f75ef9e44f
just em, there is an igb driver (this follows behavior with our Linux drivers). All adapters up to the 82575 are supported in em, and new client/desktop support will continue to be in that adapter. The igb driver is for new server NICs like the 82575 and its followons. Advanced features for virtualization and performance will be in this driver. Also, both drivers now have shared code that is up to the latest we have released. Some stylistic changes as well. Enjoy :)
420 lines
14 KiB
C
420 lines
14 KiB
C
/******************************************************************************
|
|
|
|
Copyright (c) 2001-2008, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
******************************************************************************/
|
|
/*$FreeBSD$*/
|
|
|
|
#ifndef _IGB_H_DEFINED_
|
|
#define _IGB_H_DEFINED_
|
|
|
|
/* Tunables */
|
|
|
|
/*
|
|
* IGB_TXD: Maximum number of Transmit Descriptors
|
|
*
|
|
* This value is the number of transmit descriptors allocated by the driver.
|
|
* Increasing this value allows the driver to queue more transmits. Each
|
|
* descriptor is 16 bytes.
|
|
* Since TDLEN should be multiple of 128bytes, the number of transmit
|
|
* desscriptors should meet the following condition.
|
|
* (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0
|
|
*/
|
|
#define IGB_MIN_TXD 80
|
|
#define IGB_DEFAULT_TXD 256
|
|
#define IGB_MAX_TXD 4096
|
|
|
|
/*
|
|
* IGB_RXD: Maximum number of Transmit Descriptors
|
|
*
|
|
* This value is the number of receive descriptors allocated by the driver.
|
|
* Increasing this value allows the driver to buffer more incoming packets.
|
|
* Each descriptor is 16 bytes. A receive buffer is also allocated for each
|
|
* descriptor. The maximum MTU size is 16110.
|
|
* Since TDLEN should be multiple of 128bytes, the number of transmit
|
|
* desscriptors should meet the following condition.
|
|
* (num_tx_desc * sizeof(struct e1000_tx_desc)) % 128 == 0
|
|
*/
|
|
#define IGB_MIN_RXD 80
|
|
#define IGB_DEFAULT_RXD 256
|
|
#define IGB_MAX_RXD 4096
|
|
|
|
/*
|
|
* IGB_TIDV - Transmit Interrupt Delay Value
|
|
* Valid Range: 0-65535 (0=off)
|
|
* Default Value: 64
|
|
* This value delays the generation of transmit interrupts in units of
|
|
* 1.024 microseconds. Transmit interrupt reduction can improve CPU
|
|
* efficiency if properly tuned for specific network traffic. If the
|
|
* system is reporting dropped transmits, this value may be set too high
|
|
* causing the driver to run out of available transmit descriptors.
|
|
*/
|
|
#define IGB_TIDV 64
|
|
|
|
/*
|
|
* IGB_TADV - Transmit Absolute Interrupt Delay Value
|
|
* Valid Range: 0-65535 (0=off)
|
|
* Default Value: 64
|
|
* This value, in units of 1.024 microseconds, limits the delay in which a
|
|
* transmit interrupt is generated. Useful only if IGB_TIDV is non-zero,
|
|
* this value ensures that an interrupt is generated after the initial
|
|
* packet is sent on the wire within the set amount of time. Proper tuning,
|
|
* along with IGB_TIDV, may improve traffic throughput in specific
|
|
* network conditions.
|
|
*/
|
|
#define IGB_TADV 64
|
|
|
|
/*
|
|
* IGB_RDTR - Receive Interrupt Delay Timer (Packet Timer)
|
|
* Valid Range: 0-65535 (0=off)
|
|
* Default Value: 0
|
|
* This value delays the generation of receive interrupts in units of 1.024
|
|
* microseconds. Receive interrupt reduction can improve CPU efficiency if
|
|
* properly tuned for specific network traffic. Increasing this value adds
|
|
* extra latency to frame reception and can end up decreasing the throughput
|
|
* of TCP traffic. If the system is reporting dropped receives, this value
|
|
* may be set too high, causing the driver to run out of available receive
|
|
* descriptors.
|
|
*
|
|
* CAUTION: When setting IGB_RDTR to a value other than 0, adapters
|
|
* may hang (stop transmitting) under certain network conditions.
|
|
* If this occurs a WATCHDOG message is logged in the system
|
|
* event log. In addition, the controller is automatically reset,
|
|
* restoring the network connection. To eliminate the potential
|
|
* for the hang ensure that IGB_RDTR is set to 0.
|
|
*/
|
|
#define IGB_RDTR 0
|
|
|
|
/*
|
|
* Receive Interrupt Absolute Delay Timer (Not valid for 82542/82543/82544)
|
|
* Valid Range: 0-65535 (0=off)
|
|
* Default Value: 64
|
|
* This value, in units of 1.024 microseconds, limits the delay in which a
|
|
* receive interrupt is generated. Useful only if IGB_RDTR is non-zero,
|
|
* this value ensures that an interrupt is generated after the initial
|
|
* packet is received within the set amount of time. Proper tuning,
|
|
* along with IGB_RDTR, may improve traffic throughput in specific network
|
|
* conditions.
|
|
*/
|
|
#define IGB_RADV 64
|
|
|
|
/*
|
|
* This parameter controls the duration of transmit watchdog timer.
|
|
*/
|
|
#define IGB_TX_TIMEOUT 5 /* set to 5 seconds */
|
|
|
|
/*
|
|
* This parameter controls when the driver calls the routine to reclaim
|
|
* transmit descriptors.
|
|
*/
|
|
#define IGB_TX_CLEANUP_THRESHOLD (adapter->num_tx_desc / 8)
|
|
#define IGB_TX_OP_THRESHOLD (adapter->num_tx_desc / 32)
|
|
|
|
/*
|
|
* This parameter controls whether or not autonegotation is enabled.
|
|
* 0 - Disable autonegotiation
|
|
* 1 - Enable autonegotiation
|
|
*/
|
|
#define DO_AUTO_NEG 1
|
|
|
|
/*
|
|
* This parameter control whether or not the driver will wait for
|
|
* autonegotiation to complete.
|
|
* 1 - Wait for autonegotiation to complete
|
|
* 0 - Don't wait for autonegotiation to complete
|
|
*/
|
|
#define WAIT_FOR_AUTO_NEG_DEFAULT 0
|
|
|
|
/* Tunables -- End */
|
|
|
|
#define AUTONEG_ADV_DEFAULT (ADVERTISE_10_HALF | ADVERTISE_10_FULL | \
|
|
ADVERTISE_100_HALF | ADVERTISE_100_FULL | \
|
|
ADVERTISE_1000_FULL)
|
|
|
|
#define AUTO_ALL_MODES 0
|
|
|
|
/* PHY master/slave setting */
|
|
#define IGB_MASTER_SLAVE e1000_ms_hw_default
|
|
|
|
/*
|
|
* Micellaneous constants
|
|
*/
|
|
#define IGB_VENDOR_ID 0x8086
|
|
|
|
#define IGB_JUMBO_PBA 0x00000028
|
|
#define IGB_DEFAULT_PBA 0x00000030
|
|
#define IGB_SMARTSPEED_DOWNSHIFT 3
|
|
#define IGB_SMARTSPEED_MAX 15
|
|
#define IGB_MAX_INTR 10
|
|
#define IGB_RX_PTHRESH 16
|
|
#define IGB_RX_HTHRESH 8
|
|
#define IGB_RX_WTHRESH 1
|
|
|
|
#define MAX_NUM_MULTICAST_ADDRESSES 128
|
|
#define PCI_ANY_ID (~0U)
|
|
#define ETHER_ALIGN 2
|
|
#define IGB_TX_BUFFER_SIZE ((uint32_t) 1514)
|
|
#define IGB_FC_PAUSE_TIME 0x0680
|
|
#define IGB_EEPROM_APME 0x400;
|
|
|
|
#define MAX_INTS_PER_SEC 8000
|
|
#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
|
|
|
|
/* Code compatilbility between 6 and 7 */
|
|
#ifndef ETHER_BPF_MTAP
|
|
#define ETHER_BPF_MTAP BPF_MTAP
|
|
#endif
|
|
|
|
/*
|
|
* TDBA/RDBA should be aligned on 16 byte boundary. But TDLEN/RDLEN should be
|
|
* multiple of 128 bytes. So we align TDBA/RDBA on 128 byte boundary. This will
|
|
* also optimize cache line size effect. H/W supports up to cache line size 128.
|
|
*/
|
|
#define IGB_DBA_ALIGN 128
|
|
|
|
#define SPEED_MODE_BIT (1<<21) /* On PCI-E MACs only */
|
|
|
|
/* PCI Config defines */
|
|
#define IGB_MSIX_BAR 3
|
|
#define IGB_MSIX_VEC 10 /* Max vectors supported */
|
|
|
|
/* Defines for printing debug information */
|
|
#define DEBUG_INIT 0
|
|
#define DEBUG_IOCTL 0
|
|
#define DEBUG_HW 0
|
|
|
|
#define INIT_DEBUGOUT(S) if (DEBUG_INIT) printf(S "\n")
|
|
#define INIT_DEBUGOUT1(S, A) if (DEBUG_INIT) printf(S "\n", A)
|
|
#define INIT_DEBUGOUT2(S, A, B) if (DEBUG_INIT) printf(S "\n", A, B)
|
|
#define IOCTL_DEBUGOUT(S) if (DEBUG_IOCTL) printf(S "\n")
|
|
#define IOCTL_DEBUGOUT1(S, A) if (DEBUG_IOCTL) printf(S "\n", A)
|
|
#define IOCTL_DEBUGOUT2(S, A, B) if (DEBUG_IOCTL) printf(S "\n", A, B)
|
|
#define HW_DEBUGOUT(S) if (DEBUG_HW) printf(S "\n")
|
|
#define HW_DEBUGOUT1(S, A) if (DEBUG_HW) printf(S "\n", A)
|
|
#define HW_DEBUGOUT2(S, A, B) if (DEBUG_HW) printf(S "\n", A, B)
|
|
|
|
#define IGB_MAX_SCATTER 64
|
|
#define IGB_TSO_SIZE (65535 + sizeof(struct ether_vlan_header))
|
|
#define IGB_TSO_SEG_SIZE 4096 /* Max dma segment size */
|
|
#define ETH_ZLEN 60
|
|
#define ETH_ADDR_LEN 6
|
|
#define CSUM_OFFLOAD 7 /* Offload bits in mbuf flag */
|
|
|
|
|
|
struct adapter; /* forward reference */
|
|
|
|
struct igb_int_delay_info {
|
|
struct adapter *adapter; /* Back-pointer to the adapter struct */
|
|
int offset; /* Register offset to read/write */
|
|
int value; /* Current value in usecs */
|
|
};
|
|
|
|
/*
|
|
* Bus dma allocation structure used by
|
|
* e1000_dma_malloc and e1000_dma_free.
|
|
*/
|
|
struct igb_dma_alloc {
|
|
bus_addr_t dma_paddr;
|
|
caddr_t dma_vaddr;
|
|
bus_dma_tag_t dma_tag;
|
|
bus_dmamap_t dma_map;
|
|
bus_dma_segment_t dma_seg;
|
|
int dma_nseg;
|
|
};
|
|
|
|
|
|
/*
|
|
* Transmit ring: one per tx queue
|
|
*/
|
|
struct tx_ring {
|
|
struct adapter *adapter;
|
|
u32 me;
|
|
u32 msix; /* This ring's MSIX vector */
|
|
u32 eims; /* This ring's EIMS bit */
|
|
struct mtx tx_mtx;
|
|
struct igb_dma_alloc txdma; /* bus_dma glue for tx desc */
|
|
struct e1000_tx_desc *tx_base;
|
|
struct task tx_task; /* cleanup tasklet */
|
|
u32 next_avail_desc;
|
|
u32 next_to_clean;
|
|
volatile u16 tx_avail;
|
|
struct igb_buffer *tx_buffers;
|
|
bus_dma_tag_t txtag; /* dma tag for tx */
|
|
u32 watchdog_timer;
|
|
u64 no_desc_avail;
|
|
u64 tx_irq;
|
|
u64 tx_packets;
|
|
};
|
|
|
|
/*
|
|
* Receive ring: one per rx queue
|
|
*/
|
|
struct rx_ring {
|
|
struct adapter *adapter;
|
|
u32 me;
|
|
u32 msix; /* This ring's MSIX vector */
|
|
u32 eims; /* This ring's EIMS bit */
|
|
struct igb_dma_alloc rxdma; /* bus_dma glue for tx desc */
|
|
union e1000_adv_rx_desc *rx_base;
|
|
struct task rx_task; /* cleanup tasklet */
|
|
struct mtx rx_mtx;
|
|
u32 last_cleaned;
|
|
u32 next_to_check;
|
|
struct igb_buffer *rx_buffers;
|
|
bus_dma_tag_t rxtag; /* dma tag for tx */
|
|
bus_dmamap_t rx_spare_map;
|
|
/*
|
|
* First/last mbuf pointers, for
|
|
* collecting multisegment RX packets.
|
|
*/
|
|
struct mbuf *fmp;
|
|
struct mbuf *lmp;
|
|
/* Soft stats */
|
|
u64 rx_irq;
|
|
u64 rx_packets;
|
|
u64 rx_bytes;
|
|
};
|
|
|
|
struct adapter {
|
|
struct ifnet *ifp;
|
|
struct e1000_hw hw;
|
|
|
|
/* FreeBSD operating-system-specific structures. */
|
|
struct e1000_osdep osdep;
|
|
struct device *dev;
|
|
|
|
struct resource *pci_mem;
|
|
struct resource *msix_mem;
|
|
struct resource *res[IGB_MSIX_VEC];
|
|
void *tag[IGB_MSIX_VEC];
|
|
int rid[IGB_MSIX_VEC];
|
|
u32 eims_mask;
|
|
|
|
int linkvec;
|
|
int link_irq;
|
|
|
|
struct ifmedia media;
|
|
struct callout timer;
|
|
int msix; /* total vectors allocated */
|
|
int if_flags;
|
|
int max_frame_size;
|
|
int min_frame_size;
|
|
struct mtx core_mtx;
|
|
int igb_insert_vlan_header;
|
|
struct task link_task;
|
|
struct task rxtx_task;
|
|
struct taskqueue *tq; /* private task queue */
|
|
|
|
/* Management and WOL features */
|
|
int wol;
|
|
int has_manage;
|
|
|
|
/* Info about the board itself */
|
|
u8 link_active;
|
|
u16 link_speed;
|
|
u16 link_duplex;
|
|
u32 smartspeed;
|
|
struct igb_int_delay_info tx_int_delay;
|
|
struct igb_int_delay_info tx_abs_int_delay;
|
|
struct igb_int_delay_info rx_int_delay;
|
|
struct igb_int_delay_info rx_abs_int_delay;
|
|
|
|
/*
|
|
* Transmit rings
|
|
*/
|
|
struct tx_ring *tx_rings;
|
|
u16 num_tx_desc;
|
|
u16 num_tx_queues;
|
|
u32 txd_cmd;
|
|
|
|
/*
|
|
* Receive rings
|
|
*/
|
|
struct rx_ring *rx_rings;
|
|
u16 num_rx_desc;
|
|
u16 num_rx_queues;
|
|
int rx_process_limit;
|
|
u32 rx_buffer_len;
|
|
|
|
/* Misc stats maintained by the driver */
|
|
unsigned long dropped_pkts;
|
|
unsigned long mbuf_alloc_failed;
|
|
unsigned long mbuf_cluster_failed;
|
|
unsigned long no_tx_map_avail;
|
|
unsigned long no_tx_dma_setup;
|
|
unsigned long watchdog_events;
|
|
unsigned long rx_overruns;
|
|
|
|
boolean_t in_detach;
|
|
|
|
|
|
struct e1000_hw_stats stats;
|
|
};
|
|
|
|
/* ******************************************************************************
|
|
* vendor_info_array
|
|
*
|
|
* This array contains the list of Subvendor/Subdevice IDs on which the driver
|
|
* should load.
|
|
*
|
|
* ******************************************************************************/
|
|
typedef struct _igb_vendor_info_t {
|
|
unsigned int vendor_id;
|
|
unsigned int device_id;
|
|
unsigned int subvendor_id;
|
|
unsigned int subdevice_id;
|
|
unsigned int index;
|
|
} igb_vendor_info_t;
|
|
|
|
|
|
struct igb_buffer {
|
|
int next_eop; /* Index of the desc to watch */
|
|
struct mbuf *m_head;
|
|
bus_dmamap_t map; /* bus_dma map for packet */
|
|
};
|
|
|
|
#define IGB_CORE_LOCK_INIT(_sc, _name) \
|
|
mtx_init(&(_sc)->core_mtx, _name, "IGB Core Lock", MTX_DEF)
|
|
#define IGB_CORE_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->core_mtx)
|
|
#define IGB_TX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->tx_mtx)
|
|
#define IGB_RX_LOCK_DESTROY(_sc) mtx_destroy(&(_sc)->rx_mtx)
|
|
#define IGB_CORE_LOCK(_sc) mtx_lock(&(_sc)->core_mtx)
|
|
#define IGB_TX_LOCK(_sc) mtx_lock(&(_sc)->tx_mtx)
|
|
#define IGB_RX_LOCK(_sc) mtx_lock(&(_sc)->rx_mtx)
|
|
#define IGB_CORE_UNLOCK(_sc) mtx_unlock(&(_sc)->core_mtx)
|
|
#define IGB_TX_UNLOCK(_sc) mtx_unlock(&(_sc)->tx_mtx)
|
|
#define IGB_RX_UNLOCK(_sc) mtx_unlock(&(_sc)->rx_mtx)
|
|
#define IGB_CORE_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->core_mtx, MA_OWNED)
|
|
#define IGB_TX_LOCK_ASSERT(_sc) mtx_assert(&(_sc)->tx_mtx, MA_OWNED)
|
|
|
|
#endif /* _IGB_H_DEFINED_ */
|
|
|
|
|