844cacd17c
longer description. Discussed with: andre, rwatson Sponsored by: Nginx, Inc.
1055 lines
26 KiB
C
1055 lines
26 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_param.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/aio.h> /* for aio_swake proto */
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sx.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
/*
|
|
* Function pointer set by the AIO routines so that the socket buffer code
|
|
* can call back into the AIO module if it is loaded.
|
|
*/
|
|
void (*aio_swake)(struct socket *, struct sockbuf *);
|
|
|
|
/*
|
|
* Primitive routines for operating on socket buffers
|
|
*/
|
|
|
|
u_long sb_max = SB_MAX;
|
|
u_long sb_max_adj =
|
|
(quad_t)SB_MAX * MCLBYTES / (MSIZE + MCLBYTES); /* adjusted sb_max */
|
|
|
|
static u_long sb_efficiency = 8; /* parameter for sbreserve() */
|
|
|
|
static void sbdrop_internal(struct sockbuf *sb, int len);
|
|
static void sbflush_internal(struct sockbuf *sb);
|
|
|
|
/*
|
|
* Socantsendmore indicates that no more data will be sent on the socket; it
|
|
* would normally be applied to a socket when the user informs the system
|
|
* that no more data is to be sent, by the protocol code (in case
|
|
* PRU_SHUTDOWN). Socantrcvmore indicates that no more data will be
|
|
* received, and will normally be applied to the socket by a protocol when it
|
|
* detects that the peer will send no more data. Data queued for reading in
|
|
* the socket may yet be read.
|
|
*/
|
|
void
|
|
socantsendmore_locked(struct socket *so)
|
|
{
|
|
|
|
SOCKBUF_LOCK_ASSERT(&so->so_snd);
|
|
|
|
so->so_snd.sb_state |= SBS_CANTSENDMORE;
|
|
sowwakeup_locked(so);
|
|
mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
|
|
}
|
|
|
|
void
|
|
socantsendmore(struct socket *so)
|
|
{
|
|
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
socantsendmore_locked(so);
|
|
mtx_assert(SOCKBUF_MTX(&so->so_snd), MA_NOTOWNED);
|
|
}
|
|
|
|
void
|
|
socantrcvmore_locked(struct socket *so)
|
|
{
|
|
|
|
SOCKBUF_LOCK_ASSERT(&so->so_rcv);
|
|
|
|
so->so_rcv.sb_state |= SBS_CANTRCVMORE;
|
|
sorwakeup_locked(so);
|
|
mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
|
|
}
|
|
|
|
void
|
|
socantrcvmore(struct socket *so)
|
|
{
|
|
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
socantrcvmore_locked(so);
|
|
mtx_assert(SOCKBUF_MTX(&so->so_rcv), MA_NOTOWNED);
|
|
}
|
|
|
|
/*
|
|
* Wait for data to arrive at/drain from a socket buffer.
|
|
*/
|
|
int
|
|
sbwait(struct sockbuf *sb)
|
|
{
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
sb->sb_flags |= SB_WAIT;
|
|
return (msleep(&sb->sb_cc, &sb->sb_mtx,
|
|
(sb->sb_flags & SB_NOINTR) ? PSOCK : PSOCK | PCATCH, "sbwait",
|
|
sb->sb_timeo));
|
|
}
|
|
|
|
int
|
|
sblock(struct sockbuf *sb, int flags)
|
|
{
|
|
|
|
KASSERT((flags & SBL_VALID) == flags,
|
|
("sblock: flags invalid (0x%x)", flags));
|
|
|
|
if (flags & SBL_WAIT) {
|
|
if ((sb->sb_flags & SB_NOINTR) ||
|
|
(flags & SBL_NOINTR)) {
|
|
sx_xlock(&sb->sb_sx);
|
|
return (0);
|
|
}
|
|
return (sx_xlock_sig(&sb->sb_sx));
|
|
} else {
|
|
if (sx_try_xlock(&sb->sb_sx) == 0)
|
|
return (EWOULDBLOCK);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
void
|
|
sbunlock(struct sockbuf *sb)
|
|
{
|
|
|
|
sx_xunlock(&sb->sb_sx);
|
|
}
|
|
|
|
/*
|
|
* Wakeup processes waiting on a socket buffer. Do asynchronous notification
|
|
* via SIGIO if the socket has the SS_ASYNC flag set.
|
|
*
|
|
* Called with the socket buffer lock held; will release the lock by the end
|
|
* of the function. This allows the caller to acquire the socket buffer lock
|
|
* while testing for the need for various sorts of wakeup and hold it through
|
|
* to the point where it's no longer required. We currently hold the lock
|
|
* through calls out to other subsystems (with the exception of kqueue), and
|
|
* then release it to avoid lock order issues. It's not clear that's
|
|
* correct.
|
|
*/
|
|
void
|
|
sowakeup(struct socket *so, struct sockbuf *sb)
|
|
{
|
|
int ret;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
selwakeuppri(&sb->sb_sel, PSOCK);
|
|
if (!SEL_WAITING(&sb->sb_sel))
|
|
sb->sb_flags &= ~SB_SEL;
|
|
if (sb->sb_flags & SB_WAIT) {
|
|
sb->sb_flags &= ~SB_WAIT;
|
|
wakeup(&sb->sb_cc);
|
|
}
|
|
KNOTE_LOCKED(&sb->sb_sel.si_note, 0);
|
|
if (sb->sb_upcall != NULL) {
|
|
ret = sb->sb_upcall(so, sb->sb_upcallarg, M_NOWAIT);
|
|
if (ret == SU_ISCONNECTED) {
|
|
KASSERT(sb == &so->so_rcv,
|
|
("SO_SND upcall returned SU_ISCONNECTED"));
|
|
soupcall_clear(so, SO_RCV);
|
|
}
|
|
} else
|
|
ret = SU_OK;
|
|
if (sb->sb_flags & SB_AIO)
|
|
aio_swake(so, sb);
|
|
SOCKBUF_UNLOCK(sb);
|
|
if (ret == SU_ISCONNECTED)
|
|
soisconnected(so);
|
|
if ((so->so_state & SS_ASYNC) && so->so_sigio != NULL)
|
|
pgsigio(&so->so_sigio, SIGIO, 0);
|
|
mtx_assert(SOCKBUF_MTX(sb), MA_NOTOWNED);
|
|
}
|
|
|
|
/*
|
|
* Socket buffer (struct sockbuf) utility routines.
|
|
*
|
|
* Each socket contains two socket buffers: one for sending data and one for
|
|
* receiving data. Each buffer contains a queue of mbufs, information about
|
|
* the number of mbufs and amount of data in the queue, and other fields
|
|
* allowing select() statements and notification on data availability to be
|
|
* implemented.
|
|
*
|
|
* Data stored in a socket buffer is maintained as a list of records. Each
|
|
* record is a list of mbufs chained together with the m_next field. Records
|
|
* are chained together with the m_nextpkt field. The upper level routine
|
|
* soreceive() expects the following conventions to be observed when placing
|
|
* information in the receive buffer:
|
|
*
|
|
* 1. If the protocol requires each message be preceded by the sender's name,
|
|
* then a record containing that name must be present before any
|
|
* associated data (mbuf's must be of type MT_SONAME).
|
|
* 2. If the protocol supports the exchange of ``access rights'' (really just
|
|
* additional data associated with the message), and there are ``rights''
|
|
* to be received, then a record containing this data should be present
|
|
* (mbuf's must be of type MT_RIGHTS).
|
|
* 3. If a name or rights record exists, then it must be followed by a data
|
|
* record, perhaps of zero length.
|
|
*
|
|
* Before using a new socket structure it is first necessary to reserve
|
|
* buffer space to the socket, by calling sbreserve(). This should commit
|
|
* some of the available buffer space in the system buffer pool for the
|
|
* socket (currently, it does nothing but enforce limits). The space should
|
|
* be released by calling sbrelease() when the socket is destroyed.
|
|
*/
|
|
int
|
|
soreserve(struct socket *so, u_long sndcc, u_long rcvcc)
|
|
{
|
|
struct thread *td = curthread;
|
|
|
|
SOCKBUF_LOCK(&so->so_snd);
|
|
SOCKBUF_LOCK(&so->so_rcv);
|
|
if (sbreserve_locked(&so->so_snd, sndcc, so, td) == 0)
|
|
goto bad;
|
|
if (sbreserve_locked(&so->so_rcv, rcvcc, so, td) == 0)
|
|
goto bad2;
|
|
if (so->so_rcv.sb_lowat == 0)
|
|
so->so_rcv.sb_lowat = 1;
|
|
if (so->so_snd.sb_lowat == 0)
|
|
so->so_snd.sb_lowat = MCLBYTES;
|
|
if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
|
|
so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
return (0);
|
|
bad2:
|
|
sbrelease_locked(&so->so_snd, so);
|
|
bad:
|
|
SOCKBUF_UNLOCK(&so->so_rcv);
|
|
SOCKBUF_UNLOCK(&so->so_snd);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
static int
|
|
sysctl_handle_sb_max(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error = 0;
|
|
u_long tmp_sb_max = sb_max;
|
|
|
|
error = sysctl_handle_long(oidp, &tmp_sb_max, arg2, req);
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
if (tmp_sb_max < MSIZE + MCLBYTES)
|
|
return (EINVAL);
|
|
sb_max = tmp_sb_max;
|
|
sb_max_adj = (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Allot mbufs to a sockbuf. Attempt to scale mbmax so that mbcnt doesn't
|
|
* become limiting if buffering efficiency is near the normal case.
|
|
*/
|
|
int
|
|
sbreserve_locked(struct sockbuf *sb, u_long cc, struct socket *so,
|
|
struct thread *td)
|
|
{
|
|
rlim_t sbsize_limit;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
/*
|
|
* When a thread is passed, we take into account the thread's socket
|
|
* buffer size limit. The caller will generally pass curthread, but
|
|
* in the TCP input path, NULL will be passed to indicate that no
|
|
* appropriate thread resource limits are available. In that case,
|
|
* we don't apply a process limit.
|
|
*/
|
|
if (cc > sb_max_adj)
|
|
return (0);
|
|
if (td != NULL) {
|
|
PROC_LOCK(td->td_proc);
|
|
sbsize_limit = lim_cur(td->td_proc, RLIMIT_SBSIZE);
|
|
PROC_UNLOCK(td->td_proc);
|
|
} else
|
|
sbsize_limit = RLIM_INFINITY;
|
|
if (!chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, cc,
|
|
sbsize_limit))
|
|
return (0);
|
|
sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
|
|
if (sb->sb_lowat > sb->sb_hiwat)
|
|
sb->sb_lowat = sb->sb_hiwat;
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
sbreserve(struct sockbuf *sb, u_long cc, struct socket *so,
|
|
struct thread *td)
|
|
{
|
|
int error;
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
error = sbreserve_locked(sb, cc, so, td);
|
|
SOCKBUF_UNLOCK(sb);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Free mbufs held by a socket, and reserved mbuf space.
|
|
*/
|
|
void
|
|
sbrelease_internal(struct sockbuf *sb, struct socket *so)
|
|
{
|
|
|
|
sbflush_internal(sb);
|
|
(void)chgsbsize(so->so_cred->cr_uidinfo, &sb->sb_hiwat, 0,
|
|
RLIM_INFINITY);
|
|
sb->sb_mbmax = 0;
|
|
}
|
|
|
|
void
|
|
sbrelease_locked(struct sockbuf *sb, struct socket *so)
|
|
{
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
sbrelease_internal(sb, so);
|
|
}
|
|
|
|
void
|
|
sbrelease(struct sockbuf *sb, struct socket *so)
|
|
{
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
sbrelease_locked(sb, so);
|
|
SOCKBUF_UNLOCK(sb);
|
|
}
|
|
|
|
void
|
|
sbdestroy(struct sockbuf *sb, struct socket *so)
|
|
{
|
|
|
|
sbrelease_internal(sb, so);
|
|
}
|
|
|
|
/*
|
|
* Routines to add and remove data from an mbuf queue.
|
|
*
|
|
* The routines sbappend() or sbappendrecord() are normally called to append
|
|
* new mbufs to a socket buffer, after checking that adequate space is
|
|
* available, comparing the function sbspace() with the amount of data to be
|
|
* added. sbappendrecord() differs from sbappend() in that data supplied is
|
|
* treated as the beginning of a new record. To place a sender's address,
|
|
* optional access rights, and data in a socket receive buffer,
|
|
* sbappendaddr() should be used. To place access rights and data in a
|
|
* socket receive buffer, sbappendrights() should be used. In either case,
|
|
* the new data begins a new record. Note that unlike sbappend() and
|
|
* sbappendrecord(), these routines check for the caller that there will be
|
|
* enough space to store the data. Each fails if there is not enough space,
|
|
* or if it cannot find mbufs to store additional information in.
|
|
*
|
|
* Reliable protocols may use the socket send buffer to hold data awaiting
|
|
* acknowledgement. Data is normally copied from a socket send buffer in a
|
|
* protocol with m_copy for output to a peer, and then removing the data from
|
|
* the socket buffer with sbdrop() or sbdroprecord() when the data is
|
|
* acknowledged by the peer.
|
|
*/
|
|
#ifdef SOCKBUF_DEBUG
|
|
void
|
|
sblastrecordchk(struct sockbuf *sb, const char *file, int line)
|
|
{
|
|
struct mbuf *m = sb->sb_mb;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
while (m && m->m_nextpkt)
|
|
m = m->m_nextpkt;
|
|
|
|
if (m != sb->sb_lastrecord) {
|
|
printf("%s: sb_mb %p sb_lastrecord %p last %p\n",
|
|
__func__, sb->sb_mb, sb->sb_lastrecord, m);
|
|
printf("packet chain:\n");
|
|
for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
|
|
printf("\t%p\n", m);
|
|
panic("%s from %s:%u", __func__, file, line);
|
|
}
|
|
}
|
|
|
|
void
|
|
sblastmbufchk(struct sockbuf *sb, const char *file, int line)
|
|
{
|
|
struct mbuf *m = sb->sb_mb;
|
|
struct mbuf *n;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
while (m && m->m_nextpkt)
|
|
m = m->m_nextpkt;
|
|
|
|
while (m && m->m_next)
|
|
m = m->m_next;
|
|
|
|
if (m != sb->sb_mbtail) {
|
|
printf("%s: sb_mb %p sb_mbtail %p last %p\n",
|
|
__func__, sb->sb_mb, sb->sb_mbtail, m);
|
|
printf("packet tree:\n");
|
|
for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
|
|
printf("\t");
|
|
for (n = m; n != NULL; n = n->m_next)
|
|
printf("%p ", n);
|
|
printf("\n");
|
|
}
|
|
panic("%s from %s:%u", __func__, file, line);
|
|
}
|
|
}
|
|
#endif /* SOCKBUF_DEBUG */
|
|
|
|
#define SBLINKRECORD(sb, m0) do { \
|
|
SOCKBUF_LOCK_ASSERT(sb); \
|
|
if ((sb)->sb_lastrecord != NULL) \
|
|
(sb)->sb_lastrecord->m_nextpkt = (m0); \
|
|
else \
|
|
(sb)->sb_mb = (m0); \
|
|
(sb)->sb_lastrecord = (m0); \
|
|
} while (/*CONSTCOND*/0)
|
|
|
|
/*
|
|
* Append mbuf chain m to the last record in the socket buffer sb. The
|
|
* additional space associated the mbuf chain is recorded in sb. Empty mbufs
|
|
* are discarded and mbufs are compacted where possible.
|
|
*/
|
|
void
|
|
sbappend_locked(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
struct mbuf *n;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
if (m == 0)
|
|
return;
|
|
|
|
SBLASTRECORDCHK(sb);
|
|
n = sb->sb_mb;
|
|
if (n) {
|
|
while (n->m_nextpkt)
|
|
n = n->m_nextpkt;
|
|
do {
|
|
if (n->m_flags & M_EOR) {
|
|
sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
|
|
return;
|
|
}
|
|
} while (n->m_next && (n = n->m_next));
|
|
} else {
|
|
/*
|
|
* XXX Would like to simply use sb_mbtail here, but
|
|
* XXX I need to verify that I won't miss an EOR that
|
|
* XXX way.
|
|
*/
|
|
if ((n = sb->sb_lastrecord) != NULL) {
|
|
do {
|
|
if (n->m_flags & M_EOR) {
|
|
sbappendrecord_locked(sb, m); /* XXXXXX!!!! */
|
|
return;
|
|
}
|
|
} while (n->m_next && (n = n->m_next));
|
|
} else {
|
|
/*
|
|
* If this is the first record in the socket buffer,
|
|
* it's also the last record.
|
|
*/
|
|
sb->sb_lastrecord = m;
|
|
}
|
|
}
|
|
sbcompress(sb, m, n);
|
|
SBLASTRECORDCHK(sb);
|
|
}
|
|
|
|
/*
|
|
* Append mbuf chain m to the last record in the socket buffer sb. The
|
|
* additional space associated the mbuf chain is recorded in sb. Empty mbufs
|
|
* are discarded and mbufs are compacted where possible.
|
|
*/
|
|
void
|
|
sbappend(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
sbappend_locked(sb, m);
|
|
SOCKBUF_UNLOCK(sb);
|
|
}
|
|
|
|
/*
|
|
* This version of sbappend() should only be used when the caller absolutely
|
|
* knows that there will never be more than one record in the socket buffer,
|
|
* that is, a stream protocol (such as TCP).
|
|
*/
|
|
void
|
|
sbappendstream_locked(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
KASSERT(m->m_nextpkt == NULL,("sbappendstream 0"));
|
|
KASSERT(sb->sb_mb == sb->sb_lastrecord,("sbappendstream 1"));
|
|
|
|
SBLASTMBUFCHK(sb);
|
|
|
|
/* Remove all packet headers and mbuf tags to get a pure data chain. */
|
|
m_demote(m, 1);
|
|
|
|
sbcompress(sb, m, sb->sb_mbtail);
|
|
|
|
sb->sb_lastrecord = sb->sb_mb;
|
|
SBLASTRECORDCHK(sb);
|
|
}
|
|
|
|
/*
|
|
* This version of sbappend() should only be used when the caller absolutely
|
|
* knows that there will never be more than one record in the socket buffer,
|
|
* that is, a stream protocol (such as TCP).
|
|
*/
|
|
void
|
|
sbappendstream(struct sockbuf *sb, struct mbuf *m)
|
|
{
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
sbappendstream_locked(sb, m);
|
|
SOCKBUF_UNLOCK(sb);
|
|
}
|
|
|
|
#ifdef SOCKBUF_DEBUG
|
|
void
|
|
sbcheck(struct sockbuf *sb)
|
|
{
|
|
struct mbuf *m;
|
|
struct mbuf *n = 0;
|
|
u_long len = 0, mbcnt = 0;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
for (m = sb->sb_mb; m; m = n) {
|
|
n = m->m_nextpkt;
|
|
for (; m; m = m->m_next) {
|
|
len += m->m_len;
|
|
mbcnt += MSIZE;
|
|
if (m->m_flags & M_EXT) /*XXX*/ /* pretty sure this is bogus */
|
|
mbcnt += m->m_ext.ext_size;
|
|
}
|
|
}
|
|
if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
|
|
printf("cc %ld != %u || mbcnt %ld != %u\n", len, sb->sb_cc,
|
|
mbcnt, sb->sb_mbcnt);
|
|
panic("sbcheck");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* As above, except the mbuf chain begins a new record.
|
|
*/
|
|
void
|
|
sbappendrecord_locked(struct sockbuf *sb, struct mbuf *m0)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
if (m0 == 0)
|
|
return;
|
|
/*
|
|
* Put the first mbuf on the queue. Note this permits zero length
|
|
* records.
|
|
*/
|
|
sballoc(sb, m0);
|
|
SBLASTRECORDCHK(sb);
|
|
SBLINKRECORD(sb, m0);
|
|
sb->sb_mbtail = m0;
|
|
m = m0->m_next;
|
|
m0->m_next = 0;
|
|
if (m && (m0->m_flags & M_EOR)) {
|
|
m0->m_flags &= ~M_EOR;
|
|
m->m_flags |= M_EOR;
|
|
}
|
|
/* always call sbcompress() so it can do SBLASTMBUFCHK() */
|
|
sbcompress(sb, m, m0);
|
|
}
|
|
|
|
/*
|
|
* As above, except the mbuf chain begins a new record.
|
|
*/
|
|
void
|
|
sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
|
|
{
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
sbappendrecord_locked(sb, m0);
|
|
SOCKBUF_UNLOCK(sb);
|
|
}
|
|
|
|
/*
|
|
* Append address and data, and optionally, control (ancillary) data to the
|
|
* receive queue of a socket. If present, m0 must include a packet header
|
|
* with total length. Returns 0 if no space in sockbuf or insufficient
|
|
* mbufs.
|
|
*/
|
|
int
|
|
sbappendaddr_locked(struct sockbuf *sb, const struct sockaddr *asa,
|
|
struct mbuf *m0, struct mbuf *control)
|
|
{
|
|
struct mbuf *m, *n, *nlast;
|
|
int space = asa->sa_len;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
if (m0 && (m0->m_flags & M_PKTHDR) == 0)
|
|
panic("sbappendaddr_locked");
|
|
if (m0)
|
|
space += m0->m_pkthdr.len;
|
|
space += m_length(control, &n);
|
|
|
|
if (space > sbspace(sb))
|
|
return (0);
|
|
#if MSIZE <= 256
|
|
if (asa->sa_len > MLEN)
|
|
return (0);
|
|
#endif
|
|
m = m_get(M_NOWAIT, MT_SONAME);
|
|
if (m == NULL)
|
|
return (0);
|
|
m->m_len = asa->sa_len;
|
|
bcopy(asa, mtod(m, caddr_t), asa->sa_len);
|
|
if (n)
|
|
n->m_next = m0; /* concatenate data to control */
|
|
else
|
|
control = m0;
|
|
m->m_next = control;
|
|
for (n = m; n->m_next != NULL; n = n->m_next)
|
|
sballoc(sb, n);
|
|
sballoc(sb, n);
|
|
nlast = n;
|
|
SBLINKRECORD(sb, m);
|
|
|
|
sb->sb_mbtail = nlast;
|
|
SBLASTMBUFCHK(sb);
|
|
|
|
SBLASTRECORDCHK(sb);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Append address and data, and optionally, control (ancillary) data to the
|
|
* receive queue of a socket. If present, m0 must include a packet header
|
|
* with total length. Returns 0 if no space in sockbuf or insufficient
|
|
* mbufs.
|
|
*/
|
|
int
|
|
sbappendaddr(struct sockbuf *sb, const struct sockaddr *asa,
|
|
struct mbuf *m0, struct mbuf *control)
|
|
{
|
|
int retval;
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
retval = sbappendaddr_locked(sb, asa, m0, control);
|
|
SOCKBUF_UNLOCK(sb);
|
|
return (retval);
|
|
}
|
|
|
|
int
|
|
sbappendcontrol_locked(struct sockbuf *sb, struct mbuf *m0,
|
|
struct mbuf *control)
|
|
{
|
|
struct mbuf *m, *n, *mlast;
|
|
int space;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
if (control == 0)
|
|
panic("sbappendcontrol_locked");
|
|
space = m_length(control, &n) + m_length(m0, NULL);
|
|
|
|
if (space > sbspace(sb))
|
|
return (0);
|
|
n->m_next = m0; /* concatenate data to control */
|
|
|
|
SBLASTRECORDCHK(sb);
|
|
|
|
for (m = control; m->m_next; m = m->m_next)
|
|
sballoc(sb, m);
|
|
sballoc(sb, m);
|
|
mlast = m;
|
|
SBLINKRECORD(sb, control);
|
|
|
|
sb->sb_mbtail = mlast;
|
|
SBLASTMBUFCHK(sb);
|
|
|
|
SBLASTRECORDCHK(sb);
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control)
|
|
{
|
|
int retval;
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
retval = sbappendcontrol_locked(sb, m0, control);
|
|
SOCKBUF_UNLOCK(sb);
|
|
return (retval);
|
|
}
|
|
|
|
/*
|
|
* Append the data in mbuf chain (m) into the socket buffer sb following mbuf
|
|
* (n). If (n) is NULL, the buffer is presumed empty.
|
|
*
|
|
* When the data is compressed, mbufs in the chain may be handled in one of
|
|
* three ways:
|
|
*
|
|
* (1) The mbuf may simply be dropped, if it contributes nothing (no data, no
|
|
* record boundary, and no change in data type).
|
|
*
|
|
* (2) The mbuf may be coalesced -- i.e., data in the mbuf may be copied into
|
|
* an mbuf already in the socket buffer. This can occur if an
|
|
* appropriate mbuf exists, there is room, and no merging of data types
|
|
* will occur.
|
|
*
|
|
* (3) The mbuf may be appended to the end of the existing mbuf chain.
|
|
*
|
|
* If any of the new mbufs is marked as M_EOR, mark the last mbuf appended as
|
|
* end-of-record.
|
|
*/
|
|
void
|
|
sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
|
|
{
|
|
int eor = 0;
|
|
struct mbuf *o;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
while (m) {
|
|
eor |= m->m_flags & M_EOR;
|
|
if (m->m_len == 0 &&
|
|
(eor == 0 ||
|
|
(((o = m->m_next) || (o = n)) &&
|
|
o->m_type == m->m_type))) {
|
|
if (sb->sb_lastrecord == m)
|
|
sb->sb_lastrecord = m->m_next;
|
|
m = m_free(m);
|
|
continue;
|
|
}
|
|
if (n && (n->m_flags & M_EOR) == 0 &&
|
|
M_WRITABLE(n) &&
|
|
((sb->sb_flags & SB_NOCOALESCE) == 0) &&
|
|
m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
|
|
m->m_len <= M_TRAILINGSPACE(n) &&
|
|
n->m_type == m->m_type) {
|
|
bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
|
|
(unsigned)m->m_len);
|
|
n->m_len += m->m_len;
|
|
sb->sb_cc += m->m_len;
|
|
if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
|
|
/* XXX: Probably don't need.*/
|
|
sb->sb_ctl += m->m_len;
|
|
m = m_free(m);
|
|
continue;
|
|
}
|
|
if (n)
|
|
n->m_next = m;
|
|
else
|
|
sb->sb_mb = m;
|
|
sb->sb_mbtail = m;
|
|
sballoc(sb, m);
|
|
n = m;
|
|
m->m_flags &= ~M_EOR;
|
|
m = m->m_next;
|
|
n->m_next = 0;
|
|
}
|
|
if (eor) {
|
|
KASSERT(n != NULL, ("sbcompress: eor && n == NULL"));
|
|
n->m_flags |= eor;
|
|
}
|
|
SBLASTMBUFCHK(sb);
|
|
}
|
|
|
|
/*
|
|
* Free all mbufs in a sockbuf. Check that all resources are reclaimed.
|
|
*/
|
|
static void
|
|
sbflush_internal(struct sockbuf *sb)
|
|
{
|
|
|
|
while (sb->sb_mbcnt) {
|
|
/*
|
|
* Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
|
|
* we would loop forever. Panic instead.
|
|
*/
|
|
if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
|
|
break;
|
|
sbdrop_internal(sb, (int)sb->sb_cc);
|
|
}
|
|
if (sb->sb_cc || sb->sb_mb || sb->sb_mbcnt)
|
|
panic("sbflush_internal: cc %u || mb %p || mbcnt %u",
|
|
sb->sb_cc, (void *)sb->sb_mb, sb->sb_mbcnt);
|
|
}
|
|
|
|
void
|
|
sbflush_locked(struct sockbuf *sb)
|
|
{
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
sbflush_internal(sb);
|
|
}
|
|
|
|
void
|
|
sbflush(struct sockbuf *sb)
|
|
{
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
sbflush_locked(sb);
|
|
SOCKBUF_UNLOCK(sb);
|
|
}
|
|
|
|
/*
|
|
* Drop data from (the front of) a sockbuf.
|
|
*/
|
|
static void
|
|
sbdrop_internal(struct sockbuf *sb, int len)
|
|
{
|
|
struct mbuf *m;
|
|
struct mbuf *next;
|
|
|
|
next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
|
|
while (len > 0) {
|
|
if (m == 0) {
|
|
if (next == 0)
|
|
panic("sbdrop");
|
|
m = next;
|
|
next = m->m_nextpkt;
|
|
continue;
|
|
}
|
|
if (m->m_len > len) {
|
|
m->m_len -= len;
|
|
m->m_data += len;
|
|
sb->sb_cc -= len;
|
|
if (sb->sb_sndptroff != 0)
|
|
sb->sb_sndptroff -= len;
|
|
if (m->m_type != MT_DATA && m->m_type != MT_OOBDATA)
|
|
sb->sb_ctl -= len;
|
|
break;
|
|
}
|
|
len -= m->m_len;
|
|
sbfree(sb, m);
|
|
m = m_free(m);
|
|
}
|
|
while (m && m->m_len == 0) {
|
|
sbfree(sb, m);
|
|
m = m_free(m);
|
|
}
|
|
if (m) {
|
|
sb->sb_mb = m;
|
|
m->m_nextpkt = next;
|
|
} else
|
|
sb->sb_mb = next;
|
|
/*
|
|
* First part is an inline SB_EMPTY_FIXUP(). Second part makes sure
|
|
* sb_lastrecord is up-to-date if we dropped part of the last record.
|
|
*/
|
|
m = sb->sb_mb;
|
|
if (m == NULL) {
|
|
sb->sb_mbtail = NULL;
|
|
sb->sb_lastrecord = NULL;
|
|
} else if (m->m_nextpkt == NULL) {
|
|
sb->sb_lastrecord = m;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Drop data from (the front of) a sockbuf.
|
|
*/
|
|
void
|
|
sbdrop_locked(struct sockbuf *sb, int len)
|
|
{
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
sbdrop_internal(sb, len);
|
|
}
|
|
|
|
void
|
|
sbdrop(struct sockbuf *sb, int len)
|
|
{
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
sbdrop_locked(sb, len);
|
|
SOCKBUF_UNLOCK(sb);
|
|
}
|
|
|
|
/*
|
|
* Maintain a pointer and offset pair into the socket buffer mbuf chain to
|
|
* avoid traversal of the entire socket buffer for larger offsets.
|
|
*/
|
|
struct mbuf *
|
|
sbsndptr(struct sockbuf *sb, u_int off, u_int len, u_int *moff)
|
|
{
|
|
struct mbuf *m, *ret;
|
|
|
|
KASSERT(sb->sb_mb != NULL, ("%s: sb_mb is NULL", __func__));
|
|
KASSERT(off + len <= sb->sb_cc, ("%s: beyond sb", __func__));
|
|
KASSERT(sb->sb_sndptroff <= sb->sb_cc, ("%s: sndptroff broken", __func__));
|
|
|
|
/*
|
|
* Is off below stored offset? Happens on retransmits.
|
|
* Just return, we can't help here.
|
|
*/
|
|
if (sb->sb_sndptroff > off) {
|
|
*moff = off;
|
|
return (sb->sb_mb);
|
|
}
|
|
|
|
/* Return closest mbuf in chain for current offset. */
|
|
*moff = off - sb->sb_sndptroff;
|
|
m = ret = sb->sb_sndptr ? sb->sb_sndptr : sb->sb_mb;
|
|
|
|
/* Advance by len to be as close as possible for the next transmit. */
|
|
for (off = off - sb->sb_sndptroff + len - 1;
|
|
off > 0 && m != NULL && off >= m->m_len;
|
|
m = m->m_next) {
|
|
sb->sb_sndptroff += m->m_len;
|
|
off -= m->m_len;
|
|
}
|
|
if (off > 0 && m == NULL)
|
|
panic("%s: sockbuf %p and mbuf %p clashing", __func__, sb, ret);
|
|
sb->sb_sndptr = m;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Drop a record off the front of a sockbuf and move the next record to the
|
|
* front.
|
|
*/
|
|
void
|
|
sbdroprecord_locked(struct sockbuf *sb)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
SOCKBUF_LOCK_ASSERT(sb);
|
|
|
|
m = sb->sb_mb;
|
|
if (m) {
|
|
sb->sb_mb = m->m_nextpkt;
|
|
do {
|
|
sbfree(sb, m);
|
|
m = m_free(m);
|
|
} while (m);
|
|
}
|
|
SB_EMPTY_FIXUP(sb);
|
|
}
|
|
|
|
/*
|
|
* Drop a record off the front of a sockbuf and move the next record to the
|
|
* front.
|
|
*/
|
|
void
|
|
sbdroprecord(struct sockbuf *sb)
|
|
{
|
|
|
|
SOCKBUF_LOCK(sb);
|
|
sbdroprecord_locked(sb);
|
|
SOCKBUF_UNLOCK(sb);
|
|
}
|
|
|
|
/*
|
|
* Create a "control" mbuf containing the specified data with the specified
|
|
* type for presentation on a socket buffer.
|
|
*/
|
|
struct mbuf *
|
|
sbcreatecontrol(caddr_t p, int size, int type, int level)
|
|
{
|
|
struct cmsghdr *cp;
|
|
struct mbuf *m;
|
|
|
|
if (CMSG_SPACE((u_int)size) > MCLBYTES)
|
|
return ((struct mbuf *) NULL);
|
|
if (CMSG_SPACE((u_int)size) > MLEN)
|
|
m = m_getcl(M_NOWAIT, MT_CONTROL, 0);
|
|
else
|
|
m = m_get(M_NOWAIT, MT_CONTROL);
|
|
if (m == NULL)
|
|
return ((struct mbuf *) NULL);
|
|
cp = mtod(m, struct cmsghdr *);
|
|
m->m_len = 0;
|
|
KASSERT(CMSG_SPACE((u_int)size) <= M_TRAILINGSPACE(m),
|
|
("sbcreatecontrol: short mbuf"));
|
|
if (p != NULL)
|
|
(void)memcpy(CMSG_DATA(cp), p, size);
|
|
m->m_len = CMSG_SPACE(size);
|
|
cp->cmsg_len = CMSG_LEN(size);
|
|
cp->cmsg_level = level;
|
|
cp->cmsg_type = type;
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* This does the same for socket buffers that sotoxsocket does for sockets:
|
|
* generate an user-format data structure describing the socket buffer. Note
|
|
* that the xsockbuf structure, since it is always embedded in a socket, does
|
|
* not include a self pointer nor a length. We make this entry point public
|
|
* in case some other mechanism needs it.
|
|
*/
|
|
void
|
|
sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
|
|
{
|
|
|
|
xsb->sb_cc = sb->sb_cc;
|
|
xsb->sb_hiwat = sb->sb_hiwat;
|
|
xsb->sb_mbcnt = sb->sb_mbcnt;
|
|
xsb->sb_mcnt = sb->sb_mcnt;
|
|
xsb->sb_ccnt = sb->sb_ccnt;
|
|
xsb->sb_mbmax = sb->sb_mbmax;
|
|
xsb->sb_lowat = sb->sb_lowat;
|
|
xsb->sb_flags = sb->sb_flags;
|
|
xsb->sb_timeo = sb->sb_timeo;
|
|
}
|
|
|
|
/* This takes the place of kern.maxsockbuf, which moved to kern.ipc. */
|
|
static int dummy;
|
|
SYSCTL_INT(_kern, KERN_DUMMY, dummy, CTLFLAG_RW, &dummy, 0, "");
|
|
SYSCTL_OID(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf, CTLTYPE_ULONG|CTLFLAG_RW,
|
|
&sb_max, 0, sysctl_handle_sb_max, "LU", "Maximum socket buffer size");
|
|
SYSCTL_ULONG(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor, CTLFLAG_RW,
|
|
&sb_efficiency, 0, "Socket buffer size waste factor");
|