freebsd-skq/usr.bin/bc/bc.library
gabor bc4e1f6f87 Replace GNU bc/dc with BSDL versions ported from OpenBSD. They have a good
compatibility level with the GNU counterparts and have shown to be mature
enough. For now, the GNU versions aren't removed from the tree, just detached
from the build.

Sponsored by:		Google Summer of Code 2008
Portbuild run by:	erwin
Approved by:		delphij
2010-01-20 21:30:52 +00:00

264 lines
4.8 KiB
Plaintext

/* $FreeBSD$ */
/* $OpenBSD: bc.library,v 1.3 2007/02/03 21:15:06 otto Exp $ */
/*
* Copyright (C) Caldera International Inc. 2001-2002.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code and documentation must retain the above
* copyright notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed or owned by Caldera
* International, Inc.
* 4. Neither the name of Caldera International, Inc. nor the names of other
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* USE OF THE SOFTWARE PROVIDED FOR UNDER THIS LICENSE BY CALDERA
* INTERNATIONAL, INC. AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL CALDERA INTERNATIONAL, INC. BE LIABLE FOR ANY DIRECT,
* INDIRECT INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* @(#)bc.library 5.1 (Berkeley) 4/17/91
*/
scale = 20
define e(x) {
auto a, b, c, d, e, g, t, w, y, r
r = ibase
ibase = A
t = scale
scale = t + .434*x + 1
w = 0
if (x < 0) {
x = -x
w = 1
}
y = 0
while (x > 2) {
x = x/2
y = y + 1
}
a = 1
b = 1
c = b
d = 1
e = 1
for (a = 1; 1 == 1; a++) {
b = b*x
c = c*a + b
d = d*a
g = c/d
if (g == e) {
g = g/1
while (y--) {
g = g*g
}
scale = t
ibase = r
if (w == 1) return (1/g)
return (g/1)
}
e = g
}
}
define l(x) {
auto a, b, c, d, e, f, g, u, s, t, r
r = ibase
ibase = A
if (x <= 0) {
a = (1 - 10^scale)
ibase = r
return (a)
}
t = scale
f = 1
scale = scale + scale(x) - length(x) + 1
s = scale
while (x > 2) {
s = s + (length(x) - scale(x))/2 + 1
if (s > 0) scale = s
x = sqrt(x)
f = f*2
}
while (x < .5) {
s = s + (length(x) - scale(x))/2 + 1
if (s > 0) scale = s
x = sqrt(x)
f = f*2
}
scale = t + length(f) - scale(f) + 1
u = (x - 1)/(x + 1)
scale = scale + 1.1*length(t) - 1.1*scale(t)
s = u*u
b = 2*f
c = b
d = 1
e = 1
for (a = 3; 1 == 1 ; a = a + 2) {
b = b*s
c = c*a + d*b
d = d*a
g = c/d
if (g == e) {
scale = t
ibase = r
return (u*c/d)
}
e = g
}
}
define s(x) {
auto a, b, c, s, t, y, p, n, i, r
r = ibase
ibase = A
t = scale
y = x/.7853
s = t + length(y) - scale(y)
if (s < t) s = t
scale = s
p = a(1)
scale = 0
if (x >= 0) n = (x/(2*p) + 1)/2
if (x < 0) n = (x/(2*p) - 1)/2
x = x - 4*n*p
if (n % 2 != 0) x = -x
scale = t + length(1.2*t) - scale(1.2*t)
y = -x*x
a = x
b = 1
s = x
for (i =3 ; 1 == 1; i = i + 2) {
a = a*y
b = b*i*(i - 1)
c = a/b
if (c == 0) {
scale = t
ibase = r
return (s/1)
}
s = s + c
}
}
define c(x) {
auto t, r
r = ibase
ibase = A
t = scale
scale = scale + 1
x = s(x + 2*a(1))
scale = t
ibase = r
return (x/1)
}
define a(x) {
auto a, b, c, d, e, f, g, s, t, r
if (x == 0) return(0)
r = ibase
ibase = A
if (x == 1) {
if (scale < 52) {
a = .7853981633974483096156608458198757210492923498437764/1
ibase = r
return (a)
}
}
t = scale
f = 1
while (x > .5) {
scale = scale + 1
x = -(1 - sqrt(1. + x*x))/x
f = f*2
}
while (x < -.5) {
scale = scale + 1
x = -(1 - sqrt(1. + x*x))/x
f = f*2
}
s = -x*x
b = f
c = f
d = 1
e = 1
for (a = 3; 1 == 1; a = a + 2) {
b = b*s
c = c*a + d*b
d = d*a
g = c/d
if (g == e) {
ibase = r
scale = t
return (x*c/d)
}
e = g
}
}
define j(n,x) {
auto a, b, c, d, e, g, i, s, k, t, r
r = ibase
ibase = A
t = scale
k = 1.36*x + 1.16*t - n
k = length(k) - scale(k)
if (k > 0) scale = scale + k
s = -x*x/4
if (n < 0) {
n = -n
x = -x
}
a = 1
c = 1
for (i = 1; i <= n; i++) {
a = a*x
c = c*2*i
}
b = a
d = 1
e = 1
for (i = 1; 1; i++) {
a = a*s
b = b*i*(n + i) + a
c = c*i*(n + i)
g = b/c
if (g == e) {
ibase = r
scale = t
return (g/1)
}
e = g
}
}