351 lines
9.7 KiB
C
351 lines
9.7 KiB
C
/*-
|
|
* Copyright (c) 2000-2004 Mark R V Murray
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer
|
|
* in this position and unchanged.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/random.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <crypto/rijndael/rijndael-api-fst.h>
|
|
#include <crypto/sha2/sha2.h>
|
|
|
|
#include <dev/random/hash.h>
|
|
#include <dev/random/randomdev_soft.h>
|
|
#include <dev/random/yarrow.h>
|
|
|
|
RANDOM_CHECK_UINT(gengateinterval, 4, 64);
|
|
RANDOM_CHECK_UINT(bins, 2, 16);
|
|
RANDOM_CHECK_UINT(fastthresh, BLOCKSIZE/4, BLOCKSIZE);
|
|
RANDOM_CHECK_UINT(slowthresh, BLOCKSIZE/4, BLOCKSIZE);
|
|
RANDOM_CHECK_UINT(slowoverthresh, 1, 5);
|
|
|
|
/* Structure holding the entropy state */
|
|
static struct random_state random_state;
|
|
|
|
static void generator_gate(void);
|
|
static void reseed(u_int);
|
|
|
|
/* The reseed thread mutex */
|
|
struct mtx random_reseed_mtx;
|
|
|
|
/* Process a single stochastic event off the harvest queue */
|
|
void
|
|
random_process_event(struct harvest *event)
|
|
{
|
|
u_int pl, overthreshhold[2];
|
|
struct source *source;
|
|
enum esource src;
|
|
|
|
/* Unpack the event into the appropriate source accumulator */
|
|
pl = random_state.which;
|
|
source = &random_state.pool[pl].source[event->source];
|
|
yarrow_hash_iterate(&random_state.pool[pl].hash, event->entropy,
|
|
sizeof(event->entropy));
|
|
yarrow_hash_iterate(&random_state.pool[pl].hash, &event->somecounter,
|
|
sizeof(event->somecounter));
|
|
source->frac += event->frac;
|
|
source->bits += event->bits + source->frac/1024;
|
|
source->frac %= 1024;
|
|
|
|
/* Count the over-threshold sources in each pool */
|
|
for (pl = 0; pl < 2; pl++) {
|
|
overthreshhold[pl] = 0;
|
|
for (src = RANDOM_START; src < ENTROPYSOURCE; src++) {
|
|
if (random_state.pool[pl].source[src].bits
|
|
> random_state.pool[pl].thresh)
|
|
overthreshhold[pl]++;
|
|
}
|
|
}
|
|
|
|
/* if any fast source over threshhold, reseed */
|
|
if (overthreshhold[FAST])
|
|
reseed(FAST);
|
|
|
|
/* if enough slow sources are over threshhold, reseed */
|
|
if (overthreshhold[SLOW] >= random_state.slowoverthresh)
|
|
reseed(SLOW);
|
|
|
|
/* Invert the fast/slow pool selector bit */
|
|
random_state.which = !random_state.which;
|
|
}
|
|
|
|
void
|
|
random_yarrow_init_alg(struct sysctl_ctx_list *clist, struct sysctl_oid *in_o)
|
|
{
|
|
int i;
|
|
struct sysctl_oid *random_yarrow_o;
|
|
|
|
/* Yarrow parameters. Do not adjust these unless you have
|
|
* have a very good clue about what they do!
|
|
*/
|
|
random_yarrow_o = SYSCTL_ADD_NODE(clist,
|
|
SYSCTL_CHILDREN(in_o),
|
|
OID_AUTO, "yarrow", CTLFLAG_RW, 0,
|
|
"Yarrow Parameters");
|
|
|
|
SYSCTL_ADD_PROC(clist,
|
|
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
|
|
"gengateinterval", CTLTYPE_INT|CTLFLAG_RW,
|
|
&random_state.gengateinterval, 10,
|
|
random_check_uint_gengateinterval, "I",
|
|
"Generation gate interval");
|
|
|
|
SYSCTL_ADD_PROC(clist,
|
|
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
|
|
"bins", CTLTYPE_INT|CTLFLAG_RW,
|
|
&random_state.bins, 10,
|
|
random_check_uint_bins, "I",
|
|
"Execution time tuner");
|
|
|
|
SYSCTL_ADD_PROC(clist,
|
|
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
|
|
"fastthresh", CTLTYPE_INT|CTLFLAG_RW,
|
|
&random_state.pool[0].thresh, (3*BLOCKSIZE)/4,
|
|
random_check_uint_fastthresh, "I",
|
|
"Fast reseed threshold");
|
|
|
|
SYSCTL_ADD_PROC(clist,
|
|
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
|
|
"slowthresh", CTLTYPE_INT|CTLFLAG_RW,
|
|
&random_state.pool[1].thresh, BLOCKSIZE,
|
|
random_check_uint_slowthresh, "I",
|
|
"Slow reseed threshold");
|
|
|
|
SYSCTL_ADD_PROC(clist,
|
|
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
|
|
"slowoverthresh", CTLTYPE_INT|CTLFLAG_RW,
|
|
&random_state.slowoverthresh, 2,
|
|
random_check_uint_slowoverthresh, "I",
|
|
"Slow over-threshold reseed");
|
|
|
|
random_state.gengateinterval = 10;
|
|
random_state.bins = 10;
|
|
random_state.pool[0].thresh = (3*BLOCKSIZE)/4;
|
|
random_state.pool[1].thresh = BLOCKSIZE;
|
|
random_state.slowoverthresh = 2;
|
|
random_state.which = FAST;
|
|
|
|
/* Initialise the fast and slow entropy pools */
|
|
for (i = 0; i < 2; i++)
|
|
yarrow_hash_init(&random_state.pool[i].hash);
|
|
|
|
/* Clear the counter */
|
|
for (i = 0; i < 4; i++)
|
|
random_state.counter[i] = 0;
|
|
|
|
/* Set up a lock for the reseed process */
|
|
mtx_init(&random_reseed_mtx, "random reseed", NULL, MTX_DEF);
|
|
}
|
|
|
|
void
|
|
random_yarrow_deinit_alg(void)
|
|
{
|
|
mtx_destroy(&random_reseed_mtx);
|
|
}
|
|
|
|
static void
|
|
reseed(u_int fastslow)
|
|
{
|
|
/* Interrupt-context stack is a limited resource; make large
|
|
* structures static.
|
|
*/
|
|
static u_char v[TIMEBIN][KEYSIZE]; /* v[i] */
|
|
static struct yarrowhash context;
|
|
u_char hash[KEYSIZE]; /* h' */
|
|
u_char temp[KEYSIZE];
|
|
u_int i;
|
|
enum esource j;
|
|
|
|
/* The reseed task must not be jumped on */
|
|
mtx_lock(&random_reseed_mtx);
|
|
|
|
/* 1. Hash the accumulated entropy into v[0] */
|
|
|
|
yarrow_hash_init(&context);
|
|
/* Feed the slow pool hash in if slow */
|
|
if (fastslow == SLOW)
|
|
yarrow_hash_iterate(&context,
|
|
&random_state.pool[SLOW].hash,
|
|
sizeof(struct yarrowhash));
|
|
yarrow_hash_iterate(&context,
|
|
&random_state.pool[FAST].hash, sizeof(struct yarrowhash));
|
|
yarrow_hash_finish(&context, v[0]);
|
|
|
|
/* 2. Compute hash values for all v. _Supposed_ to be computationally
|
|
* intensive.
|
|
*/
|
|
|
|
if (random_state.bins > TIMEBIN)
|
|
random_state.bins = TIMEBIN;
|
|
for (i = 1; i < random_state.bins; i++) {
|
|
yarrow_hash_init(&context);
|
|
/* v[i] #= h(v[i - 1]) */
|
|
yarrow_hash_iterate(&context, v[i - 1], KEYSIZE);
|
|
/* v[i] #= h(v[0]) */
|
|
yarrow_hash_iterate(&context, v[0], KEYSIZE);
|
|
/* v[i] #= h(i) */
|
|
yarrow_hash_iterate(&context, &i, sizeof(u_int));
|
|
/* Return the hashval */
|
|
yarrow_hash_finish(&context, v[i]);
|
|
}
|
|
|
|
/* 3. Compute a new key; h' is the identity function here;
|
|
* it is not being ignored!
|
|
*/
|
|
|
|
yarrow_hash_init(&context);
|
|
yarrow_hash_iterate(&context, &random_state.key, KEYSIZE);
|
|
for (i = 1; i < random_state.bins; i++)
|
|
yarrow_hash_iterate(&context, &v[i], KEYSIZE);
|
|
yarrow_hash_finish(&context, temp);
|
|
yarrow_encrypt_init(&random_state.key, temp);
|
|
|
|
/* 4. Recompute the counter */
|
|
|
|
for (i = 0; i < 4; i++)
|
|
random_state.counter[i] = 0;
|
|
yarrow_encrypt(&random_state.key, random_state.counter, temp);
|
|
memcpy(random_state.counter, temp, sizeof(random_state.counter));
|
|
|
|
/* 5. Reset entropy estimate accumulators to zero */
|
|
|
|
for (i = 0; i <= fastslow; i++) {
|
|
for (j = RANDOM_START; j < ENTROPYSOURCE; j++) {
|
|
random_state.pool[i].source[j].bits = 0;
|
|
random_state.pool[i].source[j].frac = 0;
|
|
}
|
|
}
|
|
|
|
/* 6. Wipe memory of intermediate values */
|
|
|
|
memset((void *)v, 0, sizeof(v));
|
|
memset((void *)temp, 0, sizeof(temp));
|
|
memset((void *)hash, 0, sizeof(hash));
|
|
|
|
/* 7. Dump to seed file */
|
|
/* XXX Not done here yet */
|
|
|
|
/* Unblock the device if it was blocked due to being unseeded */
|
|
random_yarrow_unblock();
|
|
|
|
/* Release the reseed mutex */
|
|
mtx_unlock(&random_reseed_mtx);
|
|
}
|
|
|
|
/* Internal function to return processed entropy from the PRNG */
|
|
int
|
|
random_yarrow_read(void *buf, int count)
|
|
{
|
|
static int cur = 0;
|
|
static int gate = 1;
|
|
static u_char genval[KEYSIZE];
|
|
size_t tomove;
|
|
int i;
|
|
int retval;
|
|
|
|
/* The reseed task must not be jumped on */
|
|
mtx_lock(&random_reseed_mtx);
|
|
|
|
if (gate) {
|
|
generator_gate();
|
|
random_state.outputblocks = 0;
|
|
gate = 0;
|
|
}
|
|
if (count > 0 && (size_t)count >= sizeof(random_state.counter)) {
|
|
retval = 0;
|
|
for (i = 0; i < count; i += (int)sizeof(random_state.counter)) {
|
|
random_state.counter[0]++;
|
|
yarrow_encrypt(&random_state.key, random_state.counter,
|
|
genval);
|
|
tomove = min(count - i, sizeof(random_state.counter));
|
|
memcpy((char *)buf + i, genval, tomove);
|
|
if (++random_state.outputblocks >=
|
|
random_state.gengateinterval) {
|
|
generator_gate();
|
|
random_state.outputblocks = 0;
|
|
}
|
|
retval += (int)tomove;
|
|
cur = 0;
|
|
}
|
|
}
|
|
else {
|
|
if (!cur) {
|
|
random_state.counter[0]++;
|
|
yarrow_encrypt(&random_state.key, random_state.counter,
|
|
genval);
|
|
memcpy(buf, genval, (size_t)count);
|
|
cur = (int)sizeof(random_state.counter) - count;
|
|
if (++random_state.outputblocks >=
|
|
random_state.gengateinterval) {
|
|
generator_gate();
|
|
random_state.outputblocks = 0;
|
|
}
|
|
retval = count;
|
|
}
|
|
else {
|
|
retval = MIN(cur, count);
|
|
memcpy(buf,
|
|
&genval[(int)sizeof(random_state.counter) - cur],
|
|
(size_t)retval);
|
|
cur -= retval;
|
|
}
|
|
}
|
|
mtx_unlock(&random_reseed_mtx);
|
|
return retval;
|
|
}
|
|
|
|
static void
|
|
generator_gate(void)
|
|
{
|
|
u_int i;
|
|
u_char temp[KEYSIZE];
|
|
|
|
for (i = 0; i < KEYSIZE; i += sizeof(random_state.counter)) {
|
|
random_state.counter[0]++;
|
|
yarrow_encrypt(&random_state.key, random_state.counter,
|
|
&(temp[i]));
|
|
}
|
|
|
|
yarrow_encrypt_init(&random_state.key, temp);
|
|
memset((void *)temp, 0, KEYSIZE);
|
|
|
|
}
|
|
|
|
/* Helper routine to perform explicit reseeds */
|
|
void
|
|
random_yarrow_reseed(void)
|
|
{
|
|
reseed(SLOW);
|
|
}
|