freebsd-skq/sys/dev/mwl/mwlhal.c
Pawel Biernacki 7029da5c36 Mark more nodes as CTLFLAG_MPSAFE or CTLFLAG_NEEDGIANT (17 of many)
r357614 added CTLFLAG_NEEDGIANT to make it easier to find nodes that are
still not MPSAFE (or already are but aren’t properly marked).
Use it in preparation for a general review of all nodes.

This is non-functional change that adds annotations to SYSCTL_NODE and
SYSCTL_PROC nodes using one of the soon-to-be-required flags.

Mark all obvious cases as MPSAFE.  All entries that haven't been marked
as MPSAFE before are by default marked as NEEDGIANT

Approved by:	kib (mentor, blanket)
Commented by:	kib, gallatin, melifaro
Differential Revision:	https://reviews.freebsd.org/D23718
2020-02-26 14:26:36 +00:00

2781 lines
72 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2007-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2007-2009 Marvell Semiconductor, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/linker.h>
#include <sys/firmware.h>
#include <machine/bus.h>
#include <dev/mwl/mwlhal.h>
#include <dev/mwl/mwlreg.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <net/if.h>
#include <dev/mwl/mwldiag.h>
#define MWLHAL_DEBUG /* debug msgs */
typedef enum {
WL_ANTENNAMODE_RX = 0xffff,
WL_ANTENNAMODE_TX = 2,
} wlantennamode_e;
typedef enum {
WL_TX_POWERLEVEL_LOW = 5,
WL_TX_POWERLEVEL_MEDIUM = 10,
WL_TX_POWERLEVEL_HIGH = 15,
} wltxpowerlevel_e;
#define MWL_CMDBUF_SIZE 0x4000 /* size of f/w command buffer */
#define MWL_BASTREAMS_MAX 7 /* max BA streams (NB: fw >3.3.5.9) */
#define MWL_BAQID_MAX 8 /* max BA Q id's (NB: fw >3.3.5.9) */
#define MWL_MBSS_AP_MAX 8 /* max ap vap's */
#define MWL_MBSS_STA_MAX 24 /* max station/client vap's */
#define MWL_MBSS_MAX (MWL_MBSS_AP_MAX+MWL_MBSS_STA_MAX)
/*
* BA stream -> queue ID mapping
*
* The first 2 streams map to h/w; the remaining streams are
* implemented in firmware.
*/
static const int ba2qid[MWL_BASTREAMS_MAX] = {
5, 6 /* h/w supported */
#if MWL_BASTREAMS_MAX == 7
, 7, 0, 1, 2, 3 /* f/w supported */
#endif
};
static int qid2ba[MWL_BAQID_MAX];
#define IEEE80211_ADDR_LEN 6 /* XXX */
#define IEEE80211_ADDR_COPY(_dst, _src) \
memcpy(_dst, _src, IEEE80211_ADDR_LEN)
#define IEEE80211_ADDR_EQ(_dst, _src) \
(memcmp(_dst, _src, IEEE80211_ADDR_LEN) == 0)
#define _CMD_SETUP(pCmd, type, cmd) do { \
pCmd = (type *)&mh->mh_cmdbuf[0]; \
memset(pCmd, 0, sizeof(type)); \
pCmd->CmdHdr.Cmd = htole16(cmd); \
pCmd->CmdHdr.Length = htole16(sizeof(type)); \
} while (0)
#define _VCMD_SETUP(vap, pCmd, type, cmd) do { \
_CMD_SETUP(pCmd, type, cmd); \
pCmd->CmdHdr.MacId = vap->macid; \
} while (0)
#define PWTAGETRATETABLE20M 14*4
#define PWTAGETRATETABLE40M 9*4
#define PWTAGETRATETABLE20M_5G 35*4
#define PWTAGETRATETABLE40M_5G 16*4
struct mwl_hal_bastream {
MWL_HAL_BASTREAM public; /* public state */
uint8_t stream; /* stream # */
uint8_t setup; /* f/w cmd sent */
uint8_t ba_policy; /* direct/delayed BA policy */
uint8_t tid;
uint8_t paraminfo;
uint8_t macaddr[IEEE80211_ADDR_LEN];
};
struct mwl_hal_priv;
struct mwl_hal_vap {
struct mwl_hal_priv *mh; /* back pointer */
uint16_t bss_type; /* f/w type */
uint8_t vap_type; /* MWL_HAL_BSSTYPE */
uint8_t macid; /* for passing to f/w */
uint8_t flags;
#define MVF_RUNNING 0x01 /* BSS_START issued */
#define MVF_STATION 0x02 /* sta db entry created */
uint8_t mac[IEEE80211_ADDR_LEN];/* mac address */
};
#define MWLVAP(_vap) ((_vap)->mh)
/*
* Per-device state. We allocate a single cmd buffer for
* submitting operations to the firmware. Access to this
* buffer (and the f/w) are single-threaded. At present
* we spin waiting for cmds to complete which is bad. Not
* sure if it's possible to submit multiple requests or
* control when we get cmd done interrupts. There's no
* documentation and no example code to indicate what can
* or cannot be done so all we can do right now is follow the
* linux driver logic. This falls apart when the f/w fails;
* the system comes to a crawl as we spin waiting for operations
* to finish.
*/
struct mwl_hal_priv {
struct mwl_hal public; /* public area */
device_t mh_dev;
char mh_mtxname[12];
struct mtx mh_mtx;
bus_dma_tag_t mh_dmat; /* bus DMA tag for cmd buffer */
bus_dma_segment_t mh_seg; /* segment for cmd buffer */
bus_dmamap_t mh_dmamap; /* DMA map for cmd buffer */
uint16_t *mh_cmdbuf; /* f/w cmd buffer */
bus_addr_t mh_cmdaddr; /* physaddr of cmd buffer */
int mh_flags;
#define MHF_CALDATA 0x0001 /* cal data retrieved */
#define MHF_FWHANG 0x0002 /* fw appears hung */
#define MHF_MBSS 0x0004 /* mbss enabled */
struct mwl_hal_vap mh_vaps[MWL_MBSS_MAX+1];
int mh_bastreams; /* bit mask of available BA streams */
int mh_regioncode; /* XXX last region code sent to fw */
struct mwl_hal_bastream mh_streams[MWL_BASTREAMS_MAX];
int mh_debug;
MWL_HAL_CHANNELINFO mh_20M;
MWL_HAL_CHANNELINFO mh_40M;
MWL_HAL_CHANNELINFO mh_20M_5G;
MWL_HAL_CHANNELINFO mh_40M_5G;
int mh_SDRAMSIZE_Addr;
uint32_t mh_RTSSuccesses;/* cumulative stats for read-on-clear */
uint32_t mh_RTSFailures;
uint32_t mh_RxDuplicateFrames;
uint32_t mh_FCSErrorCount;
MWL_DIAG_REVS mh_revs;
};
#define MWLPRIV(_mh) ((struct mwl_hal_priv *)(_mh))
static int mwl_hal_setmac_locked(struct mwl_hal_vap *,
const uint8_t addr[IEEE80211_ADDR_LEN]);
static int mwlExecuteCmd(struct mwl_hal_priv *, unsigned short cmd);
static int mwlGetPwrCalTable(struct mwl_hal_priv *);
#ifdef MWLHAL_DEBUG
static const char *mwlcmdname(int cmd);
static void dumpresult(struct mwl_hal_priv *, int showresult);
#endif /* MWLHAL_DEBUG */
SYSCTL_DECL(_hw_mwl);
static SYSCTL_NODE(_hw_mwl, OID_AUTO, hal, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"Marvell HAL parameters");
static __inline void
MWL_HAL_LOCK(struct mwl_hal_priv *mh)
{
mtx_lock(&mh->mh_mtx);
}
static __inline void
MWL_HAL_LOCK_ASSERT(struct mwl_hal_priv *mh)
{
mtx_assert(&mh->mh_mtx, MA_OWNED);
}
static __inline void
MWL_HAL_UNLOCK(struct mwl_hal_priv *mh)
{
mtx_unlock(&mh->mh_mtx);
}
static __inline uint32_t
RD4(struct mwl_hal_priv *mh, bus_size_t off)
{
return bus_space_read_4(mh->public.mh_iot, mh->public.mh_ioh, off);
}
static __inline void
WR4(struct mwl_hal_priv *mh, bus_size_t off, uint32_t val)
{
bus_space_write_4(mh->public.mh_iot, mh->public.mh_ioh, off, val);
}
static void
mwl_hal_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
bus_addr_t *paddr = (bus_addr_t*) arg;
KASSERT(error == 0, ("error %u on bus_dma callback", error));
*paddr = segs->ds_addr;
}
/*
* Setup for communication with the device. We allocate
* a command buffer and map it for bus dma use. The pci
* device id is used to identify whether the device has
* SRAM on it (in which case f/w download must include a
* memory controller reset). All bus i/o operations happen
* in BAR 1; the driver passes in the tag and handle we need.
*/
struct mwl_hal *
mwl_hal_attach(device_t dev, uint16_t devid,
bus_space_handle_t ioh, bus_space_tag_t iot, bus_dma_tag_t tag)
{
struct mwl_hal_priv *mh;
struct mwl_hal_vap *hvap;
int error, i;
mh = malloc(sizeof(struct mwl_hal_priv), M_DEVBUF, M_NOWAIT | M_ZERO);
if (mh == NULL)
return NULL;
mh->mh_dev = dev;
mh->public.mh_ioh = ioh;
mh->public.mh_iot = iot;
for (i = 0; i < MWL_BASTREAMS_MAX; i++) {
mh->mh_streams[i].public.txq = ba2qid[i];
mh->mh_streams[i].stream = i;
/* construct back-mapping while we're at it */
if (mh->mh_streams[i].public.txq < MWL_BAQID_MAX)
qid2ba[mh->mh_streams[i].public.txq] = i;
else
device_printf(dev, "unexpected BA tx qid %d for "
"stream %d\n", mh->mh_streams[i].public.txq, i);
}
/* setup constant portion of vap state */
/* XXX should get max ap/client vap's from f/w */
i = 0;
hvap = &mh->mh_vaps[i];
hvap->vap_type = MWL_HAL_AP;
hvap->bss_type = htole16(WL_MAC_TYPE_PRIMARY_AP);
hvap->macid = 0;
for (i++; i < MWL_MBSS_AP_MAX; i++) {
hvap = &mh->mh_vaps[i];
hvap->vap_type = MWL_HAL_AP;
hvap->bss_type = htole16(WL_MAC_TYPE_SECONDARY_AP);
hvap->macid = i;
}
hvap = &mh->mh_vaps[i];
hvap->vap_type = MWL_HAL_STA;
hvap->bss_type = htole16(WL_MAC_TYPE_PRIMARY_CLIENT);
hvap->macid = i;
for (i++; i < MWL_MBSS_MAX; i++) {
hvap = &mh->mh_vaps[i];
hvap->vap_type = MWL_HAL_STA;
hvap->bss_type = htole16(WL_MAC_TYPE_SECONDARY_CLIENT);
hvap->macid = i;
}
mh->mh_revs.mh_devid = devid;
snprintf(mh->mh_mtxname, sizeof(mh->mh_mtxname),
"%s_hal", device_get_nameunit(dev));
mtx_init(&mh->mh_mtx, mh->mh_mtxname, NULL, MTX_DEF);
/*
* Allocate the command buffer and map into the address
* space of the h/w. We request "coherent" memory which
* will be uncached on some architectures.
*/
error = bus_dma_tag_create(tag, /* parent */
PAGE_SIZE, 0, /* alignment, bounds */
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
MWL_CMDBUF_SIZE, /* maxsize */
1, /* nsegments */
MWL_CMDBUF_SIZE, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&mh->mh_dmat);
if (error != 0) {
device_printf(dev, "unable to allocate memory for cmd tag, "
"error %u\n", error);
goto fail0;
}
/* allocate descriptors */
error = bus_dmamem_alloc(mh->mh_dmat, (void**) &mh->mh_cmdbuf,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
&mh->mh_dmamap);
if (error != 0) {
device_printf(dev, "unable to allocate memory for cmd buffer, "
"error %u\n", error);
goto fail1;
}
error = bus_dmamap_load(mh->mh_dmat, mh->mh_dmamap,
mh->mh_cmdbuf, MWL_CMDBUF_SIZE,
mwl_hal_load_cb, &mh->mh_cmdaddr,
BUS_DMA_NOWAIT);
if (error != 0) {
device_printf(dev, "unable to load cmd buffer, error %u\n",
error);
goto fail2;
}
/*
* Some cards have SDRAM. When loading firmware we need
* to reset the SDRAM controller prior to doing this.
* When the SDRAMSIZE is non-zero we do that work in
* mwl_hal_fwload.
*/
switch (devid) {
case 0x2a02: /* CB82 */
case 0x2a03: /* CB85 */
case 0x2a08: /* MC85_B1 */
case 0x2a0b: /* CB85AP */
case 0x2a24:
mh->mh_SDRAMSIZE_Addr = 0x40fe70b7; /* 8M SDRAM */
break;
case 0x2a04: /* MC85 */
mh->mh_SDRAMSIZE_Addr = 0x40fc70b7; /* 16M SDRAM */
break;
default:
break;
}
return &mh->public;
fail2:
bus_dmamem_free(mh->mh_dmat, mh->mh_cmdbuf, mh->mh_dmamap);
fail1:
bus_dma_tag_destroy(mh->mh_dmat);
fail0:
mtx_destroy(&mh->mh_mtx);
free(mh, M_DEVBUF);
return NULL;
}
void
mwl_hal_detach(struct mwl_hal *mh0)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
bus_dmamem_free(mh->mh_dmat, mh->mh_cmdbuf, mh->mh_dmamap);
bus_dma_tag_destroy(mh->mh_dmat);
mtx_destroy(&mh->mh_mtx);
free(mh, M_DEVBUF);
}
/*
* Reset internal state after a firmware download.
*/
static int
mwlResetHalState(struct mwl_hal_priv *mh)
{
int i;
/* XXX get from f/w */
mh->mh_bastreams = (1<<MWL_BASTREAMS_MAX)-1;
for (i = 0; i < MWL_MBSS_MAX; i++)
mh->mh_vaps[i].mh = NULL;
/*
* Clear cumulative stats.
*/
mh->mh_RTSSuccesses = 0;
mh->mh_RTSFailures = 0;
mh->mh_RxDuplicateFrames = 0;
mh->mh_FCSErrorCount = 0;
/*
* Fetch cal data for later use.
* XXX may want to fetch other stuff too.
*/
/* XXX check return */
if ((mh->mh_flags & MHF_CALDATA) == 0)
mwlGetPwrCalTable(mh);
return 0;
}
struct mwl_hal_vap *
mwl_hal_newvap(struct mwl_hal *mh0, MWL_HAL_BSSTYPE type,
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
struct mwl_hal_vap *vap;
int i;
MWL_HAL_LOCK(mh);
/* NB: could optimize but not worth it w/ max 32 bss */
for (i = 0; i < MWL_MBSS_MAX; i++) {
vap = &mh->mh_vaps[i];
if (vap->vap_type == type && vap->mh == NULL) {
vap->mh = mh;
mwl_hal_setmac_locked(vap, mac);
break;
}
}
MWL_HAL_UNLOCK(mh);
return (i < MWL_MBSS_MAX) ? vap : NULL;
}
void
mwl_hal_delvap(struct mwl_hal_vap *vap)
{
/* NB: locking not needed for single write */
vap->mh = NULL;
}
/*
* Manipulate the debug mask. Note debug
* msgs are only provided when this code is
* compiled with MWLHAL_DEBUG defined.
*/
void
mwl_hal_setdebug(struct mwl_hal *mh, int debug)
{
MWLPRIV(mh)->mh_debug = debug;
}
int
mwl_hal_getdebug(struct mwl_hal *mh)
{
return MWLPRIV(mh)->mh_debug;
}
void
mwl_hal_setbastreams(struct mwl_hal *mh, int mask)
{
MWLPRIV(mh)->mh_bastreams = mask & ((1<<MWL_BASTREAMS_MAX)-1);
}
int
mwl_hal_getbastreams(struct mwl_hal *mh)
{
return MWLPRIV(mh)->mh_bastreams;
}
int
mwl_hal_ismbsscapable(struct mwl_hal *mh)
{
return (MWLPRIV(mh)->mh_flags & MHF_MBSS) != 0;
}
#if 0
/* XXX inlined */
/*
* Return the current ISR setting and clear the cause.
* XXX maybe make inline
*/
void
mwl_hal_getisr(struct mwl_hal *mh0, uint32_t *status)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
uint32_t cause;
cause = RD4(mh, MACREG_REG_A2H_INTERRUPT_CAUSE);
if (cause == 0xffffffff) { /* card removed */
device_printf(mh->mh_dev, "%s: cause 0x%x\n", __func__, cause);
cause = 0;
} else if (cause != 0) {
/* clear cause bits */
WR4(mh, MACREG_REG_A2H_INTERRUPT_CAUSE,
cause &~ mh->public.mh_imask);
RD4(mh, MACREG_REG_INT_CODE); /* XXX flush write? */
}
*status = cause;
}
#endif
/*
* Set the interrupt mask.
*/
void
mwl_hal_intrset(struct mwl_hal *mh0, uint32_t mask)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
WR4(mh, MACREG_REG_A2H_INTERRUPT_MASK, 0);
RD4(mh, MACREG_REG_INT_CODE);
mh->public.mh_imask = mask;
WR4(mh, MACREG_REG_A2H_INTERRUPT_MASK, mask);
RD4(mh, MACREG_REG_INT_CODE);
}
#if 0
/* XXX inlined */
/*
* Kick the firmware to tell it there are new tx descriptors
* for processing. The driver says what h/w q has work in
* case the f/w ever gets smarter.
*/
void
mwl_hal_txstart(struct mwl_hal *mh0, int qnum)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
uint32_t dummy;
WR4(mh, MACREG_REG_H2A_INTERRUPT_EVENTS, MACREG_H2ARIC_BIT_PPA_READY);
dummy = RD4(mh, MACREG_REG_INT_CODE);
}
#endif
/*
* Callback from the driver on a cmd done interrupt.
* Nothing to do right now as we spin waiting for
* cmd completion.
*/
void
mwl_hal_cmddone(struct mwl_hal *mh0)
{
#if 0
struct mwl_hal_priv *mh = MWLPRIV(mh0);
if (mh->mh_debug & MWL_HAL_DEBUG_CMDDONE) {
device_printf(mh->mh_dev, "cmd done interrupt:\n");
dumpresult(mh, 1);
}
#endif
}
/*
* Return "hw specs". Note this must be the first
* cmd MUST be done after a firmware download or the
* f/w will lockup.
* XXX move into the hal so driver doesn't need to be responsible
*/
int
mwl_hal_gethwspecs(struct mwl_hal *mh0, struct mwl_hal_hwspec *hw)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_DS_GET_HW_SPEC *pCmd;
int retval, minrev;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_DS_GET_HW_SPEC, HostCmd_CMD_GET_HW_SPEC);
memset(&pCmd->PermanentAddr[0], 0xff, IEEE80211_ADDR_LEN);
pCmd->ulFwAwakeCookie = htole32((unsigned int)mh->mh_cmdaddr+2048);
retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_HW_SPEC);
if (retval == 0) {
IEEE80211_ADDR_COPY(hw->macAddr, pCmd->PermanentAddr);
hw->wcbBase[0] = le32toh(pCmd->WcbBase0) & 0x0000ffff;
hw->wcbBase[1] = le32toh(pCmd->WcbBase1[0]) & 0x0000ffff;
hw->wcbBase[2] = le32toh(pCmd->WcbBase1[1]) & 0x0000ffff;
hw->wcbBase[3] = le32toh(pCmd->WcbBase1[2]) & 0x0000ffff;
hw->rxDescRead = le32toh(pCmd->RxPdRdPtr)& 0x0000ffff;
hw->rxDescWrite = le32toh(pCmd->RxPdWrPtr)& 0x0000ffff;
hw->regionCode = le16toh(pCmd->RegionCode) & 0x00ff;
hw->fwReleaseNumber = le32toh(pCmd->FWReleaseNumber);
hw->maxNumWCB = le16toh(pCmd->NumOfWCB);
hw->maxNumMCAddr = le16toh(pCmd->NumOfMCastAddr);
hw->numAntennas = le16toh(pCmd->NumberOfAntenna);
hw->hwVersion = pCmd->Version;
hw->hostInterface = pCmd->HostIf;
mh->mh_revs.mh_macRev = hw->hwVersion; /* XXX */
mh->mh_revs.mh_phyRev = hw->hostInterface; /* XXX */
minrev = ((hw->fwReleaseNumber) >> 16) & 0xff;
if (minrev >= 4) {
/* starting with 3.4.x.x s/w BA streams supported */
mh->mh_bastreams &= (1<<MWL_BASTREAMS_MAX)-1;
} else
mh->mh_bastreams &= (1<<2)-1;
}
MWL_HAL_UNLOCK(mh);
return retval;
}
/*
* Inform the f/w about location of the tx/rx dma data structures
* and related state. This cmd must be done immediately after a
* mwl_hal_gethwspecs call or the f/w will lockup.
*/
int
mwl_hal_sethwdma(struct mwl_hal *mh0, const struct mwl_hal_txrxdma *dma)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_DS_SET_HW_SPEC *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_DS_SET_HW_SPEC, HostCmd_CMD_SET_HW_SPEC);
pCmd->WcbBase[0] = htole32(dma->wcbBase[0]);
pCmd->WcbBase[1] = htole32(dma->wcbBase[1]);
pCmd->WcbBase[2] = htole32(dma->wcbBase[2]);
pCmd->WcbBase[3] = htole32(dma->wcbBase[3]);
pCmd->TxWcbNumPerQueue = htole32(dma->maxNumTxWcb);
pCmd->NumTxQueues = htole32(dma->maxNumWCB);
pCmd->TotalRxWcb = htole32(1); /* XXX */
pCmd->RxPdWrPtr = htole32(dma->rxDescRead);
pCmd->Flags = htole32(SET_HW_SPEC_HOSTFORM_BEACON
#ifdef MWL_HOST_PS_SUPPORT
| SET_HW_SPEC_HOST_POWERSAVE
#endif
| SET_HW_SPEC_HOSTFORM_PROBERESP);
/* disable multi-bss operation for A1-A4 parts */
if (mh->mh_revs.mh_macRev < 5)
pCmd->Flags |= htole32(SET_HW_SPEC_DISABLEMBSS);
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_HW_SPEC);
if (retval == 0) {
if (pCmd->Flags & htole32(SET_HW_SPEC_DISABLEMBSS))
mh->mh_flags &= ~MHF_MBSS;
else
mh->mh_flags |= MHF_MBSS;
}
MWL_HAL_UNLOCK(mh);
return retval;
}
/*
* Retrieve statistics from the f/w.
* XXX should be in memory shared w/ driver
*/
int
mwl_hal_gethwstats(struct mwl_hal *mh0, struct mwl_hal_hwstats *stats)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_DS_802_11_GET_STAT *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_DS_802_11_GET_STAT,
HostCmd_CMD_802_11_GET_STAT);
retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_GET_STAT);
if (retval == 0) {
const uint32_t *sp = (const uint32_t *)&pCmd->TxRetrySuccesses;
uint32_t *dp = (uint32_t *)&stats->TxRetrySuccesses;
int i;
for (i = 0; i < sizeof(*stats)/sizeof(uint32_t); i++)
dp[i] = le32toh(sp[i]);
/*
* Update stats not returned by f/w but available
* through public registers. Note these registers
* are "clear on read" so we maintain cumulative data.
* XXX register defines
*/
mh->mh_RTSSuccesses += RD4(mh, 0xa834);
mh->mh_RTSFailures += RD4(mh, 0xa830);
mh->mh_RxDuplicateFrames += RD4(mh, 0xa84c);
mh->mh_FCSErrorCount += RD4(mh, 0xa840);
}
MWL_HAL_UNLOCK(mh);
stats->RTSSuccesses = mh->mh_RTSSuccesses;
stats->RTSFailures = mh->mh_RTSFailures;
stats->RxDuplicateFrames = mh->mh_RxDuplicateFrames;
stats->FCSErrorCount = mh->mh_FCSErrorCount;
return retval;
}
/*
* Set HT guard interval handling.
* Takes effect immediately.
*/
int
mwl_hal_sethtgi(struct mwl_hal_vap *vap, int GIType)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_FW_HT_GUARD_INTERVAL *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_FW_HT_GUARD_INTERVAL,
HostCmd_CMD_HT_GUARD_INTERVAL);
pCmd->Action = htole32(HostCmd_ACT_GEN_SET);
if (GIType == 0) {
pCmd->GIType = htole32(GI_TYPE_LONG);
} else if (GIType == 1) {
pCmd->GIType = htole32(GI_TYPE_LONG | GI_TYPE_SHORT);
} else {
pCmd->GIType = htole32(GI_TYPE_LONG);
}
retval = mwlExecuteCmd(mh, HostCmd_CMD_HT_GUARD_INTERVAL);
MWL_HAL_UNLOCK(mh);
return retval;
}
/*
* Configure radio.
* Takes effect immediately.
* XXX preamble installed after set fixed rate cmd
*/
int
mwl_hal_setradio(struct mwl_hal *mh0, int onoff, MWL_HAL_PREAMBLE preamble)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_DS_802_11_RADIO_CONTROL *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_DS_802_11_RADIO_CONTROL,
HostCmd_CMD_802_11_RADIO_CONTROL);
pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
if (onoff == 0)
pCmd->Control = 0;
else
pCmd->Control = htole16(preamble);
pCmd->RadioOn = htole16(onoff);
retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RADIO_CONTROL);
MWL_HAL_UNLOCK(mh);
return retval;
}
/*
* Configure antenna use.
* Takes effect immediately.
* XXX tx antenna setting ignored
* XXX rx antenna setting should always be 3 (for now)
*/
int
mwl_hal_setantenna(struct mwl_hal *mh0, MWL_HAL_ANTENNA dirSet, int ant)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_DS_802_11_RF_ANTENNA *pCmd;
int retval;
if (!(dirSet == WL_ANTENNATYPE_RX || dirSet == WL_ANTENNATYPE_TX))
return EINVAL;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_DS_802_11_RF_ANTENNA,
HostCmd_CMD_802_11_RF_ANTENNA);
pCmd->Action = htole16(dirSet);
if (ant == 0) /* default to all/both antennae */
ant = 3;
pCmd->AntennaMode = htole16(ant);
retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RF_ANTENNA);
MWL_HAL_UNLOCK(mh);
return retval;
}
/*
* Set packet size threshold for implicit use of RTS.
* Takes effect immediately.
* XXX packet length > threshold =>'s RTS
*/
int
mwl_hal_setrtsthreshold(struct mwl_hal_vap *vap, int threshold)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_DS_802_11_RTS_THSD *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_DS_802_11_RTS_THSD,
HostCmd_CMD_802_11_RTS_THSD);
pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
pCmd->Threshold = htole16(threshold);
retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RTS_THSD);
MWL_HAL_UNLOCK(mh);
return retval;
}
/*
* Enable sta-mode operation (disables beacon frame xmit).
*/
int
mwl_hal_setinframode(struct mwl_hal_vap *vap)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_FW_SET_INFRA_MODE *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_INFRA_MODE,
HostCmd_CMD_SET_INFRA_MODE);
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_INFRA_MODE);
MWL_HAL_UNLOCK(mh);
return retval;
}
/*
* Configure radar detection in support of 802.11h.
*/
int
mwl_hal_setradardetection(struct mwl_hal *mh0, MWL_HAL_RADAR action)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_802_11h_Detect_Radar *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_802_11h_Detect_Radar,
HostCmd_CMD_802_11H_DETECT_RADAR);
pCmd->CmdHdr.Length = htole16(sizeof(HostCmd_802_11h_Detect_Radar));
pCmd->Action = htole16(action);
if (mh->mh_regioncode == DOMAIN_CODE_ETSI_131)
pCmd->RadarTypeCode = htole16(131);
retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11H_DETECT_RADAR);
MWL_HAL_UNLOCK(mh);
return retval;
}
/*
* Convert public channel flags definition to a
* value suitable for feeding to the firmware.
* Note this includes byte swapping.
*/
static uint32_t
cvtChannelFlags(const MWL_HAL_CHANNEL *chan)
{
uint32_t w;
/*
* NB: f/w only understands FREQ_BAND_5GHZ, supplying the more
* precise band info causes it to lockup (sometimes).
*/
w = (chan->channelFlags.FreqBand == MWL_FREQ_BAND_2DOT4GHZ) ?
FREQ_BAND_2DOT4GHZ : FREQ_BAND_5GHZ;
switch (chan->channelFlags.ChnlWidth) {
case MWL_CH_10_MHz_WIDTH:
w |= CH_10_MHz_WIDTH;
break;
case MWL_CH_20_MHz_WIDTH:
w |= CH_20_MHz_WIDTH;
break;
case MWL_CH_40_MHz_WIDTH:
default:
w |= CH_40_MHz_WIDTH;
break;
}
switch (chan->channelFlags.ExtChnlOffset) {
case MWL_EXT_CH_NONE:
w |= EXT_CH_NONE;
break;
case MWL_EXT_CH_ABOVE_CTRL_CH:
w |= EXT_CH_ABOVE_CTRL_CH;
break;
case MWL_EXT_CH_BELOW_CTRL_CH:
w |= EXT_CH_BELOW_CTRL_CH;
break;
}
return htole32(w);
}
/*
* Start a channel switch announcement countdown. The IE
* in the beacon frame is allowed to go out and the firmware
* counts down and notifies the host when it's time to switch
* channels.
*/
int
mwl_hal_setchannelswitchie(struct mwl_hal *mh0,
const MWL_HAL_CHANNEL *nextchan, uint32_t mode, uint32_t count)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_SET_SWITCH_CHANNEL *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_SET_SWITCH_CHANNEL,
HostCmd_CMD_SET_SWITCH_CHANNEL);
pCmd->Next11hChannel = htole32(nextchan->channel);
pCmd->Mode = htole32(mode);
pCmd->InitialCount = htole32(count+1);
pCmd->ChannelFlags = cvtChannelFlags(nextchan);
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_SWITCH_CHANNEL);
MWL_HAL_UNLOCK(mh);
return retval;
}
/*
* Set the region code that selects the radar bin'ing agorithm.
*/
int
mwl_hal_setregioncode(struct mwl_hal *mh0, int regionCode)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_SET_REGIONCODE_INFO *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_SET_REGIONCODE_INFO,
HostCmd_CMD_SET_REGION_CODE);
/* XXX map pseudo-codes to fw codes */
switch (regionCode) {
case DOMAIN_CODE_ETSI_131:
pCmd->regionCode = htole16(DOMAIN_CODE_ETSI);
break;
default:
pCmd->regionCode = htole16(regionCode);
break;
}
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_REGION_CODE);
if (retval == 0)
mh->mh_regioncode = regionCode;
MWL_HAL_UNLOCK(mh);
return retval;
}
#define RATEVAL(r) ((r) &~ RATE_MCS)
#define RATETYPE(r) (((r) & RATE_MCS) ? HT_RATE_TYPE : LEGACY_RATE_TYPE)
int
mwl_hal_settxrate(struct mwl_hal_vap *vap, MWL_HAL_TXRATE_HANDLING handling,
const MWL_HAL_TXRATE *rate)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_FW_USE_FIXED_RATE *pCmd;
FIXED_RATE_ENTRY *fp;
int retval, i, n;
MWL_HAL_LOCK(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_FW_USE_FIXED_RATE,
HostCmd_CMD_SET_FIXED_RATE);
pCmd->MulticastRate = RATEVAL(rate->McastRate);
pCmd->MultiRateTxType = RATETYPE(rate->McastRate);
/* NB: no rate type field */
pCmd->ManagementRate = RATEVAL(rate->MgtRate);
memset(pCmd->FixedRateTable, 0, sizeof(pCmd->FixedRateTable));
if (handling == RATE_FIXED) {
pCmd->Action = htole32(HostCmd_ACT_GEN_SET);
pCmd->AllowRateDrop = htole32(FIXED_RATE_WITHOUT_AUTORATE_DROP);
fp = pCmd->FixedRateTable;
fp->FixedRate =
htole32(RATEVAL(rate->RateSeries[0].Rate));
fp->FixRateTypeFlags.FixRateType =
htole32(RATETYPE(rate->RateSeries[0].Rate));
pCmd->EntryCount = htole32(1);
} else if (handling == RATE_FIXED_DROP) {
pCmd->Action = htole32(HostCmd_ACT_GEN_SET);
pCmd->AllowRateDrop = htole32(FIXED_RATE_WITH_AUTO_RATE_DROP);
n = 0;
fp = pCmd->FixedRateTable;
for (i = 0; i < 4; i++) {
if (rate->RateSeries[0].TryCount == 0)
break;
fp->FixRateTypeFlags.FixRateType =
htole32(RATETYPE(rate->RateSeries[i].Rate));
fp->FixedRate =
htole32(RATEVAL(rate->RateSeries[i].Rate));
fp->FixRateTypeFlags.RetryCountValid =
htole32(RETRY_COUNT_VALID);
fp->RetryCount =
htole32(rate->RateSeries[i].TryCount-1);
n++;
}
pCmd->EntryCount = htole32(n);
} else
pCmd->Action = htole32(HostCmd_ACT_NOT_USE_FIXED_RATE);
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_FIXED_RATE);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_settxrate_auto(struct mwl_hal *mh0, const MWL_HAL_TXRATE *rate)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_FW_USE_FIXED_RATE *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_FW_USE_FIXED_RATE,
HostCmd_CMD_SET_FIXED_RATE);
pCmd->MulticastRate = RATEVAL(rate->McastRate);
pCmd->MultiRateTxType = RATETYPE(rate->McastRate);
/* NB: no rate type field */
pCmd->ManagementRate = RATEVAL(rate->MgtRate);
memset(pCmd->FixedRateTable, 0, sizeof(pCmd->FixedRateTable));
pCmd->Action = htole32(HostCmd_ACT_NOT_USE_FIXED_RATE);
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_FIXED_RATE);
MWL_HAL_UNLOCK(mh);
return retval;
}
#undef RATEVAL
#undef RATETYPE
int
mwl_hal_setslottime(struct mwl_hal *mh0, int usecs)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_FW_SET_SLOT *pCmd;
int retval;
if (usecs != 9 && usecs != 20)
return EINVAL;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_FW_SET_SLOT,
HostCmd_CMD_802_11_SET_SLOT);
pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
pCmd->Slot = (usecs == 9 ? 1 : 0);
retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_SET_SLOT);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_adjusttxpower(struct mwl_hal *mh0, uint32_t level)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_DS_802_11_RF_TX_POWER *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_DS_802_11_RF_TX_POWER,
HostCmd_CMD_802_11_RF_TX_POWER);
pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
if (level < 30) {
pCmd->SupportTxPowerLevel = htole16(WL_TX_POWERLEVEL_LOW);
} else if (level >= 30 && level < 60) {
pCmd->SupportTxPowerLevel = htole16(WL_TX_POWERLEVEL_MEDIUM);
} else {
pCmd->SupportTxPowerLevel = htole16(WL_TX_POWERLEVEL_HIGH);
}
retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RF_TX_POWER);
MWL_HAL_UNLOCK(mh);
return retval;
}
static const struct mwl_hal_channel *
findchannel(const struct mwl_hal_priv *mh, const MWL_HAL_CHANNEL *c)
{
const struct mwl_hal_channel *hc;
const MWL_HAL_CHANNELINFO *ci;
int chan = c->channel, i;
if (c->channelFlags.FreqBand == MWL_FREQ_BAND_2DOT4GHZ) {
i = chan - 1;
if (c->channelFlags.ChnlWidth == MWL_CH_40_MHz_WIDTH) {
ci = &mh->mh_40M;
if (c->channelFlags.ExtChnlOffset == MWL_EXT_CH_BELOW_CTRL_CH)
i -= 4;
} else
ci = &mh->mh_20M;
/* 2.4G channel table is directly indexed */
hc = ((unsigned)i < ci->nchannels) ? &ci->channels[i] : NULL;
} else if (c->channelFlags.FreqBand == MWL_FREQ_BAND_5GHZ) {
if (c->channelFlags.ChnlWidth == MWL_CH_40_MHz_WIDTH) {
ci = &mh->mh_40M_5G;
if (c->channelFlags.ExtChnlOffset == MWL_EXT_CH_BELOW_CTRL_CH)
chan -= 4;
} else
ci = &mh->mh_20M_5G;
/* 5GHz channel table is sparse and must be searched */
for (i = 0; i < ci->nchannels; i++)
if (ci->channels[i].ieee == chan)
break;
hc = (i < ci->nchannels) ? &ci->channels[i] : NULL;
} else
hc = NULL;
return hc;
}
int
mwl_hal_settxpower(struct mwl_hal *mh0, const MWL_HAL_CHANNEL *c, uint8_t maxtxpow)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_DS_802_11_RF_TX_POWER *pCmd;
const struct mwl_hal_channel *hc;
int i, retval;
hc = findchannel(mh, c);
if (hc == NULL) {
/* XXX temp while testing */
device_printf(mh->mh_dev,
"%s: no cal data for channel %u band %u width %u ext %u\n",
__func__, c->channel, c->channelFlags.FreqBand,
c->channelFlags.ChnlWidth, c->channelFlags.ExtChnlOffset);
return EINVAL;
}
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_DS_802_11_RF_TX_POWER,
HostCmd_CMD_802_11_RF_TX_POWER);
pCmd->Action = htole16(HostCmd_ACT_GEN_SET_LIST);
i = 0;
/* NB: 5Ghz cal data have the channel # in [0]; don't truncate */
if (c->channelFlags.FreqBand == MWL_FREQ_BAND_5GHZ)
pCmd->PowerLevelList[i++] = htole16(hc->targetPowers[0]);
for (; i < 4; i++) {
uint16_t pow = hc->targetPowers[i];
if (pow > maxtxpow)
pow = maxtxpow;
pCmd->PowerLevelList[i] = htole16(pow);
}
retval = mwlExecuteCmd(mh, HostCmd_CMD_802_11_RF_TX_POWER);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_getchannelinfo(struct mwl_hal *mh0, int band, int chw,
const MWL_HAL_CHANNELINFO **ci)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
switch (band) {
case MWL_FREQ_BAND_2DOT4GHZ:
*ci = (chw == MWL_CH_20_MHz_WIDTH) ? &mh->mh_20M : &mh->mh_40M;
break;
case MWL_FREQ_BAND_5GHZ:
*ci = (chw == MWL_CH_20_MHz_WIDTH) ?
&mh->mh_20M_5G : &mh->mh_40M_5G;
break;
default:
return EINVAL;
}
return ((*ci)->freqLow == (*ci)->freqHigh) ? EINVAL : 0;
}
int
mwl_hal_setmcast(struct mwl_hal *mh0, int nmc, const uint8_t macs[])
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_DS_MAC_MULTICAST_ADR *pCmd;
int retval;
if (nmc > MWL_HAL_MCAST_MAX)
return EINVAL;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_DS_MAC_MULTICAST_ADR,
HostCmd_CMD_MAC_MULTICAST_ADR);
memcpy(pCmd->MACList, macs, nmc*IEEE80211_ADDR_LEN);
pCmd->NumOfAdrs = htole16(nmc);
pCmd->Action = htole16(0xffff);
retval = mwlExecuteCmd(mh, HostCmd_CMD_MAC_MULTICAST_ADR);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_keyset(struct mwl_hal_vap *vap, const MWL_HAL_KEYVAL *kv,
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY,
HostCmd_CMD_UPDATE_ENCRYPTION);
if (kv->keyFlags & (KEY_FLAG_TXGROUPKEY|KEY_FLAG_RXGROUPKEY))
pCmd->ActionType = htole32(EncrActionTypeSetGroupKey);
else
pCmd->ActionType = htole32(EncrActionTypeSetKey);
pCmd->KeyParam.Length = htole16(sizeof(pCmd->KeyParam));
pCmd->KeyParam.KeyTypeId = htole16(kv->keyTypeId);
pCmd->KeyParam.KeyInfo = htole32(kv->keyFlags);
pCmd->KeyParam.KeyIndex = htole32(kv->keyIndex);
/* NB: includes TKIP MIC keys */
memcpy(&pCmd->KeyParam.Key, &kv->key, kv->keyLen);
switch (kv->keyTypeId) {
case KEY_TYPE_ID_WEP:
pCmd->KeyParam.KeyLen = htole16(kv->keyLen);
break;
case KEY_TYPE_ID_TKIP:
pCmd->KeyParam.KeyLen = htole16(sizeof(TKIP_TYPE_KEY));
pCmd->KeyParam.Key.TkipKey.TkipRsc.low =
htole16(kv->key.tkip.rsc.low);
pCmd->KeyParam.Key.TkipKey.TkipRsc.high =
htole32(kv->key.tkip.rsc.high);
pCmd->KeyParam.Key.TkipKey.TkipTsc.low =
htole16(kv->key.tkip.tsc.low);
pCmd->KeyParam.Key.TkipKey.TkipTsc.high =
htole32(kv->key.tkip.tsc.high);
break;
case KEY_TYPE_ID_AES:
pCmd->KeyParam.KeyLen = htole16(sizeof(AES_TYPE_KEY));
break;
}
#ifdef MWL_MBSS_SUPPORT
IEEE80211_ADDR_COPY(pCmd->KeyParam.Macaddr, mac);
#else
IEEE80211_ADDR_COPY(pCmd->Macaddr, mac);
#endif
retval = mwlExecuteCmd(mh, HostCmd_CMD_UPDATE_ENCRYPTION);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_keyreset(struct mwl_hal_vap *vap, const MWL_HAL_KEYVAL *kv, const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_FW_UPDATE_ENCRYPTION_SET_KEY,
HostCmd_CMD_UPDATE_ENCRYPTION);
pCmd->ActionType = htole16(EncrActionTypeRemoveKey);
pCmd->KeyParam.Length = htole16(sizeof(pCmd->KeyParam));
pCmd->KeyParam.KeyTypeId = htole16(kv->keyTypeId);
pCmd->KeyParam.KeyInfo = htole32(kv->keyFlags);
pCmd->KeyParam.KeyIndex = htole32(kv->keyIndex);
#ifdef MWL_MBSS_SUPPORT
IEEE80211_ADDR_COPY(pCmd->KeyParam.Macaddr, mac);
#else
IEEE80211_ADDR_COPY(pCmd->Macaddr, mac);
#endif
retval = mwlExecuteCmd(mh, HostCmd_CMD_UPDATE_ENCRYPTION);
MWL_HAL_UNLOCK(mh);
return retval;
}
static int
mwl_hal_setmac_locked(struct mwl_hal_vap *vap,
const uint8_t addr[IEEE80211_ADDR_LEN])
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_DS_SET_MAC *pCmd;
_VCMD_SETUP(vap, pCmd, HostCmd_DS_SET_MAC, HostCmd_CMD_SET_MAC_ADDR);
IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], addr);
#ifdef MWL_MBSS_SUPPORT
pCmd->MacType = vap->bss_type; /* NB: already byte swapped */
IEEE80211_ADDR_COPY(vap->mac, addr); /* XXX do only if success */
#endif
return mwlExecuteCmd(mh, HostCmd_CMD_SET_MAC_ADDR);
}
int
mwl_hal_setmac(struct mwl_hal_vap *vap, const uint8_t addr[IEEE80211_ADDR_LEN])
{
struct mwl_hal_priv *mh = MWLVAP(vap);
int retval;
MWL_HAL_LOCK(mh);
retval = mwl_hal_setmac_locked(vap, addr);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_setbeacon(struct mwl_hal_vap *vap, const void *frame, size_t frameLen)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_DS_SET_BEACON *pCmd;
int retval;
/* XXX verify frameLen fits */
MWL_HAL_LOCK(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_DS_SET_BEACON, HostCmd_CMD_SET_BEACON);
/* XXX override _VCMD_SETUP */
pCmd->CmdHdr.Length = htole16(sizeof(HostCmd_DS_SET_BEACON)-1+frameLen);
pCmd->FrmBodyLen = htole16(frameLen);
memcpy(pCmd->FrmBody, frame, frameLen);
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_BEACON);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_setpowersave_bss(struct mwl_hal_vap *vap, uint8_t nsta)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_SET_POWERSAVESTATION *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_SET_POWERSAVESTATION,
HostCmd_CMD_SET_POWERSAVESTATION);
pCmd->NumberOfPowersave = nsta;
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_POWERSAVESTATION);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_setpowersave_sta(struct mwl_hal_vap *vap, uint16_t aid, int ena)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_SET_TIM *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_SET_TIM, HostCmd_CMD_SET_TIM);
pCmd->Aid = htole16(aid);
pCmd->Set = htole32(ena);
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_TIM);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_setassocid(struct mwl_hal_vap *vap,
const uint8_t bssId[IEEE80211_ADDR_LEN], uint16_t assocId)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_FW_SET_AID *pCmd = (HostCmd_FW_SET_AID *) &mh->mh_cmdbuf[0];
int retval;
MWL_HAL_LOCK(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_AID, HostCmd_CMD_SET_AID);
pCmd->AssocID = htole16(assocId);
IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], bssId);
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_AID);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_setchannel(struct mwl_hal *mh0, const MWL_HAL_CHANNEL *chan)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_FW_SET_RF_CHANNEL *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_FW_SET_RF_CHANNEL, HostCmd_CMD_SET_RF_CHANNEL);
pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
pCmd->CurrentChannel = chan->channel;
pCmd->ChannelFlags = cvtChannelFlags(chan); /* NB: byte-swapped */
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_RF_CHANNEL);
MWL_HAL_UNLOCK(mh);
return retval;
}
static int
bastream_check_available(struct mwl_hal_vap *vap, int qid,
const uint8_t Macaddr[IEEE80211_ADDR_LEN],
uint8_t Tid, uint8_t ParamInfo)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_FW_BASTREAM *pCmd;
int retval;
MWL_HAL_LOCK_ASSERT(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_FW_BASTREAM, HostCmd_CMD_BASTREAM);
pCmd->ActionType = htole32(BaCheckCreateStream);
pCmd->BaInfo.CreateParams.BarThrs = htole32(63);
pCmd->BaInfo.CreateParams.WindowSize = htole32(64);
pCmd->BaInfo.CreateParams.IdleThrs = htole32(0x22000);
IEEE80211_ADDR_COPY(&pCmd->BaInfo.CreateParams.PeerMacAddr[0], Macaddr);
pCmd->BaInfo.CreateParams.DialogToken = 10;
pCmd->BaInfo.CreateParams.Tid = Tid;
pCmd->BaInfo.CreateParams.QueueId = qid;
pCmd->BaInfo.CreateParams.ParamInfo = (uint8_t) ParamInfo;
#if 0
cvtBAFlags(&pCmd->BaInfo.CreateParams.Flags, sp->ba_policy, 0);
#else
pCmd->BaInfo.CreateParams.Flags =
htole32(BASTREAM_FLAG_IMMEDIATE_TYPE)
| htole32(BASTREAM_FLAG_DIRECTION_UPSTREAM)
;
#endif
retval = mwlExecuteCmd(mh, HostCmd_CMD_BASTREAM);
if (retval == 0) {
/*
* NB: BA stream create may fail when the stream is
* h/w backed under some (as yet not understood) conditions.
* Check the result code to catch this.
*/
if (le16toh(pCmd->CmdHdr.Result) != HostCmd_RESULT_OK)
retval = EIO;
}
return retval;
}
const MWL_HAL_BASTREAM *
mwl_hal_bastream_alloc(struct mwl_hal_vap *vap, int ba_policy,
const uint8_t Macaddr[IEEE80211_ADDR_LEN],
uint8_t Tid, uint8_t ParamInfo, void *a1, void *a2)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
struct mwl_hal_bastream *sp;
int s;
MWL_HAL_LOCK(mh);
if (mh->mh_bastreams == 0) {
/* no streams available */
MWL_HAL_UNLOCK(mh);
return NULL;
}
for (s = 0; (mh->mh_bastreams & (1<<s)) == 0; s++)
;
if (bastream_check_available(vap, s, Macaddr, Tid, ParamInfo)) {
MWL_HAL_UNLOCK(mh);
return NULL;
}
sp = &mh->mh_streams[s];
mh->mh_bastreams &= ~(1<<s);
sp->public.data[0] = a1;
sp->public.data[1] = a2;
IEEE80211_ADDR_COPY(sp->macaddr, Macaddr);
sp->tid = Tid;
sp->paraminfo = ParamInfo;
sp->setup = 0;
sp->ba_policy = ba_policy;
MWL_HAL_UNLOCK(mh);
return &sp->public;
}
const MWL_HAL_BASTREAM *
mwl_hal_bastream_lookup(struct mwl_hal *mh0, int s)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
if (!(0 <= s && s < MWL_BASTREAMS_MAX))
return NULL;
if (mh->mh_bastreams & (1<<s))
return NULL;
return &mh->mh_streams[s].public;
}
#ifndef __DECONST
#define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
#endif
int
mwl_hal_bastream_create(struct mwl_hal_vap *vap,
const MWL_HAL_BASTREAM *s, int BarThrs, int WindowSize, uint16_t seqno)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
struct mwl_hal_bastream *sp = __DECONST(struct mwl_hal_bastream *, s);
HostCmd_FW_BASTREAM *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_FW_BASTREAM, HostCmd_CMD_BASTREAM);
pCmd->ActionType = htole32(BaCreateStream);
pCmd->BaInfo.CreateParams.BarThrs = htole32(BarThrs);
pCmd->BaInfo.CreateParams.WindowSize = htole32(WindowSize);
pCmd->BaInfo.CreateParams.IdleThrs = htole32(0x22000);
IEEE80211_ADDR_COPY(&pCmd->BaInfo.CreateParams.PeerMacAddr[0],
sp->macaddr);
/* XXX proxy STA */
memset(&pCmd->BaInfo.CreateParams.StaSrcMacAddr, 0, IEEE80211_ADDR_LEN);
#if 0
pCmd->BaInfo.CreateParams.DialogToken = DialogToken;
#else
pCmd->BaInfo.CreateParams.DialogToken = 10;
#endif
pCmd->BaInfo.CreateParams.Tid = sp->tid;
pCmd->BaInfo.CreateParams.QueueId = sp->stream;
pCmd->BaInfo.CreateParams.ParamInfo = sp->paraminfo;
/* NB: ResetSeqNo known to be zero */
pCmd->BaInfo.CreateParams.StartSeqNo = htole16(seqno);
#if 0
cvtBAFlags(&pCmd->BaInfo.CreateParams.Flags, sp->ba_policy, 0);
#else
pCmd->BaInfo.CreateParams.Flags =
htole32(BASTREAM_FLAG_IMMEDIATE_TYPE)
| htole32(BASTREAM_FLAG_DIRECTION_UPSTREAM)
;
#endif
retval = mwlExecuteCmd(mh, HostCmd_CMD_BASTREAM);
if (retval == 0) {
/*
* NB: BA stream create may fail when the stream is
* h/w backed under some (as yet not understood) conditions.
* Check the result code to catch this.
*/
if (le16toh(pCmd->CmdHdr.Result) != HostCmd_RESULT_OK)
retval = EIO;
else
sp->setup = 1;
}
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_bastream_destroy(struct mwl_hal *mh0, const MWL_HAL_BASTREAM *s)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
struct mwl_hal_bastream *sp = __DECONST(struct mwl_hal_bastream *, s);
HostCmd_FW_BASTREAM *pCmd;
int retval;
if (sp->stream >= MWL_BASTREAMS_MAX) {
/* XXX */
return EINVAL;
}
MWL_HAL_LOCK(mh);
if (sp->setup) {
_CMD_SETUP(pCmd, HostCmd_FW_BASTREAM, HostCmd_CMD_BASTREAM);
pCmd->ActionType = htole32(BaDestroyStream);
pCmd->BaInfo.DestroyParams.FwBaContext.Context =
htole32(sp->stream);
retval = mwlExecuteCmd(mh, HostCmd_CMD_BASTREAM);
} else
retval = 0;
/* NB: always reclaim stream */
mh->mh_bastreams |= 1<<sp->stream;
sp->public.data[0] = NULL;
sp->public.data[1] = NULL;
sp->setup = 0;
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_bastream_get_seqno(struct mwl_hal *mh0,
const MWL_HAL_BASTREAM *s, const uint8_t Macaddr[IEEE80211_ADDR_LEN],
uint16_t *pseqno)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
struct mwl_hal_bastream *sp = __DECONST(struct mwl_hal_bastream *, s);
HostCmd_GET_SEQNO *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_GET_SEQNO, HostCmd_CMD_GET_SEQNO);
IEEE80211_ADDR_COPY(pCmd->MacAddr, Macaddr);
pCmd->TID = sp->tid;
retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_SEQNO);
if (retval == 0)
*pseqno = le16toh(pCmd->SeqNo);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_getwatchdogbitmap(struct mwl_hal *mh0, uint8_t bitmap[1])
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_FW_GET_WATCHDOG_BITMAP *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_FW_GET_WATCHDOG_BITMAP,
HostCmd_CMD_GET_WATCHDOG_BITMAP);
retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_WATCHDOG_BITMAP);
if (retval == 0) {
bitmap[0] = pCmd->Watchdogbitmap;
/* fw returns qid, map it to BA stream */
if (bitmap[0] < MWL_BAQID_MAX)
bitmap[0] = qid2ba[bitmap[0]];
}
MWL_HAL_UNLOCK(mh);
return retval;
}
/*
* Configure aggressive Ampdu rate mode.
*/
int
mwl_hal_setaggampduratemode(struct mwl_hal *mh0, int mode, int threshold)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_FW_AMPDU_RETRY_RATEDROP_MODE *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_FW_AMPDU_RETRY_RATEDROP_MODE,
HostCmd_CMD_AMPDU_RETRY_RATEDROP_MODE);
pCmd->Action = htole16(1);
pCmd->Option = htole32(mode);
pCmd->Threshold = htole32(threshold);
retval = mwlExecuteCmd(mh, HostCmd_CMD_AMPDU_RETRY_RATEDROP_MODE);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_getaggampduratemode(struct mwl_hal *mh0, int *mode, int *threshold)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_FW_AMPDU_RETRY_RATEDROP_MODE *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_FW_AMPDU_RETRY_RATEDROP_MODE,
HostCmd_CMD_AMPDU_RETRY_RATEDROP_MODE);
pCmd->Action = htole16(0);
retval = mwlExecuteCmd(mh, HostCmd_CMD_AMPDU_RETRY_RATEDROP_MODE);
MWL_HAL_UNLOCK(mh);
*mode = le32toh(pCmd->Option);
*threshold = le32toh(pCmd->Threshold);
return retval;
}
/*
* Set CFEND status Enable/Disable
*/
int
mwl_hal_setcfend(struct mwl_hal *mh0, int ena)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_CFEND_ENABLE *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_CFEND_ENABLE,
HostCmd_CMD_CFEND_ENABLE);
pCmd->Enable = htole32(ena);
retval = mwlExecuteCmd(mh, HostCmd_CMD_CFEND_ENABLE);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_setdwds(struct mwl_hal *mh0, int ena)
{
HostCmd_DWDS_ENABLE *pCmd;
struct mwl_hal_priv *mh = MWLPRIV(mh0);
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_DWDS_ENABLE, HostCmd_CMD_DWDS_ENABLE);
pCmd->Enable = htole32(ena);
retval = mwlExecuteCmd(mh, HostCmd_CMD_DWDS_ENABLE);
MWL_HAL_UNLOCK(mh);
return retval;
}
static void
cvtPeerInfo(PeerInfo_t *to, const MWL_HAL_PEERINFO *from)
{
to->LegacyRateBitMap = htole32(from->LegacyRateBitMap);
to->HTRateBitMap = htole32(from->HTRateBitMap);
to->CapInfo = htole16(from->CapInfo);
to->HTCapabilitiesInfo = htole16(from->HTCapabilitiesInfo);
to->MacHTParamInfo = from->MacHTParamInfo;
to->AddHtInfo.ControlChan = from->AddHtInfo.ControlChan;
to->AddHtInfo.AddChan = from->AddHtInfo.AddChan;
to->AddHtInfo.OpMode = htole16(from->AddHtInfo.OpMode);
to->AddHtInfo.stbc = htole16(from->AddHtInfo.stbc);
}
/* XXX station id must be in [0..63] */
int
mwl_hal_newstation(struct mwl_hal_vap *vap,
const uint8_t addr[IEEE80211_ADDR_LEN], uint16_t aid, uint16_t sid,
const MWL_HAL_PEERINFO *peer, int isQosSta, int wmeInfo)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_FW_SET_NEW_STN *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_NEW_STN, HostCmd_CMD_SET_NEW_STN);
pCmd->AID = htole16(aid);
pCmd->StnId = htole16(sid);
pCmd->Action = htole16(0); /* SET */
if (peer != NULL) {
/* NB: must fix up byte order */
cvtPeerInfo(&pCmd->PeerInfo, peer);
}
IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], addr);
pCmd->Qosinfo = wmeInfo;
pCmd->isQosSta = (isQosSta != 0);
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_NEW_STN);
if (retval == 0 && IEEE80211_ADDR_EQ(vap->mac, addr))
vap->flags |= MVF_STATION;
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_delstation(struct mwl_hal_vap *vap,
const uint8_t addr[IEEE80211_ADDR_LEN])
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_FW_SET_NEW_STN *pCmd;
int retval, islocal;
MWL_HAL_LOCK(mh);
islocal = IEEE80211_ADDR_EQ(vap->mac, addr);
if (!islocal || (vap->flags & MVF_STATION)) {
_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_NEW_STN,
HostCmd_CMD_SET_NEW_STN);
pCmd->Action = htole16(2); /* REMOVE */
IEEE80211_ADDR_COPY(&pCmd->MacAddr[0], addr);
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_NEW_STN);
if (islocal)
vap->flags &= ~MVF_STATION;
} else
retval = 0;
MWL_HAL_UNLOCK(mh);
return retval;
}
/*
* Prod the firmware to age packets on station power
* save queues and reap frames on the tx aggregation q's.
*/
int
mwl_hal_setkeepalive(struct mwl_hal *mh0)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_FW_SET_KEEP_ALIVE_TICK *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_FW_SET_KEEP_ALIVE_TICK,
HostCmd_CMD_SET_KEEP_ALIVE);
/*
* NB: tick must be 0 to prod the f/w;
* a non-zero value is a noop.
*/
pCmd->tick = 0;
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_KEEP_ALIVE);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_setapmode(struct mwl_hal_vap *vap, MWL_HAL_APMODE ApMode)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_FW_SET_APMODE *pCmd;
int retval;
/* XXX validate ApMode? */
MWL_HAL_LOCK(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_APMODE, HostCmd_CMD_SET_APMODE);
pCmd->ApMode = ApMode;
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_APMODE);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_stop(struct mwl_hal_vap *vap)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_DS_BSS_START *pCmd;
int retval;
MWL_HAL_LOCK(mh);
if (vap->flags & MVF_RUNNING) {
_VCMD_SETUP(vap, pCmd, HostCmd_DS_BSS_START,
HostCmd_CMD_BSS_START);
pCmd->Enable = htole32(HostCmd_ACT_GEN_OFF);
retval = mwlExecuteCmd(mh, HostCmd_CMD_BSS_START);
} else
retval = 0;
/* NB: mark !running regardless */
vap->flags &= ~MVF_RUNNING;
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_start(struct mwl_hal_vap *vap)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_DS_BSS_START *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_DS_BSS_START, HostCmd_CMD_BSS_START);
pCmd->Enable = htole32(HostCmd_ACT_GEN_ON);
retval = mwlExecuteCmd(mh, HostCmd_CMD_BSS_START);
if (retval == 0)
vap->flags |= MVF_RUNNING;
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_setgprot(struct mwl_hal *mh0, int prot)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_FW_SET_G_PROTECT_FLAG *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_FW_SET_G_PROTECT_FLAG,
HostCmd_CMD_SET_G_PROTECT_FLAG);
pCmd->GProtectFlag = htole32(prot);
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_G_PROTECT_FLAG);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_setwmm(struct mwl_hal *mh0, int onoff)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_FW_SetWMMMode *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_FW_SetWMMMode,
HostCmd_CMD_SET_WMM_MODE);
pCmd->Action = htole16(onoff);
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_WMM_MODE);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_setedcaparams(struct mwl_hal *mh0, uint8_t qnum,
uint32_t CWmin, uint32_t CWmax, uint8_t AIFSN, uint16_t TXOPLimit)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_FW_SET_EDCA_PARAMS *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_FW_SET_EDCA_PARAMS,
HostCmd_CMD_SET_EDCA_PARAMS);
/*
* NB: CWmin and CWmax are always set.
* TxOpLimit is set if bit 0x2 is marked in Action
* AIFSN is set if bit 0x4 is marked in Action
*/
pCmd->Action = htole16(0xffff); /* NB: set everything */
pCmd->TxOP = htole16(TXOPLimit);
pCmd->CWMax = htole32(CWmax);
pCmd->CWMin = htole32(CWmin);
pCmd->AIFSN = AIFSN;
pCmd->TxQNum = qnum; /* XXX check */
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_EDCA_PARAMS);
MWL_HAL_UNLOCK(mh);
return retval;
}
/* XXX 0 = indoor, 1 = outdoor */
int
mwl_hal_setrateadaptmode(struct mwl_hal *mh0, uint16_t mode)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_DS_SET_RATE_ADAPT_MODE *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_DS_SET_RATE_ADAPT_MODE,
HostCmd_CMD_SET_RATE_ADAPT_MODE);
pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
pCmd->RateAdaptMode = htole16(mode);
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_RATE_ADAPT_MODE);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_setcsmode(struct mwl_hal *mh0, MWL_HAL_CSMODE csmode)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_DS_SET_LINKADAPT_CS_MODE *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_DS_SET_LINKADAPT_CS_MODE,
HostCmd_CMD_SET_LINKADAPT_CS_MODE);
pCmd->Action = htole16(HostCmd_ACT_GEN_SET);
pCmd->CSMode = htole16(csmode);
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_LINKADAPT_CS_MODE);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_setnprot(struct mwl_hal_vap *vap, MWL_HAL_HTPROTECT mode)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_FW_SET_N_PROTECT_FLAG *pCmd;
int retval;
/* XXX validate mode */
MWL_HAL_LOCK(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_N_PROTECT_FLAG,
HostCmd_CMD_SET_N_PROTECT_FLAG);
pCmd->NProtectFlag = htole32(mode);
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_N_PROTECT_FLAG);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_setnprotmode(struct mwl_hal_vap *vap, uint8_t mode)
{
struct mwl_hal_priv *mh = MWLVAP(vap);
HostCmd_FW_SET_N_PROTECT_OPMODE *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_VCMD_SETUP(vap, pCmd, HostCmd_FW_SET_N_PROTECT_OPMODE,
HostCmd_CMD_SET_N_PROTECT_OPMODE);
pCmd->NProtectOpMode = mode;
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_N_PROTECT_OPMODE);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_setoptimizationlevel(struct mwl_hal *mh0, int level)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_FW_SET_OPTIMIZATION_LEVEL *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_FW_SET_OPTIMIZATION_LEVEL,
HostCmd_CMD_SET_OPTIMIZATION_LEVEL);
pCmd->OptLevel = level;
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_OPTIMIZATION_LEVEL);
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_setmimops(struct mwl_hal *mh0, const uint8_t addr[IEEE80211_ADDR_LEN],
uint8_t enable, uint8_t mode)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_FW_SET_MIMOPSHT *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_FW_SET_MIMOPSHT, HostCmd_CMD_SET_MIMOPSHT);
IEEE80211_ADDR_COPY(pCmd->Addr, addr);
pCmd->Enable = enable;
pCmd->Mode = mode;
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_MIMOPSHT);
MWL_HAL_UNLOCK(mh);
return retval;
}
static int
mwlGetCalTable(struct mwl_hal_priv *mh, uint8_t annex, uint8_t index)
{
HostCmd_FW_GET_CALTABLE *pCmd;
int retval;
MWL_HAL_LOCK_ASSERT(mh);
_CMD_SETUP(pCmd, HostCmd_FW_GET_CALTABLE, HostCmd_CMD_GET_CALTABLE);
pCmd->annex = annex;
pCmd->index = index;
memset(pCmd->calTbl, 0, sizeof(pCmd->calTbl));
retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_CALTABLE);
if (retval == 0 &&
pCmd->calTbl[0] != annex && annex != 0 && annex != 255)
retval = EIO;
return retval;
}
/*
* Calculate the max tx power from the channel's cal data.
*/
static void
setmaxtxpow(struct mwl_hal_channel *hc, int i, int maxix)
{
hc->maxTxPow = hc->targetPowers[i];
for (i++; i < maxix; i++)
if (hc->targetPowers[i] > hc->maxTxPow)
hc->maxTxPow = hc->targetPowers[i];
}
/*
* Construct channel info for 5GHz channels from cal data.
*/
static void
get5Ghz(MWL_HAL_CHANNELINFO *ci, const uint8_t table[], int len)
{
int i, j, f, l, h;
l = 32000;
h = 0;
j = 0;
for (i = 0; i < len; i += 4) {
struct mwl_hal_channel *hc;
if (table[i] == 0)
continue;
f = 5000 + 5*table[i];
if (f < l)
l = f;
if (f > h)
h = f;
hc = &ci->channels[j];
hc->freq = f;
hc->ieee = table[i];
memcpy(hc->targetPowers, &table[i], 4);
setmaxtxpow(hc, 1, 4); /* NB: col 1 is the freq, skip*/
j++;
}
ci->nchannels = j;
ci->freqLow = (l == 32000) ? 0 : l;
ci->freqHigh = h;
}
static uint16_t
ieee2mhz(int chan)
{
if (chan == 14)
return 2484;
if (chan < 14)
return 2407 + chan*5;
return 2512 + (chan-15)*20;
}
/*
* Construct channel info for 2.4GHz channels from cal data.
*/
static void
get2Ghz(MWL_HAL_CHANNELINFO *ci, const uint8_t table[], int len)
{
int i, j;
j = 0;
for (i = 0; i < len; i += 4) {
struct mwl_hal_channel *hc = &ci->channels[j];
hc->ieee = 1+j;
hc->freq = ieee2mhz(1+j);
memcpy(hc->targetPowers, &table[i], 4);
setmaxtxpow(hc, 0, 4);
j++;
}
ci->nchannels = j;
ci->freqLow = ieee2mhz(1);
ci->freqHigh = ieee2mhz(j);
}
#undef DUMPCALDATA
#ifdef DUMPCALDATA
static void
dumpcaldata(const char *name, const uint8_t *table, int n)
{
int i;
printf("\n%s:\n", name);
for (i = 0; i < n; i += 4)
printf("[%2d] %3d %3d %3d %3d\n", i/4, table[i+0], table[i+1], table[i+2], table[i+3]);
}
#endif
static int
mwlGetPwrCalTable(struct mwl_hal_priv *mh)
{
const uint8_t *data;
MWL_HAL_CHANNELINFO *ci;
int len;
MWL_HAL_LOCK(mh);
/* NB: we hold the lock so it's ok to use cmdbuf */
data = ((const HostCmd_FW_GET_CALTABLE *) mh->mh_cmdbuf)->calTbl;
if (mwlGetCalTable(mh, 33, 0) == 0) {
len = (data[2] | (data[3] << 8)) - 12;
if (len > PWTAGETRATETABLE20M)
len = PWTAGETRATETABLE20M;
#ifdef DUMPCALDATA
dumpcaldata("2.4G 20M", &data[12], len);/*XXX*/
#endif
get2Ghz(&mh->mh_20M, &data[12], len);
}
if (mwlGetCalTable(mh, 34, 0) == 0) {
len = (data[2] | (data[3] << 8)) - 12;
if (len > PWTAGETRATETABLE40M)
len = PWTAGETRATETABLE40M;
#ifdef DUMPCALDATA
dumpcaldata("2.4G 40M", &data[12], len);/*XXX*/
#endif
ci = &mh->mh_40M;
get2Ghz(ci, &data[12], len);
}
if (mwlGetCalTable(mh, 35, 0) == 0) {
len = (data[2] | (data[3] << 8)) - 20;
if (len > PWTAGETRATETABLE20M_5G)
len = PWTAGETRATETABLE20M_5G;
#ifdef DUMPCALDATA
dumpcaldata("5G 20M", &data[20], len);/*XXX*/
#endif
get5Ghz(&mh->mh_20M_5G, &data[20], len);
}
if (mwlGetCalTable(mh, 36, 0) == 0) {
len = (data[2] | (data[3] << 8)) - 20;
if (len > PWTAGETRATETABLE40M_5G)
len = PWTAGETRATETABLE40M_5G;
#ifdef DUMPCALDATA
dumpcaldata("5G 40M", &data[20], len);/*XXX*/
#endif
ci = &mh->mh_40M_5G;
get5Ghz(ci, &data[20], len);
}
mh->mh_flags |= MHF_CALDATA;
MWL_HAL_UNLOCK(mh);
return 0;
}
int
mwl_hal_getregioncode(struct mwl_hal *mh0, uint8_t *countryCode)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
int retval;
MWL_HAL_LOCK(mh);
retval = mwlGetCalTable(mh, 0, 0);
if (retval == 0) {
const HostCmd_FW_GET_CALTABLE *pCmd =
(const HostCmd_FW_GET_CALTABLE *) mh->mh_cmdbuf;
*countryCode = pCmd->calTbl[16];
}
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_setpromisc(struct mwl_hal *mh0, int ena)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
uint32_t v;
MWL_HAL_LOCK(mh);
v = RD4(mh, MACREG_REG_PROMISCUOUS);
WR4(mh, MACREG_REG_PROMISCUOUS, ena ? v | 1 : v &~ 1);
MWL_HAL_UNLOCK(mh);
return 0;
}
int
mwl_hal_getpromisc(struct mwl_hal *mh0)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
uint32_t v;
MWL_HAL_LOCK(mh);
v = RD4(mh, MACREG_REG_PROMISCUOUS);
MWL_HAL_UNLOCK(mh);
return (v & 1) != 0;
}
int
mwl_hal_GetBeacon(struct mwl_hal *mh0, uint8_t *pBcn, uint16_t *pLen)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_FW_GET_BEACON *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_FW_GET_BEACON, HostCmd_CMD_GET_BEACON);
pCmd->Bcnlen = htole16(0);
retval = mwlExecuteCmd(mh, HostCmd_CMD_GET_BEACON);
if (retval == 0) {
/* XXX bounds check */
memcpy(pBcn, &pCmd->Bcn, pCmd->Bcnlen);
*pLen = pCmd->Bcnlen;
}
MWL_HAL_UNLOCK(mh);
return retval;
}
int
mwl_hal_SetRifs(struct mwl_hal *mh0, uint8_t QNum)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
HostCmd_FW_SET_RIFS *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_FW_SET_RIFS, HostCmd_CMD_SET_RIFS);
pCmd->QNum = QNum;
retval = mwlExecuteCmd(mh, HostCmd_CMD_SET_RIFS);
MWL_HAL_UNLOCK(mh);
return retval;
}
/*
* Diagnostic api's for set/get registers.
*/
static int
getRFReg(struct mwl_hal_priv *mh, int flag, uint32_t reg, uint32_t *val)
{
HostCmd_DS_RF_REG_ACCESS *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_DS_RF_REG_ACCESS, HostCmd_CMD_RF_REG_ACCESS);
pCmd->Offset = htole16(reg);
pCmd->Action = htole16(flag);
pCmd->Value = htole32(*val);
retval = mwlExecuteCmd(mh, HostCmd_CMD_RF_REG_ACCESS);
if (retval == 0)
*val = pCmd->Value;
MWL_HAL_UNLOCK(mh);
return retval;
}
static int
getBBReg(struct mwl_hal_priv *mh, int flag, uint32_t reg, uint32_t *val)
{
HostCmd_DS_BBP_REG_ACCESS *pCmd;
int retval;
MWL_HAL_LOCK(mh);
_CMD_SETUP(pCmd, HostCmd_DS_BBP_REG_ACCESS, HostCmd_CMD_BBP_REG_ACCESS);
pCmd->Offset = htole16(reg);
pCmd->Action = htole16(flag);
pCmd->Value = htole32(*val);
retval = mwlExecuteCmd(mh, HostCmd_CMD_BBP_REG_ACCESS);
if (retval == 0)
*val = pCmd->Value;
MWL_HAL_UNLOCK(mh);
return retval;
}
static u_int
mwl_hal_getregdump(struct mwl_hal_priv *mh, const MWL_DIAG_REGRANGE *regs,
void *dstbuf, int space)
{
uint32_t *dp = dstbuf;
int i;
for (i = 0; space >= 2*sizeof(uint32_t); i++) {
u_int r = regs[i].start;
u_int e = regs[i].end;
*dp++ = (r<<16) | e;
space -= sizeof(uint32_t);
do {
if (MWL_DIAG_ISMAC(r))
*dp = RD4(mh, r);
else if (MWL_DIAG_ISBB(r))
getBBReg(mh, HostCmd_ACT_GEN_READ,
r - MWL_DIAG_BASE_BB, dp);
else if (MWL_DIAG_ISRF(r))
getRFReg(mh, HostCmd_ACT_GEN_READ,
r - MWL_DIAG_BASE_RF, dp);
else if (r < 0x1000 || r == MACREG_REG_FW_PRESENT)
*dp = RD4(mh, r);
else
*dp = 0xffffffff;
dp++;
r += sizeof(uint32_t);
space -= sizeof(uint32_t);
} while (r <= e && space >= sizeof(uint32_t));
}
return (char *) dp - (char *) dstbuf;
}
int
mwl_hal_getdiagstate(struct mwl_hal *mh0, int request,
const void *args, uint32_t argsize,
void **result, uint32_t *resultsize)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
switch (request) {
case MWL_DIAG_CMD_REVS:
*result = &mh->mh_revs;
*resultsize = sizeof(mh->mh_revs);
return 1;
case MWL_DIAG_CMD_REGS:
*resultsize = mwl_hal_getregdump(mh, args, *result, *resultsize);
return 1;
case MWL_DIAG_CMD_HOSTCMD: {
FWCmdHdr *pCmd = (FWCmdHdr *) &mh->mh_cmdbuf[0];
int retval;
MWL_HAL_LOCK(mh);
memcpy(pCmd, args, argsize);
retval = mwlExecuteCmd(mh, le16toh(pCmd->Cmd));
*result = (*resultsize != 0) ? pCmd : NULL;
MWL_HAL_UNLOCK(mh);
return (retval == 0);
}
case MWL_DIAG_CMD_FWLOAD:
if (mwl_hal_fwload(mh0, __DECONST(void *, args))) {
device_printf(mh->mh_dev, "problem loading fw image\n");
return 0;
}
return 1;
}
return 0;
}
/*
* Low level firmware cmd block handshake support.
*/
static void
mwlSendCmd(struct mwl_hal_priv *mh)
{
uint32_t dummy;
bus_dmamap_sync(mh->mh_dmat, mh->mh_dmamap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
WR4(mh, MACREG_REG_GEN_PTR, mh->mh_cmdaddr);
dummy = RD4(mh, MACREG_REG_INT_CODE);
WR4(mh, MACREG_REG_H2A_INTERRUPT_EVENTS, MACREG_H2ARIC_BIT_DOOR_BELL);
}
static int
mwlWaitForCmdComplete(struct mwl_hal_priv *mh, uint16_t cmdCode)
{
#define MAX_WAIT_FW_COMPLETE_ITERATIONS 10000
int i;
for (i = 0; i < MAX_WAIT_FW_COMPLETE_ITERATIONS; i++) {
if (mh->mh_cmdbuf[0] == le16toh(cmdCode))
return 1;
DELAY(1*1000);
}
return 0;
#undef MAX_WAIT_FW_COMPLETE_ITERATIONS
}
static int
mwlExecuteCmd(struct mwl_hal_priv *mh, unsigned short cmd)
{
MWL_HAL_LOCK_ASSERT(mh);
if ((mh->mh_flags & MHF_FWHANG) &&
(mh->mh_debug & MWL_HAL_DEBUG_IGNHANG) == 0) {
#ifdef MWLHAL_DEBUG
device_printf(mh->mh_dev, "firmware hung, skipping cmd %s\n",
mwlcmdname(cmd));
#else
device_printf(mh->mh_dev, "firmware hung, skipping cmd 0x%x\n",
cmd);
#endif
return ENXIO;
}
if (RD4(mh, MACREG_REG_INT_CODE) == 0xffffffff) {
device_printf(mh->mh_dev, "%s: device not present!\n",
__func__);
return EIO;
}
#ifdef MWLHAL_DEBUG
if (mh->mh_debug & MWL_HAL_DEBUG_SENDCMD)
dumpresult(mh, 0);
#endif
mwlSendCmd(mh);
if (!mwlWaitForCmdComplete(mh, 0x8000 | cmd)) {
#ifdef MWLHAL_DEBUG
device_printf(mh->mh_dev,
"timeout waiting for f/w cmd %s\n", mwlcmdname(cmd));
#else
device_printf(mh->mh_dev,
"timeout waiting for f/w cmd 0x%x\n", cmd);
#endif
mh->mh_flags |= MHF_FWHANG;
return ETIMEDOUT;
}
bus_dmamap_sync(mh->mh_dmat, mh->mh_dmamap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
#ifdef MWLHAL_DEBUG
if (mh->mh_debug & MWL_HAL_DEBUG_CMDDONE)
dumpresult(mh, 1);
#endif
return 0;
}
/*
* Firmware download support.
*/
#define FW_DOWNLOAD_BLOCK_SIZE 256
#define FW_CHECK_USECS (5*1000) /* 5ms */
#define FW_MAX_NUM_CHECKS 200
#if 0
/* XXX read f/w from file */
#include <dev/mwl/mwlbootfw.h>
#include <dev/mwl/mwl88W8363fw.h>
#endif
static void
mwlFwReset(struct mwl_hal_priv *mh)
{
if (RD4(mh, MACREG_REG_INT_CODE) == 0xffffffff) {
device_printf(mh->mh_dev, "%s: device not present!\n",
__func__);
return;
}
WR4(mh, MACREG_REG_H2A_INTERRUPT_EVENTS, ISR_RESET);
mh->mh_flags &= ~MHF_FWHANG;
}
static void
mwlTriggerPciCmd(struct mwl_hal_priv *mh)
{
uint32_t dummy;
bus_dmamap_sync(mh->mh_dmat, mh->mh_dmamap, BUS_DMASYNC_PREWRITE);
WR4(mh, MACREG_REG_GEN_PTR, mh->mh_cmdaddr);
dummy = RD4(mh, MACREG_REG_INT_CODE);
WR4(mh, MACREG_REG_INT_CODE, 0x00);
dummy = RD4(mh, MACREG_REG_INT_CODE);
WR4(mh, MACREG_REG_H2A_INTERRUPT_EVENTS, MACREG_H2ARIC_BIT_DOOR_BELL);
dummy = RD4(mh, MACREG_REG_INT_CODE);
}
static int
mwlWaitFor(struct mwl_hal_priv *mh, uint32_t val)
{
int i;
for (i = 0; i < FW_MAX_NUM_CHECKS; i++) {
DELAY(FW_CHECK_USECS);
if (RD4(mh, MACREG_REG_INT_CODE) == val)
return 1;
}
return 0;
}
/*
* Firmware block xmit when talking to the boot-rom.
*/
static int
mwlSendBlock(struct mwl_hal_priv *mh, int bsize, const void *data, size_t dsize)
{
mh->mh_cmdbuf[0] = htole16(HostCmd_CMD_CODE_DNLD);
mh->mh_cmdbuf[1] = htole16(bsize);
memcpy(&mh->mh_cmdbuf[4], data , dsize);
mwlTriggerPciCmd(mh);
/* XXX 2000 vs 200 */
if (mwlWaitFor(mh, MACREG_INT_CODE_CMD_FINISHED)) {
WR4(mh, MACREG_REG_INT_CODE, 0);
return 1;
}
device_printf(mh->mh_dev,
"%s: timeout waiting for CMD_FINISHED, INT_CODE 0x%x\n",
__func__, RD4(mh, MACREG_REG_INT_CODE));
return 0;
}
/*
* Firmware block xmit when talking to the 1st-stage loader.
*/
static int
mwlSendBlock2(struct mwl_hal_priv *mh, const void *data, size_t dsize)
{
memcpy(&mh->mh_cmdbuf[0], data, dsize);
mwlTriggerPciCmd(mh);
if (mwlWaitFor(mh, MACREG_INT_CODE_CMD_FINISHED)) {
WR4(mh, MACREG_REG_INT_CODE, 0);
return 1;
}
device_printf(mh->mh_dev,
"%s: timeout waiting for CMD_FINISHED, INT_CODE 0x%x\n",
__func__, RD4(mh, MACREG_REG_INT_CODE));
return 0;
}
static void
mwlPokeSdramController(struct mwl_hal_priv *mh, int SDRAMSIZE_Addr)
{
/** Set up sdram controller for superflyv2 **/
WR4(mh, 0x00006014, 0x33);
WR4(mh, 0x00006018, 0xa3a2632);
WR4(mh, 0x00006010, SDRAMSIZE_Addr);
}
int
mwl_hal_fwload(struct mwl_hal *mh0, void *fwargs)
{
struct mwl_hal_priv *mh = MWLPRIV(mh0);
const char *fwname = "mw88W8363fw";
const char *fwbootname = "mwlboot";
const struct firmware *fwboot = NULL;
const struct firmware *fw;
/* XXX get from firmware header */
uint32_t FwReadySignature = HostCmd_SOFTAP_FWRDY_SIGNATURE;
uint32_t OpMode = HostCmd_SOFTAP_MODE;
const uint8_t *fp, *ep;
const uint8_t *fmdata;
uint32_t blocksize, nbytes, fmsize;
int i, error, ntries;
fw = firmware_get(fwname);
if (fw == NULL) {
device_printf(mh->mh_dev,
"could not load firmware image %s\n", fwname);
return ENXIO;
}
fmdata = fw->data;
fmsize = fw->datasize;
if (fmsize < 4) {
device_printf(mh->mh_dev, "firmware image %s too small\n",
fwname);
error = ENXIO;
goto bad2;
}
if (fmdata[0] == 0x01 && fmdata[1] == 0x00 &&
fmdata[2] == 0x00 && fmdata[3] == 0x00) {
/*
* 2-stage load, get the boot firmware.
*/
fwboot = firmware_get(fwbootname);
if (fwboot == NULL) {
device_printf(mh->mh_dev,
"could not load firmware image %s\n", fwbootname);
error = ENXIO;
goto bad2;
}
} else
fwboot = NULL;
mwlFwReset(mh);
WR4(mh, MACREG_REG_A2H_INTERRUPT_CLEAR_SEL, MACREG_A2HRIC_BIT_MASK);
WR4(mh, MACREG_REG_A2H_INTERRUPT_CAUSE, 0x00);
WR4(mh, MACREG_REG_A2H_INTERRUPT_MASK, 0x00);
WR4(mh, MACREG_REG_A2H_INTERRUPT_STATUS_MASK, MACREG_A2HRIC_BIT_MASK);
if (mh->mh_SDRAMSIZE_Addr != 0) {
/** Set up sdram controller for superflyv2 **/
mwlPokeSdramController(mh, mh->mh_SDRAMSIZE_Addr);
}
device_printf(mh->mh_dev, "load %s firmware image (%u bytes)\n",
fwname, fmsize);
if (fwboot != NULL) {
/*
* Do 2-stage load. The 1st stage loader is setup
* with the bootrom loader then we load the real
* image using a different handshake. With this
* mechanism the firmware is segmented into chunks
* that have a CRC. If a chunk is incorrect we'll
* be told to retransmit.
*/
/* XXX assumes hlpimage fits in a block */
/* NB: zero size block indicates download is finished */
if (!mwlSendBlock(mh, fwboot->datasize, fwboot->data, fwboot->datasize) ||
!mwlSendBlock(mh, 0, NULL, 0)) {
error = ETIMEDOUT;
goto bad;
}
DELAY(200*FW_CHECK_USECS);
if (mh->mh_SDRAMSIZE_Addr != 0) {
/** Set up sdram controller for superflyv2 **/
mwlPokeSdramController(mh, mh->mh_SDRAMSIZE_Addr);
}
nbytes = ntries = 0; /* NB: silence compiler */
for (fp = fmdata, ep = fp + fmsize; fp < ep; ) {
WR4(mh, MACREG_REG_INT_CODE, 0);
blocksize = RD4(mh, MACREG_REG_SCRATCH);
if (blocksize == 0) /* download complete */
break;
if (blocksize > 0x00000c00) {
error = EINVAL;
goto bad;
}
if ((blocksize & 0x1) == 0) {
/* block successfully downloaded, advance */
fp += nbytes;
ntries = 0;
} else {
if (++ntries > 2) {
/*
* Guard against f/w telling us to
* retry infinitely.
*/
error = ELOOP;
goto bad;
}
/* clear NAK bit/flag */
blocksize &= ~0x1;
}
if (blocksize > ep - fp) {
/* XXX this should not happen, what to do? */
blocksize = ep - fp;
}
nbytes = blocksize;
if (!mwlSendBlock2(mh, fp, nbytes)) {
error = ETIMEDOUT;
goto bad;
}
}
} else {
for (fp = fmdata, ep = fp + fmsize; fp < ep;) {
nbytes = ep - fp;
if (nbytes > FW_DOWNLOAD_BLOCK_SIZE)
nbytes = FW_DOWNLOAD_BLOCK_SIZE;
if (!mwlSendBlock(mh, FW_DOWNLOAD_BLOCK_SIZE, fp, nbytes)) {
error = EIO;
goto bad;
}
fp += nbytes;
}
}
/* done with firmware... */
if (fwboot != NULL)
firmware_put(fwboot, FIRMWARE_UNLOAD);
firmware_put(fw, FIRMWARE_UNLOAD);
/*
* Wait for firmware to startup; we monitor the
* INT_CODE register waiting for a signature to
* written back indicating it's ready to go.
*/
mh->mh_cmdbuf[1] = 0;
/*
* XXX WAR for mfg fw download
*/
if (OpMode != HostCmd_STA_MODE)
mwlTriggerPciCmd(mh);
for (i = 0; i < FW_MAX_NUM_CHECKS; i++) {
WR4(mh, MACREG_REG_GEN_PTR, OpMode);
DELAY(FW_CHECK_USECS);
if (RD4(mh, MACREG_REG_INT_CODE) == FwReadySignature) {
WR4(mh, MACREG_REG_INT_CODE, 0x00);
return mwlResetHalState(mh);
}
}
return ETIMEDOUT;
bad:
mwlFwReset(mh);
bad2:
/* done with firmware... */
if (fwboot != NULL)
firmware_put(fwboot, FIRMWARE_UNLOAD);
firmware_put(fw, FIRMWARE_UNLOAD);
return error;
}
#ifdef MWLHAL_DEBUG
static const char *
mwlcmdname(int cmd)
{
static char buf[12];
#define CMD(x) case HostCmd_CMD_##x: return #x
switch (cmd) {
CMD(CODE_DNLD);
CMD(GET_HW_SPEC);
CMD(SET_HW_SPEC);
CMD(MAC_MULTICAST_ADR);
CMD(802_11_GET_STAT);
CMD(MAC_REG_ACCESS);
CMD(BBP_REG_ACCESS);
CMD(RF_REG_ACCESS);
CMD(802_11_RADIO_CONTROL);
CMD(802_11_RF_TX_POWER);
CMD(802_11_RF_ANTENNA);
CMD(SET_BEACON);
CMD(SET_RF_CHANNEL);
CMD(SET_AID);
CMD(SET_INFRA_MODE);
CMD(SET_G_PROTECT_FLAG);
CMD(802_11_RTS_THSD);
CMD(802_11_SET_SLOT);
CMD(SET_EDCA_PARAMS);
CMD(802_11H_DETECT_RADAR);
CMD(SET_WMM_MODE);
CMD(HT_GUARD_INTERVAL);
CMD(SET_FIXED_RATE);
CMD(SET_LINKADAPT_CS_MODE);
CMD(SET_MAC_ADDR);
CMD(SET_RATE_ADAPT_MODE);
CMD(BSS_START);
CMD(SET_NEW_STN);
CMD(SET_KEEP_ALIVE);
CMD(SET_APMODE);
CMD(SET_SWITCH_CHANNEL);
CMD(UPDATE_ENCRYPTION);
CMD(BASTREAM);
CMD(SET_RIFS);
CMD(SET_N_PROTECT_FLAG);
CMD(SET_N_PROTECT_OPMODE);
CMD(SET_OPTIMIZATION_LEVEL);
CMD(GET_CALTABLE);
CMD(SET_MIMOPSHT);
CMD(GET_BEACON);
CMD(SET_REGION_CODE);
CMD(SET_POWERSAVESTATION);
CMD(SET_TIM);
CMD(GET_TIM);
CMD(GET_SEQNO);
CMD(DWDS_ENABLE);
CMD(AMPDU_RETRY_RATEDROP_MODE);
CMD(CFEND_ENABLE);
}
snprintf(buf, sizeof(buf), "0x%x", cmd);
return buf;
#undef CMD
}
static void
dumpresult(struct mwl_hal_priv *mh, int showresult)
{
const FWCmdHdr *h = (const FWCmdHdr *)mh->mh_cmdbuf;
const uint8_t *cp;
int len, i;
len = le16toh(h->Length);
#ifdef MWL_MBSS_SUPPORT
device_printf(mh->mh_dev, "Cmd %s Length %d SeqNum %d MacId %d",
mwlcmdname(le16toh(h->Cmd) &~ 0x8000), len, h->SeqNum, h->MacId);
#else
device_printf(mh->mh_dev, "Cmd %s Length %d SeqNum %d",
mwlcmdname(le16toh(h->Cmd) &~ 0x8000), len, le16toh(h->SeqNum));
#endif
if (showresult) {
const char *results[] =
{ "OK", "ERROR", "NOT_SUPPORT", "PENDING", "BUSY",
"PARTIAL_DATA" };
int result = le16toh(h->Result);
if (result <= HostCmd_RESULT_PARTIAL_DATA)
printf(" Result %s", results[result]);
else
printf(" Result %d", result);
}
cp = (const uint8_t *)h;
for (i = 0; i < len; i++) {
if ((i % 16) == 0)
printf("\n%02x", cp[i]);
else
printf(" %02x", cp[i]);
}
printf("\n");
}
#endif /* MWLHAL_DEBUG */