83accfdbd5
ethernet controller was recognized. VIA consistently calls "Velocity" family for gigabit ethernet controllers. For fast ethernet controllers they uses "Rhine" family(vr(4) controllers)) and vr(4) already shows "Rhine" in probe message.
2702 lines
71 KiB
C
2702 lines
71 KiB
C
/*-
|
|
* Copyright (c) 2004
|
|
* Bill Paul <wpaul@windriver.com>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
|
|
*
|
|
* Written by Bill Paul <wpaul@windriver.com>
|
|
* Senior Networking Software Engineer
|
|
* Wind River Systems
|
|
*/
|
|
|
|
/*
|
|
* The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
|
|
* combines a tri-speed ethernet MAC and PHY, with the following
|
|
* features:
|
|
*
|
|
* o Jumbo frame support up to 16K
|
|
* o Transmit and receive flow control
|
|
* o IPv4 checksum offload
|
|
* o VLAN tag insertion and stripping
|
|
* o TCP large send
|
|
* o 64-bit multicast hash table filter
|
|
* o 64 entry CAM filter
|
|
* o 16K RX FIFO and 48K TX FIFO memory
|
|
* o Interrupt moderation
|
|
*
|
|
* The VT6122 supports up to four transmit DMA queues. The descriptors
|
|
* in the transmit ring can address up to 7 data fragments; frames which
|
|
* span more than 7 data buffers must be coalesced, but in general the
|
|
* BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
|
|
* long. The receive descriptors address only a single buffer.
|
|
*
|
|
* There are two peculiar design issues with the VT6122. One is that
|
|
* receive data buffers must be aligned on a 32-bit boundary. This is
|
|
* not a problem where the VT6122 is used as a LOM device in x86-based
|
|
* systems, but on architectures that generate unaligned access traps, we
|
|
* have to do some copying.
|
|
*
|
|
* The other issue has to do with the way 64-bit addresses are handled.
|
|
* The DMA descriptors only allow you to specify 48 bits of addressing
|
|
* information. The remaining 16 bits are specified using one of the
|
|
* I/O registers. If you only have a 32-bit system, then this isn't
|
|
* an issue, but if you have a 64-bit system and more than 4GB of
|
|
* memory, you must have to make sure your network data buffers reside
|
|
* in the same 48-bit 'segment.'
|
|
*
|
|
* Special thanks to Ryan Fu at VIA Networking for providing documentation
|
|
* and sample NICs for testing.
|
|
*/
|
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_device_polling.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
MODULE_DEPEND(vge, pci, 1, 1, 1);
|
|
MODULE_DEPEND(vge, ether, 1, 1, 1);
|
|
MODULE_DEPEND(vge, miibus, 1, 1, 1);
|
|
|
|
/* "device miibus" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
#include <dev/vge/if_vgereg.h>
|
|
#include <dev/vge/if_vgevar.h>
|
|
|
|
#define VGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
|
|
|
|
/* Tunables */
|
|
static int msi_disable = 0;
|
|
TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
|
|
|
|
/*
|
|
* The SQE error counter of MIB seems to report bogus value.
|
|
* Vendor's workaround does not seem to work on PCIe based
|
|
* controllers. Disable it until we find better workaround.
|
|
*/
|
|
#undef VGE_ENABLE_SQEERR
|
|
|
|
/*
|
|
* Various supported device vendors/types and their names.
|
|
*/
|
|
static struct vge_type vge_devs[] = {
|
|
{ VIA_VENDORID, VIA_DEVICEID_61XX,
|
|
"VIA Networking Velocity Gigabit Ethernet" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static int vge_attach(device_t);
|
|
static int vge_detach(device_t);
|
|
static int vge_probe(device_t);
|
|
static int vge_resume(device_t);
|
|
static int vge_shutdown(device_t);
|
|
static int vge_suspend(device_t);
|
|
|
|
static void vge_cam_clear(struct vge_softc *);
|
|
static int vge_cam_set(struct vge_softc *, uint8_t *);
|
|
static void vge_discard_rxbuf(struct vge_softc *, int);
|
|
static int vge_dma_alloc(struct vge_softc *);
|
|
static void vge_dma_free(struct vge_softc *);
|
|
static void vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
|
|
#ifdef VGE_EEPROM
|
|
static void vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
|
|
#endif
|
|
static int vge_encap(struct vge_softc *, struct mbuf **);
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
static __inline void
|
|
vge_fixup_rx(struct mbuf *);
|
|
#endif
|
|
static void vge_freebufs(struct vge_softc *);
|
|
static void vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
static int vge_ifmedia_upd(struct ifnet *);
|
|
static void vge_init(void *);
|
|
static void vge_init_locked(struct vge_softc *);
|
|
static void vge_intr(void *);
|
|
static int vge_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void vge_link_statchg(void *);
|
|
static int vge_miibus_readreg(device_t, int, int);
|
|
static void vge_miibus_statchg(device_t);
|
|
static int vge_miibus_writereg(device_t, int, int, int);
|
|
static void vge_miipoll_start(struct vge_softc *);
|
|
static void vge_miipoll_stop(struct vge_softc *);
|
|
static int vge_newbuf(struct vge_softc *, int);
|
|
static void vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
|
|
static void vge_reset(struct vge_softc *);
|
|
static int vge_rx_list_init(struct vge_softc *);
|
|
static int vge_rxeof(struct vge_softc *, int);
|
|
static void vge_rxfilter(struct vge_softc *);
|
|
static void vge_setvlan(struct vge_softc *);
|
|
static void vge_start(struct ifnet *);
|
|
static void vge_start_locked(struct ifnet *);
|
|
static void vge_stats_clear(struct vge_softc *);
|
|
static void vge_stats_update(struct vge_softc *);
|
|
static void vge_stop(struct vge_softc *);
|
|
static void vge_sysctl_node(struct vge_softc *);
|
|
static int vge_tx_list_init(struct vge_softc *);
|
|
static void vge_txeof(struct vge_softc *);
|
|
static void vge_watchdog(void *);
|
|
|
|
static device_method_t vge_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, vge_probe),
|
|
DEVMETHOD(device_attach, vge_attach),
|
|
DEVMETHOD(device_detach, vge_detach),
|
|
DEVMETHOD(device_suspend, vge_suspend),
|
|
DEVMETHOD(device_resume, vge_resume),
|
|
DEVMETHOD(device_shutdown, vge_shutdown),
|
|
|
|
/* bus interface */
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, vge_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, vge_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, vge_miibus_statchg),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t vge_driver = {
|
|
"vge",
|
|
vge_methods,
|
|
sizeof(struct vge_softc)
|
|
};
|
|
|
|
static devclass_t vge_devclass;
|
|
|
|
DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
#ifdef VGE_EEPROM
|
|
/*
|
|
* Read a word of data stored in the EEPROM at address 'addr.'
|
|
*/
|
|
static void
|
|
vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
|
|
{
|
|
int i;
|
|
uint16_t word = 0;
|
|
|
|
/*
|
|
* Enter EEPROM embedded programming mode. In order to
|
|
* access the EEPROM at all, we first have to set the
|
|
* EELOAD bit in the CHIPCFG2 register.
|
|
*/
|
|
CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
|
|
CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
|
|
|
|
/* Select the address of the word we want to read */
|
|
CSR_WRITE_1(sc, VGE_EEADDR, addr);
|
|
|
|
/* Issue read command */
|
|
CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
|
|
|
|
/* Wait for the done bit to be set. */
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT) {
|
|
device_printf(sc->vge_dev, "EEPROM read timed out\n");
|
|
*dest = 0;
|
|
return;
|
|
}
|
|
|
|
/* Read the result */
|
|
word = CSR_READ_2(sc, VGE_EERDDAT);
|
|
|
|
/* Turn off EEPROM access mode. */
|
|
CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
|
|
CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
|
|
|
|
*dest = word;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Read a sequence of words from the EEPROM.
|
|
*/
|
|
static void
|
|
vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
|
|
{
|
|
int i;
|
|
#ifdef VGE_EEPROM
|
|
uint16_t word = 0, *ptr;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
vge_eeprom_getword(sc, off + i, &word);
|
|
ptr = (uint16_t *)(dest + (i * 2));
|
|
if (swap)
|
|
*ptr = ntohs(word);
|
|
else
|
|
*ptr = word;
|
|
}
|
|
#else
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
vge_miipoll_stop(struct vge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
CSR_WRITE_1(sc, VGE_MIICMD, 0);
|
|
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT)
|
|
device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
|
|
}
|
|
|
|
static void
|
|
vge_miipoll_start(struct vge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
/* First, make sure we're idle. */
|
|
|
|
CSR_WRITE_1(sc, VGE_MIICMD, 0);
|
|
CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
|
|
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT) {
|
|
device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
|
|
return;
|
|
}
|
|
|
|
/* Now enable auto poll mode. */
|
|
|
|
CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
|
|
|
|
/* And make sure it started. */
|
|
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT)
|
|
device_printf(sc->vge_dev, "failed to start MII autopoll\n");
|
|
}
|
|
|
|
static int
|
|
vge_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct vge_softc *sc;
|
|
int i;
|
|
uint16_t rval = 0;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
if (phy != sc->vge_phyaddr)
|
|
return (0);
|
|
|
|
vge_miipoll_stop(sc);
|
|
|
|
/* Specify the register we want to read. */
|
|
CSR_WRITE_1(sc, VGE_MIIADDR, reg);
|
|
|
|
/* Issue read command. */
|
|
CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
|
|
|
|
/* Wait for the read command bit to self-clear. */
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT)
|
|
device_printf(sc->vge_dev, "MII read timed out\n");
|
|
else
|
|
rval = CSR_READ_2(sc, VGE_MIIDATA);
|
|
|
|
vge_miipoll_start(sc);
|
|
|
|
return (rval);
|
|
}
|
|
|
|
static int
|
|
vge_miibus_writereg(device_t dev, int phy, int reg, int data)
|
|
{
|
|
struct vge_softc *sc;
|
|
int i, rval = 0;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
if (phy != sc->vge_phyaddr)
|
|
return (0);
|
|
|
|
vge_miipoll_stop(sc);
|
|
|
|
/* Specify the register we want to write. */
|
|
CSR_WRITE_1(sc, VGE_MIIADDR, reg);
|
|
|
|
/* Specify the data we want to write. */
|
|
CSR_WRITE_2(sc, VGE_MIIDATA, data);
|
|
|
|
/* Issue write command. */
|
|
CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
|
|
|
|
/* Wait for the write command bit to self-clear. */
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT) {
|
|
device_printf(sc->vge_dev, "MII write timed out\n");
|
|
rval = EIO;
|
|
}
|
|
|
|
vge_miipoll_start(sc);
|
|
|
|
return (rval);
|
|
}
|
|
|
|
static void
|
|
vge_cam_clear(struct vge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Turn off all the mask bits. This tells the chip
|
|
* that none of the entries in the CAM filter are valid.
|
|
* desired entries will be enabled as we fill the filter in.
|
|
*/
|
|
|
|
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
|
|
CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
|
|
for (i = 0; i < 8; i++)
|
|
CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
|
|
|
|
/* Clear the VLAN filter too. */
|
|
|
|
CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
|
|
for (i = 0; i < 8; i++)
|
|
CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
|
|
|
|
CSR_WRITE_1(sc, VGE_CAMADDR, 0);
|
|
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
|
|
|
|
sc->vge_camidx = 0;
|
|
}
|
|
|
|
static int
|
|
vge_cam_set(struct vge_softc *sc, uint8_t *addr)
|
|
{
|
|
int i, error = 0;
|
|
|
|
if (sc->vge_camidx == VGE_CAM_MAXADDRS)
|
|
return (ENOSPC);
|
|
|
|
/* Select the CAM data page. */
|
|
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
|
|
|
|
/* Set the filter entry we want to update and enable writing. */
|
|
CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
|
|
|
|
/* Write the address to the CAM registers */
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
|
|
|
|
/* Issue a write command. */
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
|
|
|
|
/* Wake for it to clear. */
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT) {
|
|
device_printf(sc->vge_dev, "setting CAM filter failed\n");
|
|
error = EIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Select the CAM mask page. */
|
|
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
|
|
|
|
/* Set the mask bit that enables this filter. */
|
|
CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
|
|
1<<(sc->vge_camidx & 7));
|
|
|
|
sc->vge_camidx++;
|
|
|
|
fail:
|
|
/* Turn off access to CAM. */
|
|
CSR_WRITE_1(sc, VGE_CAMADDR, 0);
|
|
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
vge_setvlan(struct vge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint8_t cfg;
|
|
|
|
VGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->vge_ifp;
|
|
cfg = CSR_READ_1(sc, VGE_RXCFG);
|
|
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
|
|
cfg |= VGE_VTAG_OPT2;
|
|
else
|
|
cfg &= ~VGE_VTAG_OPT2;
|
|
CSR_WRITE_1(sc, VGE_RXCFG, cfg);
|
|
}
|
|
|
|
/*
|
|
* Program the multicast filter. We use the 64-entry CAM filter
|
|
* for perfect filtering. If there's more than 64 multicast addresses,
|
|
* we use the hash filter instead.
|
|
*/
|
|
static void
|
|
vge_rxfilter(struct vge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma;
|
|
uint32_t h, hashes[2];
|
|
uint8_t rxcfg;
|
|
int error = 0;
|
|
|
|
VGE_LOCK_ASSERT(sc);
|
|
|
|
/* First, zot all the multicast entries. */
|
|
hashes[0] = 0;
|
|
hashes[1] = 0;
|
|
|
|
rxcfg = CSR_READ_1(sc, VGE_RXCTL);
|
|
rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
|
|
VGE_RXCTL_RX_PROMISC);
|
|
/*
|
|
* Always allow VLAN oversized frames and frames for
|
|
* this host.
|
|
*/
|
|
rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
|
|
|
|
ifp = sc->vge_ifp;
|
|
if ((ifp->if_flags & IFF_BROADCAST) != 0)
|
|
rxcfg |= VGE_RXCTL_RX_BCAST;
|
|
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0)
|
|
rxcfg |= VGE_RXCTL_RX_PROMISC;
|
|
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
|
|
hashes[0] = 0xFFFFFFFF;
|
|
hashes[1] = 0xFFFFFFFF;
|
|
}
|
|
goto done;
|
|
}
|
|
|
|
vge_cam_clear(sc);
|
|
/* Now program new ones */
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
error = vge_cam_set(sc,
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
/* If there were too many addresses, use the hash filter. */
|
|
if (error) {
|
|
vge_cam_clear(sc);
|
|
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
|
|
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
}
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
|
|
done:
|
|
if (hashes[0] != 0 || hashes[1] != 0)
|
|
rxcfg |= VGE_RXCTL_RX_MCAST;
|
|
CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
|
|
CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
|
|
CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
|
|
}
|
|
|
|
static void
|
|
vge_reset(struct vge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
|
|
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
DELAY(5);
|
|
if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == VGE_TIMEOUT) {
|
|
device_printf(sc->vge_dev, "soft reset timed out\n");
|
|
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
|
|
DELAY(2000);
|
|
}
|
|
|
|
DELAY(5000);
|
|
}
|
|
|
|
/*
|
|
* Probe for a VIA gigabit chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
*/
|
|
static int
|
|
vge_probe(device_t dev)
|
|
{
|
|
struct vge_type *t;
|
|
|
|
t = vge_devs;
|
|
|
|
while (t->vge_name != NULL) {
|
|
if ((pci_get_vendor(dev) == t->vge_vid) &&
|
|
(pci_get_device(dev) == t->vge_did)) {
|
|
device_set_desc(dev, t->vge_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Map a single buffer address.
|
|
*/
|
|
|
|
struct vge_dmamap_arg {
|
|
bus_addr_t vge_busaddr;
|
|
};
|
|
|
|
static void
|
|
vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
struct vge_dmamap_arg *ctx;
|
|
|
|
if (error != 0)
|
|
return;
|
|
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
ctx = (struct vge_dmamap_arg *)arg;
|
|
ctx->vge_busaddr = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
vge_dma_alloc(struct vge_softc *sc)
|
|
{
|
|
struct vge_dmamap_arg ctx;
|
|
struct vge_txdesc *txd;
|
|
struct vge_rxdesc *rxd;
|
|
bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
|
|
int error, i;
|
|
|
|
lowaddr = BUS_SPACE_MAXADDR;
|
|
|
|
again:
|
|
/* Create parent ring tag. */
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
lowaddr, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
|
|
0, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vge_cdata.vge_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vge_dev,
|
|
"could not create parent DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Tx ring. */
|
|
error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
|
|
VGE_TX_RING_ALIGN, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
VGE_TX_LIST_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
VGE_TX_LIST_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vge_cdata.vge_tx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vge_dev,
|
|
"could not allocate Tx ring DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Rx ring. */
|
|
error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
|
|
VGE_RX_RING_ALIGN, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
VGE_RX_LIST_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
VGE_RX_LIST_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vge_cdata.vge_rx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vge_dev,
|
|
"could not allocate Rx ring DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
|
|
error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
|
|
(void **)&sc->vge_rdata.vge_tx_ring,
|
|
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
|
|
&sc->vge_cdata.vge_tx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->vge_dev,
|
|
"could not allocate DMA'able memory for Tx ring.\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.vge_busaddr = 0;
|
|
error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
|
|
sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
|
|
VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
|
|
if (error != 0 || ctx.vge_busaddr == 0) {
|
|
device_printf(sc->vge_dev,
|
|
"could not load DMA'able memory for Tx ring.\n");
|
|
goto fail;
|
|
}
|
|
sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
|
|
error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
|
|
(void **)&sc->vge_rdata.vge_rx_ring,
|
|
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
|
|
&sc->vge_cdata.vge_rx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->vge_dev,
|
|
"could not allocate DMA'able memory for Rx ring.\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.vge_busaddr = 0;
|
|
error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
|
|
sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
|
|
VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
|
|
if (error != 0 || ctx.vge_busaddr == 0) {
|
|
device_printf(sc->vge_dev,
|
|
"could not load DMA'able memory for Rx ring.\n");
|
|
goto fail;
|
|
}
|
|
sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
|
|
|
|
/* Tx/Rx descriptor queue should reside within 4GB boundary. */
|
|
tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
|
|
rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
|
|
if ((VGE_ADDR_HI(tx_ring_end) !=
|
|
VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
|
|
(VGE_ADDR_HI(rx_ring_end) !=
|
|
VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
|
|
VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
|
|
device_printf(sc->vge_dev, "4GB boundary crossed, "
|
|
"switching to 32bit DMA address mode.\n");
|
|
vge_dma_free(sc);
|
|
/* Limit DMA address space to 32bit and try again. */
|
|
lowaddr = BUS_SPACE_MAXADDR_32BIT;
|
|
goto again;
|
|
}
|
|
|
|
/* Create parent buffer tag. */
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
VGE_BUF_DMA_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
|
|
0, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vge_cdata.vge_buffer_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vge_dev,
|
|
"could not create parent buffer DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Tx buffers. */
|
|
error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES * VGE_MAXTXSEGS, /* maxsize */
|
|
VGE_MAXTXSEGS, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vge_cdata.vge_tx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Rx buffers. */
|
|
error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
|
|
VGE_RX_BUF_ALIGN, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->vge_cdata.vge_rx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create DMA maps for Tx buffers. */
|
|
for (i = 0; i < VGE_TX_DESC_CNT; i++) {
|
|
txd = &sc->vge_cdata.vge_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->tx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
|
|
&txd->tx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->vge_dev,
|
|
"could not create Tx dmamap.\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
/* Create DMA maps for Rx buffers. */
|
|
if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
|
|
&sc->vge_cdata.vge_rx_sparemap)) != 0) {
|
|
device_printf(sc->vge_dev,
|
|
"could not create spare Rx dmamap.\n");
|
|
goto fail;
|
|
}
|
|
for (i = 0; i < VGE_RX_DESC_CNT; i++) {
|
|
rxd = &sc->vge_cdata.vge_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
|
|
&rxd->rx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->vge_dev,
|
|
"could not create Rx dmamap.\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
vge_dma_free(struct vge_softc *sc)
|
|
{
|
|
struct vge_txdesc *txd;
|
|
struct vge_rxdesc *rxd;
|
|
int i;
|
|
|
|
/* Tx ring. */
|
|
if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
|
|
if (sc->vge_cdata.vge_tx_ring_map)
|
|
bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
|
|
sc->vge_cdata.vge_tx_ring_map);
|
|
if (sc->vge_cdata.vge_tx_ring_map &&
|
|
sc->vge_rdata.vge_tx_ring)
|
|
bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
|
|
sc->vge_rdata.vge_tx_ring,
|
|
sc->vge_cdata.vge_tx_ring_map);
|
|
sc->vge_rdata.vge_tx_ring = NULL;
|
|
sc->vge_cdata.vge_tx_ring_map = NULL;
|
|
bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
|
|
sc->vge_cdata.vge_tx_ring_tag = NULL;
|
|
}
|
|
/* Rx ring. */
|
|
if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
|
|
if (sc->vge_cdata.vge_rx_ring_map)
|
|
bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
|
|
sc->vge_cdata.vge_rx_ring_map);
|
|
if (sc->vge_cdata.vge_rx_ring_map &&
|
|
sc->vge_rdata.vge_rx_ring)
|
|
bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
|
|
sc->vge_rdata.vge_rx_ring,
|
|
sc->vge_cdata.vge_rx_ring_map);
|
|
sc->vge_rdata.vge_rx_ring = NULL;
|
|
sc->vge_cdata.vge_rx_ring_map = NULL;
|
|
bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
|
|
sc->vge_cdata.vge_rx_ring_tag = NULL;
|
|
}
|
|
/* Tx buffers. */
|
|
if (sc->vge_cdata.vge_tx_tag != NULL) {
|
|
for (i = 0; i < VGE_TX_DESC_CNT; i++) {
|
|
txd = &sc->vge_cdata.vge_txdesc[i];
|
|
if (txd->tx_dmamap != NULL) {
|
|
bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
|
|
txd->tx_dmamap);
|
|
txd->tx_dmamap = NULL;
|
|
}
|
|
}
|
|
bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
|
|
sc->vge_cdata.vge_tx_tag = NULL;
|
|
}
|
|
/* Rx buffers. */
|
|
if (sc->vge_cdata.vge_rx_tag != NULL) {
|
|
for (i = 0; i < VGE_RX_DESC_CNT; i++) {
|
|
rxd = &sc->vge_cdata.vge_rxdesc[i];
|
|
if (rxd->rx_dmamap != NULL) {
|
|
bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
|
|
rxd->rx_dmamap);
|
|
rxd->rx_dmamap = NULL;
|
|
}
|
|
}
|
|
if (sc->vge_cdata.vge_rx_sparemap != NULL) {
|
|
bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
|
|
sc->vge_cdata.vge_rx_sparemap);
|
|
sc->vge_cdata.vge_rx_sparemap = NULL;
|
|
}
|
|
bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
|
|
sc->vge_cdata.vge_rx_tag = NULL;
|
|
}
|
|
|
|
if (sc->vge_cdata.vge_buffer_tag != NULL) {
|
|
bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
|
|
sc->vge_cdata.vge_buffer_tag = NULL;
|
|
}
|
|
if (sc->vge_cdata.vge_ring_tag != NULL) {
|
|
bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
|
|
sc->vge_cdata.vge_ring_tag = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static int
|
|
vge_attach(device_t dev)
|
|
{
|
|
u_char eaddr[ETHER_ADDR_LEN];
|
|
struct vge_softc *sc;
|
|
struct ifnet *ifp;
|
|
int error = 0, cap, i, msic, rid;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->vge_dev = dev;
|
|
|
|
mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
pci_enable_busmaster(dev);
|
|
|
|
rid = PCIR_BAR(1);
|
|
sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
|
|
RF_ACTIVE);
|
|
|
|
if (sc->vge_res == NULL) {
|
|
device_printf(dev, "couldn't map ports/memory\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
if (pci_find_extcap(dev, PCIY_EXPRESS, &cap) == 0) {
|
|
sc->vge_flags |= VGE_FLAG_PCIE;
|
|
sc->vge_expcap = cap;
|
|
}
|
|
rid = 0;
|
|
msic = pci_msi_count(dev);
|
|
if (msi_disable == 0 && msic > 0) {
|
|
msic = 1;
|
|
if (pci_alloc_msi(dev, &msic) == 0) {
|
|
if (msic == 1) {
|
|
sc->vge_flags |= VGE_FLAG_MSI;
|
|
device_printf(dev, "Using %d MSI message\n",
|
|
msic);
|
|
rid = 1;
|
|
} else
|
|
pci_release_msi(dev);
|
|
}
|
|
}
|
|
|
|
/* Allocate interrupt */
|
|
sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
|
|
((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
|
|
if (sc->vge_irq == NULL) {
|
|
device_printf(dev, "couldn't map interrupt\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Reset the adapter. */
|
|
vge_reset(sc);
|
|
/* Reload EEPROM. */
|
|
CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
|
|
for (i = 0; i < VGE_TIMEOUT; i++) {
|
|
DELAY(5);
|
|
if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
|
|
break;
|
|
}
|
|
if (i == VGE_TIMEOUT)
|
|
device_printf(dev, "EEPROM reload timed out\n");
|
|
/*
|
|
* Clear PACPI as EEPROM reload will set the bit. Otherwise
|
|
* MAC will receive magic packet which in turn confuses
|
|
* controller.
|
|
*/
|
|
CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
|
|
|
|
/*
|
|
* Get station address from the EEPROM.
|
|
*/
|
|
vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
|
|
/*
|
|
* Save configured PHY address.
|
|
* It seems the PHY address of PCIe controllers just
|
|
* reflects media jump strapping status so we assume the
|
|
* internal PHY address of PCIe controller is at 1.
|
|
*/
|
|
if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
|
|
sc->vge_phyaddr = 1;
|
|
else
|
|
sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
|
|
VGE_MIICFG_PHYADDR;
|
|
vge_sysctl_node(sc);
|
|
error = vge_dma_alloc(sc);
|
|
if (error)
|
|
goto fail;
|
|
|
|
ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "can not if_alloc()\n");
|
|
error = ENOSPC;
|
|
goto fail;
|
|
}
|
|
|
|
/* Do MII setup */
|
|
if (mii_phy_probe(dev, &sc->vge_miibus,
|
|
vge_ifmedia_upd, vge_ifmedia_sts)) {
|
|
device_printf(dev, "MII without any phy!\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = vge_ioctl;
|
|
ifp->if_capabilities = IFCAP_VLAN_MTU;
|
|
ifp->if_start = vge_start;
|
|
ifp->if_hwassist = VGE_CSUM_FEATURES;
|
|
ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
|
|
IFCAP_VLAN_HWTAGGING;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
#ifdef DEVICE_POLLING
|
|
ifp->if_capabilities |= IFCAP_POLLING;
|
|
#endif
|
|
ifp->if_init = vge_init;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
|
|
ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/*
|
|
* Call MI attach routine.
|
|
*/
|
|
ether_ifattach(ifp, eaddr);
|
|
|
|
/* Tell the upper layer(s) we support long frames. */
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
|
|
/* Hook interrupt last to avoid having to lock softc */
|
|
error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
|
|
NULL, vge_intr, sc, &sc->vge_intrhand);
|
|
|
|
if (error) {
|
|
device_printf(dev, "couldn't set up irq\n");
|
|
ether_ifdetach(ifp);
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
if (error)
|
|
vge_detach(dev);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Shutdown hardware and free up resources. This can be called any
|
|
* time after the mutex has been initialized. It is called in both
|
|
* the error case in attach and the normal detach case so it needs
|
|
* to be careful about only freeing resources that have actually been
|
|
* allocated.
|
|
*/
|
|
static int
|
|
vge_detach(device_t dev)
|
|
{
|
|
struct vge_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
|
|
ifp = sc->vge_ifp;
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING)
|
|
ether_poll_deregister(ifp);
|
|
#endif
|
|
|
|
/* These should only be active if attach succeeded */
|
|
if (device_is_attached(dev)) {
|
|
ether_ifdetach(ifp);
|
|
VGE_LOCK(sc);
|
|
vge_stop(sc);
|
|
VGE_UNLOCK(sc);
|
|
callout_drain(&sc->vge_watchdog);
|
|
}
|
|
if (sc->vge_miibus)
|
|
device_delete_child(dev, sc->vge_miibus);
|
|
bus_generic_detach(dev);
|
|
|
|
if (sc->vge_intrhand)
|
|
bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
|
|
if (sc->vge_irq)
|
|
bus_release_resource(dev, SYS_RES_IRQ,
|
|
sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
|
|
if (sc->vge_flags & VGE_FLAG_MSI)
|
|
pci_release_msi(dev);
|
|
if (sc->vge_res)
|
|
bus_release_resource(dev, SYS_RES_MEMORY,
|
|
PCIR_BAR(1), sc->vge_res);
|
|
if (ifp)
|
|
if_free(ifp);
|
|
|
|
vge_dma_free(sc);
|
|
mtx_destroy(&sc->vge_mtx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vge_discard_rxbuf(struct vge_softc *sc, int prod)
|
|
{
|
|
struct vge_rxdesc *rxd;
|
|
int i;
|
|
|
|
rxd = &sc->vge_cdata.vge_rxdesc[prod];
|
|
rxd->rx_desc->vge_sts = 0;
|
|
rxd->rx_desc->vge_ctl = 0;
|
|
|
|
/*
|
|
* Note: the manual fails to document the fact that for
|
|
* proper opration, the driver needs to replentish the RX
|
|
* DMA ring 4 descriptors at a time (rather than one at a
|
|
* time, like most chips). We can allocate the new buffers
|
|
* but we should not set the OWN bits until we're ready
|
|
* to hand back 4 of them in one shot.
|
|
*/
|
|
if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
|
|
for (i = VGE_RXCHUNK; i > 0; i--) {
|
|
rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
|
|
rxd = rxd->rxd_prev;
|
|
}
|
|
sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
|
|
}
|
|
}
|
|
|
|
static int
|
|
vge_newbuf(struct vge_softc *sc, int prod)
|
|
{
|
|
struct vge_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int i, nsegs;
|
|
|
|
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
/*
|
|
* This is part of an evil trick to deal with strict-alignment
|
|
* architectures. The VIA chip requires RX buffers to be aligned
|
|
* on 32-bit boundaries, but that will hose strict-alignment
|
|
* architectures. To get around this, we leave some empty space
|
|
* at the start of each buffer and for non-strict-alignment hosts,
|
|
* we copy the buffer back two bytes to achieve word alignment.
|
|
* This is slightly more efficient than allocating a new buffer,
|
|
* copying the contents, and discarding the old buffer.
|
|
*/
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
m_adj(m, VGE_RX_BUF_ALIGN);
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
|
|
sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
rxd = &sc->vge_cdata.vge_rxdesc[prod];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
|
|
}
|
|
map = rxd->rx_dmamap;
|
|
rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
|
|
sc->vge_cdata.vge_rx_sparemap = map;
|
|
bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxd->rx_m = m;
|
|
|
|
rxd->rx_desc->vge_sts = 0;
|
|
rxd->rx_desc->vge_ctl = 0;
|
|
rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
|
|
rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
|
|
(VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
|
|
|
|
/*
|
|
* Note: the manual fails to document the fact that for
|
|
* proper operation, the driver needs to replenish the RX
|
|
* DMA ring 4 descriptors at a time (rather than one at a
|
|
* time, like most chips). We can allocate the new buffers
|
|
* but we should not set the OWN bits until we're ready
|
|
* to hand back 4 of them in one shot.
|
|
*/
|
|
if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
|
|
for (i = VGE_RXCHUNK; i > 0; i--) {
|
|
rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
|
|
rxd = rxd->rxd_prev;
|
|
}
|
|
sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vge_tx_list_init(struct vge_softc *sc)
|
|
{
|
|
struct vge_ring_data *rd;
|
|
struct vge_txdesc *txd;
|
|
int i;
|
|
|
|
VGE_LOCK_ASSERT(sc);
|
|
|
|
sc->vge_cdata.vge_tx_prodidx = 0;
|
|
sc->vge_cdata.vge_tx_considx = 0;
|
|
sc->vge_cdata.vge_tx_cnt = 0;
|
|
|
|
rd = &sc->vge_rdata;
|
|
bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
|
|
for (i = 0; i < VGE_TX_DESC_CNT; i++) {
|
|
txd = &sc->vge_cdata.vge_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->tx_desc = &rd->vge_tx_ring[i];
|
|
}
|
|
|
|
bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
|
|
sc->vge_cdata.vge_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
vge_rx_list_init(struct vge_softc *sc)
|
|
{
|
|
struct vge_ring_data *rd;
|
|
struct vge_rxdesc *rxd;
|
|
int i;
|
|
|
|
VGE_LOCK_ASSERT(sc);
|
|
|
|
sc->vge_cdata.vge_rx_prodidx = 0;
|
|
sc->vge_cdata.vge_head = NULL;
|
|
sc->vge_cdata.vge_tail = NULL;
|
|
sc->vge_cdata.vge_rx_commit = 0;
|
|
|
|
rd = &sc->vge_rdata;
|
|
bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
|
|
for (i = 0; i < VGE_RX_DESC_CNT; i++) {
|
|
rxd = &sc->vge_cdata.vge_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_desc = &rd->vge_rx_ring[i];
|
|
if (i == 0)
|
|
rxd->rxd_prev =
|
|
&sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
|
|
else
|
|
rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
|
|
if (vge_newbuf(sc, i) != 0)
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
|
|
sc->vge_cdata.vge_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
sc->vge_cdata.vge_rx_commit = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
vge_freebufs(struct vge_softc *sc)
|
|
{
|
|
struct vge_txdesc *txd;
|
|
struct vge_rxdesc *rxd;
|
|
struct ifnet *ifp;
|
|
int i;
|
|
|
|
VGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->vge_ifp;
|
|
/*
|
|
* Free RX and TX mbufs still in the queues.
|
|
*/
|
|
for (i = 0; i < VGE_RX_DESC_CNT; i++) {
|
|
rxd = &sc->vge_cdata.vge_rxdesc[i];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
|
|
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
|
|
rxd->rx_dmamap);
|
|
m_freem(rxd->rx_m);
|
|
rxd->rx_m = NULL;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < VGE_TX_DESC_CNT; i++) {
|
|
txd = &sc->vge_cdata.vge_txdesc[i];
|
|
if (txd->tx_m != NULL) {
|
|
bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
|
|
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
|
|
txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
ifp->if_oerrors++;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
static __inline void
|
|
vge_fixup_rx(struct mbuf *m)
|
|
{
|
|
int i;
|
|
uint16_t *src, *dst;
|
|
|
|
src = mtod(m, uint16_t *);
|
|
dst = src - 1;
|
|
|
|
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
|
|
*dst++ = *src++;
|
|
|
|
m->m_data -= ETHER_ALIGN;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* RX handler. We support the reception of jumbo frames that have
|
|
* been fragmented across multiple 2K mbuf cluster buffers.
|
|
*/
|
|
static int
|
|
vge_rxeof(struct vge_softc *sc, int count)
|
|
{
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
int prod, prog, total_len;
|
|
struct vge_rxdesc *rxd;
|
|
struct vge_rx_desc *cur_rx;
|
|
uint32_t rxstat, rxctl;
|
|
|
|
VGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->vge_ifp;
|
|
|
|
bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
|
|
sc->vge_cdata.vge_rx_ring_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
prod = sc->vge_cdata.vge_rx_prodidx;
|
|
for (prog = 0; count > 0 &&
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
|
|
VGE_RX_DESC_INC(prod)) {
|
|
cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
|
|
rxstat = le32toh(cur_rx->vge_sts);
|
|
if ((rxstat & VGE_RDSTS_OWN) != 0)
|
|
break;
|
|
count--;
|
|
prog++;
|
|
rxctl = le32toh(cur_rx->vge_ctl);
|
|
total_len = VGE_RXBYTES(rxstat);
|
|
rxd = &sc->vge_cdata.vge_rxdesc[prod];
|
|
m = rxd->rx_m;
|
|
|
|
/*
|
|
* If the 'start of frame' bit is set, this indicates
|
|
* either the first fragment in a multi-fragment receive,
|
|
* or an intermediate fragment. Either way, we want to
|
|
* accumulate the buffers.
|
|
*/
|
|
if ((rxstat & VGE_RXPKT_SOF) != 0) {
|
|
if (vge_newbuf(sc, prod) != 0) {
|
|
ifp->if_iqdrops++;
|
|
VGE_CHAIN_RESET(sc);
|
|
vge_discard_rxbuf(sc, prod);
|
|
continue;
|
|
}
|
|
m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
|
|
if (sc->vge_cdata.vge_head == NULL) {
|
|
sc->vge_cdata.vge_head = m;
|
|
sc->vge_cdata.vge_tail = m;
|
|
} else {
|
|
m->m_flags &= ~M_PKTHDR;
|
|
sc->vge_cdata.vge_tail->m_next = m;
|
|
sc->vge_cdata.vge_tail = m;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Bad/error frames will have the RXOK bit cleared.
|
|
* However, there's one error case we want to allow:
|
|
* if a VLAN tagged frame arrives and the chip can't
|
|
* match it against the CAM filter, it considers this
|
|
* a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
|
|
* We don't want to drop the frame though: our VLAN
|
|
* filtering is done in software.
|
|
* We also want to receive bad-checksummed frames and
|
|
* and frames with bad-length.
|
|
*/
|
|
if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
|
|
(rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
|
|
VGE_RDSTS_CSUMERR)) == 0) {
|
|
ifp->if_ierrors++;
|
|
/*
|
|
* If this is part of a multi-fragment packet,
|
|
* discard all the pieces.
|
|
*/
|
|
VGE_CHAIN_RESET(sc);
|
|
vge_discard_rxbuf(sc, prod);
|
|
continue;
|
|
}
|
|
|
|
if (vge_newbuf(sc, prod) != 0) {
|
|
ifp->if_iqdrops++;
|
|
VGE_CHAIN_RESET(sc);
|
|
vge_discard_rxbuf(sc, prod);
|
|
continue;
|
|
}
|
|
|
|
/* Chain received mbufs. */
|
|
if (sc->vge_cdata.vge_head != NULL) {
|
|
m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
|
|
/*
|
|
* Special case: if there's 4 bytes or less
|
|
* in this buffer, the mbuf can be discarded:
|
|
* the last 4 bytes is the CRC, which we don't
|
|
* care about anyway.
|
|
*/
|
|
if (m->m_len <= ETHER_CRC_LEN) {
|
|
sc->vge_cdata.vge_tail->m_len -=
|
|
(ETHER_CRC_LEN - m->m_len);
|
|
m_freem(m);
|
|
} else {
|
|
m->m_len -= ETHER_CRC_LEN;
|
|
m->m_flags &= ~M_PKTHDR;
|
|
sc->vge_cdata.vge_tail->m_next = m;
|
|
}
|
|
m = sc->vge_cdata.vge_head;
|
|
m->m_flags |= M_PKTHDR;
|
|
m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
|
|
} else {
|
|
m->m_flags |= M_PKTHDR;
|
|
m->m_pkthdr.len = m->m_len =
|
|
(total_len - ETHER_CRC_LEN);
|
|
}
|
|
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
vge_fixup_rx(m);
|
|
#endif
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
/* Do RX checksumming if enabled */
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
|
|
(rxctl & VGE_RDCTL_FRAG) == 0) {
|
|
/* Check IP header checksum */
|
|
if ((rxctl & VGE_RDCTL_IPPKT) != 0)
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
|
|
if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
|
|
/* Check TCP/UDP checksum */
|
|
if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
|
|
rxctl & VGE_RDCTL_PROTOCSUMOK) {
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
}
|
|
|
|
if ((rxstat & VGE_RDSTS_VTAG) != 0) {
|
|
/*
|
|
* The 32-bit rxctl register is stored in little-endian.
|
|
* However, the 16-bit vlan tag is stored in big-endian,
|
|
* so we have to byte swap it.
|
|
*/
|
|
m->m_pkthdr.ether_vtag =
|
|
bswap16(rxctl & VGE_RDCTL_VLANID);
|
|
m->m_flags |= M_VLANTAG;
|
|
}
|
|
|
|
VGE_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
VGE_LOCK(sc);
|
|
sc->vge_cdata.vge_head = NULL;
|
|
sc->vge_cdata.vge_tail = NULL;
|
|
}
|
|
|
|
if (prog > 0) {
|
|
sc->vge_cdata.vge_rx_prodidx = prod;
|
|
bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
|
|
sc->vge_cdata.vge_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
/* Update residue counter. */
|
|
if (sc->vge_cdata.vge_rx_commit != 0) {
|
|
CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
|
|
sc->vge_cdata.vge_rx_commit);
|
|
sc->vge_cdata.vge_rx_commit = 0;
|
|
}
|
|
}
|
|
return (prog);
|
|
}
|
|
|
|
static void
|
|
vge_txeof(struct vge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct vge_tx_desc *cur_tx;
|
|
struct vge_txdesc *txd;
|
|
uint32_t txstat;
|
|
int cons, prod;
|
|
|
|
VGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->vge_ifp;
|
|
|
|
if (sc->vge_cdata.vge_tx_cnt == 0)
|
|
return;
|
|
|
|
bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
|
|
sc->vge_cdata.vge_tx_ring_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
/*
|
|
* Go through our tx list and free mbufs for those
|
|
* frames that have been transmitted.
|
|
*/
|
|
cons = sc->vge_cdata.vge_tx_considx;
|
|
prod = sc->vge_cdata.vge_tx_prodidx;
|
|
for (; cons != prod; VGE_TX_DESC_INC(cons)) {
|
|
cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
|
|
txstat = le32toh(cur_tx->vge_sts);
|
|
if ((txstat & VGE_TDSTS_OWN) != 0)
|
|
break;
|
|
sc->vge_cdata.vge_tx_cnt--;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
txd = &sc->vge_cdata.vge_txdesc[cons];
|
|
bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
|
|
|
|
KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
|
|
__func__));
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
txd->tx_desc->vge_frag[0].vge_addrhi = 0;
|
|
}
|
|
bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
|
|
sc->vge_cdata.vge_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
sc->vge_cdata.vge_tx_considx = cons;
|
|
if (sc->vge_cdata.vge_tx_cnt == 0)
|
|
sc->vge_timer = 0;
|
|
else {
|
|
/*
|
|
* If not all descriptors have been released reaped yet,
|
|
* reload the timer so that we will eventually get another
|
|
* interrupt that will cause us to re-enter this routine.
|
|
* This is done in case the transmitter has gone idle.
|
|
*/
|
|
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vge_link_statchg(void *xsc)
|
|
{
|
|
struct vge_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct mii_data *mii;
|
|
|
|
sc = xsc;
|
|
ifp = sc->vge_ifp;
|
|
VGE_LOCK_ASSERT(sc);
|
|
mii = device_get_softc(sc->vge_miibus);
|
|
|
|
mii_pollstat(mii);
|
|
if ((sc->vge_flags & VGE_FLAG_LINK) != 0) {
|
|
if (!(mii->mii_media_status & IFM_ACTIVE)) {
|
|
sc->vge_flags &= ~VGE_FLAG_LINK;
|
|
if_link_state_change(sc->vge_ifp,
|
|
LINK_STATE_DOWN);
|
|
}
|
|
} else {
|
|
if (mii->mii_media_status & IFM_ACTIVE &&
|
|
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
|
|
sc->vge_flags |= VGE_FLAG_LINK;
|
|
if_link_state_change(sc->vge_ifp,
|
|
LINK_STATE_UP);
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
vge_start_locked(ifp);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static int
|
|
vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct vge_softc *sc = ifp->if_softc;
|
|
int rx_npkts = 0;
|
|
|
|
VGE_LOCK(sc);
|
|
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
goto done;
|
|
|
|
rx_npkts = vge_rxeof(sc, count);
|
|
vge_txeof(sc);
|
|
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
vge_start_locked(ifp);
|
|
|
|
if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
|
|
uint32_t status;
|
|
status = CSR_READ_4(sc, VGE_ISR);
|
|
if (status == 0xFFFFFFFF)
|
|
goto done;
|
|
if (status)
|
|
CSR_WRITE_4(sc, VGE_ISR, status);
|
|
|
|
/*
|
|
* XXX check behaviour on receiver stalls.
|
|
*/
|
|
|
|
if (status & VGE_ISR_TXDMA_STALL ||
|
|
status & VGE_ISR_RXDMA_STALL) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
vge_init_locked(sc);
|
|
}
|
|
|
|
if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
|
|
vge_rxeof(sc, count);
|
|
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
|
|
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
|
|
}
|
|
}
|
|
done:
|
|
VGE_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
static void
|
|
vge_intr(void *arg)
|
|
{
|
|
struct vge_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint32_t status;
|
|
|
|
sc = arg;
|
|
VGE_LOCK(sc);
|
|
|
|
ifp = sc->vge_ifp;
|
|
if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
|
|
(ifp->if_flags & IFF_UP) == 0) {
|
|
VGE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING) {
|
|
VGE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/* Disable interrupts */
|
|
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
|
|
|
|
for (;;) {
|
|
|
|
status = CSR_READ_4(sc, VGE_ISR);
|
|
/* If the card has gone away the read returns 0xffff. */
|
|
if (status == 0xFFFFFFFF)
|
|
break;
|
|
|
|
if (status)
|
|
CSR_WRITE_4(sc, VGE_ISR, status);
|
|
|
|
if ((status & VGE_INTRS) == 0)
|
|
break;
|
|
|
|
if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
|
|
vge_rxeof(sc, VGE_RX_DESC_CNT);
|
|
|
|
if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
|
|
vge_rxeof(sc, VGE_RX_DESC_CNT);
|
|
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
|
|
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
|
|
}
|
|
|
|
if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
|
|
vge_txeof(sc);
|
|
|
|
if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
vge_init_locked(sc);
|
|
}
|
|
|
|
if (status & VGE_ISR_LINKSTS)
|
|
vge_link_statchg(sc);
|
|
}
|
|
|
|
/* Re-enable interrupts */
|
|
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
|
|
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
vge_start_locked(ifp);
|
|
|
|
VGE_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
vge_encap(struct vge_softc *sc, struct mbuf **m_head)
|
|
{
|
|
struct vge_txdesc *txd;
|
|
struct vge_tx_frag *frag;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
|
|
int error, i, nsegs, padlen;
|
|
uint32_t cflags;
|
|
|
|
VGE_LOCK_ASSERT(sc);
|
|
|
|
M_ASSERTPKTHDR((*m_head));
|
|
|
|
/* Argh. This chip does not autopad short frames. */
|
|
if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
|
|
m = *m_head;
|
|
padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
|
|
if (M_WRITABLE(m) == 0) {
|
|
/* Get a writable copy. */
|
|
m = m_dup(*m_head, M_DONTWAIT);
|
|
m_freem(*m_head);
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
}
|
|
if (M_TRAILINGSPACE(m) < padlen) {
|
|
m = m_defrag(m, M_DONTWAIT);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
/*
|
|
* Manually pad short frames, and zero the pad space
|
|
* to avoid leaking data.
|
|
*/
|
|
bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
|
|
m->m_pkthdr.len += padlen;
|
|
m->m_len = m->m_pkthdr.len;
|
|
*m_head = m;
|
|
}
|
|
|
|
txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
|
|
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
|
|
if (error == EFBIG) {
|
|
m = m_collapse(*m_head, M_DONTWAIT, VGE_MAXTXSEGS);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOMEM);
|
|
}
|
|
*m_head = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
|
|
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
|
|
if (error != 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
m = *m_head;
|
|
cflags = 0;
|
|
|
|
/* Configure checksum offload. */
|
|
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
|
|
cflags |= VGE_TDCTL_IPCSUM;
|
|
if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
|
|
cflags |= VGE_TDCTL_TCPCSUM;
|
|
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
|
|
cflags |= VGE_TDCTL_UDPCSUM;
|
|
|
|
/* Configure VLAN. */
|
|
if ((m->m_flags & M_VLANTAG) != 0)
|
|
cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
|
|
txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
|
|
/*
|
|
* XXX
|
|
* Velocity family seems to support TSO but no information
|
|
* for MSS configuration is available. Also the number of
|
|
* fragments supported by a descriptor is too small to hold
|
|
* entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
|
|
* VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
|
|
* longer chain of buffers but no additional information is
|
|
* available.
|
|
*
|
|
* When telling the chip how many segments there are, we
|
|
* must use nsegs + 1 instead of just nsegs. Darned if I
|
|
* know why. This also means we can't use the last fragment
|
|
* field of Tx descriptor.
|
|
*/
|
|
txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
|
|
VGE_TD_LS_NORM);
|
|
for (i = 0; i < nsegs; i++) {
|
|
frag = &txd->tx_desc->vge_frag[i];
|
|
frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
|
|
frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
|
|
(VGE_BUFLEN(txsegs[i].ds_len) << 16));
|
|
}
|
|
|
|
sc->vge_cdata.vge_tx_cnt++;
|
|
VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
|
|
|
|
/*
|
|
* Finally request interrupt and give the first descriptor
|
|
* ownership to hardware.
|
|
*/
|
|
txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
|
|
txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
|
|
txd->tx_m = m;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine.
|
|
*/
|
|
|
|
static void
|
|
vge_start(struct ifnet *ifp)
|
|
{
|
|
struct vge_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
VGE_LOCK(sc);
|
|
vge_start_locked(ifp);
|
|
VGE_UNLOCK(sc);
|
|
}
|
|
|
|
|
|
static void
|
|
vge_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct vge_softc *sc;
|
|
struct vge_txdesc *txd;
|
|
struct mbuf *m_head;
|
|
int enq, idx;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
VGE_LOCK_ASSERT(sc);
|
|
|
|
if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
|
|
(ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING)
|
|
return;
|
|
|
|
idx = sc->vge_cdata.vge_tx_prodidx;
|
|
VGE_TX_DESC_DEC(idx);
|
|
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
|
|
sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if (vge_encap(sc, &m_head)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
txd = &sc->vge_cdata.vge_txdesc[idx];
|
|
txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
|
|
VGE_TX_DESC_INC(idx);
|
|
|
|
enq++;
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
ETHER_BPF_MTAP(ifp, m_head);
|
|
}
|
|
|
|
if (enq > 0) {
|
|
bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
|
|
sc->vge_cdata.vge_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
/* Issue a transmit command. */
|
|
CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
|
|
/*
|
|
* Use the countdown timer for interrupt moderation.
|
|
* 'TX done' interrupts are disabled. Instead, we reset the
|
|
* countdown timer, which will begin counting until it hits
|
|
* the value in the SSTIMER register, and then trigger an
|
|
* interrupt. Each time we set the TIMER0_ENABLE bit, the
|
|
* the timer count is reloaded. Only when the transmitter
|
|
* is idle will the timer hit 0 and an interrupt fire.
|
|
*/
|
|
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
sc->vge_timer = 5;
|
|
}
|
|
}
|
|
|
|
static void
|
|
vge_init(void *xsc)
|
|
{
|
|
struct vge_softc *sc = xsc;
|
|
|
|
VGE_LOCK(sc);
|
|
vge_init_locked(sc);
|
|
VGE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
vge_init_locked(struct vge_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->vge_ifp;
|
|
struct mii_data *mii;
|
|
int error, i;
|
|
|
|
VGE_LOCK_ASSERT(sc);
|
|
mii = device_get_softc(sc->vge_miibus);
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
return;
|
|
|
|
/*
|
|
* Cancel pending I/O and free all RX/TX buffers.
|
|
*/
|
|
vge_stop(sc);
|
|
vge_reset(sc);
|
|
|
|
/*
|
|
* Initialize the RX and TX descriptors and mbufs.
|
|
*/
|
|
|
|
error = vge_rx_list_init(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
|
|
return;
|
|
}
|
|
vge_tx_list_init(sc);
|
|
/* Clear MAC statistics. */
|
|
vge_stats_clear(sc);
|
|
/* Set our station address */
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
|
|
|
|
/*
|
|
* Set receive FIFO threshold. Also allow transmission and
|
|
* reception of VLAN tagged frames.
|
|
*/
|
|
CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
|
|
CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
|
|
|
|
/* Set DMA burst length */
|
|
CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
|
|
CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
|
|
|
|
CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
|
|
|
|
/* Set collision backoff algorithm */
|
|
CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
|
|
VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
|
|
CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
|
|
|
|
/* Disable LPSEL field in priority resolution */
|
|
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
|
|
|
|
/*
|
|
* Load the addresses of the DMA queues into the chip.
|
|
* Note that we only use one transmit queue.
|
|
*/
|
|
|
|
CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
|
|
VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
|
|
CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
|
|
VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
|
|
CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
|
|
|
|
CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
|
|
VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
|
|
CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
|
|
CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
|
|
|
|
/* Enable and wake up the RX descriptor queue */
|
|
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
|
|
CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
|
|
|
|
/* Enable the TX descriptor queue */
|
|
CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
|
|
|
|
/* Init the cam filter. */
|
|
vge_cam_clear(sc);
|
|
|
|
/* Set up receiver filter. */
|
|
vge_rxfilter(sc);
|
|
vge_setvlan(sc);
|
|
|
|
/* Enable flow control */
|
|
|
|
CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
|
|
|
|
/* Enable jumbo frame reception (if desired) */
|
|
|
|
/* Start the MAC. */
|
|
CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
|
|
CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
|
|
CSR_WRITE_1(sc, VGE_CRS0,
|
|
VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
|
|
|
|
/*
|
|
* Configure one-shot timer for microsecond
|
|
* resolution and load it for 500 usecs.
|
|
*/
|
|
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
|
|
CSR_WRITE_2(sc, VGE_SSTIMER, 400);
|
|
|
|
/*
|
|
* Configure interrupt moderation for receive. Enable
|
|
* the holdoff counter and load it, and set the RX
|
|
* suppression count to the number of descriptors we
|
|
* want to allow before triggering an interrupt.
|
|
* The holdoff timer is in units of 20 usecs.
|
|
*/
|
|
|
|
#ifdef notyet
|
|
CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
|
|
/* Select the interrupt holdoff timer page. */
|
|
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
|
|
CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
|
|
|
|
/* Enable use of the holdoff timer. */
|
|
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
|
|
CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
|
|
|
|
/* Select the RX suppression threshold page. */
|
|
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
|
|
CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
|
|
|
|
/* Restore the page select bits. */
|
|
CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
|
|
CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
|
|
#endif
|
|
|
|
#ifdef DEVICE_POLLING
|
|
/*
|
|
* Disable interrupts if we are polling.
|
|
*/
|
|
if (ifp->if_capenable & IFCAP_POLLING) {
|
|
CSR_WRITE_4(sc, VGE_IMR, 0);
|
|
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
|
|
} else /* otherwise ... */
|
|
#endif
|
|
{
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
|
|
CSR_WRITE_4(sc, VGE_ISR, 0);
|
|
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
|
|
}
|
|
|
|
sc->vge_flags &= ~VGE_FLAG_LINK;
|
|
mii_mediachg(mii);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int
|
|
vge_ifmedia_upd(struct ifnet *ifp)
|
|
{
|
|
struct vge_softc *sc;
|
|
struct mii_data *mii;
|
|
int error;
|
|
|
|
sc = ifp->if_softc;
|
|
VGE_LOCK(sc);
|
|
mii = device_get_softc(sc->vge_miibus);
|
|
error = mii_mediachg(mii);
|
|
VGE_UNLOCK(sc);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void
|
|
vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct vge_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = ifp->if_softc;
|
|
mii = device_get_softc(sc->vge_miibus);
|
|
|
|
VGE_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) == 0) {
|
|
VGE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
mii_pollstat(mii);
|
|
VGE_UNLOCK(sc);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
}
|
|
|
|
static void
|
|
vge_miibus_statchg(device_t dev)
|
|
{
|
|
struct vge_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifmedia_entry *ife;
|
|
|
|
sc = device_get_softc(dev);
|
|
mii = device_get_softc(sc->vge_miibus);
|
|
ife = mii->mii_media.ifm_cur;
|
|
|
|
/*
|
|
* If the user manually selects a media mode, we need to turn
|
|
* on the forced MAC mode bit in the DIAGCTL register. If the
|
|
* user happens to choose a full duplex mode, we also need to
|
|
* set the 'force full duplex' bit. This applies only to
|
|
* 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
|
|
* mode is disabled, and in 1000baseT mode, full duplex is
|
|
* always implied, so we turn on the forced mode bit but leave
|
|
* the FDX bit cleared.
|
|
*/
|
|
|
|
switch (IFM_SUBTYPE(ife->ifm_media)) {
|
|
case IFM_AUTO:
|
|
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
|
|
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
|
|
break;
|
|
case IFM_1000_T:
|
|
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
|
|
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
|
|
break;
|
|
case IFM_100_TX:
|
|
case IFM_10_T:
|
|
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
|
|
if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
|
|
CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
|
|
} else {
|
|
CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
|
|
}
|
|
break;
|
|
default:
|
|
device_printf(dev, "unknown media type: %x\n",
|
|
IFM_SUBTYPE(ife->ifm_media));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int
|
|
vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct vge_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
struct mii_data *mii;
|
|
int error = 0, mask;
|
|
|
|
switch (command) {
|
|
case SIOCSIFMTU:
|
|
if (ifr->ifr_mtu > VGE_JUMBO_MTU)
|
|
error = EINVAL;
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
VGE_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) != 0) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
|
|
((ifp->if_flags ^ sc->vge_if_flags) &
|
|
(IFF_PROMISC | IFF_ALLMULTI)) != 0)
|
|
vge_rxfilter(sc);
|
|
else
|
|
vge_init_locked(sc);
|
|
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
vge_stop(sc);
|
|
sc->vge_if_flags = ifp->if_flags;
|
|
VGE_UNLOCK(sc);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
VGE_LOCK(sc);
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
vge_rxfilter(sc);
|
|
VGE_UNLOCK(sc);
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
mii = device_get_softc(sc->vge_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
#ifdef DEVICE_POLLING
|
|
if (mask & IFCAP_POLLING) {
|
|
if (ifr->ifr_reqcap & IFCAP_POLLING) {
|
|
error = ether_poll_register(vge_poll, ifp);
|
|
if (error)
|
|
return (error);
|
|
VGE_LOCK(sc);
|
|
/* Disable interrupts */
|
|
CSR_WRITE_4(sc, VGE_IMR, 0);
|
|
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
|
|
ifp->if_capenable |= IFCAP_POLLING;
|
|
VGE_UNLOCK(sc);
|
|
} else {
|
|
error = ether_poll_deregister(ifp);
|
|
/* Enable interrupts. */
|
|
VGE_LOCK(sc);
|
|
CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
|
|
CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
|
|
CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
|
|
ifp->if_capenable &= ~IFCAP_POLLING;
|
|
VGE_UNLOCK(sc);
|
|
}
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
VGE_LOCK(sc);
|
|
if ((mask & IFCAP_TXCSUM) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
|
|
ifp->if_capenable ^= IFCAP_TXCSUM;
|
|
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
|
|
ifp->if_hwassist |= VGE_CSUM_FEATURES;
|
|
else
|
|
ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
|
|
}
|
|
if ((mask & IFCAP_RXCSUM) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_RXCSUM) != 0)
|
|
ifp->if_capenable ^= IFCAP_RXCSUM;
|
|
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
|
|
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
|
|
(IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
|
|
vge_setvlan(sc);
|
|
}
|
|
VGE_UNLOCK(sc);
|
|
VLAN_CAPABILITIES(ifp);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
vge_watchdog(void *arg)
|
|
{
|
|
struct vge_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = arg;
|
|
VGE_LOCK_ASSERT(sc);
|
|
vge_stats_update(sc);
|
|
callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
|
|
if (sc->vge_timer == 0 || --sc->vge_timer > 0)
|
|
return;
|
|
|
|
ifp = sc->vge_ifp;
|
|
if_printf(ifp, "watchdog timeout\n");
|
|
ifp->if_oerrors++;
|
|
|
|
vge_txeof(sc);
|
|
vge_rxeof(sc, VGE_RX_DESC_CNT);
|
|
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
vge_init_locked(sc);
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
static void
|
|
vge_stop(struct vge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
VGE_LOCK_ASSERT(sc);
|
|
ifp = sc->vge_ifp;
|
|
sc->vge_timer = 0;
|
|
callout_stop(&sc->vge_watchdog);
|
|
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
|
|
CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
|
|
CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
|
|
CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
|
|
CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
|
|
CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
|
|
CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
|
|
|
|
vge_stats_update(sc);
|
|
VGE_CHAIN_RESET(sc);
|
|
vge_txeof(sc);
|
|
vge_freebufs(sc);
|
|
}
|
|
|
|
/*
|
|
* Device suspend routine. Stop the interface and save some PCI
|
|
* settings in case the BIOS doesn't restore them properly on
|
|
* resume.
|
|
*/
|
|
static int
|
|
vge_suspend(device_t dev)
|
|
{
|
|
struct vge_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
VGE_LOCK(sc);
|
|
vge_stop(sc);
|
|
|
|
sc->vge_flags |= VGE_FLAG_SUSPENDED;
|
|
VGE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Device resume routine. Restore some PCI settings in case the BIOS
|
|
* doesn't, re-enable busmastering, and restart the interface if
|
|
* appropriate.
|
|
*/
|
|
static int
|
|
vge_resume(device_t dev)
|
|
{
|
|
struct vge_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
ifp = sc->vge_ifp;
|
|
|
|
/* reenable busmastering */
|
|
pci_enable_busmaster(dev);
|
|
pci_enable_io(dev, SYS_RES_MEMORY);
|
|
|
|
/* reinitialize interface if necessary */
|
|
VGE_LOCK(sc);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
vge_init_locked(sc);
|
|
}
|
|
sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
|
|
VGE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
* get confused by errant DMAs when rebooting.
|
|
*/
|
|
static int
|
|
vge_shutdown(device_t dev)
|
|
{
|
|
struct vge_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
VGE_LOCK(sc);
|
|
vge_stop(sc);
|
|
VGE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
#define VGE_SYSCTL_STAT_ADD32(c, h, n, p, d) \
|
|
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
|
|
|
|
static void
|
|
vge_sysctl_node(struct vge_softc *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx;
|
|
struct sysctl_oid_list *child, *parent;
|
|
struct sysctl_oid *tree;
|
|
struct vge_hw_stats *stats;
|
|
|
|
stats = &sc->vge_stats;
|
|
ctx = device_get_sysctl_ctx(sc->vge_dev);
|
|
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
|
|
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
|
|
NULL, "VGE statistics");
|
|
parent = SYSCTL_CHILDREN(tree);
|
|
|
|
/* Rx statistics. */
|
|
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
|
|
NULL, "RX MAC statistics");
|
|
child = SYSCTL_CHILDREN(tree);
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
|
|
&stats->rx_frames, "frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
|
|
&stats->rx_good_frames, "Good frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
|
|
&stats->rx_fifo_oflows, "FIFO overflows");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
|
|
&stats->rx_runts, "Too short frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
|
|
&stats->rx_runts_errs, "Too short frames with errors");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
|
|
&stats->rx_pkts_64, "64 bytes frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
|
|
&stats->rx_pkts_65_127, "65 to 127 bytes frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
|
|
&stats->rx_pkts_128_255, "128 to 255 bytes frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
|
|
&stats->rx_pkts_256_511, "256 to 511 bytes frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
|
|
&stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
|
|
&stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
|
|
&stats->rx_pkts_1519_max, "1519 to max frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
|
|
&stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
|
|
&stats->rx_jumbos, "Jumbo frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
|
|
&stats->rx_crcerrs, "CRC errors");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
|
|
&stats->rx_pause_frames, "CRC errors");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
|
|
&stats->rx_alignerrs, "Alignment errors");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
|
|
&stats->rx_nobufs, "Frames with no buffer event");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
|
|
&stats->rx_symerrs, "Frames with symbol errors");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
|
|
&stats->rx_lenerrs, "Frames with length mismatched");
|
|
|
|
/* Tx statistics. */
|
|
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
|
|
NULL, "TX MAC statistics");
|
|
child = SYSCTL_CHILDREN(tree);
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
|
|
&stats->tx_good_frames, "Good frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
|
|
&stats->tx_pkts_64, "64 bytes frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
|
|
&stats->tx_pkts_65_127, "65 to 127 bytes frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
|
|
&stats->tx_pkts_128_255, "128 to 255 bytes frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
|
|
&stats->tx_pkts_256_511, "256 to 511 bytes frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
|
|
&stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
|
|
&stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
|
|
&stats->tx_jumbos, "Jumbo frames");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
|
|
&stats->tx_colls, "Collisions");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
|
|
&stats->tx_latecolls, "Late collisions");
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
|
|
&stats->tx_pause, "Pause frames");
|
|
#ifdef VGE_ENABLE_SQEERR
|
|
VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
|
|
&stats->tx_sqeerrs, "SQE errors");
|
|
#endif
|
|
/* Clear MAC statistics. */
|
|
vge_stats_clear(sc);
|
|
}
|
|
|
|
#undef VGE_SYSCTL_STAT_ADD32
|
|
|
|
static void
|
|
vge_stats_clear(struct vge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
VGE_LOCK_ASSERT(sc);
|
|
|
|
CSR_WRITE_1(sc, VGE_MIBCSR,
|
|
CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
|
|
CSR_WRITE_1(sc, VGE_MIBCSR,
|
|
CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
|
|
for (i = VGE_TIMEOUT; i > 0; i--) {
|
|
DELAY(1);
|
|
if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
|
|
break;
|
|
}
|
|
if (i == 0)
|
|
device_printf(sc->vge_dev, "MIB clear timed out!\n");
|
|
CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
|
|
~VGE_MIBCSR_FREEZE);
|
|
}
|
|
|
|
static void
|
|
vge_stats_update(struct vge_softc *sc)
|
|
{
|
|
struct vge_hw_stats *stats;
|
|
struct ifnet *ifp;
|
|
uint32_t mib[VGE_MIB_CNT], val;
|
|
int i;
|
|
|
|
VGE_LOCK_ASSERT(sc);
|
|
|
|
stats = &sc->vge_stats;
|
|
ifp = sc->vge_ifp;
|
|
|
|
CSR_WRITE_1(sc, VGE_MIBCSR,
|
|
CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
|
|
for (i = VGE_TIMEOUT; i > 0; i--) {
|
|
DELAY(1);
|
|
if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
|
|
break;
|
|
}
|
|
if (i == 0) {
|
|
device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
|
|
vge_stats_clear(sc);
|
|
return;
|
|
}
|
|
|
|
bzero(mib, sizeof(mib));
|
|
reset_idx:
|
|
/* Set MIB read index to 0. */
|
|
CSR_WRITE_1(sc, VGE_MIBCSR,
|
|
CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
|
|
for (i = 0; i < VGE_MIB_CNT; i++) {
|
|
val = CSR_READ_4(sc, VGE_MIBDATA);
|
|
if (i != VGE_MIB_DATA_IDX(val)) {
|
|
/* Reading interrupted. */
|
|
goto reset_idx;
|
|
}
|
|
mib[i] = val & VGE_MIB_DATA_MASK;
|
|
}
|
|
|
|
/* Rx stats. */
|
|
stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
|
|
stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
|
|
stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
|
|
stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
|
|
stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
|
|
stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
|
|
stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
|
|
stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
|
|
stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
|
|
stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
|
|
stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
|
|
stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
|
|
stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
|
|
stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
|
|
stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
|
|
stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
|
|
stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
|
|
stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
|
|
stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
|
|
stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
|
|
|
|
/* Tx stats. */
|
|
stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
|
|
stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
|
|
stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
|
|
stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
|
|
stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
|
|
stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
|
|
stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
|
|
stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
|
|
stats->tx_colls += mib[VGE_MIB_TX_COLLS];
|
|
stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
|
|
#ifdef VGE_ENABLE_SQEERR
|
|
stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
|
|
#endif
|
|
stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
|
|
|
|
/* Update counters in ifnet. */
|
|
ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES];
|
|
|
|
ifp->if_collisions += mib[VGE_MIB_TX_COLLS] +
|
|
mib[VGE_MIB_TX_LATECOLLS];
|
|
|
|
ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] +
|
|
mib[VGE_MIB_TX_LATECOLLS];
|
|
|
|
ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES];
|
|
|
|
ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] +
|
|
mib[VGE_MIB_RX_RUNTS] +
|
|
mib[VGE_MIB_RX_RUNTS_ERRS] +
|
|
mib[VGE_MIB_RX_CRCERRS] +
|
|
mib[VGE_MIB_RX_ALIGNERRS] +
|
|
mib[VGE_MIB_RX_NOBUFS] +
|
|
mib[VGE_MIB_RX_SYMERRS] +
|
|
mib[VGE_MIB_RX_LENERRS];
|
|
}
|