freebsd-skq/sys/dev/ral/if_ral.c
Sam Leffler 7c5636947b remove driver-private key allocators; use the default one instead
so wpa keys are handled properly

Reviewed by:	avatar
Approved by:	re (scottl)
2005-07-10 00:17:05 +00:00

2810 lines
69 KiB
C

/* $FreeBSD$ */
/*-
* Copyright (c) 2005
* Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Ralink Technology RT2500 chipset driver
* http://www.ralinktech.com/
*/
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/clock.h>
#include <sys/rman.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <dev/ral/if_ralrate.h>
#include <dev/ral/if_ralreg.h>
#include <dev/ral/if_ralvar.h>
#define RAL_DEBUG
#ifdef RAL_DEBUG
#define DPRINTF(x) do { if (ral_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (ral_debug >= (n)) printf x; } while (0)
int ral_debug = 0;
SYSCTL_INT(_debug, OID_AUTO, ral, CTLFLAG_RW, &ral_debug, 0, "ral debug level");
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
MODULE_DEPEND(ral, wlan, 1, 1, 1);
static void ral_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static int ral_alloc_tx_ring(struct ral_softc *,
struct ral_tx_ring *, int);
static void ral_reset_tx_ring(struct ral_softc *,
struct ral_tx_ring *);
static void ral_free_tx_ring(struct ral_softc *,
struct ral_tx_ring *);
static int ral_alloc_rx_ring(struct ral_softc *,
struct ral_rx_ring *, int);
static void ral_reset_rx_ring(struct ral_softc *,
struct ral_rx_ring *);
static void ral_free_rx_ring(struct ral_softc *,
struct ral_rx_ring *);
static struct ieee80211_node *ral_node_alloc(
struct ieee80211_node_table *);
static int ral_media_change(struct ifnet *);
static void ral_next_scan(void *);
static void ral_iter_func(void *, struct ieee80211_node *);
static void ral_update_rssadapt(void *);
static int ral_newstate(struct ieee80211com *,
enum ieee80211_state, int);
static uint16_t ral_eeprom_read(struct ral_softc *, uint8_t);
static void ral_encryption_intr(struct ral_softc *);
static void ral_tx_intr(struct ral_softc *);
static void ral_prio_intr(struct ral_softc *);
static void ral_decryption_intr(struct ral_softc *);
static void ral_rx_intr(struct ral_softc *);
static void ral_beacon_expire(struct ral_softc *);
static void ral_wakeup_expire(struct ral_softc *);
static void ral_intr(void *);
static int ral_ack_rate(int);
static uint16_t ral_txtime(int, int, uint32_t);
static uint8_t ral_plcp_signal(int);
static void ral_setup_tx_desc(struct ral_softc *,
struct ral_tx_desc *, uint32_t, int, int, int,
bus_addr_t);
static int ral_tx_bcn(struct ral_softc *, struct mbuf *,
struct ieee80211_node *);
static int ral_tx_mgt(struct ral_softc *, struct mbuf *,
struct ieee80211_node *);
static struct mbuf *ral_get_rts(struct ral_softc *,
struct ieee80211_frame *, uint16_t);
static int ral_tx_data(struct ral_softc *, struct mbuf *,
struct ieee80211_node *);
static void ral_start(struct ifnet *);
static void ral_watchdog(struct ifnet *);
static int ral_reset(struct ifnet *);
static int ral_ioctl(struct ifnet *, u_long, caddr_t);
static void ral_bbp_write(struct ral_softc *, uint8_t, uint8_t);
static uint8_t ral_bbp_read(struct ral_softc *, uint8_t);
static void ral_rf_write(struct ral_softc *, uint8_t, uint32_t);
static void ral_set_chan(struct ral_softc *,
struct ieee80211_channel *);
#if 0
static void ral_disable_rf_tune(struct ral_softc *);
#endif
static void ral_enable_tsf_sync(struct ral_softc *);
static void ral_update_plcp(struct ral_softc *);
static void ral_update_slot(struct ifnet *);
static void ral_update_led(struct ral_softc *, int, int);
static void ral_set_bssid(struct ral_softc *, uint8_t *);
static void ral_set_macaddr(struct ral_softc *, uint8_t *);
static void ral_get_macaddr(struct ral_softc *, uint8_t *);
static void ral_update_promisc(struct ral_softc *);
static const char *ral_get_rf(int);
static void ral_read_eeprom(struct ral_softc *);
static int ral_bbp_init(struct ral_softc *);
static void ral_set_txantenna(struct ral_softc *, int);
static void ral_set_rxantenna(struct ral_softc *, int);
static void ral_init(void *);
devclass_t ral_devclass;
/*
* Supported rates for 802.11a/b/g modes (in 500Kbps unit).
*/
static const struct ieee80211_rateset ral_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct ieee80211_rateset ral_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset ral_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
/*
* Default values for MAC registers; values taken from the reference driver.
*/
static const struct {
uint32_t reg;
uint32_t val;
} ral_def_mac[] = {
{ RAL_PSCSR0, 0x00020002 },
{ RAL_PSCSR1, 0x00000002 },
{ RAL_PSCSR2, 0x00020002 },
{ RAL_PSCSR3, 0x00000002 },
{ RAL_TIMECSR, 0x00003f21 },
{ RAL_CSR9, 0x00000780 },
{ RAL_CSR11, 0x07041483 },
{ RAL_CNT3, 0x00000000 },
{ RAL_TXCSR1, 0x07614562 },
{ RAL_ARSP_PLCP_0, 0x8c8d8b8a },
{ RAL_ACKPCTCSR, 0x7038140a },
{ RAL_ARTCSR1, 0x1d21252d },
{ RAL_ARTCSR2, 0x1919191d },
{ RAL_RXCSR0, 0xffffffff },
{ RAL_RXCSR3, 0xb3aab3af },
{ RAL_PCICSR, 0x000003b8 },
{ RAL_PWRCSR0, 0x3f3b3100 },
{ RAL_GPIOCSR, 0x0000ff00 },
{ RAL_TESTCSR, 0x000000f0 },
{ RAL_PWRCSR1, 0x000001ff },
{ RAL_MACCSR0, 0x00213223 },
{ RAL_MACCSR1, 0x00235518 },
{ RAL_RLPWCSR, 0x00000040 },
{ RAL_RALINKCSR, 0x9a009a11 },
{ RAL_CSR7, 0xffffffff },
{ RAL_BBPCSR1, 0x82188200 },
{ RAL_TXACKCSR0, 0x00000020 },
{ RAL_SECCSR3, 0x0000e78f }
};
/*
* Default values for BBP registers; values taken from the reference driver.
*/
static const struct {
uint8_t reg;
uint8_t val;
} ral_def_bbp[] = {
{ 3, 0x02 },
{ 4, 0x19 },
{ 14, 0x1c },
{ 15, 0x30 },
{ 16, 0xac },
{ 17, 0x48 },
{ 18, 0x18 },
{ 19, 0xff },
{ 20, 0x1e },
{ 21, 0x08 },
{ 22, 0x08 },
{ 23, 0x08 },
{ 24, 0x80 },
{ 25, 0x50 },
{ 26, 0x08 },
{ 27, 0x23 },
{ 30, 0x10 },
{ 31, 0x2b },
{ 32, 0xb9 },
{ 34, 0x12 },
{ 35, 0x50 },
{ 39, 0xc4 },
{ 40, 0x02 },
{ 41, 0x60 },
{ 53, 0x10 },
{ 54, 0x18 },
{ 56, 0x08 },
{ 57, 0x10 },
{ 58, 0x08 },
{ 61, 0x60 },
{ 62, 0x10 },
{ 75, 0xff }
};
/*
* Default values for RF register R2 indexed by channel numbers; values taken
* from the reference driver.
*/
static const uint32_t ral_rf2522_r2[] = {
0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
};
static const uint32_t ral_rf2523_r2[] = {
0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
};
static const uint32_t ral_rf2524_r2[] = {
0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
};
static const uint32_t ral_rf2525_r2[] = {
0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
};
static const uint32_t ral_rf2525_hi_r2[] = {
0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
};
static const uint32_t ral_rf2525e_r2[] = {
0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
};
static const uint32_t ral_rf2526_hi_r2[] = {
0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
};
static const uint32_t ral_rf2526_r2[] = {
0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
};
/*
* For dual-band RF, RF registers R1 and R4 also depend on channel number;
* values taken from the reference driver.
*/
static const struct {
uint8_t chan;
uint32_t r1;
uint32_t r2;
uint32_t r4;
} ral_rf5222[] = {
/* channels in the 2.4GHz band */
{ 1, 0x08808, 0x0044d, 0x00282 },
{ 2, 0x08808, 0x0044e, 0x00282 },
{ 3, 0x08808, 0x0044f, 0x00282 },
{ 4, 0x08808, 0x00460, 0x00282 },
{ 5, 0x08808, 0x00461, 0x00282 },
{ 6, 0x08808, 0x00462, 0x00282 },
{ 7, 0x08808, 0x00463, 0x00282 },
{ 8, 0x08808, 0x00464, 0x00282 },
{ 9, 0x08808, 0x00465, 0x00282 },
{ 10, 0x08808, 0x00466, 0x00282 },
{ 11, 0x08808, 0x00467, 0x00282 },
{ 12, 0x08808, 0x00468, 0x00282 },
{ 13, 0x08808, 0x00469, 0x00282 },
{ 14, 0x08808, 0x0046b, 0x00286 },
/* channels in the 5.2GHz band */
{ 36, 0x08804, 0x06225, 0x00287 },
{ 40, 0x08804, 0x06226, 0x00287 },
{ 44, 0x08804, 0x06227, 0x00287 },
{ 48, 0x08804, 0x06228, 0x00287 },
{ 52, 0x08804, 0x06229, 0x00287 },
{ 56, 0x08804, 0x0622a, 0x00287 },
{ 60, 0x08804, 0x0622b, 0x00287 },
{ 64, 0x08804, 0x0622c, 0x00287 },
{ 100, 0x08804, 0x02200, 0x00283 },
{ 104, 0x08804, 0x02201, 0x00283 },
{ 108, 0x08804, 0x02202, 0x00283 },
{ 112, 0x08804, 0x02203, 0x00283 },
{ 116, 0x08804, 0x02204, 0x00283 },
{ 120, 0x08804, 0x02205, 0x00283 },
{ 124, 0x08804, 0x02206, 0x00283 },
{ 128, 0x08804, 0x02207, 0x00283 },
{ 132, 0x08804, 0x02208, 0x00283 },
{ 136, 0x08804, 0x02209, 0x00283 },
{ 140, 0x08804, 0x0220a, 0x00283 },
{ 149, 0x08808, 0x02429, 0x00281 },
{ 153, 0x08808, 0x0242b, 0x00281 },
{ 157, 0x08808, 0x0242d, 0x00281 },
{ 161, 0x08808, 0x0242f, 0x00281 }
};
int
ral_attach(device_t dev)
{
struct ral_softc *sc = device_get_softc(dev);
struct ifnet *ifp;
struct ieee80211com *ic = &sc->sc_ic;
int error, i;
sc->sc_dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
callout_init(&sc->scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE);
/* retrieve RT2560 rev. no */
sc->asic_rev = RAL_READ(sc, RAL_CSR0);
/* retrieve MAC address */
ral_get_macaddr(sc, ic->ic_myaddr);
/* retrieve RF rev. no and various other things from EEPROM */
ral_read_eeprom(sc);
device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
sc->asic_rev, ral_get_rf(sc->rf_rev));
/*
* Allocate Tx and Rx rings.
*/
if (ral_alloc_tx_ring(sc, &sc->txq, RAL_TX_RING_COUNT) != 0) {
device_printf(sc->sc_dev, "could not allocate Tx ring\n");
goto fail1;
}
if (ral_alloc_tx_ring(sc, &sc->atimq, RAL_ATIM_RING_COUNT) != 0) {
device_printf(sc->sc_dev, "could not allocate ATIM ring\n");
goto fail2;
}
if (ral_alloc_tx_ring(sc, &sc->prioq, RAL_PRIO_RING_COUNT) != 0) {
device_printf(sc->sc_dev, "could not allocate Prio ring\n");
goto fail3;
}
if (ral_alloc_tx_ring(sc, &sc->bcnq, RAL_BEACON_RING_COUNT) != 0) {
device_printf(sc->sc_dev, "could not allocate Beacon ring\n");
goto fail4;
}
if (ral_alloc_rx_ring(sc, &sc->rxq, RAL_RX_RING_COUNT) != 0) {
device_printf(sc->sc_dev, "could not allocate Rx ring\n");
goto fail5;
}
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(sc->sc_dev, "can not if_alloc()\n");
goto fail6;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = ral_init;
ifp->if_ioctl = ral_ioctl;
ifp->if_start = ral_start;
ifp->if_watchdog = ral_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps = IEEE80211_C_MONITOR | IEEE80211_C_IBSS |
IEEE80211_C_HOSTAP | IEEE80211_C_SHPREAMBLE | IEEE80211_C_SHSLOT |
IEEE80211_C_PMGT | IEEE80211_C_TXPMGT | IEEE80211_C_WPA;
if (sc->rf_rev == RAL_RF_5222) {
/* set supported .11a rates */
ic->ic_sup_rates[IEEE80211_MODE_11A] = ral_rateset_11a;
/* set supported .11a channels */
for (i = 36; i <= 64; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 100; i <= 140; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
for (i = 149; i <= 161; i += 4) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
}
}
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ral_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ral_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ieee80211_ifattach(ic);
ic->ic_node_alloc = ral_node_alloc;
ic->ic_updateslot = ral_update_slot;
ic->ic_reset = ral_reset;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = ral_newstate;
ieee80211_media_init(ic, ral_media_change, ieee80211_media_status);
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(RAL_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(RAL_TX_RADIOTAP_PRESENT);
/*
* Add a few sysctl knobs.
*/
sc->dwelltime = 200;
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)");
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)");
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
CTLFLAG_RW, &sc->dwelltime, 0,
"channel dwell time (ms) for AP/station scanning");
/*
* Hook our interrupt after all initialization is complete.
*/
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
ral_intr, sc, &sc->sc_ih);
if (error != 0) {
device_printf(dev, "could not set up interrupt\n");
goto fail7;
}
if (bootverbose)
ieee80211_announce(ic);
return 0;
fail7: bpfdetach(ifp);
ieee80211_ifdetach(ic);
fail6: if_free(ifp);
ral_free_rx_ring(sc, &sc->rxq);
fail5: ral_free_tx_ring(sc, &sc->bcnq);
fail4: ral_free_tx_ring(sc, &sc->prioq);
fail3: ral_free_tx_ring(sc, &sc->atimq);
fail2: ral_free_tx_ring(sc, &sc->txq);
fail1: mtx_destroy(&sc->sc_mtx);
return ENXIO;
}
int
ral_detach(device_t dev)
{
struct ral_softc *sc = device_get_softc(dev);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
callout_stop(&sc->scan_ch);
callout_stop(&sc->rssadapt_ch);
bpfdetach(ifp);
ieee80211_ifdetach(ic);
if_free(ifp);
ral_free_tx_ring(sc, &sc->txq);
ral_free_tx_ring(sc, &sc->atimq);
ral_free_tx_ring(sc, &sc->prioq);
ral_free_tx_ring(sc, &sc->bcnq);
ral_free_rx_ring(sc, &sc->rxq);
bus_teardown_intr(dev, sc->irq, sc->sc_ih);
ral_free(dev);
mtx_destroy(&sc->sc_mtx);
return 0;
}
void
ral_shutdown(device_t dev)
{
struct ral_softc *sc = device_get_softc(dev);
ral_stop(sc);
}
int
ral_alloc(device_t dev, int rid)
{
struct ral_softc *sc = device_get_softc(dev);
sc->mem_rid = rid;
sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
RF_ACTIVE);
if (sc->mem == NULL) {
device_printf(dev, "could not allocate memory resource\n");
return ENXIO;
}
sc->sc_st = rman_get_bustag(sc->mem);
sc->sc_sh = rman_get_bushandle(sc->mem);
sc->irq_rid = 0;
sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
RF_ACTIVE | RF_SHAREABLE);
if (sc->irq == NULL) {
device_printf(dev, "could not allocate interrupt resource\n");
ral_free(dev);
return ENXIO;
}
return 0;
}
void
ral_free(device_t dev)
{
struct ral_softc *sc = device_get_softc(dev);
if (sc->irq != NULL) {
bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
sc->irq = NULL;
}
if (sc->mem != NULL) {
bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
sc->mem = NULL;
}
}
static void
ral_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
if (error != 0)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static int
ral_alloc_tx_ring(struct ral_softc *sc, struct ral_tx_ring *ring, int count)
{
int i, error;
ring->count = count;
ring->queued = 0;
ring->cur = ring->next = 0;
ring->cur_encrypt = ring->next_encrypt = 0;
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, count * RAL_TX_DESC_SIZE, 1,
count * RAL_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
count * RAL_TX_DESC_SIZE, ral_dma_map_addr, &ring->physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
ring->data = malloc(count * sizeof (struct ral_tx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
device_printf(sc->sc_dev, "could not allocate soft data\n");
error = ENOMEM;
goto fail;
}
error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RAL_MAX_SCATTER, MCLBYTES,
0, NULL, NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create data DMA tag\n");
goto fail;
}
for (i = 0; i < count; i++) {
error = bus_dmamap_create(ring->data_dmat, 0,
&ring->data[i].map);
if (error != 0) {
device_printf(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
}
return 0;
fail: ral_free_tx_ring(sc, ring);
return error;
}
static void
ral_reset_tx_ring(struct ral_softc *sc, struct ral_tx_ring *ring)
{
struct ral_tx_desc *desc;
struct ral_tx_data *data;
int i;
for (i = 0; i < ring->count; i++) {
desc = &ring->desc[i];
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
desc->flags = 0;
}
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
ring->queued = 0;
ring->cur = ring->next = 0;
ring->cur_encrypt = ring->next_encrypt = 0;
}
static void
ral_free_tx_ring(struct ral_softc *sc, struct ral_tx_ring *ring)
{
struct ral_tx_data *data;
int i;
if (ring->desc != NULL) {
bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
}
if (ring->desc_dmat != NULL)
bus_dma_tag_destroy(ring->desc_dmat);
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
if (data->ni != NULL)
ieee80211_free_node(data->ni);
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
if (ring->data_dmat != NULL)
bus_dma_tag_destroy(ring->data_dmat);
}
static int
ral_alloc_rx_ring(struct ral_softc *sc, struct ral_rx_ring *ring, int count)
{
struct ral_rx_desc *desc;
struct ral_rx_data *data;
bus_addr_t physaddr;
int i, error;
ring->count = count;
ring->cur = ring->next = 0;
ring->cur_decrypt = 0;
error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, count * RAL_RX_DESC_SIZE, 1,
count * RAL_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
count * RAL_RX_DESC_SIZE, ral_dma_map_addr, &ring->physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
ring->data = malloc(count * sizeof (struct ral_rx_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ring->data == NULL) {
device_printf(sc->sc_dev, "could not allocate soft data\n");
error = ENOMEM;
goto fail;
}
/*
* Pre-allocate Rx buffers and populate Rx ring.
*/
error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create data DMA tag\n");
goto fail;
}
for (i = 0; i < count; i++) {
desc = &sc->rxq.desc[i];
data = &sc->rxq.data[i];
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
if (error != 0) {
device_printf(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (data->m == NULL) {
device_printf(sc->sc_dev,
"could not allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(ring->data_dmat, data->map,
mtod(data->m, void *), MCLBYTES, ral_dma_map_addr,
&physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not load rx buf DMA map");
goto fail;
}
desc->flags = htole32(RAL_RX_BUSY);
desc->physaddr = htole32(physaddr);
}
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
return 0;
fail: ral_free_rx_ring(sc, ring);
return error;
}
static void
ral_reset_rx_ring(struct ral_softc *sc, struct ral_rx_ring *ring)
{
int i;
for (i = 0; i < ring->count; i++) {
ring->desc[i].flags = htole32(RAL_RX_BUSY);
ring->data[i].drop = 0;
}
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
ring->cur = ring->next = 0;
ring->cur_decrypt = 0;
}
static void
ral_free_rx_ring(struct ral_softc *sc, struct ral_rx_ring *ring)
{
struct ral_rx_data *data;
int i;
if (ring->desc != NULL) {
bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
}
if (ring->desc_dmat != NULL)
bus_dma_tag_destroy(ring->desc_dmat);
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
if (ring->data_dmat != NULL)
bus_dma_tag_destroy(ring->data_dmat);
}
static struct ieee80211_node *
ral_node_alloc(struct ieee80211_node_table *nt)
{
struct ral_node *rn;
rn = malloc(sizeof (struct ral_node), M_80211_NODE, M_NOWAIT | M_ZERO);
return (rn != NULL) ? &rn->ni : NULL;
}
static int
ral_media_change(struct ifnet *ifp)
{
struct ral_softc *sc = ifp->if_softc;
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
ral_init(sc);
return 0;
}
/*
* This function is called periodically (every 200ms) during scanning to
* switch from one channel to another.
*/
static void
ral_next_scan(void *arg)
{
struct ral_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
}
/*
* This function is called for each node present in the node station table.
*/
static void
ral_iter_func(void *arg, struct ieee80211_node *ni)
{
struct ral_node *rn = (struct ral_node *)ni;
ral_rssadapt_updatestats(&rn->rssadapt);
}
/*
* This function is called periodically (every 100ms) in RUN state to update
* the rate adaptation statistics.
*/
static void
ral_update_rssadapt(void *arg)
{
struct ral_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
RAL_LOCK(sc);
ieee80211_iterate_nodes(&ic->ic_sta, ral_iter_func, arg);
callout_reset(&sc->rssadapt_ch, hz / 10, ral_update_rssadapt, sc);
RAL_UNLOCK(sc);
}
static int
ral_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ral_softc *sc = ic->ic_ifp->if_softc;
struct mbuf *m;
enum ieee80211_state ostate;
int error = 0;
ostate = ic->ic_state;
callout_stop(&sc->scan_ch);
switch (nstate) {
case IEEE80211_S_INIT:
callout_stop(&sc->rssadapt_ch);
if (ostate == IEEE80211_S_RUN) {
/* abort TSF synchronization */
RAL_WRITE(sc, RAL_CSR14, 0);
/* turn association led off */
ral_update_led(sc, 0, 0);
}
break;
case IEEE80211_S_SCAN:
ral_set_chan(sc, ic->ic_bss->ni_chan);
callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
ral_next_scan, sc);
break;
case IEEE80211_S_AUTH:
ral_set_chan(sc, ic->ic_bss->ni_chan);
break;
case IEEE80211_S_ASSOC:
ral_set_chan(sc, ic->ic_bss->ni_chan);
break;
case IEEE80211_S_RUN:
ral_set_chan(sc, ic->ic_bss->ni_chan);
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
ral_set_bssid(sc, ic->ic_bss->ni_bssid);
ral_update_slot(ic->ic_ifp);
}
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
ic->ic_opmode == IEEE80211_M_IBSS) {
m = ieee80211_beacon_alloc(ic, ic->ic_bss, &sc->sc_bo);
if (m == NULL) {
device_printf(sc->sc_dev,
"could not allocate beacon\n");
error = ENOBUFS;
break;
}
ieee80211_ref_node(ic->ic_bss);
error = ral_tx_bcn(sc, m, ic->ic_bss);
if (error != 0)
break;
}
/* turn assocation led on */
ral_update_led(sc, 1, 0);
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
callout_reset(&sc->rssadapt_ch, hz / 10,
ral_update_rssadapt, sc);
ral_enable_tsf_sync(sc);
}
break;
}
return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
* 93C66).
*/
static uint16_t
ral_eeprom_read(struct ral_softc *sc, uint8_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* clock C once before the first command */
RAL_EEPROM_CTL(sc, 0);
RAL_EEPROM_CTL(sc, RAL_EEPROM_S);
RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_C);
RAL_EEPROM_CTL(sc, RAL_EEPROM_S);
/* write start bit (1) */
RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_D);
RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_D | RAL_EEPROM_C);
/* write READ opcode (10) */
RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_D);
RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_D | RAL_EEPROM_C);
RAL_EEPROM_CTL(sc, RAL_EEPROM_S);
RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_C);
/* write address (A5-A0 or A7-A0) */
n = (RAL_READ(sc, RAL_CSR21) & RAL_EEPROM_93C46) ? 5 : 7;
for (; n >= 0; n--) {
RAL_EEPROM_CTL(sc, RAL_EEPROM_S |
(((addr >> n) & 1) << RAL_EEPROM_SHIFT_D));
RAL_EEPROM_CTL(sc, RAL_EEPROM_S |
(((addr >> n) & 1) << RAL_EEPROM_SHIFT_D) | RAL_EEPROM_C);
}
RAL_EEPROM_CTL(sc, RAL_EEPROM_S);
/* read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
RAL_EEPROM_CTL(sc, RAL_EEPROM_S | RAL_EEPROM_C);
tmp = RAL_READ(sc, RAL_CSR21);
val |= ((tmp & RAL_EEPROM_Q) >> RAL_EEPROM_SHIFT_Q) << n;
RAL_EEPROM_CTL(sc, RAL_EEPROM_S);
}
RAL_EEPROM_CTL(sc, 0);
/* clear Chip Select and clock C */
RAL_EEPROM_CTL(sc, RAL_EEPROM_S);
RAL_EEPROM_CTL(sc, 0);
RAL_EEPROM_CTL(sc, RAL_EEPROM_C);
return le16toh(val);
}
/*
* Some frames were processed by the hardware cipher engine and are ready for
* transmission.
*/
static void
ral_encryption_intr(struct ral_softc *sc)
{
struct ral_tx_desc *desc;
int hw;
/* retrieve last descriptor index processed by cipher engine */
hw = (RAL_READ(sc, RAL_SECCSR1) - sc->txq.physaddr) / RAL_TX_DESC_SIZE;
bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
BUS_DMASYNC_POSTREAD);
for (; sc->txq.next_encrypt != hw;) {
desc = &sc->txq.desc[sc->txq.next_encrypt];
if ((le32toh(desc->flags) & RAL_TX_BUSY) ||
(le32toh(desc->flags) & RAL_TX_CIPHER_BUSY))
break;
/* for TKIP, swap eiv field to fix a bug in ASIC */
if ((le32toh(desc->flags) & RAL_TX_CIPHER_MASK) ==
RAL_TX_CIPHER_TKIP)
desc->eiv = bswap32(desc->eiv);
/* mark the frame ready for transmission */
desc->flags |= htole32(RAL_TX_BUSY | RAL_TX_VALID);
DPRINTFN(15, ("encryption done idx=%u\n",
sc->txq.next_encrypt));
sc->txq.next_encrypt =
(sc->txq.next_encrypt + 1) % RAL_TX_RING_COUNT;
}
bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
BUS_DMASYNC_PREWRITE);
/* kick Tx */
RAL_WRITE(sc, RAL_TXCSR0, RAL_KICK_TX);
}
static void
ral_tx_intr(struct ral_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ral_tx_desc *desc;
struct ral_tx_data *data;
struct ral_node *rn;
bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
BUS_DMASYNC_POSTREAD);
for (;;) {
desc = &sc->txq.desc[sc->txq.next];
data = &sc->txq.data[sc->txq.next];
if ((le32toh(desc->flags) & RAL_TX_BUSY) ||
(le32toh(desc->flags) & RAL_TX_CIPHER_BUSY) ||
!(le32toh(desc->flags) & RAL_TX_VALID))
break;
rn = (struct ral_node *)data->ni;
switch (le32toh(desc->flags) & RAL_TX_RESULT_MASK) {
case RAL_TX_SUCCESS:
DPRINTFN(10, ("data frame sent successfully\n"));
if (data->id.id_node != NULL) {
ral_rssadapt_raise_rate(ic, &rn->rssadapt,
&data->id);
}
ifp->if_opackets++;
break;
case RAL_TX_SUCCESS_RETRY:
DPRINTFN(9, ("data frame sent after %u retries\n",
(le32toh(desc->flags) >> 5) & 0x7));
ifp->if_opackets++;
break;
case RAL_TX_FAIL_RETRY:
DPRINTFN(9, ("sending data frame failed (too much "
"retries)\n"));
if (data->id.id_node != NULL) {
ral_rssadapt_lower_rate(ic, data->ni,
&rn->rssadapt, &data->id);
}
ifp->if_oerrors++;
break;
case RAL_TX_FAIL_INVALID:
case RAL_TX_FAIL_OTHER:
default:
device_printf(sc->sc_dev, "sending data frame failed "
"0x%08x\n", le32toh(desc->flags));
ifp->if_oerrors++;
}
bus_dmamap_sync(sc->txq.data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->txq.data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
ieee80211_free_node(data->ni);
data->ni = NULL;
/* descriptor is no longer valid */
desc->flags &= ~htole32(RAL_TX_VALID);
DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
sc->txq.queued--;
sc->txq.next = (sc->txq.next + 1) % RAL_TX_RING_COUNT;
}
bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
BUS_DMASYNC_PREWRITE);
sc->sc_tx_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
ral_start(ifp);
}
static void
ral_prio_intr(struct ral_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ral_tx_desc *desc;
struct ral_tx_data *data;
bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
BUS_DMASYNC_POSTREAD);
for (;;) {
desc = &sc->prioq.desc[sc->prioq.next];
data = &sc->prioq.data[sc->prioq.next];
if ((le32toh(desc->flags) & RAL_TX_BUSY) ||
!(le32toh(desc->flags) & RAL_TX_VALID))
break;
switch (le32toh(desc->flags) & RAL_TX_RESULT_MASK) {
case RAL_TX_SUCCESS:
DPRINTFN(10, ("mgt frame sent successfully\n"));
break;
case RAL_TX_SUCCESS_RETRY:
DPRINTFN(9, ("mgt frame sent after %u retries\n",
(le32toh(desc->flags) >> 5) & 0x7));
break;
case RAL_TX_FAIL_RETRY:
DPRINTFN(9, ("sending mgt frame failed (too much "
"retries)\n"));
break;
case RAL_TX_FAIL_INVALID:
case RAL_TX_FAIL_OTHER:
default:
device_printf(sc->sc_dev, "sending mgt frame failed "
"0x%08x\n", le32toh(desc->flags));
}
bus_dmamap_sync(sc->prioq.data_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->prioq.data_dmat, data->map);
m_freem(data->m);
data->m = NULL;
ieee80211_free_node(data->ni);
data->ni = NULL;
/* descriptor is no longer valid */
desc->flags &= ~htole32(RAL_TX_VALID);
DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
sc->prioq.queued--;
sc->prioq.next = (sc->prioq.next + 1) % RAL_PRIO_RING_COUNT;
}
bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
BUS_DMASYNC_PREWRITE);
sc->sc_tx_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
ral_start(ifp);
}
/*
* Some frames were processed by the hardware cipher engine and are ready for
* transmission to the IEEE802.11 layer.
*/
static void
ral_decryption_intr(struct ral_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ral_rx_desc *desc;
struct ral_rx_data *data;
bus_addr_t physaddr;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct ral_node *rn;
struct mbuf *m;
int hw, error;
/* retrieve last decriptor index processed by cipher engine */
hw = (RAL_READ(sc, RAL_SECCSR0) - sc->rxq.physaddr) / RAL_RX_DESC_SIZE;
bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
BUS_DMASYNC_POSTREAD);
for (; sc->rxq.cur_decrypt != hw;) {
desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
data = &sc->rxq.data[sc->rxq.cur_decrypt];
if ((le32toh(desc->flags) & RAL_RX_BUSY) ||
(le32toh(desc->flags) & RAL_RX_CIPHER_BUSY))
break;
if (data->drop) {
ifp->if_ierrors++;
goto skip;
}
if ((le32toh(desc->flags) & RAL_RX_CIPHER_MASK) != 0 &&
(le32toh(desc->flags) & RAL_RX_ICV_ERROR)) {
ifp->if_ierrors++;
goto skip;
}
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rxq.data_dmat, data->map);
/* finalize mbuf */
m = data->m;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len =
(le32toh(desc->flags) >> 16) & 0xfff;
if (sc->sc_drvbpf != NULL) {
struct ral_rx_radiotap_header *tap = &sc->sc_rxtap;
uint32_t tsf_lo, tsf_hi;
/* get timestamp (low and high 32 bits) */
tsf_lo = RAL_READ(sc, RAL_CSR16);
tsf_hi = RAL_READ(sc, RAL_CSR17);
tap->wr_tsf =
htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
tap->wr_flags = 0;
tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
tap->wr_chan_flags =
htole16(ic->ic_ibss_chan->ic_flags);
tap->wr_antenna = sc->rx_ant;
tap->wr_antsignal = desc->rssi;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic,
(struct ieee80211_frame_min *)wh);
/* send the frame to the 802.11 layer */
ieee80211_input(ic, m, ni, desc->rssi, 0);
/* give rssi to the rate adatation algorithm */
rn = (struct ral_node *)ni;
ral_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
/* node is no longer needed */
ieee80211_free_node(ni);
data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (data->m == NULL) {
device_printf(sc->sc_dev,
"could not allocate rx mbuf\n");
break;
}
error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
mtod(data->m, void *), MCLBYTES, ral_dma_map_addr,
&physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not load rx buf DMA map\n");
m_freem(data->m);
data->m = NULL;
break;
}
desc->physaddr = htole32(physaddr);
skip: desc->flags = htole32(RAL_RX_BUSY);
DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
sc->rxq.cur_decrypt =
(sc->rxq.cur_decrypt + 1) % RAL_RX_RING_COUNT;
}
bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
BUS_DMASYNC_PREWRITE);
}
/*
* Some frames were received. Pass them to the hardware cipher engine before
* sending them to the 802.11 layer.
*/
static void
ral_rx_intr(struct ral_softc *sc)
{
struct ral_rx_desc *desc;
struct ral_rx_data *data;
bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
BUS_DMASYNC_POSTREAD);
for (;;) {
desc = &sc->rxq.desc[sc->rxq.cur];
data = &sc->rxq.data[sc->rxq.cur];
if ((le32toh(desc->flags) & RAL_RX_BUSY) ||
(le32toh(desc->flags) & RAL_RX_CIPHER_BUSY))
break;
data->drop = 0;
if ((le32toh(desc->flags) & RAL_RX_PHY_ERROR) ||
(le32toh(desc->flags) & RAL_RX_CRC_ERROR)) {
/*
* This should not happen since we did not request
* to receive those frames when we filled RXCSR0.
*/
DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
le32toh(desc->flags)));
data->drop = 1;
}
if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
DPRINTFN(5, ("bad length\n"));
data->drop = 1;
}
/* mark the frame for decryption */
desc->flags |= htole32(RAL_RX_CIPHER_BUSY);
DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
sc->rxq.cur = (sc->rxq.cur + 1) % RAL_RX_RING_COUNT;
}
bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
BUS_DMASYNC_PREWRITE);
/* kick decrypt */
RAL_WRITE(sc, RAL_SECCSR0, RAL_KICK_DECRYPT);
}
/*
* This function is called periodically in IBSS mode when a new beacon must be
* sent out.
*/
static void
ral_beacon_expire(struct ral_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ral_tx_data *data;
if (ic->ic_opmode != IEEE80211_M_IBSS &&
ic->ic_opmode != IEEE80211_M_HOSTAP)
return;
data = &sc->bcnq.data[sc->bcnq.next];
bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->bcnq.data_dmat, data->map);
ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, data->m);
ral_tx_bcn(sc, data->m, data->ni);
DPRINTFN(15, ("beacon expired\n"));
sc->bcnq.next = (sc->bcnq.next + 1) % RAL_BEACON_RING_COUNT;
}
static void
ral_wakeup_expire(struct ral_softc *sc)
{
DPRINTFN(2, ("wakeup expired\n"));
}
static void
ral_intr(void *arg)
{
struct ral_softc *sc = arg;
uint32_t r;
RAL_LOCK(sc);
/* disable interrupts */
RAL_WRITE(sc, RAL_CSR8, 0xffffffff);
r = RAL_READ(sc, RAL_CSR7);
RAL_WRITE(sc, RAL_CSR7, r);
if (r & RAL_BEACON_EXPIRE)
ral_beacon_expire(sc);
if (r & RAL_WAKEUP_EXPIRE)
ral_wakeup_expire(sc);
if (r & RAL_ENCRYPTION_DONE)
ral_encryption_intr(sc);
if (r & RAL_TX_DONE)
ral_tx_intr(sc);
if (r & RAL_PRIO_DONE)
ral_prio_intr(sc);
if (r & RAL_DECRYPTION_DONE)
ral_decryption_intr(sc);
if (r & RAL_RX_DONE)
ral_rx_intr(sc);
/* re-enable interrupts */
RAL_WRITE(sc, RAL_CSR8, RAL_INTR_MASK);
RAL_UNLOCK(sc);
}
/* quickly determine if a given rate is CCK or OFDM */
#define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
#define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */
#define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */
#define RAL_SIFS 10
/*
* Return the expected ack rate for a frame transmitted at rate `rate'.
* XXX: this should depend on the destination node basic rate set.
*/
static int
ral_ack_rate(int rate)
{
switch (rate) {
/* CCK rates */
case 2:
return 2;
case 4:
case 11:
case 22:
return 4;
/* OFDM rates */
case 12:
case 18:
return 12;
case 24:
case 36:
return 24;
case 48:
case 72:
case 96:
case 108:
return 48;
}
/* default to 1Mbps */
return 2;
}
/*
* Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
* The function automatically determines the operating mode depending on the
* given rate. `flags' indicates whether short preamble is in use or not.
*/
static uint16_t
ral_txtime(int len, int rate, uint32_t flags)
{
uint16_t txtime;
int ceil, dbps;
if (RAL_RATE_IS_OFDM(rate)) {
/*
* OFDM TXTIME calculation.
* From IEEE Std 802.11a-1999, pp. 37.
*/
dbps = rate * 2; /* data bits per OFDM symbol */
ceil = (16 + 8 * len + 6) / dbps;
if ((16 + 8 * len + 6) % dbps != 0)
ceil++;
txtime = 16 + 4 + 4 * ceil + 6;
} else {
/*
* High Rate TXTIME calculation.
* From IEEE Std 802.11b-1999, pp. 28.
*/
ceil = (8 * len * 2) / rate;
if ((8 * len * 2) % rate != 0)
ceil++;
if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
txtime = 72 + 24 + ceil;
else
txtime = 144 + 48 + ceil;
}
return txtime;
}
static uint8_t
ral_plcp_signal(int rate)
{
switch (rate) {
/* CCK rates (returned values are device-dependent) */
case 2: return 0x0;
case 4: return 0x1;
case 11: return 0x2;
case 22: return 0x3;
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
case 12: return 0xb;
case 18: return 0xf;
case 24: return 0xa;
case 36: return 0xe;
case 48: return 0x9;
case 72: return 0xd;
case 96: return 0x8;
case 108: return 0xc;
/* unsupported rates (should not get there) */
default: return 0xff;
}
}
static void
ral_setup_tx_desc(struct ral_softc *sc, struct ral_tx_desc *desc,
uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t plcp_length;
int remainder;
desc->flags = htole32(flags);
desc->flags |= htole32(len << 16);
desc->flags |= encrypt ? htole32(RAL_TX_CIPHER_BUSY) :
htole32(RAL_TX_BUSY | RAL_TX_VALID);
if (RAL_RATE_IS_OFDM(rate))
desc->flags |= htole32(RAL_TX_OFDM);
desc->physaddr = htole32(physaddr);
desc->wme = htole16(RAL_LOGCWMAX(8) | RAL_LOGCWMIN(3) | RAL_AIFSN(2));
/*
* Fill PLCP fields.
*/
desc->plcp_service = 4;
len += 4; /* account for FCS */
if (RAL_RATE_IS_OFDM(rate)) {
/*
* PLCP length field (LENGTH).
* From IEEE Std 802.11a-1999, pp. 14.
*/
plcp_length = len & 0xfff;
desc->plcp_length = htole16((plcp_length >> 6) << 8 |
(plcp_length & 0x3f));
} else {
/*
* Long PLCP LENGTH field.
* From IEEE Std 802.11b-1999, pp. 16.
*/
plcp_length = (8 * len * 2) / rate;
remainder = (8 * len * 2) % rate;
if (remainder != 0) {
if (rate == 22 && (rate - remainder) / 16 != 0)
desc->plcp_service |= RAL_PLCP_LENGEXT;
plcp_length++;
}
desc->plcp_length = htole16(plcp_length);
}
desc->plcp_signal = ral_plcp_signal(rate);
if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
desc->plcp_signal |= 0x08;
}
static int
ral_tx_bcn(struct ral_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ral_tx_desc *desc;
struct ral_tx_data *data;
bus_dma_segment_t segs[RAL_MAX_SCATTER];
int nsegs, rate, error;
desc = &sc->bcnq.desc[sc->bcnq.cur];
data = &sc->bcnq.data[sc->bcnq.cur];
rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 4;
error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (sc->sc_drvbpf != NULL) {
struct ral_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
tap->wt_antenna = sc->tx_ant;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
data->m = m0;
data->ni = ni;
ral_setup_tx_desc(sc, desc, RAL_TX_IFS_NEWBACKOFF | RAL_TX_TIMESTAMP,
m0->m_pkthdr.len, rate, 0, segs->ds_addr);
DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n",
m0->m_pkthdr.len, sc->bcnq.cur, rate));
bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map,
BUS_DMASYNC_PREWRITE);
sc->bcnq.cur = (sc->bcnq.cur + 1) % RAL_BEACON_RING_COUNT;
return 0;
}
static int
ral_tx_mgt(struct ral_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ral_tx_desc *desc;
struct ral_tx_data *data;
struct ieee80211_frame *wh;
bus_dma_segment_t segs[RAL_MAX_SCATTER];
uint16_t dur;
uint32_t flags = 0;
int nsegs, rate, error;
desc = &sc->prioq.desc[sc->prioq.cur];
data = &sc->prioq.data[sc->prioq.cur];
rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 4;
error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (sc->sc_drvbpf != NULL) {
struct ral_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
tap->wt_antenna = sc->tx_ant;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
data->m = m0;
data->ni = ni;
wh = mtod(m0, struct ieee80211_frame *);
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RAL_TX_ACK;
dur = ral_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + RAL_SIFS;
*(uint16_t *)wh->i_dur = htole16(dur);
/* tell hardware to add timestamp for probe responses */
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT &&
(wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_PROBE_RESP)
flags |= RAL_TX_TIMESTAMP;
}
ral_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
segs->ds_addr);
bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
BUS_DMASYNC_PREWRITE);
DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
m0->m_pkthdr.len, sc->prioq.cur, rate));
/* kick prio */
sc->prioq.queued++;
sc->prioq.cur = (sc->prioq.cur + 1) % RAL_PRIO_RING_COUNT;
RAL_WRITE(sc, RAL_TXCSR0, RAL_KICK_PRIO);
return 0;
}
/*
* Build a RTS control frame.
*/
static struct mbuf *
ral_get_rts(struct ral_softc *sc, struct ieee80211_frame *wh, uint16_t dur)
{
struct ieee80211_frame_rts *rts;
struct mbuf *m;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
sc->sc_ic.ic_stats.is_tx_nobuf++;
device_printf(sc->sc_dev, "could not allocate RTS frame\n");
return NULL;
}
rts = mtod(m, struct ieee80211_frame_rts *);
rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
IEEE80211_FC0_SUBTYPE_RTS;
rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
*(uint16_t *)rts->i_dur = htole16(dur);
IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
return m;
}
static int
ral_tx_data(struct ral_softc *sc, struct mbuf *m0, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ral_tx_desc *desc;
struct ral_tx_data *data;
struct ral_node *rn;
struct ieee80211_rateset *rs;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
struct mbuf *mnew;
bus_dma_segment_t segs[RAL_MAX_SCATTER];
uint16_t dur;
uint32_t flags = 0;
int nsegs, rate, error;
wh = mtod(m0, struct ieee80211_frame *);
if (ic->ic_fixed_rate != -1) {
rs = &ic->ic_sup_rates[ic->ic_curmode];
rate = rs->rs_rates[ic->ic_fixed_rate];
} else {
rs = &ni->ni_rates;
rn = (struct ral_node *)ni;
ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs,
wh, m0->m_pkthdr.len, NULL, 0);
rate = rs->rs_rates[ni->ni_txrate];
}
rate &= IEEE80211_RATE_VAL;
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
/*
* IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
* for directed frames only when the length of the MPDU is greater
* than the length threshold indicated by [...]" ic_rtsthreshold.
*/
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
m0->m_pkthdr.len > ic->ic_rtsthreshold) {
struct mbuf *m;
uint16_t dur;
int rtsrate, ackrate;
rtsrate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 4;
ackrate = ral_ack_rate(rate);
dur = ral_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
ral_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
ral_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
3 * RAL_SIFS;
m = ral_get_rts(sc, wh, dur);
desc = &sc->txq.desc[sc->txq.cur_encrypt];
data = &sc->txq.data[sc->txq.cur_encrypt];
error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
m, segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map mbuf (error %d)\n", error);
m_freem(m);
m_freem(m0);
return error;
}
/* avoid multiple free() of the same node for each fragment */
ieee80211_ref_node(ni);
data->m = m;
data->ni = ni;
/* RTS frames are not taken into account for rssadapt */
data->id.id_node = NULL;
ral_setup_tx_desc(sc, desc, RAL_TX_ACK | RAL_TX_MORE_FRAG,
m->m_pkthdr.len, rtsrate, 1, segs->ds_addr);
bus_dmamap_sync(sc->txq.data_dmat, data->map,
BUS_DMASYNC_PREWRITE);
sc->txq.queued++;
sc->txq.cur_encrypt =
(sc->txq.cur_encrypt + 1) % RAL_TX_RING_COUNT;
/*
* IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
* asynchronous data frame shall be transmitted after the CTS
* frame and a SIFS period.
*/
flags |= RAL_TX_LONG_RETRY | RAL_TX_IFS_SIFS;
}
data = &sc->txq.data[sc->txq.cur_encrypt];
desc = &sc->txq.desc[sc->txq.cur_encrypt];
error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0,
segs, &nsegs, 0);
if (error != 0 && error != EFBIG) {
device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
if (error != 0) {
mnew = m_defrag(m0, M_DONTWAIT);
if (mnew == NULL) {
device_printf(sc->sc_dev,
"could not defragment mbuf\n");
m_freem(m0);
return ENOBUFS;
}
m0 = mnew;
error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
m0, segs, &nsegs, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not map mbuf (error %d)\n", error);
m_freem(m0);
return error;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
if (sc->sc_drvbpf != NULL) {
struct ral_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
tap->wt_antenna = sc->tx_ant;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
data->m = m0;
data->ni = ni;
/* remember link conditions for rate adaptation algorithm */
if (ic->ic_fixed_rate == -1) {
data->id.id_len = m0->m_pkthdr.len;
data->id.id_rateidx = ni->ni_txrate;
data->id.id_node = ni;
data->id.id_rssi = ni->ni_rssi;
} else
data->id.id_node = NULL;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= RAL_TX_ACK;
dur = ral_txtime(RAL_ACK_SIZE, ral_ack_rate(rate),
ic->ic_flags) + RAL_SIFS;
*(uint16_t *)wh->i_dur = htole16(dur);
}
ral_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
segs->ds_addr);
bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
BUS_DMASYNC_PREWRITE);
DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
/* kick encrypt */
sc->txq.queued++;
sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RAL_TX_RING_COUNT;
RAL_WRITE(sc, RAL_SECCSR1, RAL_KICK_ENCRYPT);
return 0;
}
static void
ral_start(struct ifnet *ifp)
{
struct ral_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m0;
struct ether_header *eh;
struct ieee80211_node *ni;
RAL_LOCK(sc);
for (;;) {
IF_POLL(&ic->ic_mgtq, m0);
if (m0 != NULL) {
if (sc->prioq.queued >= RAL_PRIO_RING_COUNT) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IF_DEQUEUE(&ic->ic_mgtq, m0);
ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
m0->m_pkthdr.rcvif = NULL;
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m0);
if (ral_tx_mgt(sc, m0, ni) != 0)
break;
} else {
if (ic->ic_state != IEEE80211_S_RUN)
break;
IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (sc->txq.queued >= RAL_TX_RING_COUNT - 1) {
IFQ_DRV_PREPEND(&ifp->if_snd, m0);
ifp->if_flags |= IFF_OACTIVE;
break;
}
if (m0->m_len < sizeof (struct ether_header) &&
!(m0 = m_pullup(m0, sizeof (struct ether_header))))
continue;
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
continue;
}
BPF_MTAP(ifp, m0);
m0 = ieee80211_encap(ic, m0, ni);
if (m0 == NULL) {
ieee80211_free_node(ni);
continue;
}
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m0);
if (ral_tx_data(sc, m0, ni) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
RAL_UNLOCK(sc);
}
static void
ral_watchdog(struct ifnet *ifp)
{
struct ral_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
RAL_LOCK(sc);
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
device_printf(sc->sc_dev, "device timeout\n");
ral_init(sc);
ifp->if_oerrors++;
RAL_UNLOCK(sc);
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ic);
RAL_UNLOCK(sc);
}
/*
* This function allows for fast channel switching in monitor mode (used by
* net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
* generate a new beacon frame.
*/
static int
ral_reset(struct ifnet *ifp)
{
struct ral_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_opmode != IEEE80211_M_MONITOR)
return ENETRESET;
ral_set_chan(sc, ic->ic_ibss_chan);
return 0;
}
static int
ral_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ral_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int error = 0;
RAL_LOCK(sc);
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING)
ral_update_promisc(sc);
else
ral_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
ral_stop(sc);
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
ral_init(sc);
error = 0;
}
RAL_UNLOCK(sc);
return error;
}
static void
ral_bbp_write(struct ral_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RAL_BBPCSR) & RAL_BBP_BUSY))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not write to BBP\n");
return;
}
tmp = RAL_BBP_WRITE | RAL_BBP_BUSY | reg << 8 | val;
RAL_WRITE(sc, RAL_BBPCSR, tmp);
DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
}
static uint8_t
ral_bbp_read(struct ral_softc *sc, uint8_t reg)
{
uint32_t val;
int ntries;
val = RAL_BBP_BUSY | reg << 8;
RAL_WRITE(sc, RAL_BBPCSR, val);
for (ntries = 0; ntries < 100; ntries++) {
val = RAL_READ(sc, RAL_BBPCSR);
if (!(val & RAL_BBP_BUSY))
return val & 0xff;
DELAY(1);
}
device_printf(sc->sc_dev, "could not read from BBP\n");
return 0;
}
static void
ral_rf_write(struct ral_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RAL_RFCSR) & RAL_RF_BUSY))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not write to RF\n");
return;
}
tmp = RAL_RF_BUSY | RAL_RF_20BIT | (val & 0xfffff) << 2 | (reg & 0x3);
RAL_WRITE(sc, RAL_RFCSR, tmp);
/* remember last written value in sc */
sc->rf_regs[reg] = val;
DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
}
static void
ral_set_chan(struct ral_softc *sc, struct ieee80211_channel *c)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
struct ieee80211com *ic = &sc->sc_ic;
uint8_t power, tmp;
u_int i, chan;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
if (IEEE80211_IS_CHAN_2GHZ(c))
power = min(sc->txpow[chan - 1], 31);
else
power = 31;
DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
switch (sc->rf_rev) {
case RAL_RF_2522:
ral_rf_write(sc, RAL_RF1, 0x00814);
ral_rf_write(sc, RAL_RF2, ral_rf2522_r2[chan - 1]);
ral_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
break;
case RAL_RF_2523:
ral_rf_write(sc, RAL_RF1, 0x08804);
ral_rf_write(sc, RAL_RF2, ral_rf2523_r2[chan - 1]);
ral_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
ral_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RAL_RF_2524:
ral_rf_write(sc, RAL_RF1, 0x0c808);
ral_rf_write(sc, RAL_RF2, ral_rf2524_r2[chan - 1]);
ral_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
ral_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RAL_RF_2525:
ral_rf_write(sc, RAL_RF1, 0x08808);
ral_rf_write(sc, RAL_RF2, ral_rf2525_hi_r2[chan - 1]);
ral_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
ral_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
ral_rf_write(sc, RAL_RF1, 0x08808);
ral_rf_write(sc, RAL_RF2, ral_rf2525_r2[chan - 1]);
ral_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
ral_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
break;
case RAL_RF_2525E:
ral_rf_write(sc, RAL_RF1, 0x08808);
ral_rf_write(sc, RAL_RF2, ral_rf2525e_r2[chan - 1]);
ral_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
ral_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
break;
case RAL_RF_2526:
ral_rf_write(sc, RAL_RF2, ral_rf2526_hi_r2[chan - 1]);
ral_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
ral_rf_write(sc, RAL_RF1, 0x08804);
ral_rf_write(sc, RAL_RF2, ral_rf2526_r2[chan - 1]);
ral_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
ral_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
break;
/* dual-band RF */
case RAL_RF_5222:
for (i = 0; i < N(ral_rf5222); i++)
if (ral_rf5222[i].chan == chan)
break;
if (i < N(ral_rf5222)) {
ral_rf_write(sc, RAL_RF1, ral_rf5222[i].r1);
ral_rf_write(sc, RAL_RF2, ral_rf5222[i].r2);
ral_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
ral_rf_write(sc, RAL_RF4, ral_rf5222[i].r4);
}
break;
}
if (ic->ic_state != IEEE80211_S_SCAN) {
/* set Japan filter bit for channel 14 */
tmp = ral_bbp_read(sc, 70);
tmp &= ~RAL_JAPAN_FILTER;
if (chan == 14)
tmp |= RAL_JAPAN_FILTER;
ral_bbp_write(sc, 70, tmp);
/* clear CRC errors */
RAL_READ(sc, RAL_CNT0);
}
#undef N
}
#if 0
/*
* Disable RF auto-tuning.
*/
static void
ral_disable_rf_tune(struct ral_softc *sc)
{
uint32_t tmp;
if (sc->rf_rev != RAL_RF_2523) {
tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
ral_rf_write(sc, RAL_RF1, tmp);
}
tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
ral_rf_write(sc, RAL_RF3, tmp);
DPRINTFN(2, ("disabling RF autotune\n"));
}
#endif
/*
* Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
* synchronization.
*/
static void
ral_enable_tsf_sync(struct ral_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t logcwmin, preload;
uint32_t tmp;
/* first, disable TSF synchronization */
RAL_WRITE(sc, RAL_CSR14, 0);
tmp = 16 * ic->ic_bss->ni_intval;
RAL_WRITE(sc, RAL_CSR12, tmp);
RAL_WRITE(sc, RAL_CSR13, 0);
logcwmin = 5;
preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
tmp = logcwmin << 16 | preload;
RAL_WRITE(sc, RAL_BCNOCSR, tmp);
/* finally, enable TSF synchronization */
tmp = RAL_ENABLE_TSF | RAL_ENABLE_TBCN;
if (ic->ic_opmode == IEEE80211_M_STA)
tmp |= RAL_ENABLE_TSF_SYNC(1);
else
tmp |= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR;
RAL_WRITE(sc, RAL_CSR14, tmp);
DPRINTF(("enabling TSF synchronization\n"));
}
static void
ral_update_plcp(struct ral_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
/* no short preamble for 1Mbps */
RAL_WRITE(sc, RAL_PLCP1MCSR, 0x00700400);
if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
/* values taken from the reference driver */
RAL_WRITE(sc, RAL_PLCP2MCSR, 0x00380401);
RAL_WRITE(sc, RAL_PLCP5p5MCSR, 0x00150402);
RAL_WRITE(sc, RAL_PLCP11MCSR, 0x000b8403);
} else {
/* same values as above or'ed 0x8 */
RAL_WRITE(sc, RAL_PLCP2MCSR, 0x00380409);
RAL_WRITE(sc, RAL_PLCP5p5MCSR, 0x0015040a);
RAL_WRITE(sc, RAL_PLCP11MCSR, 0x000b840b);
}
DPRINTF(("updating PLCP for %s preamble\n",
(ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
}
/*
* This function can be called by ieee80211_set_shortslottime(). Refer to
* IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
*/
static void
ral_update_slot(struct ifnet *ifp)
{
struct ral_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint8_t slottime;
uint16_t sifs, pifs, difs, eifs;
uint32_t tmp;
slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
/* update the MAC slot boundaries */
sifs = RAL_SIFS;
pifs = sifs + slottime;
difs = sifs + 2 * slottime;
eifs = sifs + ral_txtime(RAL_ACK_SIZE,
(ic->ic_curmode == IEEE80211_MODE_11A) ? 12 : 2, 0) + difs;
tmp = RAL_READ(sc, RAL_CSR11);
tmp = (tmp & ~0x1f00) | slottime << 8;
RAL_WRITE(sc, RAL_CSR11, tmp);
tmp = pifs << 16 | sifs;
RAL_WRITE(sc, RAL_CSR18, tmp);
tmp = eifs << 16 | difs;
RAL_WRITE(sc, RAL_CSR19, tmp);
DPRINTF(("setting slottime to %uus\n", slottime));
}
static void
ral_update_led(struct ral_softc *sc, int led1, int led2)
{
uint32_t tmp;
/* set ON period to 70ms and OFF period to 30ms */
tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
RAL_WRITE(sc, RAL_LEDCSR, tmp);
}
static void
ral_set_bssid(struct ral_softc *sc, uint8_t *bssid)
{
uint32_t tmp;
tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
RAL_WRITE(sc, RAL_CSR5, tmp);
tmp = bssid[4] | bssid[5] << 8;
RAL_WRITE(sc, RAL_CSR6, tmp);
DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
}
static void
ral_set_macaddr(struct ral_softc *sc, uint8_t *addr)
{
uint32_t tmp;
tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
RAL_WRITE(sc, RAL_CSR3, tmp);
tmp = addr[4] | addr[5] << 8;
RAL_WRITE(sc, RAL_CSR4, tmp);
DPRINTF(("setting MAC address to %6D\n", addr, ":"));
}
static void
ral_get_macaddr(struct ral_softc *sc, uint8_t *addr)
{
uint32_t tmp;
tmp = RAL_READ(sc, RAL_CSR3);
addr[0] = tmp & 0xff;
addr[1] = (tmp >> 8) & 0xff;
addr[2] = (tmp >> 16) & 0xff;
addr[3] = (tmp >> 24);
tmp = RAL_READ(sc, RAL_CSR4);
addr[4] = tmp & 0xff;
addr[5] = (tmp >> 8) & 0xff;
}
static void
ral_update_promisc(struct ral_softc *sc)
{
struct ifnet *ifp = sc->sc_ic.ic_ifp;
uint32_t tmp;
tmp = RAL_READ(sc, RAL_RXCSR0);
tmp &= ~RAL_DROP_NOT_TO_ME;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RAL_DROP_NOT_TO_ME;
RAL_WRITE(sc, RAL_RXCSR0, tmp);
DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
"entering" : "leaving"));
}
static const char *
ral_get_rf(int rev)
{
switch (rev) {
case RAL_RF_2522: return "RT2522";
case RAL_RF_2523: return "RT2523";
case RAL_RF_2524: return "RT2524";
case RAL_RF_2525: return "RT2525";
case RAL_RF_2525E: return "RT2525e";
case RAL_RF_2526: return "RT2526";
case RAL_RF_5222: return "RT5222";
default: return "unknown";
}
}
static void
ral_read_eeprom(struct ral_softc *sc)
{
uint16_t val;
int i;
val = ral_eeprom_read(sc, RAL_EEPROM_CONFIG0);
sc->rf_rev = (val >> 11) & 0x7;
sc->hw_radio = (val >> 10) & 0x1;
sc->led_mode = (val >> 6) & 0x7;
sc->rx_ant = (val >> 4) & 0x3;
sc->tx_ant = (val >> 2) & 0x3;
sc->nb_ant = val & 0x3;
/* read default values for BBP registers */
for (i = 0; i < 16; i++) {
val = ral_eeprom_read(sc, RAL_EEPROM_BBP_BASE + i);
sc->bbp_prom[i].reg = val >> 8;
sc->bbp_prom[i].val = val & 0xff;
}
/* read Tx power for all b/g channels */
for (i = 0; i < 14 / 2; i++) {
val = ral_eeprom_read(sc, RAL_EEPROM_TXPOWER + i);
sc->txpow[i * 2] = val >> 8;
sc->txpow[i * 2 + 1] = val & 0xff;
}
}
static int
ral_bbp_init(struct ral_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
int i, ntries;
/* wait for BBP to be ready */
for (ntries = 0; ntries < 100; ntries++) {
if (ral_bbp_read(sc, RAL_BBP_VERSION) != 0)
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for BBP\n");
return EIO;
}
/* initialize BBP registers to default values */
for (i = 0; i < N(ral_def_bbp); i++)
ral_bbp_write(sc, ral_def_bbp[i].reg, ral_def_bbp[i].val);
#if 0
/* initialize BBP registers to values stored in EEPROM */
for (i = 0; i < 16; i++) {
if (sc->bbp_prom[i].reg == 0xff)
continue;
ral_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
}
#endif
return 0;
#undef N
}
static void
ral_set_txantenna(struct ral_softc *sc, int antenna)
{
uint32_t tmp;
uint8_t tx;
tx = ral_bbp_read(sc, RAL_BBP_TX) & ~RAL_BBP_ANTMASK;
if (antenna == 1)
tx |= RAL_BBP_ANTA;
else if (antenna == 2)
tx |= RAL_BBP_ANTB;
else
tx |= RAL_BBP_DIVERSITY;
/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526 ||
sc->rf_rev == RAL_RF_5222)
tx |= RAL_BBP_FLIPIQ;
ral_bbp_write(sc, RAL_BBP_TX, tx);
/* update values for CCK and OFDM in BBPCSR1 */
tmp = RAL_READ(sc, RAL_BBPCSR1) & ~0x00070007;
tmp |= (tx & 0x7) << 16 | (tx & 0x7);
RAL_WRITE(sc, RAL_BBPCSR1, tmp);
}
static void
ral_set_rxantenna(struct ral_softc *sc, int antenna)
{
uint8_t rx;
rx = ral_bbp_read(sc, RAL_BBP_RX) & ~RAL_BBP_ANTMASK;
if (antenna == 1)
rx |= RAL_BBP_ANTA;
else if (antenna == 2)
rx |= RAL_BBP_ANTB;
else
rx |= RAL_BBP_DIVERSITY;
/* need to force no I/Q flip for RF 2525e and 2526 */
if (sc->rf_rev == RAL_RF_2525E || sc->rf_rev == RAL_RF_2526)
rx &= ~RAL_BBP_FLIPIQ;
ral_bbp_write(sc, RAL_BBP_RX, rx);
}
static void
ral_init(void *priv)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
struct ral_softc *sc = priv;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
uint32_t tmp;
int i;
ral_stop(sc);
/* setup tx rings */
tmp = RAL_PRIO_RING_COUNT << 24 |
RAL_ATIM_RING_COUNT << 16 |
RAL_TX_RING_COUNT << 8 |
RAL_TX_DESC_SIZE;
/* rings _must_ be initialized in this _exact_ order! */
RAL_WRITE(sc, RAL_TXCSR2, tmp);
RAL_WRITE(sc, RAL_TXCSR3, sc->txq.physaddr);
RAL_WRITE(sc, RAL_TXCSR5, sc->prioq.physaddr);
RAL_WRITE(sc, RAL_TXCSR4, sc->atimq.physaddr);
RAL_WRITE(sc, RAL_TXCSR6, sc->bcnq.physaddr);
/* setup rx ring */
tmp = RAL_RX_RING_COUNT << 8 | RAL_RX_DESC_SIZE;
RAL_WRITE(sc, RAL_RXCSR1, tmp);
RAL_WRITE(sc, RAL_RXCSR2, sc->rxq.physaddr);
/* initialize MAC registers to default values */
for (i = 0; i < N(ral_def_mac); i++)
RAL_WRITE(sc, ral_def_mac[i].reg, ral_def_mac[i].val);
IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
ral_set_macaddr(sc, ic->ic_myaddr);
/* set supported basic rates (1, 2, 6, 12, 24) */
RAL_WRITE(sc, RAL_ARSP_PLCP_1, 0x153);
ral_set_txantenna(sc, sc->tx_ant);
ral_set_rxantenna(sc, sc->rx_ant);
ral_update_slot(ifp);
ral_update_plcp(sc);
ral_update_led(sc, 0, 0);
RAL_WRITE(sc, RAL_CSR1, RAL_RESET_ASIC);
RAL_WRITE(sc, RAL_CSR1, RAL_HOST_READY);
if (ral_bbp_init(sc) != 0) {
ral_stop(sc);
return;
}
/* set default BSS channel */
ic->ic_bss->ni_chan = ic->ic_ibss_chan;
ral_set_chan(sc, ic->ic_bss->ni_chan);
/* kick Rx */
tmp = RAL_DROP_PHY_ERROR | RAL_DROP_CRC_ERROR;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RAL_DROP_CTL | RAL_DROP_VERSION_ERROR;
if (ic->ic_opmode != IEEE80211_M_HOSTAP)
tmp |= RAL_DROP_TODS;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RAL_DROP_NOT_TO_ME;
}
RAL_WRITE(sc, RAL_RXCSR0, tmp);
/* clear old FCS and Rx FIFO errors */
RAL_READ(sc, RAL_CNT0);
RAL_READ(sc, RAL_CNT4);
/* clear any pending interrupts */
RAL_WRITE(sc, RAL_CSR7, 0xffffffff);
/* enable interrupts */
RAL_WRITE(sc, RAL_CSR8, RAL_INTR_MASK);
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
#undef N
}
void
ral_stop(void *priv)
{
struct ral_softc *sc = priv;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
/* abort Tx */
RAL_WRITE(sc, RAL_TXCSR0, RAL_ABORT_TX);
/* disable Rx */
RAL_WRITE(sc, RAL_RXCSR0, RAL_DISABLE_RX);
/* reset ASIC (imply reset BBP) */
RAL_WRITE(sc, RAL_CSR1, RAL_RESET_ASIC);
RAL_WRITE(sc, RAL_CSR1, 0);
/* disable interrupts */
RAL_WRITE(sc, RAL_CSR8, 0xffffffff);
/* reset Tx and Rx rings */
ral_reset_tx_ring(sc, &sc->txq);
ral_reset_tx_ring(sc, &sc->atimq);
ral_reset_tx_ring(sc, &sc->prioq);
ral_reset_tx_ring(sc, &sc->bcnq);
ral_reset_rx_ring(sc, &sc->rxq);
}