freebsd-skq/sys/dev/gem/if_gem.c
scottl 4d495abb9d Mega busdma API commit.
Add two new arguments to bus_dma_tag_create(): lockfunc and lockfuncarg.
Lockfunc allows a driver to provide a function for managing its locking
semantics while using busdma.  At the moment, this is used for the
asynchronous busdma_swi and callback mechanism.  Two lockfunc implementations
are provided: busdma_lock_mutex() performs standard mutex operations on the
mutex that is specified from lockfuncarg.  dftl_lock() is a panic
implementation and is defaulted to when NULL, NULL are passed to
bus_dma_tag_create().  The only time that NULL, NULL should ever be used is
when the driver ensures that bus_dmamap_load() will not be deferred.
Drivers that do not provide their own locking can pass
busdma_lock_mutex,&Giant args in order to preserve the former behaviour.

sparc64 and powerpc do not provide real busdma_swi functions, so this is
largely a noop on those platforms.  The busdma_swi on is64 is not properly
locked yet, so warnings will be emitted on this platform when busdma
callback deferrals happen.

If anyone gets panics or warnings from dflt_lock() being called, please
let me know right away.

Reviewed by:	tmm, gibbs
2003-07-01 15:52:06 +00:00

1936 lines
48 KiB
C

/*
* Copyright (C) 2001 Eduardo Horvath.
* Copyright (c) 2001-2003 Thomas Moestl
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
*
* $FreeBSD$
*/
/*
* Driver for Sun GEM ethernet controllers.
*/
#if 0
#define GEM_DEBUG
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/callout.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <machine/bus.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <gem/if_gemreg.h>
#include <gem/if_gemvar.h>
#define TRIES 10000
static void gem_start(struct ifnet *);
static void gem_stop(struct ifnet *, int);
static int gem_ioctl(struct ifnet *, u_long, caddr_t);
static void gem_cddma_callback(void *, bus_dma_segment_t *, int, int);
static void gem_rxdma_callback(void *, bus_dma_segment_t *, int,
bus_size_t, int);
static void gem_txdma_callback(void *, bus_dma_segment_t *, int,
bus_size_t, int);
static void gem_tick(void *);
static void gem_watchdog(struct ifnet *);
static void gem_init(void *);
static void gem_init_regs(struct gem_softc *sc);
static int gem_ringsize(int sz);
static int gem_meminit(struct gem_softc *);
static int gem_load_txmbuf(struct gem_softc *, struct mbuf *);
static void gem_mifinit(struct gem_softc *);
static int gem_bitwait(struct gem_softc *sc, bus_addr_t r,
u_int32_t clr, u_int32_t set);
static int gem_reset_rx(struct gem_softc *);
static int gem_reset_tx(struct gem_softc *);
static int gem_disable_rx(struct gem_softc *);
static int gem_disable_tx(struct gem_softc *);
static void gem_rxdrain(struct gem_softc *);
static int gem_add_rxbuf(struct gem_softc *, int);
static void gem_setladrf(struct gem_softc *);
struct mbuf *gem_get(struct gem_softc *, int, int);
static void gem_eint(struct gem_softc *, u_int);
static void gem_rint(struct gem_softc *);
#if 0
static void gem_rint_timeout(void *);
#endif
static void gem_tint(struct gem_softc *);
#ifdef notyet
static void gem_power(int, void *);
#endif
devclass_t gem_devclass;
DRIVER_MODULE(miibus, gem, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(gem, miibus, 1, 1, 1);
#ifdef GEM_DEBUG
#include <sys/ktr.h>
#define KTR_GEM KTR_CT2
#endif
#define GEM_NSEGS GEM_NTXDESC
/*
* gem_attach:
*
* Attach a Gem interface to the system.
*/
int
gem_attach(sc)
struct gem_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct mii_softc *child;
int i, error;
u_int32_t v;
/* Make sure the chip is stopped. */
ifp->if_softc = sc;
gem_reset(sc);
error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, GEM_NSEGS,
BUS_SPACE_MAXSIZE_32BIT, 0, NULL, NULL, &sc->sc_pdmatag);
if (error)
return (error);
error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MAXBSIZE,
1, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW, NULL, NULL,
&sc->sc_rdmatag);
if (error)
goto fail_ptag;
error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
GEM_TD_BUFSIZE, GEM_NTXDESC, BUS_SPACE_MAXSIZE_32BIT,
BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag);
if (error)
goto fail_rtag;
error = bus_dma_tag_create(sc->sc_pdmatag, PAGE_SIZE, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct gem_control_data), 1,
sizeof(struct gem_control_data), BUS_DMA_ALLOCNOW,
busdma_lock_mutex, &Giant, &sc->sc_cdmatag);
if (error)
goto fail_ttag;
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
(void **)&sc->sc_control_data, 0, &sc->sc_cddmamap))) {
device_printf(sc->sc_dev, "unable to allocate control data,"
" error = %d\n", error);
goto fail_ctag;
}
sc->sc_cddma = 0;
if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct gem_control_data),
gem_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
device_printf(sc->sc_dev, "unable to load control data DMA "
"map, error = %d\n", error);
goto fail_cmem;
}
/*
* Initialize the transmit job descriptors.
*/
STAILQ_INIT(&sc->sc_txfreeq);
STAILQ_INIT(&sc->sc_txdirtyq);
/*
* Create the transmit buffer DMA maps.
*/
error = ENOMEM;
for (i = 0; i < GEM_TXQUEUELEN; i++) {
struct gem_txsoft *txs;
txs = &sc->sc_txsoft[i];
txs->txs_mbuf = NULL;
txs->txs_ndescs = 0;
if ((error = bus_dmamap_create(sc->sc_tdmatag, 0,
&txs->txs_dmamap)) != 0) {
device_printf(sc->sc_dev, "unable to create tx DMA map "
"%d, error = %d\n", i, error);
goto fail_txd;
}
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < GEM_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_rdmatag, 0,
&sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
device_printf(sc->sc_dev, "unable to create rx DMA map "
"%d, error = %d\n", i, error);
goto fail_rxd;
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
gem_mifinit(sc);
if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, gem_mediachange,
gem_mediastatus)) != 0) {
device_printf(sc->sc_dev, "phy probe failed: %d\n", error);
goto fail_rxd;
}
sc->sc_mii = device_get_softc(sc->sc_miibus);
/*
* From this point forward, the attachment cannot fail. A failure
* before this point releases all resources that may have been
* allocated.
*/
/* Announce ourselves. */
device_printf(sc->sc_dev, "Ethernet address:");
for (i = 0; i < 6; i++)
printf("%c%02x", i > 0 ? ':' : ' ', sc->sc_arpcom.ac_enaddr[i]);
/* Get RX FIFO size */
sc->sc_rxfifosize = 64 *
bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
printf(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
/* Get TX FIFO size */
v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
printf(", %uKB TX fifo\n", v / 16);
/* Initialize ifnet structure. */
ifp->if_softc = sc;
ifp->if_unit = device_get_unit(sc->sc_dev);
ifp->if_name = "gem";
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = gem_start;
ifp->if_ioctl = gem_ioctl;
ifp->if_watchdog = gem_watchdog;
ifp->if_init = gem_init;
ifp->if_output = ether_output;
ifp->if_snd.ifq_maxlen = GEM_TXQUEUELEN;
/*
* Walk along the list of attached MII devices and
* establish an `MII instance' to `phy number'
* mapping. We'll use this mapping in media change
* requests to determine which phy to use to program
* the MIF configuration register.
*/
for (child = LIST_FIRST(&sc->sc_mii->mii_phys); child != NULL;
child = LIST_NEXT(child, mii_list)) {
/*
* Note: we support just two PHYs: the built-in
* internal device and an external on the MII
* connector.
*/
if (child->mii_phy > 1 || child->mii_inst > 1) {
device_printf(sc->sc_dev, "cannot accomodate "
"MII device %s at phy %d, instance %d\n",
device_get_name(child->mii_dev),
child->mii_phy, child->mii_inst);
continue;
}
sc->sc_phys[child->mii_inst] = child->mii_phy;
}
/*
* Now select and activate the PHY we will use.
*
* The order of preference is External (MDI1),
* Internal (MDI0), Serial Link (no MII).
*/
if (sc->sc_phys[1]) {
#ifdef GEM_DEBUG
printf("using external phy\n");
#endif
sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
} else {
#ifdef GEM_DEBUG
printf("using internal phy\n");
#endif
sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
}
bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
sc->sc_mif_config);
/* Attach the interface. */
ether_ifattach(ifp, sc->sc_arpcom.ac_enaddr);
#if notyet
/*
* Add a suspend hook to make sure we come back up after a
* resume.
*/
sc->sc_powerhook = powerhook_establish(gem_power, sc);
if (sc->sc_powerhook == NULL)
device_printf(sc->sc_dev, "WARNING: unable to establish power "
"hook\n");
#endif
callout_init(&sc->sc_tick_ch, 0);
callout_init(&sc->sc_rx_ch, 0);
return (0);
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_rxd:
for (i = 0; i < GEM_NRXDESC; i++) {
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_rdmatag,
sc->sc_rxsoft[i].rxs_dmamap);
}
fail_txd:
for (i = 0; i < GEM_TXQUEUELEN; i++) {
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_tdmatag,
sc->sc_txsoft[i].txs_dmamap);
}
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
fail_cmem:
bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
sc->sc_cddmamap);
fail_ctag:
bus_dma_tag_destroy(sc->sc_cdmatag);
fail_ttag:
bus_dma_tag_destroy(sc->sc_tdmatag);
fail_rtag:
bus_dma_tag_destroy(sc->sc_rdmatag);
fail_ptag:
bus_dma_tag_destroy(sc->sc_pdmatag);
return (error);
}
void
gem_detach(sc)
struct gem_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
int i;
ether_ifdetach(ifp);
gem_stop(ifp, 1);
device_delete_child(sc->sc_dev, sc->sc_miibus);
for (i = 0; i < GEM_NRXDESC; i++) {
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_rdmatag,
sc->sc_rxsoft[i].rxs_dmamap);
}
for (i = 0; i < GEM_TXQUEUELEN; i++) {
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_tdmatag,
sc->sc_txsoft[i].txs_dmamap);
}
GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
GEM_CDSYNC(sc, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
sc->sc_cddmamap);
bus_dma_tag_destroy(sc->sc_cdmatag);
bus_dma_tag_destroy(sc->sc_tdmatag);
bus_dma_tag_destroy(sc->sc_rdmatag);
bus_dma_tag_destroy(sc->sc_pdmatag);
}
void
gem_suspend(sc)
struct gem_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
gem_stop(ifp, 0);
}
void
gem_resume(sc)
struct gem_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
if (ifp->if_flags & IFF_UP)
gem_init(ifp);
}
static void
gem_cddma_callback(xsc, segs, nsegs, error)
void *xsc;
bus_dma_segment_t *segs;
int nsegs;
int error;
{
struct gem_softc *sc = (struct gem_softc *)xsc;
if (error != 0)
return;
if (nsegs != 1) {
/* can't happen... */
panic("gem_cddma_callback: bad control buffer segment count");
}
sc->sc_cddma = segs[0].ds_addr;
}
static void
gem_rxdma_callback(xsc, segs, nsegs, totsz, error)
void *xsc;
bus_dma_segment_t *segs;
int nsegs;
bus_size_t totsz;
int error;
{
struct gem_rxsoft *rxs = (struct gem_rxsoft *)xsc;
if (error != 0)
return;
KASSERT(nsegs == 1, ("gem_rxdma_callback: bad dma segment count"));
rxs->rxs_paddr = segs[0].ds_addr;
}
static void
gem_txdma_callback(xsc, segs, nsegs, totsz, error)
void *xsc;
bus_dma_segment_t *segs;
int nsegs;
bus_size_t totsz;
int error;
{
struct gem_txdma *txd = (struct gem_txdma *)xsc;
struct gem_softc *sc = txd->txd_sc;
struct gem_txsoft *txs = txd->txd_txs;
bus_size_t len = 0;
uint64_t flags = 0;
int seg, nexttx;
if (error != 0)
return;
/*
* Ensure we have enough descriptors free to describe
* the packet. Note, we always reserve one descriptor
* at the end of the ring as a termination point, to
* prevent wrap-around.
*/
if (nsegs > sc->sc_txfree - 1) {
txs->txs_ndescs = -1;
return;
}
txs->txs_ndescs = nsegs;
nexttx = txs->txs_firstdesc;
/*
* Initialize the transmit descriptors.
*/
for (seg = 0; seg < nsegs;
seg++, nexttx = GEM_NEXTTX(nexttx)) {
#ifdef GEM_DEBUG
CTR5(KTR_GEM, "txdma_cb: mapping seg %d (txd %d), len "
"%lx, addr %#lx (%#lx)", seg, nexttx,
segs[seg].ds_len, segs[seg].ds_addr,
GEM_DMA_WRITE(sc, segs[seg].ds_addr));
#endif
if (segs[seg].ds_len == 0)
continue;
sc->sc_txdescs[nexttx].gd_addr =
GEM_DMA_WRITE(sc, segs[seg].ds_addr);
KASSERT(segs[seg].ds_len < GEM_TD_BUFSIZE,
("gem_txdma_callback: segment size too large!"));
flags = segs[seg].ds_len & GEM_TD_BUFSIZE;
if (len == 0) {
#ifdef GEM_DEBUG
CTR2(KTR_GEM, "txdma_cb: start of packet at seg %d, "
"tx %d", seg, nexttx);
#endif
flags |= GEM_TD_START_OF_PACKET;
if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
sc->sc_txwin = 0;
flags |= GEM_TD_INTERRUPT_ME;
}
}
if (len + segs[seg].ds_len == totsz) {
#ifdef GEM_DEBUG
CTR2(KTR_GEM, "txdma_cb: end of packet at seg %d, "
"tx %d", seg, nexttx);
#endif
flags |= GEM_TD_END_OF_PACKET;
}
sc->sc_txdescs[nexttx].gd_flags = GEM_DMA_WRITE(sc, flags);
txs->txs_lastdesc = nexttx;
len += segs[seg].ds_len;
}
KASSERT((flags & GEM_TD_END_OF_PACKET) != 0,
("gem_txdma_callback: missed end of packet!"));
}
static void
gem_tick(arg)
void *arg;
{
struct gem_softc *sc = arg;
int s;
s = splnet();
mii_tick(sc->sc_mii);
splx(s);
callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
}
static int
gem_bitwait(sc, r, clr, set)
struct gem_softc *sc;
bus_addr_t r;
u_int32_t clr;
u_int32_t set;
{
int i;
u_int32_t reg;
for (i = TRIES; i--; DELAY(100)) {
reg = bus_space_read_4(sc->sc_bustag, sc->sc_h, r);
if ((r & clr) == 0 && (r & set) == set)
return (1);
}
return (0);
}
void
gem_reset(sc)
struct gem_softc *sc;
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
int s;
s = splnet();
#ifdef GEM_DEBUG
CTR1(KTR_GEM, "%s: gem_reset", device_get_name(sc->sc_dev));
#endif
gem_reset_rx(sc);
gem_reset_tx(sc);
/* Do a full reset */
bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
device_printf(sc->sc_dev, "cannot reset device\n");
splx(s);
}
/*
* gem_rxdrain:
*
* Drain the receive queue.
*/
static void
gem_rxdrain(sc)
struct gem_softc *sc;
{
struct gem_rxsoft *rxs;
int i;
for (i = 0; i < GEM_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_rdmatag, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
}
}
/*
* Reset the whole thing.
*/
static void
gem_stop(ifp, disable)
struct ifnet *ifp;
int disable;
{
struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
struct gem_txsoft *txs;
#ifdef GEM_DEBUG
CTR1(KTR_GEM, "%s: gem_stop", device_get_name(sc->sc_dev));
#endif
callout_stop(&sc->sc_tick_ch);
/* XXX - Should we reset these instead? */
gem_disable_tx(sc);
gem_disable_rx(sc);
/*
* Release any queued transmit buffers.
*/
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
if (txs->txs_ndescs != 0) {
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
if (txs->txs_mbuf != NULL) {
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
}
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
if (disable)
gem_rxdrain(sc);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
/*
* Reset the receiver
*/
int
gem_reset_rx(sc)
struct gem_softc *sc;
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
/*
* Resetting while DMA is in progress can cause a bus hang, so we
* disable DMA first.
*/
gem_disable_rx(sc);
bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
/* Wait till it finishes */
if (!gem_bitwait(sc, GEM_RX_CONFIG, 1, 0))
device_printf(sc->sc_dev, "cannot disable read dma\n");
/* Wait 5ms extra. */
DELAY(5000);
/* Finally, reset the ERX */
bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
/* Wait till it finishes */
if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
device_printf(sc->sc_dev, "cannot reset receiver\n");
return (1);
}
return (0);
}
/*
* Reset the transmitter
*/
static int
gem_reset_tx(sc)
struct gem_softc *sc;
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
int i;
/*
* Resetting while DMA is in progress can cause a bus hang, so we
* disable DMA first.
*/
gem_disable_tx(sc);
bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
/* Wait till it finishes */
if (!gem_bitwait(sc, GEM_TX_CONFIG, 1, 0))
device_printf(sc->sc_dev, "cannot disable read dma\n");
/* Wait 5ms extra. */
DELAY(5000);
/* Finally, reset the ETX */
bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
/* Wait till it finishes */
for (i = TRIES; i--; DELAY(100))
if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
break;
if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
device_printf(sc->sc_dev, "cannot reset receiver\n");
return (1);
}
return (0);
}
/*
* disable receiver.
*/
static int
gem_disable_rx(sc)
struct gem_softc *sc;
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
u_int32_t cfg;
/* Flip the enable bit */
cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
cfg &= ~GEM_MAC_RX_ENABLE;
bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
/* Wait for it to finish */
return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
}
/*
* disable transmitter.
*/
static int
gem_disable_tx(sc)
struct gem_softc *sc;
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
u_int32_t cfg;
/* Flip the enable bit */
cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
cfg &= ~GEM_MAC_TX_ENABLE;
bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
/* Wait for it to finish */
return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
}
/*
* Initialize interface.
*/
static int
gem_meminit(sc)
struct gem_softc *sc;
{
struct gem_rxsoft *rxs;
int i, error;
/*
* Initialize the transmit descriptor ring.
*/
memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
for (i = 0; i < GEM_NTXDESC; i++) {
sc->sc_txdescs[i].gd_flags = 0;
sc->sc_txdescs[i].gd_addr = 0;
}
sc->sc_txfree = GEM_MAXTXFREE;
sc->sc_txnext = 0;
sc->sc_txwin = 0;
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
for (i = 0; i < GEM_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf == NULL) {
if ((error = gem_add_rxbuf(sc, i)) != 0) {
device_printf(sc->sc_dev, "unable to "
"allocate or map rx buffer %d, error = "
"%d\n", i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
gem_rxdrain(sc);
return (1);
}
} else
GEM_INIT_RXDESC(sc, i);
}
sc->sc_rxptr = 0;
GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
return (0);
}
static int
gem_ringsize(sz)
int sz;
{
int v = 0;
switch (sz) {
case 32:
v = GEM_RING_SZ_32;
break;
case 64:
v = GEM_RING_SZ_64;
break;
case 128:
v = GEM_RING_SZ_128;
break;
case 256:
v = GEM_RING_SZ_256;
break;
case 512:
v = GEM_RING_SZ_512;
break;
case 1024:
v = GEM_RING_SZ_1024;
break;
case 2048:
v = GEM_RING_SZ_2048;
break;
case 4096:
v = GEM_RING_SZ_4096;
break;
case 8192:
v = GEM_RING_SZ_8192;
break;
default:
printf("gem: invalid Receive Descriptor ring size\n");
break;
}
return (v);
}
/*
* Initialization of interface; set up initialization block
* and transmit/receive descriptor rings.
*/
static void
gem_init(xsc)
void *xsc;
{
struct gem_softc *sc = (struct gem_softc *)xsc;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
int s;
u_int32_t v;
s = splnet();
#ifdef GEM_DEBUG
CTR1(KTR_GEM, "%s: gem_init: calling stop", device_get_name(sc->sc_dev));
#endif
/*
* Initialization sequence. The numbered steps below correspond
* to the sequence outlined in section 6.3.5.1 in the Ethernet
* Channel Engine manual (part of the PCIO manual).
* See also the STP2002-STQ document from Sun Microsystems.
*/
/* step 1 & 2. Reset the Ethernet Channel */
gem_stop(&sc->sc_arpcom.ac_if, 0);
gem_reset(sc);
#ifdef GEM_DEBUG
CTR1(KTR_GEM, "%s: gem_init: restarting", device_get_name(sc->sc_dev));
#endif
/* Re-initialize the MIF */
gem_mifinit(sc);
/* step 3. Setup data structures in host memory */
gem_meminit(sc);
/* step 4. TX MAC registers & counters */
gem_init_regs(sc);
/* XXX: VLAN code from NetBSD temporarily removed. */
bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
(ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16));
/* step 5. RX MAC registers & counters */
gem_setladrf(sc);
/* step 6 & 7. Program Descriptor Ring Base Addresses */
/* NOTE: we use only 32-bit DMA addresses here. */
bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
#ifdef GEM_DEBUG
CTR3(KTR_GEM, "loading rx ring %lx, tx ring %lx, cddma %lx",
GEM_CDRXADDR(sc, 0), GEM_CDTXADDR(sc, 0), sc->sc_cddma);
#endif
/* step 8. Global Configuration & Interrupt Mask */
bus_space_write_4(t, h, GEM_INTMASK,
~(GEM_INTR_TX_INTME|
GEM_INTR_TX_EMPTY|
GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
GEM_INTR_BERR));
bus_space_write_4(t, h, GEM_MAC_RX_MASK,
GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
/* step 9. ETX Configuration: use mostly default values */
/* Enable DMA */
v = gem_ringsize(GEM_NTXDESC /*XXX*/);
bus_space_write_4(t, h, GEM_TX_CONFIG,
v|GEM_TX_CONFIG_TXDMA_EN|
((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
/* step 10. ERX Configuration */
/* Encode Receive Descriptor ring size: four possible values */
v = gem_ringsize(GEM_NRXDESC /*XXX*/);
/* Enable DMA */
bus_space_write_4(t, h, GEM_RX_CONFIG,
v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
(0<<GEM_RX_CONFIG_CXM_START_SHFT));
/*
* The following value is for an OFF Threshold of about 3/4 full
* and an ON Threshold of 1/4 full.
*/
bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
(3 * sc->sc_rxfifosize / 256) |
( (sc->sc_rxfifosize / 256) << 12));
bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
/* step 11. Configure Media */
mii_mediachg(sc->sc_mii);
/* step 12. RX_MAC Configuration Register */
v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
v |= GEM_MAC_RX_ENABLE;
bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
/* step 14. Issue Transmit Pending command */
/* step 15. Give the reciever a swift kick */
bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
/* Start the one second timer. */
callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_timer = 0;
sc->sc_ifflags = ifp->if_flags;
splx(s);
}
static int
gem_load_txmbuf(sc, m0)
struct gem_softc *sc;
struct mbuf *m0;
{
struct gem_txdma txd;
struct gem_txsoft *txs;
int error;
/* Get a work queue entry. */
if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
/* Ran out of descriptors. */
return (-1);
}
txd.txd_sc = sc;
txd.txd_txs = txs;
txs->txs_mbuf = m0;
txs->txs_firstdesc = sc->sc_txnext;
error = bus_dmamap_load_mbuf(sc->sc_tdmatag, txs->txs_dmamap, m0,
gem_txdma_callback, &txd, BUS_DMA_NOWAIT);
if (error != 0)
goto fail;
if (txs->txs_ndescs == -1) {
error = -1;
goto fail;
}
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
BUS_DMASYNC_PREWRITE);
#ifdef GEM_DEBUG
CTR3(KTR_GEM, "load_mbuf: setting firstdesc=%d, lastdesc=%d, "
"ndescs=%d", txs->txs_firstdesc, txs->txs_lastdesc,
txs->txs_ndescs);
#endif
STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
sc->sc_txnext = GEM_NEXTTX(txs->txs_lastdesc);
sc->sc_txfree -= txs->txs_ndescs;
return (0);
fail:
#ifdef GEM_DEBUG
CTR1(KTR_GEM, "gem_load_txmbuf failed (%d)", error);
#endif
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
return (error);
}
static void
gem_init_regs(sc)
struct gem_softc *sc;
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
const u_char *laddr = sc->sc_arpcom.ac_enaddr;
u_int32_t v;
/* These regs are not cleared on reset */
if (!sc->sc_inited) {
/* Wooo. Magic values. */
bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
/* Max frame and max burst size */
bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
ETHER_MAX_LEN | (0x2000<<16));
bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
/* Dunno.... */
bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
((laddr[5]<<8)|laddr[4])&0x3ff);
/* Secondary MAC addr set to 0:0:0:0:0:0 */
bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
/* MAC control addr set to 01:80:c2:00:00:01 */
bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
/* MAC filter addr set to 0:0:0:0:0:0 */
bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
sc->sc_inited = 1;
}
/* Counters need to be zeroed */
bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
/* Un-pause stuff */
#if 0
bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
#else
bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
#endif
/*
* Set the station address.
*/
bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
/*
* Enable MII outputs. Enable GMII if there is a gigabit PHY.
*/
sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
v = GEM_MAC_XIF_TX_MII_ENA;
if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
v |= GEM_MAC_XIF_FDPLX_LED;
if (sc->sc_flags & GEM_GIGABIT)
v |= GEM_MAC_XIF_GMII_MODE;
}
bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
}
static void
gem_start(ifp)
struct ifnet *ifp;
{
struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
struct mbuf *m0 = NULL;
int firsttx, ntx = 0, ofree, txmfail;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Remember the previous number of free descriptors and
* the first descriptor we'll use.
*/
ofree = sc->sc_txfree;
firsttx = sc->sc_txnext;
#ifdef GEM_DEBUG
CTR3(KTR_GEM, "%s: gem_start: txfree %d, txnext %d",
device_get_name(sc->sc_dev), ofree, firsttx);
#endif
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
txmfail = 0;
do {
/*
* Grab a packet off the queue.
*/
IF_DEQUEUE(&ifp->if_snd, m0);
if (m0 == NULL)
break;
txmfail = gem_load_txmbuf(sc, m0);
if (txmfail > 0) {
/* Drop the mbuf and complain. */
printf("gem_start: error %d while loading mbuf dma "
"map\n", txmfail);
continue;
}
/* Not enough descriptors. */
if (txmfail == -1) {
if (sc->sc_txfree == GEM_MAXTXFREE)
panic("gem_start: mbuf chain too long!");
IF_PREPEND(&ifp->if_snd, m0);
break;
}
ntx++;
/* Kick the transmitter. */
#ifdef GEM_DEBUG
CTR2(KTR_GEM, "%s: gem_start: kicking tx %d",
device_get_name(sc->sc_dev), sc->sc_txnext);
#endif
bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
sc->sc_txnext);
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m0);
} while (1);
if (txmfail == -1 || sc->sc_txfree == 0) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (ntx > 0) {
GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
#ifdef GEM_DEBUG
CTR2(KTR_GEM, "%s: packets enqueued, OWN on %d",
device_get_name(sc->sc_dev), firsttx);
#endif
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
#ifdef GEM_DEBUG
CTR2(KTR_GEM, "%s: gem_start: watchdog %d",
device_get_name(sc->sc_dev), ifp->if_timer);
#endif
}
}
/*
* Transmit interrupt.
*/
static void
gem_tint(sc)
struct gem_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mac = sc->sc_h;
struct gem_txsoft *txs;
int txlast;
int progress = 0;
#ifdef GEM_DEBUG
CTR1(KTR_GEM, "%s: gem_tint", device_get_name(sc->sc_dev));
#endif
/*
* Unload collision counters
*/
ifp->if_collisions +=
bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
/*
* then clear the hardware counters.
*/
bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
/*
* Go through our Tx list and free mbufs for those
* frames that have been transmitted.
*/
GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
#ifdef GEM_DEBUG
if (ifp->if_flags & IFF_DEBUG) {
int i;
printf(" txsoft %p transmit chain:\n", txs);
for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
printf("descriptor %d: ", i);
printf("gd_flags: 0x%016llx\t", (long long)
GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
printf("gd_addr: 0x%016llx\n", (long long)
GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
if (i == txs->txs_lastdesc)
break;
}
}
#endif
/*
* In theory, we could harveast some descriptors before
* the ring is empty, but that's a bit complicated.
*
* GEM_TX_COMPLETION points to the last descriptor
* processed +1.
*/
txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
#ifdef GEM_DEBUG
CTR3(KTR_GEM, "gem_tint: txs->txs_firstdesc = %d, "
"txs->txs_lastdesc = %d, txlast = %d",
txs->txs_firstdesc, txs->txs_lastdesc, txlast);
#endif
if (txs->txs_firstdesc <= txs->txs_lastdesc) {
if ((txlast >= txs->txs_firstdesc) &&
(txlast <= txs->txs_lastdesc))
break;
} else {
/* Ick -- this command wraps */
if ((txlast >= txs->txs_firstdesc) ||
(txlast <= txs->txs_lastdesc))
break;
}
#ifdef GEM_DEBUG
CTR0(KTR_GEM, "gem_tint: releasing a desc");
#endif
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
sc->sc_txfree += txs->txs_ndescs;
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
if (txs->txs_mbuf != NULL) {
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
ifp->if_opackets++;
progress = 1;
}
#ifdef GEM_DEBUG
CTR3(KTR_GEM, "gem_tint: GEM_TX_STATE_MACHINE %x "
"GEM_TX_DATA_PTR %llx "
"GEM_TX_COMPLETION %x",
bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
GEM_TX_DATA_PTR_HI) << 32) |
bus_space_read_4(sc->sc_bustag, sc->sc_h,
GEM_TX_DATA_PTR_LO),
bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION));
#endif
if (progress) {
if (sc->sc_txfree == GEM_NTXDESC - 1)
sc->sc_txwin = 0;
/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
ifp->if_flags &= ~IFF_OACTIVE;
gem_start(ifp);
if (STAILQ_EMPTY(&sc->sc_txdirtyq))
ifp->if_timer = 0;
}
#ifdef GEM_DEBUG
CTR2(KTR_GEM, "%s: gem_tint: watchdog %d",
device_get_name(sc->sc_dev), ifp->if_timer);
#endif
}
#if 0
static void
gem_rint_timeout(arg)
void *arg;
{
gem_rint((struct gem_softc *)arg);
}
#endif
/*
* Receive interrupt.
*/
static void
gem_rint(sc)
struct gem_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
struct gem_rxsoft *rxs;
struct mbuf *m;
u_int64_t rxstat;
u_int32_t rxcomp;
int i, len, progress = 0;
callout_stop(&sc->sc_rx_ch);
#ifdef GEM_DEBUG
CTR1(KTR_GEM, "%s: gem_rint", device_get_name(sc->sc_dev));
#endif
/*
* Read the completion register once. This limits
* how long the following loop can execute.
*/
rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
#ifdef GEM_DEBUG
CTR2(KTR_GEM, "gem_rint: sc->rxptr %d, complete %d",
sc->sc_rxptr, rxcomp);
#endif
GEM_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
for (i = sc->sc_rxptr; i != rxcomp;
i = GEM_NEXTRX(i)) {
rxs = &sc->sc_rxsoft[i];
rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
if (rxstat & GEM_RD_OWN) {
#if 0 /* XXX: In case of emergency, re-enable this. */
/*
* The descriptor is still marked as owned, although
* it is supposed to have completed. This has been
* observed on some machines. Just exiting here
* might leave the packet sitting around until another
* one arrives to trigger a new interrupt, which is
* generally undesirable, so set up a timeout.
*/
callout_reset(&sc->sc_rx_ch, GEM_RXOWN_TICKS,
gem_rint_timeout, sc);
#endif
break;
}
progress++;
ifp->if_ipackets++;
if (rxstat & GEM_RD_BAD_CRC) {
ifp->if_ierrors++;
device_printf(sc->sc_dev, "receive error: CRC error\n");
GEM_INIT_RXDESC(sc, i);
continue;
}
#ifdef GEM_DEBUG
if (ifp->if_flags & IFF_DEBUG) {
printf(" rxsoft %p descriptor %d: ", rxs, i);
printf("gd_flags: 0x%016llx\t", (long long)
GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
printf("gd_addr: 0x%016llx\n", (long long)
GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
}
#endif
/*
* No errors; receive the packet. Note the Gem
* includes the CRC with every packet.
*/
len = GEM_RD_BUFLEN(rxstat);
/*
* Allocate a new mbuf cluster. If that fails, we are
* out of memory, and must drop the packet and recycle
* the buffer that's already attached to this descriptor.
*/
m = rxs->rxs_mbuf;
if (gem_add_rxbuf(sc, i) != 0) {
ifp->if_ierrors++;
GEM_INIT_RXDESC(sc, i);
continue;
}
m->m_data += 2; /* We're already off by two */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len - ETHER_CRC_LEN;
/* Pass it on. */
(*ifp->if_input)(ifp, m);
}
if (progress) {
GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
/* Update the receive pointer. */
if (i == sc->sc_rxptr) {
device_printf(sc->sc_dev, "rint: ring wrap\n");
}
sc->sc_rxptr = i;
bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
}
#ifdef GEM_DEBUG
CTR2(KTR_GEM, "gem_rint: done sc->rxptr %d, complete %d",
sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
#endif
}
/*
* gem_add_rxbuf:
*
* Add a receive buffer to the indicated descriptor.
*/
static int
gem_add_rxbuf(sc, idx)
struct gem_softc *sc;
int idx;
{
struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
int error;
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
#ifdef GEM_DEBUG
/* bzero the packet to check dma */
memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
#endif
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_rdmatag, rxs->rxs_dmamap);
}
rxs->rxs_mbuf = m;
error = bus_dmamap_load_mbuf(sc->sc_rdmatag, rxs->rxs_dmamap,
m, gem_rxdma_callback, rxs, BUS_DMA_NOWAIT);
if (error != 0 || rxs->rxs_paddr == 0) {
device_printf(sc->sc_dev, "can't load rx DMA map %d, error = "
"%d\n", idx, error);
panic("gem_add_rxbuf"); /* XXX */
}
bus_dmamap_sync(sc->sc_rdmatag, rxs->rxs_dmamap, BUS_DMASYNC_PREREAD);
GEM_INIT_RXDESC(sc, idx);
return (0);
}
static void
gem_eint(sc, status)
struct gem_softc *sc;
u_int status;
{
if ((status & GEM_INTR_MIF) != 0) {
device_printf(sc->sc_dev, "XXXlink status changed\n");
return;
}
device_printf(sc->sc_dev, "status=%x\n", status);
}
void
gem_intr(v)
void *v;
{
struct gem_softc *sc = (struct gem_softc *)v;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t seb = sc->sc_h;
u_int32_t status;
status = bus_space_read_4(t, seb, GEM_STATUS);
#ifdef GEM_DEBUG
CTR3(KTR_GEM, "%s: gem_intr: cplt %x, status %x",
device_get_name(sc->sc_dev), (status>>19),
(u_int)status);
#endif
if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
gem_eint(sc, status);
if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0)
gem_tint(sc);
if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
gem_rint(sc);
/* We should eventually do more than just print out error stats. */
if (status & GEM_INTR_TX_MAC) {
int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
if (txstat & ~GEM_MAC_TX_XMIT_DONE)
device_printf(sc->sc_dev, "MAC tx fault, status %x\n",
txstat);
if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
gem_init(sc);
}
if (status & GEM_INTR_RX_MAC) {
int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
device_printf(sc->sc_dev, "MAC rx fault, status %x\n",
rxstat);
if ((rxstat & GEM_MAC_RX_OVERFLOW) != 0)
gem_init(sc);
}
}
static void
gem_watchdog(ifp)
struct ifnet *ifp;
{
struct gem_softc *sc = ifp->if_softc;
#ifdef GEM_DEBUG
CTR3(KTR_GEM, "gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
"GEM_MAC_RX_CONFIG %x",
bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG));
CTR3(KTR_GEM, "gem_watchdog: GEM_TX_CONFIG %x GEM_MAC_TX_STATUS %x "
"GEM_MAC_TX_CONFIG %x",
bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_CONFIG),
bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_TX_STATUS),
bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_TX_CONFIG));
#endif
device_printf(sc->sc_dev, "device timeout\n");
++ifp->if_oerrors;
/* Try to get more packets going. */
gem_start(ifp);
}
/*
* Initialize the MII Management Interface
*/
static void
gem_mifinit(sc)
struct gem_softc *sc;
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_h;
/* Configure the MIF in frame mode */
sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
}
/*
* MII interface
*
* The GEM MII interface supports at least three different operating modes:
*
* Bitbang mode is implemented using data, clock and output enable registers.
*
* Frame mode is implemented by loading a complete frame into the frame
* register and polling the valid bit for completion.
*
* Polling mode uses the frame register but completion is indicated by
* an interrupt.
*
*/
int
gem_mii_readreg(dev, phy, reg)
device_t dev;
int phy, reg;
{
struct gem_softc *sc = device_get_softc(dev);
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_h;
int n;
u_int32_t v;
#ifdef GEM_DEBUG_PHY
printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
#endif
#if 0
/* Select the desired PHY in the MIF configuration register */
v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
/* Clear PHY select bit */
v &= ~GEM_MIF_CONFIG_PHY_SEL;
if (phy == GEM_PHYAD_EXTERNAL)
/* Set PHY select bit to get at external device */
v |= GEM_MIF_CONFIG_PHY_SEL;
bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
#endif
/* Construct the frame command */
v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
GEM_MIF_FRAME_READ;
bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
for (n = 0; n < 100; n++) {
DELAY(1);
v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
if (v & GEM_MIF_FRAME_TA0)
return (v & GEM_MIF_FRAME_DATA);
}
device_printf(sc->sc_dev, "mii_read timeout\n");
return (0);
}
int
gem_mii_writereg(dev, phy, reg, val)
device_t dev;
int phy, reg, val;
{
struct gem_softc *sc = device_get_softc(dev);
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_h;
int n;
u_int32_t v;
#ifdef GEM_DEBUG_PHY
printf("gem_mii_writereg: phy %d reg %d val %x\n", phy, reg, val);
#endif
#if 0
/* Select the desired PHY in the MIF configuration register */
v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
/* Clear PHY select bit */
v &= ~GEM_MIF_CONFIG_PHY_SEL;
if (phy == GEM_PHYAD_EXTERNAL)
/* Set PHY select bit to get at external device */
v |= GEM_MIF_CONFIG_PHY_SEL;
bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
#endif
/* Construct the frame command */
v = GEM_MIF_FRAME_WRITE |
(phy << GEM_MIF_PHY_SHIFT) |
(reg << GEM_MIF_REG_SHIFT) |
(val & GEM_MIF_FRAME_DATA);
bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
for (n = 0; n < 100; n++) {
DELAY(1);
v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
if (v & GEM_MIF_FRAME_TA0)
return (1);
}
device_printf(sc->sc_dev, "mii_write timeout\n");
return (0);
}
void
gem_mii_statchg(dev)
device_t dev;
{
struct gem_softc *sc = device_get_softc(dev);
#ifdef GEM_DEBUG
int instance = IFM_INST(sc->sc_mii->mii_media.ifm_cur->ifm_media);
#endif
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mac = sc->sc_h;
u_int32_t v;
#ifdef GEM_DEBUG
if (sc->sc_debug)
printf("gem_mii_statchg: status change: phy = %d\n",
sc->sc_phys[instance]);
#endif
/* Set tx full duplex options */
bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
DELAY(10000); /* reg must be cleared and delay before changing. */
v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
GEM_MAC_TX_ENABLE;
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) {
v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
}
bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
/* XIF Configuration */
/* We should really calculate all this rather than rely on defaults */
v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
v = GEM_MAC_XIF_LINK_LED;
v |= GEM_MAC_XIF_TX_MII_ENA;
/* If an external transceiver is connected, enable its MII drivers */
sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
/* External MII needs echo disable if half duplex. */
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
/* turn on full duplex LED */
v |= GEM_MAC_XIF_FDPLX_LED;
else
/* half duplex -- disable echo */
v |= GEM_MAC_XIF_ECHO_DISABL;
if (IFM_SUBTYPE(sc->sc_mii->mii_media_active) == IFM_1000_T)
v |= GEM_MAC_XIF_GMII_MODE;
else
v &= ~GEM_MAC_XIF_GMII_MODE;
} else {
/* Internal MII needs buf enable */
v |= GEM_MAC_XIF_MII_BUF_ENA;
}
bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
}
int
gem_mediachange(ifp)
struct ifnet *ifp;
{
struct gem_softc *sc = ifp->if_softc;
/* XXX Add support for serial media. */
return (mii_mediachg(sc->sc_mii));
}
void
gem_mediastatus(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct gem_softc *sc = ifp->if_softc;
if ((ifp->if_flags & IFF_UP) == 0)
return;
mii_pollstat(sc->sc_mii);
ifmr->ifm_active = sc->sc_mii->mii_media_active;
ifmr->ifm_status = sc->sc_mii->mii_media_status;
}
/*
* Process an ioctl request.
*/
static int
gem_ioctl(ifp, cmd, data)
struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct gem_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
switch (cmd) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, cmd, data);
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if ((sc->sc_ifflags ^ ifp->if_flags) == IFF_PROMISC)
gem_setladrf(sc);
else
gem_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
gem_stop(ifp, 0);
}
sc->sc_ifflags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
gem_setladrf(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
break;
default:
error = ENOTTY;
break;
}
/* Try to get things going again */
if (ifp->if_flags & IFF_UP)
gem_start(ifp);
splx(s);
return (error);
}
/*
* Set up the logical address filter.
*/
static void
gem_setladrf(sc)
struct gem_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
struct ifmultiaddr *inm;
struct sockaddr_dl *sdl;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h;
u_char *cp;
u_int32_t crc;
u_int32_t hash[16];
u_int32_t v;
int len;
int i;
/* Get current RX configuration */
v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
/*
* Turn off promiscuous mode, promiscuous group mode (all multicast),
* and hash filter. Depending on the case, the right bit will be
* enabled.
*/
v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
GEM_MAC_RX_PROMISC_GRP);
if ((ifp->if_flags & IFF_PROMISC) != 0) {
/* Turn on promiscuous mode */
v |= GEM_MAC_RX_PROMISCUOUS;
goto chipit;
}
if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
ifp->if_flags |= IFF_ALLMULTI;
v |= GEM_MAC_RX_PROMISC_GRP;
goto chipit;
}
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using the high order 8 bits as an
* index into the 256 bit logical address filter. The high order 4
* bits selects the word, while the other 4 bits select the bit within
* the word (where bit 0 is the MSB).
*/
/* Clear hash table */
memset(hash, 0, sizeof(hash));
TAILQ_FOREACH(inm, &sc->sc_arpcom.ac_if.if_multiaddrs, ifma_link) {
if (inm->ifma_addr->sa_family != AF_LINK)
continue;
sdl = (struct sockaddr_dl *)inm->ifma_addr;
cp = LLADDR(sdl);
crc = 0xffffffff;
for (len = sdl->sdl_alen; --len >= 0;) {
int octet = *cp++;
int i;
#define MC_POLY_LE 0xedb88320UL /* mcast crc, little endian */
for (i = 0; i < 8; i++) {
if ((crc & 1) ^ (octet & 1)) {
crc >>= 1;
crc ^= MC_POLY_LE;
} else {
crc >>= 1;
}
octet >>= 1;
}
}
/* Just want the 8 most significant bits. */
crc >>= 24;
/* Set the corresponding bit in the filter. */
hash[crc >> 4] |= 1 << (15 - (crc & 15));
}
v |= GEM_MAC_RX_HASH_FILTER;
ifp->if_flags &= ~IFF_ALLMULTI;
/* Now load the hash table into the chip (if we are using it) */
for (i = 0; i < 16; i++) {
bus_space_write_4(t, h,
GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
hash[i]);
}
chipit:
bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
}