io_hdr.ctl_private[CTL_PRIV_LBA_LEN].bytes,
sizeof(msg.scsi.lbalen));
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg,
sizeof(msg), 0) > CTL_HA_STATUS_SUCCESS) {
/* XXX do something here */
}
ctl_free_io_internal(io, /*have_lock*/ 0);
} else
fe_done(io);
bailout:
return (CTL_RETVAL_COMPLETE);
}
/*
* Front end should call this if it doesn't do autosense. When the request
* sense comes back in from the initiator, we'll dequeue this and send it.
*/
int
ctl_queue_sense(union ctl_io *io)
{
struct ctl_lun *lun;
struct ctl_softc *ctl_softc;
uint32_t initidx;
ctl_softc = control_softc;
CTL_DEBUG_PRINT(("ctl_queue_sense\n"));
/*
* LUN lookup will likely move to the ctl_work_thread() once we
* have our new queueing infrastructure (that doesn't put things on
* a per-LUN queue initially). That is so that we can handle
* things like an INQUIRY to a LUN that we don't have enabled. We
* can't deal with that right now.
*/
mtx_lock(&ctl_softc->ctl_lock);
/*
* If we don't have a LUN for this, just toss the sense
* information.
*/
if ((io->io_hdr.nexus.targ_lun < CTL_MAX_LUNS)
&& (ctl_softc->ctl_luns[io->io_hdr.nexus.targ_lun] != NULL))
lun = ctl_softc->ctl_luns[io->io_hdr.nexus.targ_lun];
else
goto bailout;
initidx = ctl_get_initindex(&io->io_hdr.nexus);
/*
* Already have CA set for this LUN...toss the sense information.
*/
if (ctl_is_set(lun->have_ca, initidx))
goto bailout;
memcpy(&lun->pending_sense[initidx].sense, &io->scsiio.sense_data,
ctl_min(sizeof(lun->pending_sense[initidx].sense),
sizeof(io->scsiio.sense_data)));
ctl_set_mask(lun->have_ca, initidx);
bailout:
mtx_unlock(&ctl_softc->ctl_lock);
ctl_free_io(io);
return (CTL_RETVAL_COMPLETE);
}
/*
* Primary command inlet from frontend ports. All SCSI and task I/O
* requests must go through this function.
*/
int
ctl_queue(union ctl_io *io)
{
struct ctl_softc *ctl_softc;
CTL_DEBUG_PRINT(("ctl_queue cdb[0]=%02X\n", io->scsiio.cdb[0]));
ctl_softc = control_softc;
#ifdef CTL_TIME_IO
io->io_hdr.start_time = time_uptime;
getbintime(&io->io_hdr.start_bt);
#endif /* CTL_TIME_IO */
mtx_lock(&ctl_softc->ctl_lock);
switch (io->io_hdr.io_type) {
case CTL_IO_SCSI:
STAILQ_INSERT_TAIL(&ctl_softc->incoming_queue, &io->io_hdr,
links);
break;
case CTL_IO_TASK:
STAILQ_INSERT_TAIL(&ctl_softc->task_queue, &io->io_hdr, links);
/*
* Set the task pending flag. This is necessary to close a
* race condition with the FETD:
*
* - FETD submits a task management command, like an abort.
* - Back end calls fe_datamove() to move the data for the
* aborted command. The FETD can't really accept it, but
* if it did, it would end up transmitting data for a
* command that the initiator told us to abort.
*
* We close the race condition by setting the flag here,
* and checking it in ctl_datamove(), before calling the
* FETD's fe_datamove routine. If we've got a task
* pending, we run the task queue and then check to see
* whether our particular I/O has been aborted.
*/
ctl_softc->flags |= CTL_FLAG_TASK_PENDING;
break;
default:
mtx_unlock(&ctl_softc->ctl_lock);
printf("ctl_queue: unknown I/O type %d\n", io->io_hdr.io_type);
return (-EINVAL);
break; /* NOTREACHED */
}
mtx_unlock(&ctl_softc->ctl_lock);
ctl_wakeup_thread();
return (CTL_RETVAL_COMPLETE);
}
#ifdef CTL_IO_DELAY
static void
ctl_done_timer_wakeup(void *arg)
{
union ctl_io *io;
io = (union ctl_io *)arg;
ctl_done_lock(io, /*have_lock*/ 0);
}
#endif /* CTL_IO_DELAY */
void
ctl_done_lock(union ctl_io *io, int have_lock)
{
struct ctl_softc *ctl_softc;
#ifndef CTL_DONE_THREAD
union ctl_io *xio;
#endif /* !CTL_DONE_THREAD */
ctl_softc = control_softc;
if (have_lock == 0)
mtx_lock(&ctl_softc->ctl_lock);
/*
* Enable this to catch duplicate completion issues.
*/
#if 0
if (io->io_hdr.flags & CTL_FLAG_ALREADY_DONE) {
printf("%s: type %d msg %d cdb %x iptl: "
"%d:%d:%d:%d tag 0x%04x "
"flag %#x status %x\n",
__func__,
io->io_hdr.io_type,
io->io_hdr.msg_type,
io->scsiio.cdb[0],
io->io_hdr.nexus.initid.id,
io->io_hdr.nexus.targ_port,
io->io_hdr.nexus.targ_target.id,
io->io_hdr.nexus.targ_lun,
(io->io_hdr.io_type ==
CTL_IO_TASK) ?
io->taskio.tag_num :
io->scsiio.tag_num,
io->io_hdr.flags,
io->io_hdr.status);
} else
io->io_hdr.flags |= CTL_FLAG_ALREADY_DONE;
#endif
/*
* This is an internal copy of an I/O, and should not go through
* the normal done processing logic.
*/
if (io->io_hdr.flags & CTL_FLAG_INT_COPY) {
if (have_lock == 0)
mtx_unlock(&ctl_softc->ctl_lock);
return;
}
/*
* We need to send a msg to the serializing shelf to finish the IO
* as well. We don't send a finish message to the other shelf if
* this is a task management command. Task management commands
* aren't serialized in the OOA queue, but rather just executed on
* both shelf controllers for commands that originated on that
* controller.
*/
if ((io->io_hdr.flags & CTL_FLAG_SENT_2OTHER_SC)
&& (io->io_hdr.io_type != CTL_IO_TASK)) {
union ctl_ha_msg msg_io;
msg_io.hdr.msg_type = CTL_MSG_FINISH_IO;
msg_io.hdr.serializing_sc = io->io_hdr.serializing_sc;
if (ctl_ha_msg_send(CTL_HA_CHAN_CTL, &msg_io,
sizeof(msg_io), 0 ) != CTL_HA_STATUS_SUCCESS) {
}
/* continue on to finish IO */
}
#ifdef CTL_IO_DELAY
if (io->io_hdr.flags & CTL_FLAG_DELAY_DONE) {
struct ctl_lun *lun;
lun =(struct ctl_lun *)io->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
io->io_hdr.flags &= ~CTL_FLAG_DELAY_DONE;
} else {
struct ctl_lun *lun;
lun =(struct ctl_lun *)io->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
if ((lun != NULL)
&& (lun->delay_info.done_delay > 0)) {
struct callout *callout;
callout = (struct callout *)&io->io_hdr.timer_bytes;
callout_init(callout, /*mpsafe*/ 1);
io->io_hdr.flags |= CTL_FLAG_DELAY_DONE;
callout_reset(callout,
lun->delay_info.done_delay * hz,
ctl_done_timer_wakeup, io);
if (lun->delay_info.done_type == CTL_DELAY_TYPE_ONESHOT)
lun->delay_info.done_delay = 0;
if (have_lock == 0)
mtx_unlock(&ctl_softc->ctl_lock);
return;
}
}
#endif /* CTL_IO_DELAY */
STAILQ_INSERT_TAIL(&ctl_softc->done_queue, &io->io_hdr, links);
#ifdef CTL_DONE_THREAD
if (have_lock == 0)
mtx_unlock(&ctl_softc->ctl_lock);
ctl_wakeup_thread();
#else /* CTL_DONE_THREAD */
for (xio = (union ctl_io *)STAILQ_FIRST(&ctl_softc->done_queue);
xio != NULL;
xio =(union ctl_io *)STAILQ_FIRST(&ctl_softc->done_queue)) {
STAILQ_REMOVE_HEAD(&ctl_softc->done_queue, links);
ctl_process_done(xio, /*have_lock*/ 1);
}
if (have_lock == 0)
mtx_unlock(&ctl_softc->ctl_lock);
#endif /* CTL_DONE_THREAD */
}
void
ctl_done(union ctl_io *io)
{
ctl_done_lock(io, /*have_lock*/ 0);
}
int
ctl_isc(struct ctl_scsiio *ctsio)
{
struct ctl_lun *lun;
int retval;
lun = (struct ctl_lun *)ctsio->io_hdr.ctl_private[CTL_PRIV_LUN].ptr;
CTL_DEBUG_PRINT(("ctl_isc: command: %02x\n", ctsio->cdb[0]));
CTL_DEBUG_PRINT(("ctl_isc: calling data_submit()\n"));
retval = lun->backend->data_submit((union ctl_io *)ctsio);
return (retval);
}
static void
ctl_work_thread(void *arg)
{
struct ctl_softc *softc;
union ctl_io *io;
struct ctl_be_lun *be_lun;
int retval;
CTL_DEBUG_PRINT(("ctl_work_thread starting\n"));
softc = (struct ctl_softc *)arg;
if (softc == NULL)
return;
mtx_lock(&softc->ctl_lock);
for (;;) {
retval = 0;
/*
* We handle the queues in this order:
* - task management
* - ISC
* - done queue (to free up resources, unblock other commands)
* - RtR queue
* - incoming queue
*
* If those queues are empty, we break out of the loop and
* go to sleep.
*/
io = (union ctl_io *)STAILQ_FIRST(&softc->task_queue);
if (io != NULL) {
ctl_run_task_queue(softc);
continue;
}
io = (union ctl_io *)STAILQ_FIRST(&softc->isc_queue);
if (io != NULL) {
STAILQ_REMOVE_HEAD(&softc->isc_queue, links);
ctl_handle_isc(io);
continue;
}
io = (union ctl_io *)STAILQ_FIRST(&softc->done_queue);
if (io != NULL) {
STAILQ_REMOVE_HEAD(&softc->done_queue, links);
/* clear any blocked commands, call fe_done */
mtx_unlock(&softc->ctl_lock);
/*
* XXX KDM
* Call this without a lock for now. This will
* depend on whether there is any way the FETD can
* sleep or deadlock if called with the CTL lock
* held.
*/
retval = ctl_process_done(io, /*have_lock*/ 0);
mtx_lock(&softc->ctl_lock);
continue;
}
if (!ctl_pause_rtr) {
io = (union ctl_io *)STAILQ_FIRST(&softc->rtr_queue);
if (io != NULL) {
STAILQ_REMOVE_HEAD(&softc->rtr_queue, links);
mtx_unlock(&softc->ctl_lock);
goto execute;
}
}
io = (union ctl_io *)STAILQ_FIRST(&softc->incoming_queue);
if (io != NULL) {
STAILQ_REMOVE_HEAD(&softc->incoming_queue, links);
mtx_unlock(&softc->ctl_lock);
ctl_scsiio_precheck(softc, &io->scsiio);
mtx_lock(&softc->ctl_lock);
continue;
}
/*
* We might want to move this to a separate thread, so that
* configuration requests (in this case LUN creations)
* won't impact the I/O path.
*/
be_lun = STAILQ_FIRST(&softc->pending_lun_queue);
if (be_lun != NULL) {
STAILQ_REMOVE_HEAD(&softc->pending_lun_queue, links);
mtx_unlock(&softc->ctl_lock);
ctl_create_lun(be_lun);
mtx_lock(&softc->ctl_lock);
continue;
}
/* XXX KDM use the PDROP flag?? */
/* Sleep until we have something to do. */
mtx_sleep(softc, &softc->ctl_lock, PRIBIO, "ctl_work", 0);
/* Back to the top of the loop to see what woke us up. */
continue;
execute:
retval = ctl_scsiio(&io->scsiio);
switch (retval) {
case CTL_RETVAL_COMPLETE:
break;
default:
/*
* Probably need to make sure this doesn't happen.
*/
break;
}
mtx_lock(&softc->ctl_lock);
}
}
void
ctl_wakeup_thread()
{
struct ctl_softc *softc;
softc = control_softc;
wakeup(softc);
}
/* Initialization and failover */
void
ctl_init_isc_msg(void)
{
printf("CTL: Still calling this thing\n");
}
/*
* Init component
* Initializes component into configuration defined by bootMode
* (see hasc-sv.c)
* returns hasc_Status:
* OK
* ERROR - fatal error
*/
static ctl_ha_comp_status
ctl_isc_init(struct ctl_ha_component *c)
{
ctl_ha_comp_status ret = CTL_HA_COMP_STATUS_OK;
c->status = ret;
return ret;
}
/* Start component
* Starts component in state requested. If component starts successfully,
* it must set its own state to the requestrd state
* When requested state is HASC_STATE_HA, the component may refine it
* by adding _SLAVE or _MASTER flags.
* Currently allowed state transitions are:
* UNKNOWN->HA - initial startup
* UNKNOWN->SINGLE - initial startup when no parter detected
* HA->SINGLE - failover
* returns ctl_ha_comp_status:
* OK - component successfully started in requested state
* FAILED - could not start the requested state, failover may
* be possible
* ERROR - fatal error detected, no future startup possible
*/
static ctl_ha_comp_status
ctl_isc_start(struct ctl_ha_component *c, ctl_ha_state state)
{
ctl_ha_comp_status ret = CTL_HA_COMP_STATUS_OK;
// UNKNOWN->HA or UNKNOWN->SINGLE (bootstrap)
if (c->state == CTL_HA_STATE_UNKNOWN ) {
ctl_is_single = 0;
if (ctl_ha_msg_create(CTL_HA_CHAN_CTL, ctl_isc_event_handler)
!= CTL_HA_STATUS_SUCCESS) {
printf("ctl_isc_start: ctl_ha_msg_create failed.\n");
ret = CTL_HA_COMP_STATUS_ERROR;
}
} else if (CTL_HA_STATE_IS_HA(c->state)
&& CTL_HA_STATE_IS_SINGLE(state)){
// HA->SINGLE transition
ctl_failover();
ctl_is_single = 1;
} else {
printf("ctl_isc_start:Invalid state transition %X->%X\n",
c->state, state);
ret = CTL_HA_COMP_STATUS_ERROR;
}
if (CTL_HA_STATE_IS_SINGLE(state))
ctl_is_single = 1;
c->state = state;
c->status = ret;
return ret;
}
/*
* Quiesce component
* The component must clear any error conditions (set status to OK) and
* prepare itself to another Start call
* returns ctl_ha_comp_status:
* OK
* ERROR
*/
static ctl_ha_comp_status
ctl_isc_quiesce(struct ctl_ha_component *c)
{
int ret = CTL_HA_COMP_STATUS_OK;
ctl_pause_rtr = 1;
c->status = ret;
return ret;
}
struct ctl_ha_component ctl_ha_component_ctlisc =
{
.name = "CTL ISC",
.state = CTL_HA_STATE_UNKNOWN,
.init = ctl_isc_init,
.start = ctl_isc_start,
.quiesce = ctl_isc_quiesce
};
/*
* vim: ts=8
*/