freebsd-skq/sys/i386/isa/if_ep.c
David Greenman 307d80be7a Moved conversion of ether_type to host byte order out of ethernet drivers
and into ether_input(). It was silly to have bpf want this one way and
ether_input want it another way. Ripped out trailer support from the few
remaining drivers that still had it.
1994-11-24 14:29:38 +00:00

1378 lines
37 KiB
C

/*
* Copyright (c) 1993 Herb Peyerl <hpeyerl@novatel.ca> All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer. 2. The name
* of the author may not be used to endorse or promote products derived from
* this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* From: if_ep.c,v 1.9 1994/01/25 10:46:29 deraadt Exp $ $Id: if_ep.c,v 1.9
* 1994/05/02 22:27:33 ats Exp $
*
* October 26, 1994
*
* Modified by: Andres Vega Garcia
* INRIA - Sophia Antipolis, France
* e-mail: avega@sophia.inria.fr
* finger: avega@pax.inria.fr
*
*
* What is new:
*
* 1) We can recognize more than 1 board.
*
* 2) The problem which used to happen with high trafic is corrected,
* (No more need to 'down' and 'up' the interface).
*
* 3) In the transmission, we use the TX start threshold in a more dynamic
* fashion (IMO the throughput is higher this way).
*
* 4) In the reception, we use the RX early threshold, that parameter is
* adapted as the packets arrive (IMO the throughput is higher this way).
*
* 5) Supports EISA cards.
*
* NB 0: The 32 bits acces is allowed for the EISA configured cards, thoung I
* wasn't able to test the code added.
*
* NB 1: I added the option EP_LOCAL_STATS, it can be temporary as IMO is just
* used while working on this driver and the program that displays this
* information (epstat).
*
*
* Some driver statistics can be viewed with the epstat utility. In order to
* use this, you have to compile if_ep.c with
*
* -DEP_LOCAL_STATS
*
* which can be included in your machine config file (e.g. GENERICAH_EP)
* as an option (option EP_LOCAL_STATS).
*
*
* Modifications since FreeBSD 1.1.5.1 Release:
*
* This explanation concerns the epstart(), epread() and epintr() functions.
*
* =========================================================================
* epstart()
* =========================================================================
*
*
* Let's see what the idea is:
*
*
* Packet |------------------ LEN ---------------------|
*
* A
* CPU |---------------|----------------------------|
*
*
* Card |----------------------------|
*
*
*
* We suppose the Card is able to *write* bytes (send them to the media)
* at the speed S_CARD (bytes/s), and that is faster than the speed of the CPU,
* S_CPU, to write bytes to the TX FIFO, then, we have to write A bytes to the
* FIFO before enableing the transmision in the card. This way both, the card
* and the CPU must finish their writing at the same time.
*
*
* Let TX_RATE = S_CPU / S_CARD, where TX_RATE <= 1
*
* We can find that:
*
* (1) A = LEN * (1 - TX_RATE)
*
*
* Let TX_RATE_R be the *very real* value.
*
* If TX_RATE > TX_RATE_R
* We are supposing the CPU is faster than it really is and
* certainly the card will *finish* before the CPU, having a
* TX Underrun Error, then, in such a case, we have to do:
*
* TX_RATE -= STEP, where STEP is the step at which we
* move TX_RATE
*
* If TX_RATE < TX_RATE_R
* We won't have the TX Underrun Error but it is possible that
* we don't use eficiently the TX START THRESH. feature.
* We prevent this by doing:
*
* TX_RATE += STEP every time we have sent succesfuly
* (without Underrun) a certain number
* of packets.
*
* Now, to avoid dealing with reals I used a FACTOR, then (1) will be
* transformed:
*
* Let tx_rate = FACTOR * TX_RATE, tx_rate is the parameter
* really used.
*
* A = (LEN * (FACTOR - tx_rate)) / FACTOR
*
* Actually FACTOR = 64
*
* (2) A = (LEN * (64 - tx_rate)) >> 6
*
* As I want to have some margin, and
* as I have to write a number multiple of 4:
*
* A = tx_start_threshold = (((LEN * (64 - tx_rate)) >> 6) & ~3) + 16
*
*
* =========================================================================
* epread()
* =========================================================================
*
* I mantain an estimation of the RX packet's average length, and an
* estimation of the RX latency.
*
* Every time I receive a complete packet I compute the average packet's
* length, rx_avg_pkt:
*
* DELTA = LEN - rx_avg_pkt, where LEN is this packet's length
*
* if DELTA > 0
* rx_avg_pkt += AVG_UP * DELTA
* else
* rx_avg_pkt += AVG_DOWN *DELTA
*
*
* AVG_UP < AVG_DOWN
*
* In the first case, I'm interested in being conservative about the
* average packet'length, because if I let it go up *too fast*, a shorter packet
* than expected will probably cause an RX Overrun Error. But if I consider
* the next packet will be smaller than it will, I just will have to wait
* for the packet to complete reception.
*
* In the other case, I'm interested in leting the rx_avg_pkt follow
* the real packet's lenght closer, as it is important not to think the average
* packet is bigger than it realy is. If I don't do that, and the rx_avg_pkt
* goes down *too slow*, I'll find myself thinking the packets are big when they
* are really small and I'll have probably Rx Overrun Errors.
*
* Actualy:
*
* AVG_UP = 1/32
* AVG_DOWN = 1/8
*
*
* Every time I receive an incomplete packet I recompute the RX latency
* (rx_latency).
*
* I know that if rx_latency = 0, when I go read the bytes from the RX
* FIFO, I'll find as many bytes as I programmed in the RX Early Threshold, but
* if rx_latency > 0, I'll find more bytes.
*
* Let CUR_LAT be the RX latency seen by this packet.
*
* CUR_LAT = LEN - rx_early_threshold, where LEN is the number of
* bytes I have just received.
*
* DELTA = CUR_LAT - rx_latency
*
*
* if DELTA >= 0
* rx_latency += LAT_UP * DELTA
* else
* rx_latency += LAT_DOWN * DELTA
*
*
* LAT_UP > LAT_DOWN
*
* In a similar way as for rx average packet's length, I try to be more
* conservative in the more critical case.
*
* In the first case, I have to follow closer the incremets of the RX
* latency, because if I don't, I can find myself thinking that we (CPU) are
* *enough fast* and wait up to the last minute to go read data to find we have
* had RX Overrun Error.
*
* In the other case I must be more conservative to avoid falling in
* the situation I have just described, because if I go down *to fast* I'll
* think we are enough fast and we'll wake up later than due.
*
* Actually:
*
* LAT_UP = 1/4
* LAT_DOWN = 1/32
*
* Finally, I compute the rx_early_threshold for the next packet as:
*
* rx_early_threshold = rx_avg_pkt - rx_latency
*
* But, as I want to have a margin and
* as I have to write a value multiple of 4.
*
*
* rx_early_threshold = (rx_avg_pkt - rx_latency - 16) & ~3
*
*
* But if I have to wait for the rest of an incomplete packet
* from which I have already received CUR_LEN bytes:
*
*
* rx_early_threshold = (rx_avg_pkt-CUR_LEN - rx_latency - 16) & ~3
*
*
* =========================================================================
* epintr()
* =========================================================================
*
* For this function I just tryed to do what is stated in the
* Etherlink III Technical Reference.
*
* It was here where I really solved the problem that used to happen with
* high traffic.
*
*
* Andres
* avega@pax.inria.fr
*/
#include "ep.h"
#if NEP > 0
#include "bpfilter.h"
#include <sys/param.h>
#if defined(__FreeBSD__)
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/devconf.h>
#endif
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/syslog.h>
#if defined(__NetBSD__)
#include <sys/select.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <i386/isa/isa.h>
#include <i386/isa/isa_device.h>
#include <i386/isa/icu.h>
#include <i386/isa/if_epreg.h>
static int epprobe __P((struct isa_device *));
static int epattach __P((struct isa_device *));
static int epioctl __P((struct ifnet * ifp, int, caddr_t));
static void epmbuffill __P((caddr_t, int));
static void epmbufempty __P((struct ep_softc *));
void epinit __P((int));
void epintr __P((int));
void epread __P((struct ep_softc *));
void epreset __P((int));
void epstart __P((struct ifnet *));
void epstop __P((int));
void epwatchdog __P((int));
static int send_ID_sequence __P((int));
static int get_eeprom_data __P((int, int));
struct ep_softc ep_softc[NEP];
#define ep_ftst(f) (sc->stat&(f))
#define ep_fset(f) (sc->stat|=(f))
#define ep_frst(f) (sc->stat&=~(f))
struct isa_driver epdriver = {
epprobe,
epattach,
"ep"
};
static struct kern_devconf kdc_ep[NEP] = { {
0, 0, 0, /* filled in by dev_attach */
"ep", 0, { MDDT_ISA, 0, "net" },
isa_generic_externalize, 0, 0, ISA_EXTERNALLEN,
&kdc_isa0, /* parent */
0, /* parentdata */
DC_BUSY, /* network interfaces are always ``open'' */
"3Com 3C509 Ethernet adapter"
} };
static inline void
ep_registerdev(struct isa_device *id)
{
if(id->id_unit)
kdc_ep[id->id_unit] = kdc_ep[0];
kdc_ep[id->id_unit].kdc_unit = id->id_unit;
kdc_ep[id->id_unit].kdc_parentdata = id;
dev_attach(&kdc_ep[id->id_unit]);
}
int ep_current_tag = EP_LAST_TAG + 1;
int ep_board[EP_MAX_BOARDS + 1];
static int
eeprom_rdy(is)
struct isa_device *is;
{
int i;
for (i = 0; is_eeprom_busy(IS_BASE) && i < MAX_EEPROMBUSY; i++);
if (i >= MAX_EEPROMBUSY) {
printf("ep%d: eeprom failed to come ready.\n", is->id_unit);
return (0);
}
return (1);
}
static int
ep_look_for_board_at(is)
struct isa_device *is;
{
int data, i, j, io_base, id_port = EP_ID_PORT;
int nisa = 0, neisa = 0;
if (ep_current_tag == (EP_LAST_TAG + 1)) {
/* Come here just one time */
/* Look for the EISA boards, leave them activated */
for(j = 1; j < 16; j++) {
io_base = (j * EP_EISA_START) | EP_EISA_W0;
if (inw(io_base + EP_W0_MFG_ID) != MFG_ID)
continue;
/* we must found 0x1f if the board is EISA configurated */
if ((inw(io_base + EP_W0_ADDRESS_CFG) & 0x1f) != 0x1f)
continue;
/* Reset and Enable the card */
outb(io_base + EP_W0_CONFIG_CTRL, W0_P4_CMD_RESET_ADAPTER);
DELAY(1000); /* we must wait at least 1 ms */
outb(io_base + EP_W0_CONFIG_CTRL, W0_P4_CMD_ENABLE_ADAPTER);
/*
* Once activated, all the registers are mapped in the range
* x000 - x00F, where x is the slot number.
*/
ep_board[neisa++] = j * EP_EISA_START;
}
ep_current_tag--;
/* Look for the ISA boards. Init and leave them actived */
outb(id_port, 0xc0); /* Global reset */
DELAY(1000);
for (i = 0; i < EP_MAX_BOARDS; i++) {
outb(id_port, 0);
outb(id_port, 0);
send_ID_sequence(id_port);
data = get_eeprom_data(id_port, EEPROM_MFG_ID);
if (data != MFG_ID)
break;
/* resolve contention using the Ethernet address */
for (j = 0; j < 3; j++)
data = get_eeprom_data(id_port, j);
ep_board[neisa+nisa++] =
(get_eeprom_data(id_port, EEPROM_ADDR_CFG) & 0x1f) * 0x10 + 0x200;
outb(id_port, ep_current_tag); /* tags board */
outb(id_port, ACTIVATE_ADAPTER_TO_CONFIG);
ep_current_tag--;
}
ep_board[neisa+nisa] = 0;
if (neisa) {
printf("%d 3C5x9 board(s) on EISA found at", neisa);
for (j = 0; ep_board[j]; j++)
if (ep_board[j] >= EP_EISA_START)
printf(" 0x%x", ep_board[j]);
printf("\n");
}
if (nisa) {
printf("%d 3C5x9 board(s) on ISA found at", nisa);
for (j = 0; ep_board[j]; j++)
if (ep_board[j] < EP_EISA_START)
printf(" 0x%x", ep_board[j]);
printf("\n");
}
}
for (i = 0; ep_board[i] && ep_board[i] != IS_BASE; i++);
if (ep_board[i] == IS_BASE) {
if (inw(IS_BASE + EP_W0_EEPROM_COMMAND) & EEPROM_TST_MODE)
printf("ep%d: 3c5x9 at 0x%x in test mode. Erase pencil mark!\n",
is->id_unit, IS_BASE);
return (1);
}
return (0);
}
/*
* get_e: gets a 16 bits word from the EEPROM. we must have set the window
* before
*/
static int
get_e(is, offset)
struct isa_device *is;
int offset;
{
if (!eeprom_rdy(is))
return (0xffff);
outw(IS_BASE + EP_W0_EEPROM_COMMAND, EEPROM_CMD_RD | offset);
if (!eeprom_rdy(is))
return (0xffff);
return (inw(IS_BASE + EP_W0_EEPROM_DATA));
}
int
epprobe(is)
struct isa_device *is;
{
struct ep_softc *sc = &ep_softc[is->id_unit];
u_short k;
int i;
if (!ep_look_for_board_at(is))
return (0);
/*
* The iobase was found and MFG_ID was 0x6d50. PROD_ID should be
* 0x9[0-f]50
*/
GO_WINDOW(0);
k = get_e(is, EEPROM_PROD_ID);
if ((k & 0xf0ff) != (PROD_ID & 0xf0ff)) {
printf("epprobe: ignoring model %04x\n", k);
return (0);
}
k = get_e(is, EEPROM_RESOURCE_CFG);
k >>= 12;
if (is->id_irq != (1 << ((k == 2) ? 9 : k))) {
printf("epprobe: interrupt number %d doesn't match\n",is->id_irq);
return (0);
}
if (BASE >= EP_EISA_START) /* we have an EISA board, we allow 32 bits access */
sc->stat = F_ACCESS_32_BITS;
else
sc->stat = 0;
/* By now, the adapter is already activated */
return (0x10); /* 16 bytes of I/O space used. */
}
static char *ep_conn_type[] = {"UTP", "AUI", "???", "BNC"};
static int
epattach(is)
struct isa_device *is;
{
struct ep_softc *sc = &ep_softc[is->id_unit];
struct ifnet *ifp = &sc->arpcom.ac_if;
u_short i, j, *p;
struct ifaddr *ifa;
struct sockaddr_dl *sdl;
/* BASE = IS_BASE; */
sc->ep_io_addr = is->id_iobase;
printf("ep%d: ", is->id_unit);
sc->ep_connectors = 0;
i = inw(IS_BASE + EP_W0_CONFIG_CTRL);
j = inw(IS_BASE + EP_W0_ADDRESS_CFG) >> 14;
if (i & IS_AUI) {
printf("aui");
sc->ep_connectors |= AUI;
}
if (i & IS_BNC) {
if (sc->ep_connectors)
printf("/");
printf("bnc");
sc->ep_connectors |= BNC;
}
if (i & IS_UTP) {
if (sc->ep_connectors)
printf("/");
printf("utp");
sc->ep_connectors |= UTP;
}
if (!(sc->ep_connectors & 7))
printf("no connectors!");
else
printf("[*%s*]", ep_conn_type[j]);
/*
* Read the station address from the eeprom
*/
p = (u_short *) & sc->arpcom.ac_enaddr;
for (i = 0; i < 3; i++) {
GO_WINDOW(0);
p[i] = htons(get_e(is, i));
GO_WINDOW(2);
outw(BASE + EP_W2_ADDR_0 + (i * 2), ntohs(p[i]));
}
printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr));
ifp->if_unit = is->id_unit;
ifp->if_name = "ep";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS;
ifp->if_init = epinit;
ifp->if_output = ether_output;
ifp->if_start = epstart;
ifp->if_ioctl = epioctl;
ifp->if_watchdog = epwatchdog;
if_attach(ifp);
ep_registerdev(is);
/*
* Fill the hardware address into ifa_addr if we find an AF_LINK entry.
* We need to do this so bpf's can get the hardware addr of this card.
* netstat likes this too!
*/
ifa = ifp->if_addrlist;
while ((ifa != 0) && (ifa->ifa_addr != 0) &&
(ifa->ifa_addr->sa_family != AF_LINK))
ifa = ifa->ifa_next;
if ((ifa != 0) && (ifa->ifa_addr != 0)) {
sdl = (struct sockaddr_dl *) ifa->ifa_addr;
sdl->sdl_type = IFT_ETHER;
sdl->sdl_alen = ETHER_ADDR_LEN;
sdl->sdl_slen = 0;
bcopy(sc->arpcom.ac_enaddr, LLADDR(sdl), ETHER_ADDR_LEN);
}
/* we give some initial parameters */
sc->rx_avg_pkt = 128;
/*
* NOTE: In all this I multiply everything by 64.
* W_s = the speed the CPU is able to write to the TX FIFO.
* T_s = the speed the board sends the info to the Ether.
* W_s/T_s = 16 (represents 16/64) => W_s = 25 % of T_s.
* This will give us for a packet of 1500 bytes
* tx_start_thresh=1125 and for a pkt of 64 bytes tx_start_threshold=48.
* We prefer to start thinking the CPU is much slower than the Ethernet
* transmission.
*/
sc->tx_rate = TX_INIT_RATE;
sc->tx_counter = 0;
sc->rx_latency = RX_INIT_LATENCY;
sc->rx_early_thresh = RX_INIT_EARLY_THRESH;
#ifdef EP_LOCAL_STATS
sc->rx_no_first = sc->rx_no_mbuf =
sc->rx_bpf_disc = sc->rx_overrunf = sc->rx_overrunl =
sc->tx_underrun = 0;
#endif
ep_fset(F_RX_FIRST);
sc->top = sc->mcur = 0;
#if NBPFILTER > 0
bpfattach(&sc->bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
return 1;
}
/*
* The order in here seems important. Otherwise we may not receive
* interrupts. ?!
*/
void
epinit(unit)
int unit;
{
register struct ep_softc *sc = &ep_softc[unit];
register struct ifnet *ifp = &sc->arpcom.ac_if;
int s, i;
if (ifp->if_addrlist == (struct ifaddr *) 0)
return;
s = splimp();
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS);
GO_WINDOW(0);
/* Disable the card */
outw(BASE + EP_W0_CONFIG_CTRL, 0);
/* Enable the card */
outw(BASE + EP_W0_CONFIG_CTRL, ENABLE_DRQ_IRQ);
GO_WINDOW(2);
/* Reload the ether_addr. */
for (i = 0; i < 6; i++)
outb(BASE + EP_W2_ADDR_0 + i, sc->arpcom.ac_enaddr[i]);
outw(BASE + EP_COMMAND, RX_RESET);
outw(BASE + EP_COMMAND, TX_RESET);
/* Window 1 is operating window */
GO_WINDOW(1);
for (i = 0; i < 31; i++)
inb(BASE + EP_W1_TX_STATUS);
/* get rid of stray intr's */
outw(BASE + EP_COMMAND, ACK_INTR | 0xff);
outw(BASE + EP_COMMAND, SET_RD_0_MASK | S_5_INTS);
outw(BASE + EP_COMMAND, SET_INTR_MASK | S_5_INTS);
outw(BASE + EP_COMMAND, SET_RX_FILTER | FIL_INDIVIDUAL |
FIL_GROUP | FIL_BRDCST);
/*
* you can `ifconfig ep0 (bnc|aui)' to get the following
* behaviour:
* bnc disable AUI/UTP. enable BNC.
* aui disable BNC. enable AUI. if the card has a UTP
* connector, that is enabled too. not sure, but it
* seems you have to be careful to not plug things
* into both AUI & UTP.
*/
#if defined(__NetBSD__)
if (!(ifp->if_flags & IFF_LINK0) && (sc->ep_connectors & BNC)) {
#else
if (!(ifp->if_flags & IFF_ALTPHYS) && (sc->ep_connectors & BNC)) {
#endif
outw(BASE + EP_COMMAND, START_TRANSCEIVER);
DELAY(1000);
}
#if defined(__NetBSD__)
if ((ifp->if_flags & IFF_LINK0) && (sc->ep_connectors & UTP)) {
#else
if ((ifp->if_flags & IFF_ALTPHYS) && (sc->ep_connectors & UTP)) {
#endif
GO_WINDOW(4);
outw(BASE + EP_W4_MEDIA_TYPE, ENABLE_UTP);
GO_WINDOW(1);
}
outw(BASE + EP_COMMAND, RX_ENABLE);
outw(BASE + EP_COMMAND, TX_ENABLE);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE; /* just in case */
sc->tx_rate = TX_INIT_RATE;
sc->tx_counter = 0;
sc->rx_latency = RX_INIT_LATENCY;
sc->rx_early_thresh = RX_INIT_EARLY_THRESH;
#ifdef EP_LOCAL_STATS
sc->rx_no_first = sc->rx_no_mbuf =
sc->rx_bpf_disc = sc->rx_overrunf = sc->rx_overrunl =
sc->tx_underrun = 0;
#endif
ep_fset(F_RX_FIRST);
ep_frst(F_RX_TRAILER);
if (sc->top) {
m_freem(sc->top);
sc->top = sc->mcur = 0;
}
outw(BASE + EP_COMMAND, SET_RX_EARLY_THRESH | sc->rx_early_thresh);
/*
* Store up a bunch of mbuf's for use later. (MAX_MBS). First we free up
* any that we had in case we're being called from intr or somewhere
* else.
*/
sc->last_mb = 0;
sc->next_mb = 0;
epmbuffill((caddr_t) sc, 0);
epstart(ifp);
splx(s);
}
static const char padmap[] = {0, 3, 2, 1};
void
epstart(ifp)
struct ifnet *ifp;
{
register struct ep_softc *sc = &ep_softc[ifp->if_unit];
register u_int len;
register struct mbuf *m;
struct mbuf *top;
int s, pad;
s = splimp();
if (sc->arpcom.ac_if.if_flags & IFF_OACTIVE) {
splx(s);
return;
}
startagain:
/* Sneak a peek at the next packet */
m = sc->arpcom.ac_if.if_snd.ifq_head;
if (m == 0) {
splx(s);
return;
}
#if 0
len = m->m_pkthdr.len;
#else
for (len = 0, top = m; m; m = m->m_next)
len += m->m_len;
#endif
pad = padmap[len & 3];
/*
* The 3c509 automatically pads short packets to minimum ethernet length,
* but we drop packets that are too large. Perhaps we should truncate
* them instead?
*/
if (len + pad > ETHER_MAX_LEN) {
/* packet is obviously too large: toss it */
++sc->arpcom.ac_if.if_oerrors;
IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
m_freem(m);
goto readcheck;
}
if (inw(BASE + EP_W1_FREE_TX) < len + pad + 4) {
/* no room in FIFO */
outw(BASE + EP_COMMAND, SET_TX_AVAIL_THRESH | (len + pad + 4));
sc->arpcom.ac_if.if_flags |= IFF_OACTIVE;
splx(s);
return;
}
IF_DEQUEUE(&sc->arpcom.ac_if.if_snd, m);
outw(BASE + EP_W1_TX_PIO_WR_1, len);
outw(BASE + EP_W1_TX_PIO_WR_1, 0x0); /* Second dword meaningless */
/* compute the Tx start threshold for this packet */
sc->tx_start_thresh = len =
(((len * (64 - sc->tx_rate)) >> 6) & ~3) + 16;
outw(BASE + EP_COMMAND, SET_TX_START_THRESH | len);
for (top = m; m != 0; m = m->m_next)
if(ep_ftst(F_ACCESS_32_BITS)) {
outsl(BASE + EP_W1_TX_PIO_WR_1, mtod(m, caddr_t),
m->m_len / 4);
if (m->m_len & 3)
outsb(BASE + EP_W1_TX_PIO_WR_1,
mtod(m, caddr_t) + m->m_len / 4,
m->m_len & 3);
} else {
outsw(BASE + EP_W1_TX_PIO_WR_1, mtod(m, caddr_t), m->m_len / 2);
if (m->m_len & 1)
outb(BASE + EP_W1_TX_PIO_WR_1,
*(mtod(m, caddr_t) + m->m_len - 1));
}
while (pad--)
outb(BASE + EP_W1_TX_PIO_WR_1, 0); /* Padding */
#if NBPFILTER > 0
if (sc->bpf) {
bpf_mtap(sc->bpf, top);
}
#endif
sc->arpcom.ac_if.if_opackets++;
m_freem(top);
/*
* Every 1024*4 packets we increment the tx_rate if we haven't had
* errors, that in the case it has abnormaly goten too low
*/
if (!(++sc->tx_counter & (1024 * 4 - 1)) &&
sc->tx_rate < TX_INIT_MAX_RATE)
sc->tx_rate++;
/*
* Is another packet coming in? We don't want to overflow the tiny RX
* fifo.
*/
readcheck:
if (inw(BASE + EP_W1_RX_STATUS) & RX_BYTES_MASK) {
/*
* we check if we have packets left, in that case we prepare to come
* back later
*/
if (sc->arpcom.ac_if.if_snd.ifq_head) {
outw(BASE + EP_COMMAND, SET_TX_AVAIL_THRESH |
sc->tx_start_thresh);
}
splx(s);
return;
}
goto startagain;
}
void
epintr(unit)
int unit;
{
int i;
register int status;
register struct ep_softc *sc = &ep_softc[unit];
struct ifnet *ifp = &sc->arpcom.ac_if;
struct mbuf *m;
outw(BASE + EP_COMMAND, SET_INTR_MASK); /* disable all Ints */
outw(BASE + EP_COMMAND, C_INTR_LATCH); /* ACK int Latch */
while ((status = inw(BASE + EP_STATUS)) & S_5_INTS) {
if (status & (S_RX_COMPLETE | S_RX_EARLY)) {
/* we just need ACK for RX_EARLY */
if (status & S_RX_EARLY)
outw(BASE + EP_COMMAND, C_RX_EARLY);
epread(sc);
continue;
}
if (status & S_TX_AVAIL) {
/* we need ACK */
outw(BASE + EP_COMMAND, C_TX_AVAIL);
sc->arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
epstart(&sc->arpcom.ac_if);
}
if (status & S_CARD_FAILURE) {
#ifdef EP_LOCAL_STATS
printf("\nep%d:\n\tStatus: %x\n", unit, status);
GO_WINDOW(4);
printf("\tFIFO Diagnostic: %x\n", inw(BASE + EP_W4_FIFO_DIAG));
printf("\tStat: %x\n", sc->stat);
printf("\tIpackets=%d, Opackets=%d\n",
sc->arpcom.ac_if.if_ipackets, sc->arpcom.ac_if.if_opackets);
printf("\tNOF=%d, NOMB=%d, BPFD=%d, RXOF=%d, RXOL=%d, TXU=%d\n",
sc->rx_no_first, sc->rx_no_mbuf, sc->rx_bpf_disc, sc->rx_overrunf,
sc->rx_overrunl, sc->tx_underrun);
#else
printf("ep%d: Status: %x\n", unit, status);
#endif
epinit(unit);
return;
}
if (status & S_TX_COMPLETE) {
/* we need ACK. we do it at the end */
/*
* We need to read TX_STATUS until we get a 0 status in order to
* turn off the interrupt flag.
*/
while ((status = inb(BASE + EP_W1_TX_STATUS)) & TXS_COMPLETE) {
if (status & TXS_SUCCES_INTR_REQ);
else if (status & (TXS_UNDERRUN | TXS_JABBER | TXS_MAX_COLLISION)) {
outw(BASE + EP_COMMAND, TX_RESET);
if (status & TXS_UNDERRUN) {
if (sc->tx_rate > 1) {
sc->tx_rate--; /* Actually in steps of 1/64 */
sc->tx_counter = 0; /* We reset it */
}
#ifdef EP_LOCAL_STATS
sc->tx_underrun++;
#endif
} else {
if (status & TXS_JABBER);
else /* TXS_MAX_COLLISION - we shouldn't get here */
++sc->arpcom.ac_if.if_collisions;
}
++sc->arpcom.ac_if.if_oerrors;
outw(BASE + EP_COMMAND, TX_ENABLE);
/*
* To have a tx_avail_int but giving the chance to the
* Reception
*/
if (sc->arpcom.ac_if.if_snd.ifq_head) {
outw(BASE + EP_COMMAND, SET_TX_AVAIL_THRESH | 8);
}
}
outb(BASE + EP_W1_TX_STATUS, 0x0); /* pops up the next
* status */
} /* while */
} /* end TX_COMPLETE */
}
/* re-enable ints */
outw(BASE + EP_COMMAND, SET_INTR_MASK | S_5_INTS);
}
void
epread(sc)
register struct ep_softc *sc;
{
struct ether_header *eh;
struct mbuf *top, *mcur, *m;
int lenthisone;
short rx_fifo2, status;
register short delta;
register short rx_fifo;
status = inw(BASE + EP_W1_RX_STATUS);
read_again:
if (status & ERR_RX) {
++sc->arpcom.ac_if.if_ierrors;
if (status & ERR_RX_OVERRUN) {
/*
* we can think the rx latency is actually greather than we
* expect
*/
#ifdef EP_LOCAL_STATS
if (ep_ftst(F_RX_FIRST))
sc->rx_overrunf++;
else
sc->rx_overrunl++;
#endif
if (sc->rx_latency < ETHERMTU)
sc->rx_latency += 16;
}
goto out;
}
rx_fifo = rx_fifo2 = status & RX_BYTES_MASK;
if (ep_ftst(F_RX_FIRST)) {
if (m = sc->mb[sc->next_mb]) {
sc->mb[sc->next_mb] = 0;
sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
m->m_data = m->m_pktdat;
m->m_flags = M_PKTHDR;
} else {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (!m)
goto out;
}
sc->top = sc->mcur = top = m;
#define EROUND ((sizeof(struct ether_header) + 3) & ~3)
#define EOFF (EROUND - sizeof(struct ether_header))
top->m_data += EOFF;
/* Read what should be the header. */
insw(BASE + EP_W1_RX_PIO_RD_1,
mtod(top, caddr_t), sizeof(struct ether_header) / 2);
top->m_len = sizeof(struct ether_header);
rx_fifo -= sizeof(struct ether_header);
sc->cur_len = rx_fifo2;
} else {
/* come here if we didn't have a complete packet last time */
top = sc->top;
m = sc->mcur;
sc->cur_len += rx_fifo2;
if (ep_ftst(F_RX_TRAILER))
/* We don't read the trailer */
rx_fifo -= sizeof(struct ether_header);
}
/* Reads what is left in the RX FIFO */
while (rx_fifo > 0) {
lenthisone = min(rx_fifo, M_TRAILINGSPACE(m));
if (lenthisone == 0) { /* no room in this one */
mcur = m;
if (m = sc->mb[sc->next_mb]) {
sc->mb[sc->next_mb] = 0;
sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
} else {
MGET(m, M_DONTWAIT, MT_DATA);
if (!m)
goto out;
}
if (rx_fifo >= MINCLSIZE)
MCLGET(m, M_DONTWAIT);
m->m_len = 0;
mcur->m_next = m;
lenthisone = min(rx_fifo, M_TRAILINGSPACE(m));
}
if (ep_ftst(F_ACCESS_32_BITS)) { /* default for EISA configured cards*/
insl(BASE + EP_W1_RX_PIO_RD_1, mtod(m, caddr_t) + m->m_len,
lenthisone / 4);
m->m_len += (lenthisone & ~3);
if (lenthisone & 3)
insb(BASE + EP_W1_RX_PIO_RD_1,
mtod(m, caddr_t) + m->m_len,
lenthisone & 3);
m->m_len += (lenthisone & 3);
} else {
insw(BASE + EP_W1_RX_PIO_RD_1, mtod(m, caddr_t) + m->m_len,
lenthisone / 2);
m->m_len += lenthisone;
if (lenthisone & 1)
*(mtod(m, caddr_t) + m->m_len - 1) = inb(BASE + EP_W1_RX_PIO_RD_1);
}
rx_fifo -= lenthisone;
}
if (ep_ftst(F_RX_TRAILER)) {/* reads the trailer */
if (m = sc->mb[sc->next_mb]) {
sc->mb[sc->next_mb] = 0;
sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
m->m_data = m->m_pktdat;
m->m_flags = M_PKTHDR;
} else {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (!m)
goto out;
}
insw(BASE + EP_W1_RX_PIO_RD_1, mtod(m, caddr_t),
sizeof(struct ether_header));
m->m_len = sizeof(struct ether_header);
m->m_next = top;
sc->top = top = m;
/* XXX Accomodate for type and len from beginning of trailer */
sc->cur_len -= (2 * sizeof(u_short));
ep_frst(F_RX_TRAILER);
goto all_pkt;
}
if (status & ERR_RX_INCOMPLETE) { /* we haven't received the complete
* packet */
sc->mcur = m;
#ifdef EP_LOCAL_STATS
sc->rx_no_first++; /* to know how often we come here */
#endif
/*
* Re-compute rx_latency, the factor used is 1/4 to go up and 1/32 to
* go down
*/
delta = rx_fifo2 - sc->rx_early_thresh; /* last latency seen LLS */
delta -= sc->rx_latency;/* LLS - estimated_latency */
if (delta >= 0)
sc->rx_latency += (delta / 4);
else
sc->rx_latency += (delta / 32);
ep_frst(F_RX_FIRST);
if (!((status = inw(BASE + EP_W1_RX_STATUS)) & ERR_RX_INCOMPLETE)) {
/* we see if by now, the packet has completly arrived */
goto read_again;
}
/* compute rx_early_threshold */
delta = (sc->rx_avg_pkt - sc->cur_len - sc->rx_latency - 16) & ~3;
if (delta < MIN_RX_EARLY_THRESHL)
delta = MIN_RX_EARLY_THRESHL;
outw(BASE + EP_COMMAND, SET_RX_EARLY_THRESH |
(sc->rx_early_thresh = delta));
return;
}
all_pkt:
outw(BASE + EP_COMMAND, RX_DISCARD_TOP_PACK);
/*
* recompute average packet's length, the factor used is 1/8 to go down
* and 1/32 to go up
*/
delta = sc->cur_len - sc->rx_avg_pkt;
if (delta > 0)
sc->rx_avg_pkt += (delta / 32);
else
sc->rx_avg_pkt += (delta / 8);
delta = (sc->rx_avg_pkt - sc->rx_latency - 16) & ~3;
if (delta < MIN_RX_EARLY_THRESHF)
delta = MIN_RX_EARLY_THRESHF;
sc->rx_early_thresh = delta;
++sc->arpcom.ac_if.if_ipackets;
ep_fset(F_RX_FIRST);
ep_frst(F_RX_TRAILER);
top->m_pkthdr.rcvif = &sc->arpcom.ac_if;
top->m_pkthdr.len = sc->cur_len;
#if NBPFILTER > 0
if (sc->bpf) {
bpf_mtap(sc->bpf, top);
/*
* Note that the interface cannot be in promiscuous mode if there are
* no BPF listeners. And if we are in promiscuous mode, we have to
* check if this packet is really ours.
*/
eh = mtod(top, struct ether_header *);
if ((sc->arpcom.ac_if.if_flags & IFF_PROMISC) &&
(eh->ether_dhost[0] & 1) == 0 &&
bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
sizeof(eh->ether_dhost)) != 0 &&
bcmp(eh->ether_dhost, etherbroadcastaddr,
sizeof(eh->ether_dhost)) != 0) {
if (sc->top) {
m_freem(sc->top);
sc->top = 0;
}
ep_fset(F_RX_FIRST);
ep_frst(F_RX_TRAILER);
#ifdef EP_LOCAL_STATS
sc->rx_bpf_disc++;
#endif
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS);
outw(BASE + EP_COMMAND, SET_RX_EARLY_THRESH | delta);
return;
}
}
#endif
eh = mtod(top, struct ether_header *);
m_adj(top, sizeof(struct ether_header));
ether_input(&sc->arpcom.ac_if, eh, top);
if (!sc->mb[sc->next_mb])
epmbuffill((caddr_t) sc, 0);
sc->top = 0;
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS);
outw(BASE + EP_COMMAND, SET_RX_EARLY_THRESH | delta);
return;
out:
outw(BASE + EP_COMMAND, RX_DISCARD_TOP_PACK);
if (sc->top) {
m_freem(sc->top);
sc->top = 0;
#ifdef EP_LOCAL_STATS
sc->rx_no_mbuf++;
#endif
}
delta = (sc->rx_avg_pkt - sc->rx_latency - 16) & ~3;
if (delta < MIN_RX_EARLY_THRESHF)
delta = MIN_RX_EARLY_THRESHF;
ep_fset(F_RX_FIRST);
ep_frst(F_RX_TRAILER);
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS);
outw(BASE + EP_COMMAND, SET_RX_EARLY_THRESH |
(sc->rx_early_thresh = delta));
}
/*
* Look familiar?
*/
static int
epioctl(ifp, cmd, data)
register struct ifnet *ifp;
int cmd;
caddr_t data;
{
register struct ifaddr *ifa = (struct ifaddr *) data;
struct ep_softc *sc = &ep_softc[ifp->if_unit];
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
epinit(ifp->if_unit); /* before arpwhohas */
((struct arpcom *) ifp)->ac_ipaddr = IA_SIN(ifa)->sin_addr;
arpwhohas((struct arpcom *) ifp, &IA_SIN(ifa)->sin_addr);
break;
#endif
#ifdef NS
case AF_NS:
{
register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *) (sc->arpcom.ac_enaddr);
else {
ifp->if_flags &= ~IFF_RUNNING;
bcopy((caddr_t) ina->x_host.c_host,
(caddr_t) sc->arpcom.ac_enaddr,
sizeof(sc->arpcom.ac_enaddr));
}
epinit(ifp->if_unit);
break;
}
#endif
default:
epinit(ifp->if_unit);
break;
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 && ifp->if_flags & IFF_RUNNING) {
ifp->if_flags &= ~IFF_RUNNING;
epstop(ifp->if_unit);
epmbufempty(sc);
break;
}
if (ifp->if_flags & IFF_UP && (ifp->if_flags & IFF_RUNNING) == 0)
epinit(ifp->if_unit);
break;
#ifdef notdef
case SIOCGHWADDR:
bcopy((caddr_t) sc->sc_addr, (caddr_t) & ifr->ifr_data,
sizeof(sc->sc_addr));
break;
#endif
case SIOCSIFMTU:
/*
* Set the interface MTU.
*/
if (ifr->ifr_mtu > ETHERMTU) {
error = EINVAL;
} else {
ifp->if_mtu = ifr->ifr_mtu;
}
break;
default:
error = EINVAL;
}
return (error);
}
void
epreset(unit)
int unit;
{
int s = splimp();
epstop(unit);
epinit(unit);
splx(s);
}
void
epwatchdog(unit)
int unit;
{
struct ep_softc *sc = &ep_softc[unit];
log(LOG_ERR, "ep%d: watchdog\n", unit);
++sc->arpcom.ac_if.if_oerrors;
epreset(unit);
}
void
epstop(unit)
int unit;
{
struct ep_softc *sc = &ep_softc[unit];
outw(BASE + EP_COMMAND, RX_DISABLE);
outw(BASE + EP_COMMAND, RX_DISCARD_TOP_PACK);
while (inw(BASE + EP_STATUS) & S_COMMAND_IN_PROGRESS);
outw(BASE + EP_COMMAND, TX_DISABLE);
outw(BASE + EP_COMMAND, STOP_TRANSCEIVER);
outw(BASE + EP_COMMAND, RX_RESET);
outw(BASE + EP_COMMAND, TX_RESET);
outw(BASE + EP_COMMAND, C_INTR_LATCH);
outw(BASE + EP_COMMAND, SET_RD_0_MASK);
outw(BASE + EP_COMMAND, SET_INTR_MASK);
outw(BASE + EP_COMMAND, SET_RX_FILTER);
}
static int
send_ID_sequence(port)
int port;
{
int cx, al;
for (al = 0xff, cx = 0; cx < 255; cx++) {
outb(port, al);
al <<= 1;
if (al & 0x100)
al ^= 0xcf;
}
return (1);
}
/*
* We get eeprom data from the id_port given an offset into the eeprom.
* Basically; after the ID_sequence is sent to all of the cards; they enter
* the ID_CMD state where they will accept command requests. 0x80-0xbf loads
* the eeprom data. We then read the port 16 times and with every read; the
* cards check for contention (ie: if one card writes a 0 bit and another
* writes a 1 bit then the host sees a 0. At the end of the cycle; each card
* compares the data on the bus; if there is a difference then that card goes
* into ID_WAIT state again). In the meantime; one bit of data is returned in
* the AX register which is conveniently returned to us by inb(). Hence; we
* read 16 times getting one bit of data with each read.
*/
static int
get_eeprom_data(id_port, offset)
int id_port;
int offset;
{
int i, data = 0;
outb(id_port, 0x80 + offset);
DELAY(1000);
for (i = 0; i < 16; i++)
data = (data << 1) | (inw(id_port) & 1);
return (data);
}
/*
* We suppose this is always called inside a splimp(){...}splx() region
*/
static void
epmbuffill(sp, dummy_arg)
caddr_t sp;
int dummy_arg;
{
struct ep_softc *sc = (struct ep_softc *) sp;
int i;
i = sc->last_mb;
do {
if (sc->mb[i] == NULL)
MGET(sc->mb[i], M_DONTWAIT, MT_DATA);
if (sc->mb[i] == NULL)
break;
i = (i + 1) % MAX_MBS;
} while (i != sc->next_mb);
sc->last_mb = i;
}
static void
epmbufempty(sc)
struct ep_softc *sc;
{
int s, i;
s = splimp();
for (i = 0; i < MAX_MBS; i++) {
if (sc->mb[i]) {
m_freem(sc->mb[i]);
sc->mb[i] = NULL;
}
}
sc->last_mb = sc->next_mb = 0;
splx(s);
}
#endif /* NEP > 0 */