freebsd-skq/sys/dev/ctau/ctddk.c

1163 lines
26 KiB
C

/*-
* DDK library for Cronyx-Tau adapters.
*
* Copyright (C) 1998-1999 Cronyx Engineering.
* Author: Alexander Kvitchenko, <aak@cronyx.ru>
*
* Copyright (C) 1999-2003 Cronyx Engineering.
* Author: Roman Kurakin, <rik@cronyx.ru>
*
* This source is derived from
* Diagnose utility for Cronyx-Tau adapter:
* by Serge Vakulenko, <vak@cronyx.ru>
*
* This software is distributed with NO WARRANTIES, not even the implied
* warranties for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* Authors grant any other persons or organisations permission to use
* or modify this software as long as this message is kept with the software,
* all derivative works or modified versions.
*
* Cronyx Id: ctddk.c,v 1.1.2.3 2003/11/14 16:55:36 rik Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/cx/machdep.h>
#include <dev/ctau/ctddk.h>
#include <dev/ctau/ctaureg.h>
#include <dev/ctau/hdc64570.h>
#include <dev/ctau/ds2153.h>
#include <dev/ctau/am8530.h>
#include <dev/ctau/lxt318.h>
#include <dev/cx/cronyxfw.h>
#include <dev/ctau/ctaufw.h>
#include <dev/ctau/ctau2fw.h>
#ifndef CT_DDK_NO_G703
#include <dev/ctau/ctaug7fw.h>
#endif
#ifndef CT_DDK_NO_E1
#include <dev/ctau/ctaue1fw.h>
#endif
static void ct_hdlc_interrupt (ct_chan_t *c, int imvr);
static void ct_e1_interrupt (ct_board_t *b);
static void ct_scc_interrupt (ct_board_t *b);
static void ct_e1timer_interrupt (ct_chan_t *c);
static short porttab [] = { /* standard base port set */
0x200, 0x220, 0x240, 0x260, 0x280, 0x2a0, 0x2c0, 0x2e0,
0x300, 0x320, 0x340, 0x360, 0x380, 0x3a0, 0x3c0, 0x3e0, 0
};
int ct_find (port_t *board_ports)
{
int i, n;
for (i=0, n=0; porttab[i] && n<NBRD; i++)
if (ct_probe_board (porttab[i], -1, -1))
board_ports[n++] = porttab[i];
return n;
}
int ct_open_board (ct_board_t *b, int num, port_t port, int irq, int dma)
{
ct_chan_t *c;
const unsigned char *fw;
const cr_dat_tst_t *ft;
long flen;
if (num >= NBRD || ! ct_probe_board (port, irq, dma))
return 0;
/* init callback pointers */
for (c=b->chan; c<b->chan+NCHAN; ++c) {
c->call_on_tx = 0;
c->call_on_rx = 0;
c->call_on_msig = 0;
c->call_on_scc = 0;
c->call_on_err = 0;
}
/* init DDK channel variables */
for (c=b->chan; c<b->chan+NCHAN; ++c) {
c->sccrx_empty = c->scctx_empty = 1;
c->sccrx_b = c->sccrx_e = 0;
c->scctx_b = c->scctx_e = 0;
c->e1_first_int = 1;
}
/* init board structure */
ct_init (b, num, port, irq, dma, ctau_fw_data,
ctau_fw_len, ctau_fw_tvec, ctau2_fw_data);
/* determine which firmware should be loaded */
fw = ctau_fw_data;
flen = ctau_fw_len;
ft = ctau_fw_tvec;
switch (b->type) {
case B_TAU2:
case B_TAU2_G703:
case B_TAU2_E1:
case B_TAU2_E1D:
fw = ctau2_fw_data;
flen = 0;
ft = 0;
break;
#ifndef CT_DDK_NO_G703
case B_TAU_G703:
fw = ctaug703_fw_data;
flen = ctaug703_fw_len;
ft = ctaug703_fw_tvec;
break;
#endif
#ifndef CT_DDK_NO_E1
case B_TAU_E1:
fw = ctaue1_fw_data;
flen = ctaue1_fw_len;
ft = ctaue1_fw_tvec;
break;
#endif
}
/* Load firmware and set up board */
return ct_setup_board (b, fw, flen, ft);
}
/*
* must be called on the exit
*/
void ct_close_board (ct_board_t *b)
{
ct_setup_board (b, 0, 0, 0);
/* Reset the controller. */
outb (BCR0(b->port), 0);
/* Disable DMA channel. */
ct_disable_dma (b);
ct_led (b, 0);
}
static void ct_g703_rate (ct_chan_t *c, unsigned long rate)
{
c->gopt.rate = rate;
ct_setup_g703 (c->board);
}
/*
* Set up baud rate.
*/
static void ct_chan_baud (ct_chan_t *c, unsigned long baud)
{
c->baud = baud;
if (baud) {
c->hopt.txs = CLK_INT;
} else {
ct_set_dpll (c, 0);
c->hopt.txs = CLK_LINE;
}
ct_update_chan (c);
}
void ct_set_baud (ct_chan_t *c, unsigned long baud)
{
unsigned long r;
if (c->mode == M_E1)
return;
if (c->mode == M_G703) {
if (baud >= 2048000) r = 2048;
else if (baud >= 1024000) r = 1024;
else if (baud >= 512000) r = 512;
else if (baud >= 256000) r = 256;
else if (baud >= 128000) r = 128;
else r = 64;
ct_g703_rate (c, r);
} else
ct_chan_baud (c, baud);
}
/*
* Configure Tau/E1 board.
*/
static void ct_e1_config (ct_board_t *b, unsigned char cfg)
{
if (cfg == b->opt.cfg)
return;
if (cfg == CFG_B)
b->chan[1].mode = M_HDLC;
else
b->chan[1].mode = M_E1;
/* Recovering synchronization */
if (b->opt.cfg == CFG_B) {
ct_chan_baud (b->chan+1, 0);
ct_set_invtxc (b->chan+1, 0);
ct_set_invrxc (b->chan+1, 0);
ct_set_nrzi (b->chan+1, 0);
}
b->opt.cfg = cfg;
ct_setup_e1 (b);
}
/*
* Config Tau/G.703 board
*/
static void ct_g703_config (ct_board_t *b, unsigned char cfg)
{
if (cfg == b->opt.cfg)
return;
if (cfg == CFG_B)
b->chan[1].mode = M_HDLC;
else
b->chan[1].mode = M_G703;
/* Recovering synchronization */
if (b->opt.cfg == CFG_B) {
ct_chan_baud (b->chan+1, 0);
ct_set_invtxc (b->chan+1, 0);
ct_set_invrxc (b->chan+1, 0);
ct_set_nrzi (b->chan+1, 0);
}
b->opt.cfg = cfg;
ct_setup_g703 (b);
}
int ct_set_clk (ct_chan_t *c, int clk)
{
if (c->num)
c->board->opt.clk1 = clk;
else
c->board->opt.clk0 = clk;
if (c->mode == M_E1) {
ct_setup_e1 (c->board);
return 0;
} if (c->mode == M_G703) {
ct_setup_g703 (c->board);
return 0;
} else
return -1;
}
int ct_get_clk (ct_chan_t *c)
{
return c->num ? c->board->opt.clk1 : c->board->opt.clk0;
}
int ct_set_ts (ct_chan_t *c, unsigned long ts)
{
if (! (c->mode == M_E1))
return -1;
if (c->num)
c->board->opt.s1 = ts;
else
c->board->opt.s0 = ts;
ct_setup_e1 (c->board);
return 0;
}
int ct_set_subchan (ct_board_t *b, unsigned long ts)
{
if (b->chan[0].mode != M_E1)
return -1;
b->opt.s2 = ts;
ct_setup_e1 (b);
return 0;
}
int ct_set_higain (ct_chan_t *c, int on)
{
if (! (c->mode == M_E1))
return -1;
c->gopt.higain = on ? 1 : 0;
ct_setup_e1 (c->board);
return 0;
}
/*
* Start service channel.
*/
void ct_start_scc (ct_chan_t *c, char *rxbuf, char *txbuf)
{
c->sccrx = rxbuf;
c->scctx = txbuf;
/* Enable interrupts from service channel. */
if (c->board->type != B_TAU_E1 && c->board->type != B_TAU_E1C &&
c->board->type != B_TAU2_E1)
return;
cte_out2 (c->board->port, c->num ? AM_IMR : AM_IMR | AM_A,
IMR_TX | IMR_RX_ALL);
cte_out2 (c->board->port, AM_MICR, MICR_MIE);
}
/*
* Start HDLC channel.
*/
void ct_start_chan (ct_chan_t *c, ct_buf_t *cb, unsigned long phys)
{
int i, ier0;
unsigned long bound;
if (cb) {
/* Set up descriptors, align to 64k boundary.
* If 64k boundary is inside buffers
* buffers will begin on this boundary
* (there were allocated additional space for this) */
c->tdesc = cb->descbuf;
c->tdphys[0] = phys + ((char*)c->tdesc - (char*)cb);
bound = ((c->tdphys[0] + 0xffff) & ~(0xffffUL));
if (bound < c->tdphys[0] + 2*NBUF*sizeof(ct_desc_t)) {
c->tdesc = (ct_desc_t*) ((char*) c->tdesc +
(bound - c->tdphys[0]));
c->tdphys[0] = bound;
}
c->rdesc = c->tdesc + NBUF;
/* Set buffers. */
for (i=0; i<NBUF; ++i) {
c->rbuf[i] = cb->rbuffer[i];
c->tbuf[i] = cb->tbuffer[i];
}
/* Set buffer physical addresses */
for (i=0; i<NBUF; ++i) {
c->rphys[i] = phys + ((char*)c->rbuf[i] - (char*)cb);
c->tphys[i] = phys + ((char*)c->tbuf[i] - (char*)cb);
c->rdphys[i] = phys + ((char*)(c->rdesc+i) - (char*)cb);
c->tdphys[i] = phys + ((char*)(c->tdesc+i) - (char*)cb);
}
}
/* Set up block chains. */
/* receive buffers */
for (i=0; i<NBUF; ++i) {
B_NEXT (c->rdesc[i]) = c->rdphys[(i+1) % NBUF] & 0xffff;
B_PTR (c->rdesc[i]) = c->rphys[i];
B_LEN (c->rdesc[i]) = DMABUFSZ;
B_STATUS (c->rdesc[i]) = 0;
}
/* transmit buffers */
for (i=0; i<NBUF; ++i) {
B_NEXT (c->tdesc[i]) = c->tdphys[(i+1) % NBUF] & 0xffff;
B_PTR (c->tdesc[i]) = c->tphys[i];
B_LEN (c->tdesc[i]) = DMABUFSZ;
B_STATUS (c->tdesc[i]) = FST_EOM;
c->attach[i] = 0;
}
if (c->type & T_E1) {
c->mode = M_E1;
if (c->num && c->board->opt.cfg == CFG_B)
c->mode = M_HDLC;
}
if (c->type & T_G703) {
c->mode = M_G703;
if (c->num && c->board->opt.cfg == CFG_B)
c->mode = M_HDLC;
}
ct_update_chan (c);
/* enable receiver */
c->rn = 0;
ct_start_receiver (c, 1 , c->rphys[0], DMABUFSZ, c->rdphys[0],
c->rdphys[NBUF-1]);
outb (c->IE1, inb (c->IE1) | IE1_CDCDE);
outb (c->IE0, inb (c->IE0) | IE0_RX_INTE);
ier0 = inb (IER0(c->board->port));
ier0 |= c->num ? IER0_RX_INTE_1 : IER0_RX_INTE_0;
outb (IER0(c->board->port), ier0);
/* Enable transmitter */
c->tn = 0;
c->te = 0;
ct_start_transmitter (c, 1 , c->tphys[0], DMABUFSZ, c->tdphys[0],
c->tdphys[0]);
outb (c->TX.DIR, DIR_CHAIN_EOME | DIR_CHAIN_BOFE | DIR_CHAIN_COFE);
/* Clear DTR and RTS */
ct_set_dtr (c, 0);
ct_set_rts (c, 0);
}
/*
* Turn receiver on/off
*/
void ct_enable_receive (ct_chan_t *c, int on)
{
unsigned char st3, ier0, ier1;
st3 = inb (c->ST3);
/* enable or disable receiver */
if (on && ! (st3 & ST3_RX_ENABLED)) {
c->rn = 0;
ct_start_receiver (c, 1 , c->rphys[0], DMABUFSZ, c->rdphys[0],
c->rdphys[NBUF-1]);
/* enable status interrupt */
outb (c->IE1, inb (c->IE1) | IE1_CDCDE);
outb (c->IE0, inb (c->IE0) | IE0_RX_INTE);
ier0 = inb (IER0(c->board->port));
ier0 |= c->num ? IER0_RX_INTE_1 : IER0_RX_INTE_0;
outb (IER0(c->board->port), ier0);
ct_set_rts (c, 1);
} else if (! on && (st3 & ST3_RX_ENABLED)) {
ct_set_rts (c, 0);
outb (c->CMD, CMD_RX_DISABLE);
ier0 = inb (IER0(c->board->port));
ier0 &= c->num ? ~(IER0_RX_INTE_1 | IER0_RX_RDYE_1) :
~(IER0_RX_INTE_0 | IER0_RX_RDYE_0);
outb (IER0(c->board->port), ier0);
ier1 = inb (IER1(c->board->port));
ier1 &= c->num ? ~(IER1_RX_DMERE_1 | IER1_RX_DME_1) :
~(IER1_RX_DMERE_0 | IER1_RX_DME_0);
outb (IER1(c->board->port), ier1);
}
}
/*
* Turn transmitter on/off
*/
void ct_enable_transmit (ct_chan_t *c, int on)
{
unsigned char st3, ier0, ier1;
st3 = inb (c->ST3);
/* enable or disable receiver */
if (on && ! (st3 & ST3_TX_ENABLED)) {
c->tn = 0;
c->te = 0;
ct_start_transmitter (c, 1 , c->tphys[0], DMABUFSZ,
c->tdphys[0], c->tdphys[0]);
outb (c->TX.DIR,
DIR_CHAIN_EOME | DIR_CHAIN_BOFE | DIR_CHAIN_COFE);
} else if (! on && (st3 & ST3_TX_ENABLED)) {
outb (c->CMD, CMD_TX_DISABLE);
ier0 = inb (IER0(c->board->port));
ier0 &= c->num ? ~(IER0_TX_INTE_1 | IER0_TX_RDYE_1) :
~(IER0_TX_INTE_0 | IER0_TX_RDYE_0);
outb (IER0(c->board->port), ier0);
ier1 = inb (IER1(c->board->port));
ier1 &= c->num ? ~(IER1_TX_DMERE_1 | IER1_TX_DME_1) :
~(IER1_TX_DMERE_0 | IER1_TX_DME_0);
outb (IER1(c->board->port), ier1);
}
}
int ct_set_config (ct_board_t *b, int cfg)
{
if (b->opt.cfg == cfg)
return 0;
switch (b->type) {
case B_TAU_G703:
case B_TAU_G703C:
case B_TAU2_G703:
if (cfg == CFG_C)
return -1;
ct_g703_config (b, cfg);
return 0;
case B_TAU_E1:
case B_TAU_E1C:
case B_TAU_E1D:
case B_TAU2_E1:
case B_TAU2_E1D:
ct_e1_config (b, cfg);
return 0;
default:
return cfg == CFG_A ? 0 : -1;
}
}
int ct_get_dpll (ct_chan_t *c)
{
return (c->hopt.rxs == CLK_RXS_DPLL_INT);
}
void ct_set_dpll (ct_chan_t *c, int on)
{
if (on && ct_get_baud (c))
c->hopt.rxs = CLK_RXS_DPLL_INT;
else
c->hopt.rxs = CLK_LINE;
ct_update_chan (c);
}
int ct_get_nrzi (ct_chan_t *c)
{
return (c->opt.md2.encod == MD2_ENCOD_NRZI);
}
/*
* Change line encoding to NRZI, default is NRZ
*/
void ct_set_nrzi (ct_chan_t *c, int on)
{
c->opt.md2.encod = on ? MD2_ENCOD_NRZI : MD2_ENCOD_NRZ;
outb (c->MD2, *(unsigned char*)&c->opt.md2);
}
/*
* Transmit clock inversion
*/
void ct_set_invtxc (ct_chan_t *c, int on)
{
if (on) c->board->bcr2 |= (c->num ? BCR2_INVTXC1 : BCR2_INVTXC0);
else c->board->bcr2 &= ~(c->num ? BCR2_INVTXC1 : BCR2_INVTXC0);
outb (BCR2(c->board->port), c->board->bcr2);
}
int ct_get_invtxc (ct_chan_t *c)
{
return (c->board->bcr2 & (c->num ? BCR2_INVTXC1 : BCR2_INVTXC0)) != 0;
}
/*
* Receive clock inversion
*/
void ct_set_invrxc (ct_chan_t *c, int on)
{
if (on) c->board->bcr2 |= (c->num ? BCR2_INVRXC1 : BCR2_INVRXC0);
else c->board->bcr2 &= ~(c->num ? BCR2_INVRXC1 : BCR2_INVRXC0);
outb (BCR2(c->board->port), c->board->bcr2);
}
int ct_get_invrxc (ct_chan_t *c)
{
return (c->board->bcr2 & (c->num ? BCR2_INVRXC1 : BCR2_INVRXC0)) != 0;
}
/*
* Main interrupt handler
*/
void ct_int_handler (ct_board_t *b)
{
unsigned char bsr0, imvr;
ct_chan_t *c;
while ((bsr0 = inb (BSR0(b->port))) & BSR0_INTR) {
if (bsr0 & BSR0_RDYERR) {
outb (BCR1(b->port), b->bcr1);
} else if (bsr0 & BSR0_GINT) {
if (b->type == B_TAU_E1 || b->type == B_TAU_E1C ||
b->type == B_TAU_E1D || b->type == B_TAU2_E1 ||
b->type == B_TAU2_E1D)
ct_e1_interrupt (b);
} else if (bsr0 & BSR0_HDINT) {
/* Read the interrupt modified vector register. */
imvr = inb (IACK(b->port));
c = b->chan + (imvr & IMVR_CHAN1 ? 1 : 0);
ct_hdlc_interrupt (c, imvr);
}
}
}
static void ct_e1_interrupt (ct_board_t *b)
{
unsigned char sr;
sr = inb (E1SR(b->port));
if (sr & E1SR_SCC_IRQ) ct_scc_interrupt (b);
if (sr & E1SR_E0_IRQ1) ct_e1timer_interrupt (b->chan + 0);
if (sr & E1SR_E1_IRQ1) ct_e1timer_interrupt (b->chan + 1);
}
static void ct_scc_interrupt (ct_board_t *b)
{
unsigned char rsr;
unsigned char ivr, a = AM_A; /* assume channel A */
ct_chan_t *c = b->chan;
ivr = cte_in2 (b->port, AM_IVR);
if (! (ivr & IVR_A))
++c, a = 0; /* really channel B */
switch (ivr & IVR_REASON) {
case IVR_TXRDY: /* transmitter empty */
c->scctx_b = (c->scctx_b + 1) % SCCBUFSZ;
if (c->scctx_b == c->scctx_e) {
c->scctx_empty = 1;
cte_out2c (c, AM_CR | CR_RST_TXINT);
} else
cte_out2d (c, c->scctx[c->scctx_b]);
break;
case IVR_RXERR: /* receive error */
case IVR_RX: /* receive character available */
rsr = cte_in2 (b->port, a|AM_RSR);
if (rsr & RSR_RXOVRN) { /* rx overrun */
if (c->call_on_err)
c->call_on_err (c, CT_SCC_OVERRUN);
} else if (rsr & RSR_FRME) { /* frame error */
if (c->call_on_err)
c->call_on_err (c, CT_SCC_FRAME);
} else {
c->sccrx[c->sccrx_e] = cte_in2d (c);
c->sccrx_e = (c->sccrx_e + 1) % SCCBUFSZ;
c->sccrx_empty &= 0;
if (c->call_on_scc)
c->call_on_scc (c);
if (c->sccrx_e == c->sccrx_b && ! c->sccrx_empty)
if (c->call_on_err)
c->call_on_err (c, CT_SCC_OVERFLOW);
}
if (rsr)
cte_out2c (c, CR_RST_ERROR);
break;
case IVR_STATUS: /* external status interrupt */
/* Unexpected SCC status interrupt. */
cte_out2c (c, CR_RST_EXTINT);
break;
}
}
/*
* G.703 mode channel: process 1-second timer interrupts.
* Read error and request registers, and fill the status field.
*/
void ct_g703_timer (ct_chan_t *c)
{
int bpv, cd, tsterr, tstreq;
/* Count seconds.
* During the first second after the channel startup
* the status registers are not stable yet,
* we will so skip the first second. */
++c->cursec;
if (c->mode != M_G703)
return;
if (c->totsec + c->cursec <= 1)
return;
c->status = 0;
cd = ct_get_cd (c);
bpv = inb (GERR (c->board->port)) & (c->num ? GERR_BPV1 : GERR_BPV0);
outb (GERR (c->board->port), bpv);
tsterr = inb (GERR (c->board->port)) & (c->num ? GERR_ERR1 : GERR_ERR0);
outb (GERR (c->board->port), tsterr);
tstreq = inb (GLDR (c->board->port)) &
(c->num ? GLDR_LREQ1 : GLDR_LREQ0);
outb (GLDR (c->board->port), tstreq);
/* Compute the SNMP-compatible channel status. */
if (bpv)
++c->currnt.bpv; /* bipolar violation */
if (! cd)
c->status |= ESTS_LOS; /* loss of signal */
if (tsterr)
c->status |= ESTS_TSTERR; /* test error */
if (tstreq)
c->status |= ESTS_TSTREQ; /* test code detected */
if (! c->status)
c->status = ESTS_NOALARM;
/* Unavaiable second -- loss of carrier, or receiving test code. */
if ((! cd) || tstreq)
/* Unavailable second -- no other counters. */
++c->currnt.uas;
else {
/* Line errored second -- any BPV. */
if (bpv)
++c->currnt.les;
/* Collect data for computing
* degraded minutes. */
++c->degsec;
if (cd && bpv)
++c->degerr;
}
/* Degraded minutes -- having more than 50% error intervals. */
if (c->cursec / 60 == 0) {
if (c->degerr*2 > c->degsec)
++c->currnt.dm;
c->degsec = 0;
c->degerr = 0;
}
/* Rotate statistics every 15 minutes. */
if (c->cursec > 15*60) {
int i;
for (i=47; i>0; --i)
c->interval[i] = c->interval[i-1];
c->interval[0] = c->currnt;
/* Accumulate total statistics. */
c->total.bpv += c->currnt.bpv;
c->total.fse += c->currnt.fse;
c->total.crce += c->currnt.crce;
c->total.rcrce += c->currnt.rcrce;
c->total.uas += c->currnt.uas;
c->total.les += c->currnt.les;
c->total.es += c->currnt.es;
c->total.bes += c->currnt.bes;
c->total.ses += c->currnt.ses;
c->total.oofs += c->currnt.oofs;
c->total.css += c->currnt.css;
c->total.dm += c->currnt.dm;
memset (&c->currnt, 0, sizeof (c->currnt));
c->totsec += c->cursec;
c->cursec = 0;
}
}
static void ct_e1timer_interrupt (ct_chan_t *c)
{
unsigned short port;
unsigned char sr1, sr2, ssr;
unsigned long bpv, fas, crc4, ebit, pcv, oof;
port = c->num ? E1CS1(c->board->port) : E1CS0(c->board->port);
sr2 = cte_ins (port, DS_SR2, 0xff);
/* is it timer interrupt ? */
if (! (sr2 & SR2_SEC))
return;
/* first interrupts should be ignored */
if (c->e1_first_int > 0) {
c->e1_first_int --;
return;
}
++c->cursec;
c->status = 0;
/* Compute the SNMP-compatible channel status. */
sr1 = cte_ins (port, DS_SR1, 0xff);
ssr = cte_in (port, DS_SSR);
oof = 0;
if (sr1 & (SR1_RCL | SR1_RLOS))
c->status |= ESTS_LOS; /* loss of signal */
if (sr1 & SR1_RUA1)
c->status |= ESTS_AIS; /* receiving all ones */
if (c->gopt.cas && (sr1 & SR1_RSA1))
c->status |= ESTS_AIS16; /* signaling all ones */
if (c->gopt.cas && (sr1 & SR1_RDMA))
c->status |= ESTS_FARLOMF; /* alarm in timeslot 16 */
if (sr1 & SR1_RRA)
c->status |= ESTS_FARLOF; /* far loss of framing */
/* Controlled slip second -- any slip event. */
if (sr1 & SR1_RSLIP) {
++c->currnt.css;
}
if (ssr & SSR_SYNC) {
c->status |= ESTS_LOF; /* loss of framing */
++oof; /* out of framing */
}
if ((c->gopt.cas && (ssr & SSR_SYNC_CAS)) ||
(c->gopt.crc4 && (ssr & SSR_SYNC_CRC4))) {
c->status |= ESTS_LOMF; /* loss of multiframing */
++oof; /* out of framing */
}
if (! c->status)
c->status = ESTS_NOALARM;
/* Get error counters. */
bpv = VCR (cte_in (port, DS_VCR1), cte_in (port, DS_VCR2));
fas = FASCR (cte_in (port, DS_FASCR1), cte_in (port, DS_FASCR2));
crc4 = CRCCR (cte_in (port, DS_CRCCR1), cte_in (port, DS_CRCCR2));
ebit = EBCR (cte_in (port, DS_EBCR1), cte_in (port, DS_EBCR2));
c->currnt.bpv += bpv;
c->currnt.fse += fas;
if (c->gopt.crc4) {
c->currnt.crce += crc4;
c->currnt.rcrce += ebit;
}
/* Path code violation is frame sync error if CRC4 disabled,
* or CRC error if CRC4 enabled. */
pcv = fas;
if (c->gopt.crc4)
pcv += crc4;
/* Unavaiable second -- receiving all ones, or
* loss of carrier, or loss of signal. */
if (sr1 & (SR1_RUA1 | SR1_RCL | SR1_RLOS))
/* Unavailable second -- no other counters. */
++c->currnt.uas;
else {
/* Line errored second -- any BPV. */
if (bpv)
++c->currnt.les;
/* Errored second -- any PCV, or out of frame sync,
* or any slip events. */
if (pcv || oof || (sr1 & SR1_RSLIP))
++c->currnt.es;
/* Severely errored framing second -- out of frame sync. */
if (oof)
++c->currnt.oofs;
/* Severely errored seconds --
* 832 or more PCVs, or 2048 or more BPVs. */
if (bpv >= 2048 || pcv >= 832)
++c->currnt.ses;
else {
/* Bursty errored seconds --
* no SES and more than 1 PCV. */
if (pcv > 1)
++c->currnt.bes;
/* Collect data for computing
* degraded minutes. */
++c->degsec;
c->degerr += bpv + pcv;
}
}
/* Degraded minutes -- having error rate more than 10e-6,
* not counting unavailable and severely errored seconds. */
if (c->cursec / 60 == 0) {
if (c->degerr > c->degsec * 2048 / 1000)
++c->currnt.dm;
c->degsec = 0;
c->degerr = 0;
}
/* Rotate statistics every 15 minutes. */
if (c->cursec > 15*60) {
int i;
for (i=47; i>0; --i)
c->interval[i] = c->interval[i-1];
c->interval[0] = c->currnt;
/* Accumulate total statistics. */
c->total.bpv += c->currnt.bpv;
c->total.fse += c->currnt.fse;
c->total.crce += c->currnt.crce;
c->total.rcrce += c->currnt.rcrce;
c->total.uas += c->currnt.uas;
c->total.les += c->currnt.les;
c->total.es += c->currnt.es;
c->total.bes += c->currnt.bes;
c->total.ses += c->currnt.ses;
c->total.oofs += c->currnt.oofs;
c->total.css += c->currnt.css;
c->total.dm += c->currnt.dm;
for (i=0; i<sizeof (c->currnt); ++i)
*(((char *)(&c->currnt))+i)=0;
c->totsec += c->cursec;
c->cursec = 0;
}
}
static void ct_hdlc_interrupt (ct_chan_t *c, int imvr)
{
int i, dsr, st1, st2, cda;
switch (imvr & IMVR_VECT_MASK) {
case IMVR_RX_DMOK: /* receive DMA normal end */
dsr = inb (c->RX.DSR);
cda = inw (c->RX.CDA);
for (i=0; i<NBUF; ++i)
if (cda == (unsigned short) c->rdphys[i])
break;
if (i >= NBUF)
i = c->rn; /* cannot happen */
while (c->rn != i) {
int cst = B_STATUS (c->rdesc[c->rn]);
if (cst == FST_EOM) {
/* process data */
if (c->call_on_rx)
c->call_on_rx (c, c->rbuf[c->rn],
B_LEN(c->rdesc[c->rn]));
++c->ipkts;
c->ibytes += B_LEN(c->rdesc[c->rn]);
} else if (cst & ST2_OVRN) {
/* Receive overrun error */
if (c->call_on_err)
c->call_on_err (c, CT_OVERRUN);
++c->ierrs;
} else if (cst & (ST2_HDLC_RBIT |
ST2_HDLC_ABT | ST2_HDLC_SHRT)) {
/* Receive frame error */
if (c->call_on_err)
c->call_on_err (c, CT_FRAME);
++c->ierrs;
} else if ((cst & ST2_HDLC_EOM)
&& (cst & ST2_HDLC_CRCE)) {
/* Receive CRC error */
if (c->call_on_err)
c->call_on_err (c, CT_CRC);
++c->ierrs;
} else if (! (cst & ST2_HDLC_EOM)) {
/* Frame dose not fit in the buffer.*/
if (c->call_on_err)
c->call_on_err (c, CT_OVERFLOW);
++c->ierrs;
}
B_NEXT (c->rdesc[c->rn]) =
c->rdphys[(c->rn+1) % NBUF] & 0xffff;
B_PTR (c->rdesc[c->rn]) = c->rphys[c->rn];
B_LEN (c->rdesc[c->rn]) = DMABUFSZ;
B_STATUS (c->rdesc[c->rn]) = 0;
c->rn = (c->rn + 1) % NBUF;
}
outw (c->RX.EDA, (unsigned short) c->rdphys[(i+NBUF-1)%NBUF]);
/* Clear DMA interrupt. */
if (inb (c->RX.DSR) & DSR_DMA_ENABLE) {
outb (c->RX.DSR, dsr);
} else {
outb (c->RX.DSR, (dsr & 0xfc) | DSR_DMA_ENABLE);
}
++c->rintr;
break;
case IMVR_RX_INT: /* receive status */
st1 = inb (c->ST1);
st2 = inb (c->ST2);
if (st1 & ST1_CDCD){
if (c->call_on_msig)
c->call_on_msig (c);
++c->mintr;
}
/* Clear interrupt. */
outb (c->ST1, st1);
outb (c->ST2, st2);
++c->rintr;
break;
case IMVR_RX_DMERR: /* receive DMA error */
dsr = inb (c->RX.DSR);
if (dsr & (DSR_CHAIN_BOF | DSR_CHAIN_COF)) {
if (c->call_on_err)
c->call_on_err (c, CT_OVERFLOW);
++c->ierrs;
for (i=0; i<NBUF; ++i) {
B_LEN (c->rdesc[i]) = DMABUFSZ;
B_STATUS (c->rdesc[i]) = 0;
}
ct_start_receiver (c, 1, c->rphys[0], DMABUFSZ,
c->rdphys[0], c->rdphys[NBUF-1]);
c->rn = 0;
}
/* Clear DMA interrupt. */
outb (c->RX.DSR, dsr);
++c->rintr;
break;
case IMVR_TX_DMOK: /* transmit DMA normal end */
case IMVR_TX_DMERR: /* transmit DMA error */
dsr = inb (c->TX.DSR);
cda = inw (c->TX.CDA);
for (i=0; i<NBUF && cda != (unsigned short)c->tdphys[i]; ++i)
continue;
if (i >= NBUF)
i = 1; /* cannot happen */
if (dsr & DSR_CHAIN_COF) {
if (c->call_on_err)
c->call_on_err (c, CT_UNDERRUN);
++c->oerrs;
}
while (c->tn != i) {
if (c->call_on_tx)
c->call_on_tx (c, c->attach[c->tn],
B_LEN(c->tdesc[c->tn]));
++c->opkts;
c->obytes += B_LEN(c->tdesc[c->tn]);
c->tn = (c->tn + 1) % NBUF;
/* Clear DMA interrupt. */
outb (c->TX.DSR, DSR_CHAIN_EOM | DSR_DMA_CONTINUE);
}
outb (c->TX.DSR, dsr & ~DSR_CHAIN_EOM);
++c->tintr;
break;
case IMVR_TX_INT: /* transmit error, HDLC only */
st1 = inb (c->ST1);
if (st1 & ST1_HDLC_UDRN) {
if (c->call_on_err)
c->call_on_err (c, CT_UNDERRUN);
++c->oerrs;
}
outb (c->ST1, st1);
++c->tintr;
break;
default:
/* Unknown interrupt - cannot happen. */
break;
}
}
int ct_receive_enabled (ct_chan_t *c)
{
int st3;
st3 = inb (c->ST3);
return (st3 & ST3_RX_ENABLED) ? 1 : 0;
}
int ct_transmit_enabled (ct_chan_t *c)
{
int st3;
st3 = inb (c->ST3);
return (st3 & ST3_TX_ENABLED) ? 1 : 0;
}
int ct_buf_free (ct_chan_t *c)
{
return (NBUF + c->tn - c->te - 1) % NBUF;
}
int ct_send_packet (ct_chan_t *c, unsigned char *data, int len,
void *attachment)
{
int dsr, ne;
if (len > DMABUFSZ)
return -2;
/* Is it really free? */
ne = (c->te+1) % NBUF;
if (ne == c->tn)
return -1;
/* Set up the tx descriptor. */
B_LEN (c->tdesc[c->te]) = len;
B_STATUS (c->tdesc[c->te]) = FST_EOM;
c->attach[c->te] = attachment;
if (c->tbuf[c->te] != data)
memcpy (c->tbuf[c->te], data, len);
/* Start the transmitter. */
c->te = ne;
outw (c->TX.EDA, (unsigned short) c->tdphys[ne]);
dsr = inb (c->TX.DSR);
if (! (dsr & DSR_DMA_ENABLE))
outb (c->TX.DSR, DSR_DMA_ENABLE);
return 0;
}
int scc_write (ct_chan_t *c, unsigned char *d, int len)
{
int i, free;
/* determining free place in buffer */
if (c->scctx_empty)
free = SCCBUFSZ;
else
free = (SCCBUFSZ + c->scctx_b - c->scctx_e) % SCCBUFSZ;
if (len > free)
return -1;
for (i=0; i<len; i++){
c->scctx[c->scctx_e] = d[i];
c->scctx_e = (c->scctx_e+1) % SCCBUFSZ;
}
if (c->scctx_empty && len) {
cte_out2d (c, c->scctx[c->scctx_b]);
c->scctx_empty = 0;
}
return 0;
}
int scc_read (ct_chan_t *c, unsigned char *d, int len)
{
int i, bytes;
if (c->sccrx_empty)
bytes = 0;
else
bytes = (SCCBUFSZ + c->sccrx_e - 1 - c->sccrx_b) %
SCCBUFSZ + 1;
if (len > bytes)
return -1;
for (i=0; i<len; i++){
d[i] = c->sccrx[c->sccrx_b];
c->sccrx_b = (c->sccrx_b+1) % SCCBUFSZ;
}
if (c->sccrx_b==c->sccrx_e)
c->sccrx_empty = 1;
return 0;
}
int sccrx_check (ct_chan_t *c)
{
int bytes;
if (c->sccrx_empty)
bytes = 0;
else
bytes = (SCCBUFSZ + c->sccrx_e - 1 - c->sccrx_b) %
SCCBUFSZ + 1;
return bytes;
}
int scc_read_byte (ct_chan_t *c)
{
unsigned char a;
if (scc_read (c, &a, 1) < 0)
return -1;
return a;
}
int scc_write_byte (ct_chan_t *c, unsigned char b)
{
if (scc_write (c, &b, 1) < 0)
return -1;
return b;
}
/*
* Register event processing functions
*/
void ct_register_transmit (ct_chan_t *c, void (*func) (ct_chan_t*, void*, int))
{
c->call_on_tx = func;
}
void ct_register_receive (ct_chan_t *c, void (*func) (ct_chan_t*, char*, int))
{
c->call_on_rx = func;
}
void ct_register_error (ct_chan_t *c, void (*func) (ct_chan_t*, int))
{
c->call_on_err = func;
}
void ct_register_scc (ct_chan_t *c, void (*func) (ct_chan_t*))
{
c->call_on_scc = func;
}
void ct_register_modem (ct_chan_t *c, void (*func) (ct_chan_t*))
{
c->call_on_msig = func;
}