kibab 49c5ad42bb Implement CMD53 block mode support for SDHCI and AllWinner-based boards
If a custom block size requested, use it, otherwise revert to the previous logic
of using just a data size if it's less than MMC_BLOCK_SIZE, and MMC_BLOCK_SIZE otherwise.

Reviewed by:	bz
Approved by:	imp (mentor)
Differential Revision:	https://reviews.freebsd.org/D19783
2019-04-10 19:53:36 +00:00

2836 lines
79 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2008 Alexander Motin <mav@FreeBSD.org>
* Copyright (c) 2017 Marius Strobl <marius@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/callout.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/kobj.h>
#include <sys/libkern.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <machine/stdarg.h>
#include <dev/mmc/bridge.h>
#include <dev/mmc/mmcreg.h>
#include <dev/mmc/mmcbrvar.h>
#include <dev/sdhci/sdhci.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_debug.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include "mmcbr_if.h"
#include "sdhci_if.h"
#include "opt_mmccam.h"
SYSCTL_NODE(_hw, OID_AUTO, sdhci, CTLFLAG_RD, 0, "sdhci driver");
static int sdhci_debug = 0;
SYSCTL_INT(_hw_sdhci, OID_AUTO, debug, CTLFLAG_RWTUN, &sdhci_debug, 0,
"Debug level");
u_int sdhci_quirk_clear = 0;
SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_clear, CTLFLAG_RWTUN, &sdhci_quirk_clear,
0, "Mask of quirks to clear");
u_int sdhci_quirk_set = 0;
SYSCTL_INT(_hw_sdhci, OID_AUTO, quirk_set, CTLFLAG_RWTUN, &sdhci_quirk_set, 0,
"Mask of quirks to set");
#define RD1(slot, off) SDHCI_READ_1((slot)->bus, (slot), (off))
#define RD2(slot, off) SDHCI_READ_2((slot)->bus, (slot), (off))
#define RD4(slot, off) SDHCI_READ_4((slot)->bus, (slot), (off))
#define RD_MULTI_4(slot, off, ptr, count) \
SDHCI_READ_MULTI_4((slot)->bus, (slot), (off), (ptr), (count))
#define WR1(slot, off, val) SDHCI_WRITE_1((slot)->bus, (slot), (off), (val))
#define WR2(slot, off, val) SDHCI_WRITE_2((slot)->bus, (slot), (off), (val))
#define WR4(slot, off, val) SDHCI_WRITE_4((slot)->bus, (slot), (off), (val))
#define WR_MULTI_4(slot, off, ptr, count) \
SDHCI_WRITE_MULTI_4((slot)->bus, (slot), (off), (ptr), (count))
static void sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err);
static void sdhci_card_poll(void *arg);
static void sdhci_card_task(void *arg, int pending);
static void sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask);
static void sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask);
static int sdhci_exec_tuning(struct sdhci_slot *slot, bool reset);
static void sdhci_handle_card_present_locked(struct sdhci_slot *slot,
bool is_present);
static void sdhci_finish_command(struct sdhci_slot *slot);
static void sdhci_init(struct sdhci_slot *slot);
static void sdhci_read_block_pio(struct sdhci_slot *slot);
static void sdhci_req_done(struct sdhci_slot *slot);
static void sdhci_req_wakeup(struct mmc_request *req);
static void sdhci_reset(struct sdhci_slot *slot, uint8_t mask);
static void sdhci_retune(void *arg);
static void sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock);
static void sdhci_set_power(struct sdhci_slot *slot, u_char power);
static void sdhci_set_transfer_mode(struct sdhci_slot *slot,
const struct mmc_data *data);
static void sdhci_start(struct sdhci_slot *slot);
static void sdhci_timeout(void *arg);
static void sdhci_start_command(struct sdhci_slot *slot,
struct mmc_command *cmd);
static void sdhci_start_data(struct sdhci_slot *slot,
const struct mmc_data *data);
static void sdhci_write_block_pio(struct sdhci_slot *slot);
static void sdhci_transfer_pio(struct sdhci_slot *slot);
#ifdef MMCCAM
/* CAM-related */
static void sdhci_cam_action(struct cam_sim *sim, union ccb *ccb);
static int sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot,
int proposed_clock);
static void sdhci_cam_handle_mmcio(struct cam_sim *sim, union ccb *ccb);
static void sdhci_cam_poll(struct cam_sim *sim);
static int sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb);
static int sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb);
static int sdhci_cam_update_ios(struct sdhci_slot *slot);
#endif
/* helper routines */
static int sdhci_dma_alloc(struct sdhci_slot *slot);
static void sdhci_dma_free(struct sdhci_slot *slot);
static void sdhci_dumpregs(struct sdhci_slot *slot);
static void sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs,
int error);
static int slot_printf(const struct sdhci_slot *slot, const char * fmt, ...)
__printflike(2, 3);
static uint32_t sdhci_tuning_intmask(const struct sdhci_slot *slot);
#define SDHCI_LOCK(_slot) mtx_lock(&(_slot)->mtx)
#define SDHCI_UNLOCK(_slot) mtx_unlock(&(_slot)->mtx)
#define SDHCI_LOCK_INIT(_slot) \
mtx_init(&_slot->mtx, "SD slot mtx", "sdhci", MTX_DEF)
#define SDHCI_LOCK_DESTROY(_slot) mtx_destroy(&_slot->mtx);
#define SDHCI_ASSERT_LOCKED(_slot) mtx_assert(&_slot->mtx, MA_OWNED);
#define SDHCI_ASSERT_UNLOCKED(_slot) mtx_assert(&_slot->mtx, MA_NOTOWNED);
#define SDHCI_DEFAULT_MAX_FREQ 50
#define SDHCI_200_MAX_DIVIDER 256
#define SDHCI_300_MAX_DIVIDER 2046
#define SDHCI_CARD_PRESENT_TICKS (hz / 5)
#define SDHCI_INSERT_DELAY_TICKS (hz / 2)
/*
* Broadcom BCM577xx Controller Constants
*/
/* Maximum divider supported by the default clock source. */
#define BCM577XX_DEFAULT_MAX_DIVIDER 256
/* Alternative clock's base frequency. */
#define BCM577XX_ALT_CLOCK_BASE 63000000
#define BCM577XX_HOST_CONTROL 0x198
#define BCM577XX_CTRL_CLKSEL_MASK 0xFFFFCFFF
#define BCM577XX_CTRL_CLKSEL_SHIFT 12
#define BCM577XX_CTRL_CLKSEL_DEFAULT 0x0
#define BCM577XX_CTRL_CLKSEL_64MHZ 0x3
static void
sdhci_getaddr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
if (error != 0) {
printf("getaddr: error %d\n", error);
return;
}
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static int
slot_printf(const struct sdhci_slot *slot, const char * fmt, ...)
{
va_list ap;
int retval;
retval = printf("%s-slot%d: ",
device_get_nameunit(slot->bus), slot->num);
va_start(ap, fmt);
retval += vprintf(fmt, ap);
va_end(ap);
return (retval);
}
static void
sdhci_dumpregs(struct sdhci_slot *slot)
{
slot_printf(slot,
"============== REGISTER DUMP ==============\n");
slot_printf(slot, "Sys addr: 0x%08x | Version: 0x%08x\n",
RD4(slot, SDHCI_DMA_ADDRESS), RD2(slot, SDHCI_HOST_VERSION));
slot_printf(slot, "Blk size: 0x%08x | Blk cnt: 0x%08x\n",
RD2(slot, SDHCI_BLOCK_SIZE), RD2(slot, SDHCI_BLOCK_COUNT));
slot_printf(slot, "Argument: 0x%08x | Trn mode: 0x%08x\n",
RD4(slot, SDHCI_ARGUMENT), RD2(slot, SDHCI_TRANSFER_MODE));
slot_printf(slot, "Present: 0x%08x | Host ctl: 0x%08x\n",
RD4(slot, SDHCI_PRESENT_STATE), RD1(slot, SDHCI_HOST_CONTROL));
slot_printf(slot, "Power: 0x%08x | Blk gap: 0x%08x\n",
RD1(slot, SDHCI_POWER_CONTROL), RD1(slot, SDHCI_BLOCK_GAP_CONTROL));
slot_printf(slot, "Wake-up: 0x%08x | Clock: 0x%08x\n",
RD1(slot, SDHCI_WAKE_UP_CONTROL), RD2(slot, SDHCI_CLOCK_CONTROL));
slot_printf(slot, "Timeout: 0x%08x | Int stat: 0x%08x\n",
RD1(slot, SDHCI_TIMEOUT_CONTROL), RD4(slot, SDHCI_INT_STATUS));
slot_printf(slot, "Int enab: 0x%08x | Sig enab: 0x%08x\n",
RD4(slot, SDHCI_INT_ENABLE), RD4(slot, SDHCI_SIGNAL_ENABLE));
slot_printf(slot, "AC12 err: 0x%08x | Host ctl2:0x%08x\n",
RD2(slot, SDHCI_ACMD12_ERR), RD2(slot, SDHCI_HOST_CONTROL2));
slot_printf(slot, "Caps: 0x%08x | Caps2: 0x%08x\n",
RD4(slot, SDHCI_CAPABILITIES), RD4(slot, SDHCI_CAPABILITIES2));
slot_printf(slot, "Max curr: 0x%08x | ADMA err: 0x%08x\n",
RD4(slot, SDHCI_MAX_CURRENT), RD1(slot, SDHCI_ADMA_ERR));
slot_printf(slot, "ADMA addr:0x%08x | Slot int: 0x%08x\n",
RD4(slot, SDHCI_ADMA_ADDRESS_LO), RD2(slot, SDHCI_SLOT_INT_STATUS));
slot_printf(slot,
"===========================================\n");
}
static void
sdhci_reset(struct sdhci_slot *slot, uint8_t mask)
{
int timeout;
uint32_t clock;
if (slot->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) {
if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot))
return;
}
/* Some controllers need this kick or reset won't work. */
if ((mask & SDHCI_RESET_ALL) == 0 &&
(slot->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)) {
/* This is to force an update */
clock = slot->clock;
slot->clock = 0;
sdhci_set_clock(slot, clock);
}
if (mask & SDHCI_RESET_ALL) {
slot->clock = 0;
slot->power = 0;
}
WR1(slot, SDHCI_SOFTWARE_RESET, mask);
if (slot->quirks & SDHCI_QUIRK_WAITFOR_RESET_ASSERTED) {
/*
* Resets on TI OMAPs and AM335x are incompatible with SDHCI
* specification. The reset bit has internal propagation delay,
* so a fast read after write returns 0 even if reset process is
* in progress. The workaround is to poll for 1 before polling
* for 0. In the worst case, if we miss seeing it asserted the
* time we spent waiting is enough to ensure the reset finishes.
*/
timeout = 10000;
while ((RD1(slot, SDHCI_SOFTWARE_RESET) & mask) != mask) {
if (timeout <= 0)
break;
timeout--;
DELAY(1);
}
}
/* Wait max 100 ms */
timeout = 10000;
/* Controller clears the bits when it's done */
while (RD1(slot, SDHCI_SOFTWARE_RESET) & mask) {
if (timeout <= 0) {
slot_printf(slot, "Reset 0x%x never completed.\n",
mask);
sdhci_dumpregs(slot);
return;
}
timeout--;
DELAY(10);
}
}
static uint32_t
sdhci_tuning_intmask(const struct sdhci_slot *slot)
{
uint32_t intmask;
intmask = 0;
if (slot->opt & SDHCI_TUNING_ENABLED) {
intmask |= SDHCI_INT_TUNEERR;
if (slot->retune_mode == SDHCI_RETUNE_MODE_2 ||
slot->retune_mode == SDHCI_RETUNE_MODE_3)
intmask |= SDHCI_INT_RETUNE;
}
return (intmask);
}
static void
sdhci_init(struct sdhci_slot *slot)
{
sdhci_reset(slot, SDHCI_RESET_ALL);
/* Enable interrupts. */
slot->intmask = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT |
SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX |
SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT |
SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL |
SDHCI_INT_DMA_END | SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE |
SDHCI_INT_ACMD12ERR;
if (!(slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) &&
!(slot->opt & SDHCI_NON_REMOVABLE)) {
slot->intmask |= SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT;
}
WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
}
static void
sdhci_set_clock(struct sdhci_slot *slot, uint32_t clock)
{
uint32_t clk_base;
uint32_t clk_sel;
uint32_t res;
uint16_t clk;
uint16_t div;
int timeout;
if (clock == slot->clock)
return;
slot->clock = clock;
/* Turn off the clock. */
clk = RD2(slot, SDHCI_CLOCK_CONTROL);
WR2(slot, SDHCI_CLOCK_CONTROL, clk & ~SDHCI_CLOCK_CARD_EN);
/* If no clock requested - leave it so. */
if (clock == 0)
return;
/* Determine the clock base frequency */
clk_base = slot->max_clk;
if (slot->quirks & SDHCI_QUIRK_BCM577XX_400KHZ_CLKSRC) {
clk_sel = RD2(slot, BCM577XX_HOST_CONTROL) &
BCM577XX_CTRL_CLKSEL_MASK;
/*
* Select clock source appropriate for the requested frequency.
*/
if ((clk_base / BCM577XX_DEFAULT_MAX_DIVIDER) > clock) {
clk_base = BCM577XX_ALT_CLOCK_BASE;
clk_sel |= (BCM577XX_CTRL_CLKSEL_64MHZ <<
BCM577XX_CTRL_CLKSEL_SHIFT);
} else {
clk_sel |= (BCM577XX_CTRL_CLKSEL_DEFAULT <<
BCM577XX_CTRL_CLKSEL_SHIFT);
}
WR2(slot, BCM577XX_HOST_CONTROL, clk_sel);
}
/* Recalculate timeout clock frequency based on the new sd clock. */
if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)
slot->timeout_clk = slot->clock / 1000;
if (slot->version < SDHCI_SPEC_300) {
/* Looking for highest freq <= clock. */
res = clk_base;
for (div = 1; div < SDHCI_200_MAX_DIVIDER; div <<= 1) {
if (res <= clock)
break;
res >>= 1;
}
/* Divider 1:1 is 0x00, 2:1 is 0x01, 256:1 is 0x80 ... */
div >>= 1;
} else {
/* Version 3.0 divisors are multiples of two up to 1023 * 2 */
if (clock >= clk_base)
div = 0;
else {
for (div = 2; div < SDHCI_300_MAX_DIVIDER; div += 2) {
if ((clk_base / div) <= clock)
break;
}
}
div >>= 1;
}
if (bootverbose || sdhci_debug)
slot_printf(slot, "Divider %d for freq %d (base %d)\n",
div, clock, clk_base);
/* Now we have got divider, set it. */
clk = (div & SDHCI_DIVIDER_MASK) << SDHCI_DIVIDER_SHIFT;
clk |= ((div >> SDHCI_DIVIDER_MASK_LEN) & SDHCI_DIVIDER_HI_MASK)
<< SDHCI_DIVIDER_HI_SHIFT;
WR2(slot, SDHCI_CLOCK_CONTROL, clk);
/* Enable clock. */
clk |= SDHCI_CLOCK_INT_EN;
WR2(slot, SDHCI_CLOCK_CONTROL, clk);
/* Wait up to 10 ms until it stabilize. */
timeout = 10;
while (!((clk = RD2(slot, SDHCI_CLOCK_CONTROL))
& SDHCI_CLOCK_INT_STABLE)) {
if (timeout == 0) {
slot_printf(slot,
"Internal clock never stabilised.\n");
sdhci_dumpregs(slot);
return;
}
timeout--;
DELAY(1000);
}
/* Pass clock signal to the bus. */
clk |= SDHCI_CLOCK_CARD_EN;
WR2(slot, SDHCI_CLOCK_CONTROL, clk);
}
static void
sdhci_set_power(struct sdhci_slot *slot, u_char power)
{
int i;
uint8_t pwr;
if (slot->power == power)
return;
slot->power = power;
/* Turn off the power. */
pwr = 0;
WR1(slot, SDHCI_POWER_CONTROL, pwr);
/* If power down requested - leave it so. */
if (power == 0)
return;
/* Set voltage. */
switch (1 << power) {
case MMC_OCR_LOW_VOLTAGE:
pwr |= SDHCI_POWER_180;
break;
case MMC_OCR_290_300:
case MMC_OCR_300_310:
pwr |= SDHCI_POWER_300;
break;
case MMC_OCR_320_330:
case MMC_OCR_330_340:
pwr |= SDHCI_POWER_330;
break;
}
WR1(slot, SDHCI_POWER_CONTROL, pwr);
/*
* Turn on VDD1 power. Note that at least some Intel controllers can
* fail to enable bus power on the first try after transiting from D3
* to D0, so we give them up to 2 ms.
*/
pwr |= SDHCI_POWER_ON;
for (i = 0; i < 20; i++) {
WR1(slot, SDHCI_POWER_CONTROL, pwr);
if (RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON)
break;
DELAY(100);
}
if (!(RD1(slot, SDHCI_POWER_CONTROL) & SDHCI_POWER_ON))
slot_printf(slot, "Bus power failed to enable");
if (slot->quirks & SDHCI_QUIRK_INTEL_POWER_UP_RESET) {
WR1(slot, SDHCI_POWER_CONTROL, pwr | 0x10);
DELAY(10);
WR1(slot, SDHCI_POWER_CONTROL, pwr);
DELAY(300);
}
}
static void
sdhci_read_block_pio(struct sdhci_slot *slot)
{
uint32_t data;
char *buffer;
size_t left;
buffer = slot->curcmd->data->data;
buffer += slot->offset;
/* Transfer one block at a time. */
#ifdef MMCCAM
if (slot->curcmd->data->flags & MMC_DATA_BLOCK_SIZE)
left = min(slot->curcmd->data->block_size,
slot->curcmd->data->len - slot->offset);
else
#endif
left = min(512, slot->curcmd->data->len - slot->offset);
slot->offset += left;
/* If we are too fast, broken controllers return zeroes. */
if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS)
DELAY(10);
/* Handle unaligned and aligned buffer cases. */
if ((intptr_t)buffer & 3) {
while (left > 3) {
data = RD4(slot, SDHCI_BUFFER);
buffer[0] = data;
buffer[1] = (data >> 8);
buffer[2] = (data >> 16);
buffer[3] = (data >> 24);
buffer += 4;
left -= 4;
}
} else {
RD_MULTI_4(slot, SDHCI_BUFFER,
(uint32_t *)buffer, left >> 2);
left &= 3;
}
/* Handle uneven size case. */
if (left > 0) {
data = RD4(slot, SDHCI_BUFFER);
while (left > 0) {
*(buffer++) = data;
data >>= 8;
left--;
}
}
}
static void
sdhci_write_block_pio(struct sdhci_slot *slot)
{
uint32_t data = 0;
char *buffer;
size_t left;
buffer = slot->curcmd->data->data;
buffer += slot->offset;
/* Transfer one block at a time. */
#ifdef MMCCAM
if (slot->curcmd->data->flags & MMC_DATA_BLOCK_SIZE) {
left = min(slot->curcmd->data->block_size,
slot->curcmd->data->len - slot->offset);
} else
#endif
left = min(512, slot->curcmd->data->len - slot->offset);
slot->offset += left;
/* Handle unaligned and aligned buffer cases. */
if ((intptr_t)buffer & 3) {
while (left > 3) {
data = buffer[0] +
(buffer[1] << 8) +
(buffer[2] << 16) +
(buffer[3] << 24);
left -= 4;
buffer += 4;
WR4(slot, SDHCI_BUFFER, data);
}
} else {
WR_MULTI_4(slot, SDHCI_BUFFER,
(uint32_t *)buffer, left >> 2);
left &= 3;
}
/* Handle uneven size case. */
if (left > 0) {
while (left > 0) {
data <<= 8;
data += *(buffer++);
left--;
}
WR4(slot, SDHCI_BUFFER, data);
}
}
static void
sdhci_transfer_pio(struct sdhci_slot *slot)
{
/* Read as many blocks as possible. */
if (slot->curcmd->data->flags & MMC_DATA_READ) {
while (RD4(slot, SDHCI_PRESENT_STATE) &
SDHCI_DATA_AVAILABLE) {
sdhci_read_block_pio(slot);
if (slot->offset >= slot->curcmd->data->len)
break;
}
} else {
while (RD4(slot, SDHCI_PRESENT_STATE) &
SDHCI_SPACE_AVAILABLE) {
sdhci_write_block_pio(slot);
if (slot->offset >= slot->curcmd->data->len)
break;
}
}
}
static void
sdhci_card_task(void *arg, int pending __unused)
{
struct sdhci_slot *slot = arg;
device_t d;
SDHCI_LOCK(slot);
if (SDHCI_GET_CARD_PRESENT(slot->bus, slot)) {
#ifdef MMCCAM
if (slot->card_present == 0) {
#else
if (slot->dev == NULL) {
#endif
/* If card is present - attach mmc bus. */
if (bootverbose || sdhci_debug)
slot_printf(slot, "Card inserted\n");
#ifdef MMCCAM
slot->card_present = 1;
union ccb *ccb;
uint32_t pathid;
pathid = cam_sim_path(slot->sim);
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL) {
slot_printf(slot, "Unable to alloc CCB for rescan\n");
SDHCI_UNLOCK(slot);
return;
}
/*
* We create a rescan request for BUS:0:0, since the card
* will be at lun 0.
*/
if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid,
/* target */ 0, /* lun */ 0) != CAM_REQ_CMP) {
slot_printf(slot, "Unable to create path for rescan\n");
SDHCI_UNLOCK(slot);
xpt_free_ccb(ccb);
return;
}
SDHCI_UNLOCK(slot);
xpt_rescan(ccb);
#else
d = slot->dev = device_add_child(slot->bus, "mmc", -1);
SDHCI_UNLOCK(slot);
if (d) {
device_set_ivars(d, slot);
(void)device_probe_and_attach(d);
}
#endif
} else
SDHCI_UNLOCK(slot);
} else {
#ifdef MMCCAM
if (slot->card_present == 1) {
#else
if (slot->dev != NULL) {
#endif
/* If no card present - detach mmc bus. */
if (bootverbose || sdhci_debug)
slot_printf(slot, "Card removed\n");
d = slot->dev;
slot->dev = NULL;
#ifdef MMCCAM
slot->card_present = 0;
union ccb *ccb;
uint32_t pathid;
pathid = cam_sim_path(slot->sim);
ccb = xpt_alloc_ccb_nowait();
if (ccb == NULL) {
slot_printf(slot, "Unable to alloc CCB for rescan\n");
SDHCI_UNLOCK(slot);
return;
}
/*
* We create a rescan request for BUS:0:0, since the card
* will be at lun 0.
*/
if (xpt_create_path(&ccb->ccb_h.path, NULL, pathid,
/* target */ 0, /* lun */ 0) != CAM_REQ_CMP) {
slot_printf(slot, "Unable to create path for rescan\n");
SDHCI_UNLOCK(slot);
xpt_free_ccb(ccb);
return;
}
SDHCI_UNLOCK(slot);
xpt_rescan(ccb);
#else
slot->intmask &= ~sdhci_tuning_intmask(slot);
WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
slot->opt &= ~SDHCI_TUNING_ENABLED;
SDHCI_UNLOCK(slot);
callout_drain(&slot->retune_callout);
device_delete_child(slot->bus, d);
#endif
} else
SDHCI_UNLOCK(slot);
}
}
static void
sdhci_handle_card_present_locked(struct sdhci_slot *slot, bool is_present)
{
bool was_present;
/*
* If there was no card and now there is one, schedule the task to
* create the child device after a short delay. The delay is to
* debounce the card insert (sometimes the card detect pin stabilizes
* before the other pins have made good contact).
*
* If there was a card present and now it's gone, immediately schedule
* the task to delete the child device. No debouncing -- gone is gone,
* because once power is removed, a full card re-init is needed, and
* that happens by deleting and recreating the child device.
*/
#ifdef MMCCAM
was_present = slot->card_present;
#else
was_present = slot->dev != NULL;
#endif
if (!was_present && is_present) {
taskqueue_enqueue_timeout(taskqueue_swi_giant,
&slot->card_delayed_task, -SDHCI_INSERT_DELAY_TICKS);
} else if (was_present && !is_present) {
taskqueue_enqueue(taskqueue_swi_giant, &slot->card_task);
}
}
void
sdhci_handle_card_present(struct sdhci_slot *slot, bool is_present)
{
SDHCI_LOCK(slot);
sdhci_handle_card_present_locked(slot, is_present);
SDHCI_UNLOCK(slot);
}
static void
sdhci_card_poll(void *arg)
{
struct sdhci_slot *slot = arg;
sdhci_handle_card_present(slot,
SDHCI_GET_CARD_PRESENT(slot->bus, slot));
callout_reset(&slot->card_poll_callout, SDHCI_CARD_PRESENT_TICKS,
sdhci_card_poll, slot);
}
static int
sdhci_dma_alloc(struct sdhci_slot *slot)
{
int err;
if (!(slot->quirks & SDHCI_QUIRK_BROKEN_SDMA_BOUNDARY)) {
if (MAXPHYS <= 1024 * 4)
slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_4K;
else if (MAXPHYS <= 1024 * 8)
slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_8K;
else if (MAXPHYS <= 1024 * 16)
slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_16K;
else if (MAXPHYS <= 1024 * 32)
slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_32K;
else if (MAXPHYS <= 1024 * 64)
slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_64K;
else if (MAXPHYS <= 1024 * 128)
slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_128K;
else if (MAXPHYS <= 1024 * 256)
slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_256K;
else
slot->sdma_boundary = SDHCI_BLKSZ_SDMA_BNDRY_512K;
}
slot->sdma_bbufsz = SDHCI_SDMA_BNDRY_TO_BBUFSZ(slot->sdma_boundary);
/*
* Allocate the DMA tag for an SDMA bounce buffer.
* Note that the SDHCI specification doesn't state any alignment
* constraint for the SDMA system address. However, controllers
* typically ignore the SDMA boundary bits in SDHCI_DMA_ADDRESS when
* forming the actual address of data, requiring the SDMA buffer to
* be aligned to the SDMA boundary.
*/
err = bus_dma_tag_create(bus_get_dma_tag(slot->bus), slot->sdma_bbufsz,
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
slot->sdma_bbufsz, 1, slot->sdma_bbufsz, BUS_DMA_ALLOCNOW,
NULL, NULL, &slot->dmatag);
if (err != 0) {
slot_printf(slot, "Can't create DMA tag for SDMA\n");
return (err);
}
/* Allocate DMA memory for the SDMA bounce buffer. */
err = bus_dmamem_alloc(slot->dmatag, (void **)&slot->dmamem,
BUS_DMA_NOWAIT, &slot->dmamap);
if (err != 0) {
slot_printf(slot, "Can't alloc DMA memory for SDMA\n");
bus_dma_tag_destroy(slot->dmatag);
return (err);
}
/* Map the memory of the SDMA bounce buffer. */
err = bus_dmamap_load(slot->dmatag, slot->dmamap,
(void *)slot->dmamem, slot->sdma_bbufsz, sdhci_getaddr,
&slot->paddr, 0);
if (err != 0 || slot->paddr == 0) {
slot_printf(slot, "Can't load DMA memory for SDMA\n");
bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap);
bus_dma_tag_destroy(slot->dmatag);
if (err)
return (err);
else
return (EFAULT);
}
return (0);
}
static void
sdhci_dma_free(struct sdhci_slot *slot)
{
bus_dmamap_unload(slot->dmatag, slot->dmamap);
bus_dmamem_free(slot->dmatag, slot->dmamem, slot->dmamap);
bus_dma_tag_destroy(slot->dmatag);
}
int
sdhci_init_slot(device_t dev, struct sdhci_slot *slot, int num)
{
kobjop_desc_t kobj_desc;
kobj_method_t *kobj_method;
uint32_t caps, caps2, freq, host_caps;
int err;
SDHCI_LOCK_INIT(slot);
slot->num = num;
slot->bus = dev;
slot->version = (RD2(slot, SDHCI_HOST_VERSION)
>> SDHCI_SPEC_VER_SHIFT) & SDHCI_SPEC_VER_MASK;
if (slot->quirks & SDHCI_QUIRK_MISSING_CAPS) {
caps = slot->caps;
caps2 = slot->caps2;
} else {
caps = RD4(slot, SDHCI_CAPABILITIES);
if (slot->version >= SDHCI_SPEC_300)
caps2 = RD4(slot, SDHCI_CAPABILITIES2);
else
caps2 = 0;
}
if (slot->version >= SDHCI_SPEC_300) {
if ((caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_REMOVABLE &&
(caps & SDHCI_SLOTTYPE_MASK) != SDHCI_SLOTTYPE_EMBEDDED) {
slot_printf(slot,
"Driver doesn't support shared bus slots\n");
SDHCI_LOCK_DESTROY(slot);
return (ENXIO);
} else if ((caps & SDHCI_SLOTTYPE_MASK) ==
SDHCI_SLOTTYPE_EMBEDDED) {
slot->opt |= SDHCI_SLOT_EMBEDDED | SDHCI_NON_REMOVABLE;
}
}
/* Calculate base clock frequency. */
if (slot->version >= SDHCI_SPEC_300)
freq = (caps & SDHCI_CLOCK_V3_BASE_MASK) >>
SDHCI_CLOCK_BASE_SHIFT;
else
freq = (caps & SDHCI_CLOCK_BASE_MASK) >>
SDHCI_CLOCK_BASE_SHIFT;
if (freq != 0)
slot->max_clk = freq * 1000000;
/*
* If the frequency wasn't in the capabilities and the hardware driver
* hasn't already set max_clk we're probably not going to work right
* with an assumption, so complain about it.
*/
if (slot->max_clk == 0) {
slot->max_clk = SDHCI_DEFAULT_MAX_FREQ * 1000000;
slot_printf(slot, "Hardware doesn't specify base clock "
"frequency, using %dMHz as default.\n",
SDHCI_DEFAULT_MAX_FREQ);
}
/* Calculate/set timeout clock frequency. */
if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK) {
slot->timeout_clk = slot->max_clk / 1000;
} else if (slot->quirks & SDHCI_QUIRK_DATA_TIMEOUT_1MHZ) {
slot->timeout_clk = 1000;
} else {
slot->timeout_clk = (caps & SDHCI_TIMEOUT_CLK_MASK) >>
SDHCI_TIMEOUT_CLK_SHIFT;
if (caps & SDHCI_TIMEOUT_CLK_UNIT)
slot->timeout_clk *= 1000;
}
/*
* If the frequency wasn't in the capabilities and the hardware driver
* hasn't already set timeout_clk we'll probably work okay using the
* max timeout, but still mention it.
*/
if (slot->timeout_clk == 0) {
slot_printf(slot, "Hardware doesn't specify timeout clock "
"frequency, setting BROKEN_TIMEOUT quirk.\n");
slot->quirks |= SDHCI_QUIRK_BROKEN_TIMEOUT_VAL;
}
slot->host.f_min = SDHCI_MIN_FREQ(slot->bus, slot);
slot->host.f_max = slot->max_clk;
slot->host.host_ocr = 0;
if (caps & SDHCI_CAN_VDD_330)
slot->host.host_ocr |= MMC_OCR_320_330 | MMC_OCR_330_340;
if (caps & SDHCI_CAN_VDD_300)
slot->host.host_ocr |= MMC_OCR_290_300 | MMC_OCR_300_310;
/* 1.8V VDD is not supposed to be used for removable cards. */
if ((caps & SDHCI_CAN_VDD_180) && (slot->opt & SDHCI_SLOT_EMBEDDED))
slot->host.host_ocr |= MMC_OCR_LOW_VOLTAGE;
if (slot->host.host_ocr == 0) {
slot_printf(slot, "Hardware doesn't report any "
"support voltages.\n");
}
host_caps = MMC_CAP_4_BIT_DATA;
if (caps & SDHCI_CAN_DO_8BITBUS)
host_caps |= MMC_CAP_8_BIT_DATA;
if (caps & SDHCI_CAN_DO_HISPD)
host_caps |= MMC_CAP_HSPEED;
if (slot->quirks & SDHCI_QUIRK_BOOT_NOACC)
host_caps |= MMC_CAP_BOOT_NOACC;
if (slot->quirks & SDHCI_QUIRK_WAIT_WHILE_BUSY)
host_caps |= MMC_CAP_WAIT_WHILE_BUSY;
/* Determine supported UHS-I and eMMC modes. */
if (caps2 & (SDHCI_CAN_SDR50 | SDHCI_CAN_SDR104 | SDHCI_CAN_DDR50))
host_caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25;
if (caps2 & SDHCI_CAN_SDR104) {
host_caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50;
if (!(slot->quirks & SDHCI_QUIRK_BROKEN_MMC_HS200))
host_caps |= MMC_CAP_MMC_HS200;
} else if (caps2 & SDHCI_CAN_SDR50)
host_caps |= MMC_CAP_UHS_SDR50;
if (caps2 & SDHCI_CAN_DDR50 &&
!(slot->quirks & SDHCI_QUIRK_BROKEN_UHS_DDR50))
host_caps |= MMC_CAP_UHS_DDR50;
if (slot->quirks & SDHCI_QUIRK_MMC_DDR52)
host_caps |= MMC_CAP_MMC_DDR52;
if (slot->quirks & SDHCI_QUIRK_CAPS_BIT63_FOR_MMC_HS400 &&
caps2 & SDHCI_CAN_MMC_HS400)
host_caps |= MMC_CAP_MMC_HS400;
if (slot->quirks & SDHCI_QUIRK_MMC_HS400_IF_CAN_SDR104 &&
caps2 & SDHCI_CAN_SDR104)
host_caps |= MMC_CAP_MMC_HS400;
/*
* Disable UHS-I and eMMC modes if the set_uhs_timing method is the
* default NULL implementation.
*/
kobj_desc = &sdhci_set_uhs_timing_desc;
kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
kobj_desc);
if (kobj_method == &kobj_desc->deflt)
host_caps &= ~(MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 |
MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 | MMC_CAP_MMC_HS400);
#define SDHCI_CAP_MODES_TUNING(caps2) \
(((caps2) & SDHCI_TUNE_SDR50 ? MMC_CAP_UHS_SDR50 : 0) | \
MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_MMC_HS200 | \
MMC_CAP_MMC_HS400)
/*
* Disable UHS-I and eMMC modes that require (re-)tuning if either
* the tune or re-tune method is the default NULL implementation.
*/
kobj_desc = &mmcbr_tune_desc;
kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
kobj_desc);
if (kobj_method == &kobj_desc->deflt)
goto no_tuning;
kobj_desc = &mmcbr_retune_desc;
kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
kobj_desc);
if (kobj_method == &kobj_desc->deflt) {
no_tuning:
host_caps &= ~(SDHCI_CAP_MODES_TUNING(caps2));
}
/* Allocate tuning structures and determine tuning parameters. */
if (host_caps & SDHCI_CAP_MODES_TUNING(caps2)) {
slot->opt |= SDHCI_TUNING_SUPPORTED;
slot->tune_req = malloc(sizeof(*slot->tune_req), M_DEVBUF,
M_WAITOK);
slot->tune_cmd = malloc(sizeof(*slot->tune_cmd), M_DEVBUF,
M_WAITOK);
slot->tune_data = malloc(sizeof(*slot->tune_data), M_DEVBUF,
M_WAITOK);
if (caps2 & SDHCI_TUNE_SDR50)
slot->opt |= SDHCI_SDR50_NEEDS_TUNING;
slot->retune_mode = (caps2 & SDHCI_RETUNE_MODES_MASK) >>
SDHCI_RETUNE_MODES_SHIFT;
if (slot->retune_mode == SDHCI_RETUNE_MODE_1) {
slot->retune_count = (caps2 & SDHCI_RETUNE_CNT_MASK) >>
SDHCI_RETUNE_CNT_SHIFT;
if (slot->retune_count > 0xb) {
slot_printf(slot, "Unknown re-tuning count "
"%x, using 1 sec\n", slot->retune_count);
slot->retune_count = 1;
} else if (slot->retune_count != 0)
slot->retune_count =
1 << (slot->retune_count - 1);
}
}
#undef SDHCI_CAP_MODES_TUNING
/* Determine supported VCCQ signaling levels. */
host_caps |= MMC_CAP_SIGNALING_330;
if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_DDR50 | MMC_CAP_UHS_SDR104 |
MMC_CAP_MMC_DDR52_180 | MMC_CAP_MMC_HS200_180 |
MMC_CAP_MMC_HS400_180))
host_caps |= MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180;
/*
* Disable 1.2 V and 1.8 V signaling if the switch_vccq method is the
* default NULL implementation. Disable 1.2 V support if it's the
* generic SDHCI implementation.
*/
kobj_desc = &mmcbr_switch_vccq_desc;
kobj_method = kobj_lookup_method(((kobj_t)dev)->ops->cls, NULL,
kobj_desc);
if (kobj_method == &kobj_desc->deflt)
host_caps &= ~(MMC_CAP_SIGNALING_120 | MMC_CAP_SIGNALING_180);
else if (kobj_method->func == (kobjop_t)sdhci_generic_switch_vccq)
host_caps &= ~MMC_CAP_SIGNALING_120;
/* Determine supported driver types (type B is always mandatory). */
if (caps2 & SDHCI_CAN_DRIVE_TYPE_A)
host_caps |= MMC_CAP_DRIVER_TYPE_A;
if (caps2 & SDHCI_CAN_DRIVE_TYPE_C)
host_caps |= MMC_CAP_DRIVER_TYPE_C;
if (caps2 & SDHCI_CAN_DRIVE_TYPE_D)
host_caps |= MMC_CAP_DRIVER_TYPE_D;
slot->host.caps = host_caps;
/* Decide if we have usable DMA. */
if (caps & SDHCI_CAN_DO_DMA)
slot->opt |= SDHCI_HAVE_DMA;
if (slot->quirks & SDHCI_QUIRK_BROKEN_DMA)
slot->opt &= ~SDHCI_HAVE_DMA;
if (slot->quirks & SDHCI_QUIRK_FORCE_DMA)
slot->opt |= SDHCI_HAVE_DMA;
if (slot->quirks & SDHCI_QUIRK_ALL_SLOTS_NON_REMOVABLE)
slot->opt |= SDHCI_NON_REMOVABLE;
/*
* Use platform-provided transfer backend
* with PIO as a fallback mechanism
*/
if (slot->opt & SDHCI_PLATFORM_TRANSFER)
slot->opt &= ~SDHCI_HAVE_DMA;
if (slot->opt & SDHCI_HAVE_DMA) {
err = sdhci_dma_alloc(slot);
if (err != 0) {
if (slot->opt & SDHCI_TUNING_SUPPORTED) {
free(slot->tune_req, M_DEVBUF);
free(slot->tune_cmd, M_DEVBUF);
free(slot->tune_data, M_DEVBUF);
}
SDHCI_LOCK_DESTROY(slot);
return (err);
}
}
if (bootverbose || sdhci_debug) {
slot_printf(slot,
"%uMHz%s %s VDD:%s%s%s VCCQ: 3.3V%s%s DRV: B%s%s%s %s %s\n",
slot->max_clk / 1000000,
(caps & SDHCI_CAN_DO_HISPD) ? " HS" : "",
(host_caps & MMC_CAP_8_BIT_DATA) ? "8bits" :
((host_caps & MMC_CAP_4_BIT_DATA) ? "4bits" : "1bit"),
(caps & SDHCI_CAN_VDD_330) ? " 3.3V" : "",
(caps & SDHCI_CAN_VDD_300) ? " 3.0V" : "",
((caps & SDHCI_CAN_VDD_180) &&
(slot->opt & SDHCI_SLOT_EMBEDDED)) ? " 1.8V" : "",
(host_caps & MMC_CAP_SIGNALING_180) ? " 1.8V" : "",
(host_caps & MMC_CAP_SIGNALING_120) ? " 1.2V" : "",
(host_caps & MMC_CAP_DRIVER_TYPE_A) ? "A" : "",
(host_caps & MMC_CAP_DRIVER_TYPE_C) ? "C" : "",
(host_caps & MMC_CAP_DRIVER_TYPE_D) ? "D" : "",
(slot->opt & SDHCI_HAVE_DMA) ? "DMA" : "PIO",
(slot->opt & SDHCI_SLOT_EMBEDDED) ? "embedded" :
(slot->opt & SDHCI_NON_REMOVABLE) ? "non-removable" :
"removable");
if (host_caps & (MMC_CAP_MMC_DDR52 | MMC_CAP_MMC_HS200 |
MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE))
slot_printf(slot, "eMMC:%s%s%s%s\n",
(host_caps & MMC_CAP_MMC_DDR52) ? " DDR52" : "",
(host_caps & MMC_CAP_MMC_HS200) ? " HS200" : "",
(host_caps & MMC_CAP_MMC_HS400) ? " HS400" : "",
((host_caps &
(MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ==
(MMC_CAP_MMC_HS400 | MMC_CAP_MMC_ENH_STROBE)) ?
" HS400ES" : "");
if (host_caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104))
slot_printf(slot, "UHS-I:%s%s%s%s%s\n",
(host_caps & MMC_CAP_UHS_SDR12) ? " SDR12" : "",
(host_caps & MMC_CAP_UHS_SDR25) ? " SDR25" : "",
(host_caps & MMC_CAP_UHS_SDR50) ? " SDR50" : "",
(host_caps & MMC_CAP_UHS_SDR104) ? " SDR104" : "",
(host_caps & MMC_CAP_UHS_DDR50) ? " DDR50" : "");
if (slot->opt & SDHCI_TUNING_SUPPORTED)
slot_printf(slot, "Re-tuning count %d secs, mode %d\n",
slot->retune_count, slot->retune_mode + 1);
sdhci_dumpregs(slot);
}
slot->timeout = 10;
SYSCTL_ADD_INT(device_get_sysctl_ctx(slot->bus),
SYSCTL_CHILDREN(device_get_sysctl_tree(slot->bus)), OID_AUTO,
"timeout", CTLFLAG_RW, &slot->timeout, 0,
"Maximum timeout for SDHCI transfers (in secs)");
TASK_INIT(&slot->card_task, 0, sdhci_card_task, slot);
TIMEOUT_TASK_INIT(taskqueue_swi_giant, &slot->card_delayed_task, 0,
sdhci_card_task, slot);
callout_init(&slot->card_poll_callout, 1);
callout_init_mtx(&slot->timeout_callout, &slot->mtx, 0);
callout_init_mtx(&slot->retune_callout, &slot->mtx, 0);
if ((slot->quirks & SDHCI_QUIRK_POLL_CARD_PRESENT) &&
!(slot->opt & SDHCI_NON_REMOVABLE)) {
callout_reset(&slot->card_poll_callout,
SDHCI_CARD_PRESENT_TICKS, sdhci_card_poll, slot);
}
sdhci_init(slot);
return (0);
}
#ifndef MMCCAM
void
sdhci_start_slot(struct sdhci_slot *slot)
{
sdhci_card_task(slot, 0);
}
#endif
int
sdhci_cleanup_slot(struct sdhci_slot *slot)
{
device_t d;
callout_drain(&slot->timeout_callout);
callout_drain(&slot->card_poll_callout);
callout_drain(&slot->retune_callout);
taskqueue_drain(taskqueue_swi_giant, &slot->card_task);
taskqueue_drain_timeout(taskqueue_swi_giant, &slot->card_delayed_task);
SDHCI_LOCK(slot);
d = slot->dev;
slot->dev = NULL;
SDHCI_UNLOCK(slot);
if (d != NULL)
device_delete_child(slot->bus, d);
SDHCI_LOCK(slot);
sdhci_reset(slot, SDHCI_RESET_ALL);
SDHCI_UNLOCK(slot);
if (slot->opt & SDHCI_HAVE_DMA)
sdhci_dma_free(slot);
if (slot->opt & SDHCI_TUNING_SUPPORTED) {
free(slot->tune_req, M_DEVBUF);
free(slot->tune_cmd, M_DEVBUF);
free(slot->tune_data, M_DEVBUF);
}
SDHCI_LOCK_DESTROY(slot);
return (0);
}
int
sdhci_generic_suspend(struct sdhci_slot *slot)
{
/*
* We expect the MMC layer to issue initial tuning after resume.
* Otherwise, we'd need to indicate re-tuning including circuit reset
* being required at least for re-tuning modes 1 and 2 ourselves.
*/
callout_drain(&slot->retune_callout);
SDHCI_LOCK(slot);
slot->opt &= ~SDHCI_TUNING_ENABLED;
sdhci_reset(slot, SDHCI_RESET_ALL);
SDHCI_UNLOCK(slot);
return (0);
}
int
sdhci_generic_resume(struct sdhci_slot *slot)
{
SDHCI_LOCK(slot);
sdhci_init(slot);
SDHCI_UNLOCK(slot);
return (0);
}
uint32_t
sdhci_generic_min_freq(device_t brdev __unused, struct sdhci_slot *slot)
{
if (slot->version >= SDHCI_SPEC_300)
return (slot->max_clk / SDHCI_300_MAX_DIVIDER);
else
return (slot->max_clk / SDHCI_200_MAX_DIVIDER);
}
bool
sdhci_generic_get_card_present(device_t brdev __unused, struct sdhci_slot *slot)
{
if (slot->opt & SDHCI_NON_REMOVABLE)
return true;
return (RD4(slot, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT);
}
void
sdhci_generic_set_uhs_timing(device_t brdev __unused, struct sdhci_slot *slot)
{
const struct mmc_ios *ios;
uint16_t hostctrl2;
if (slot->version < SDHCI_SPEC_300)
return;
SDHCI_ASSERT_LOCKED(slot);
ios = &slot->host.ios;
sdhci_set_clock(slot, 0);
hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
hostctrl2 &= ~SDHCI_CTRL2_UHS_MASK;
if (ios->clock > SD_SDR50_MAX) {
if (ios->timing == bus_timing_mmc_hs400 ||
ios->timing == bus_timing_mmc_hs400es)
hostctrl2 |= SDHCI_CTRL2_MMC_HS400;
else
hostctrl2 |= SDHCI_CTRL2_UHS_SDR104;
}
else if (ios->clock > SD_SDR25_MAX)
hostctrl2 |= SDHCI_CTRL2_UHS_SDR50;
else if (ios->clock > SD_SDR12_MAX) {
if (ios->timing == bus_timing_uhs_ddr50 ||
ios->timing == bus_timing_mmc_ddr52)
hostctrl2 |= SDHCI_CTRL2_UHS_DDR50;
else
hostctrl2 |= SDHCI_CTRL2_UHS_SDR25;
} else if (ios->clock > SD_MMC_CARD_ID_FREQUENCY)
hostctrl2 |= SDHCI_CTRL2_UHS_SDR12;
WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
sdhci_set_clock(slot, ios->clock);
}
int
sdhci_generic_update_ios(device_t brdev, device_t reqdev)
{
struct sdhci_slot *slot = device_get_ivars(reqdev);
struct mmc_ios *ios = &slot->host.ios;
SDHCI_LOCK(slot);
/* Do full reset on bus power down to clear from any state. */
if (ios->power_mode == power_off) {
WR4(slot, SDHCI_SIGNAL_ENABLE, 0);
sdhci_init(slot);
}
/* Configure the bus. */
sdhci_set_clock(slot, ios->clock);
sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd);
if (ios->bus_width == bus_width_8) {
slot->hostctrl |= SDHCI_CTRL_8BITBUS;
slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
} else if (ios->bus_width == bus_width_4) {
slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
slot->hostctrl |= SDHCI_CTRL_4BITBUS;
} else if (ios->bus_width == bus_width_1) {
slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
} else {
panic("Invalid bus width: %d", ios->bus_width);
}
if (ios->clock > SD_SDR12_MAX &&
!(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT))
slot->hostctrl |= SDHCI_CTRL_HISPD;
else
slot->hostctrl &= ~SDHCI_CTRL_HISPD;
WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl);
SDHCI_SET_UHS_TIMING(brdev, slot);
/* Some controllers like reset after bus changes. */
if (slot->quirks & SDHCI_QUIRK_RESET_ON_IOS)
sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
SDHCI_UNLOCK(slot);
return (0);
}
int
sdhci_generic_switch_vccq(device_t brdev __unused, device_t reqdev)
{
struct sdhci_slot *slot = device_get_ivars(reqdev);
enum mmc_vccq vccq;
int err;
uint16_t hostctrl2;
if (slot->version < SDHCI_SPEC_300)
return (0);
err = 0;
vccq = slot->host.ios.vccq;
SDHCI_LOCK(slot);
sdhci_set_clock(slot, 0);
hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
switch (vccq) {
case vccq_330:
if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE))
goto done;
hostctrl2 &= ~SDHCI_CTRL2_S18_ENABLE;
WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
DELAY(5000);
hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
if (!(hostctrl2 & SDHCI_CTRL2_S18_ENABLE))
goto done;
err = EAGAIN;
break;
case vccq_180:
if (!(slot->host.caps & MMC_CAP_SIGNALING_180)) {
err = EINVAL;
goto done;
}
if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE)
goto done;
hostctrl2 |= SDHCI_CTRL2_S18_ENABLE;
WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2);
DELAY(5000);
hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
if (hostctrl2 & SDHCI_CTRL2_S18_ENABLE)
goto done;
err = EAGAIN;
break;
default:
slot_printf(slot,
"Attempt to set unsupported signaling voltage\n");
err = EINVAL;
break;
}
done:
sdhci_set_clock(slot, slot->host.ios.clock);
SDHCI_UNLOCK(slot);
return (err);
}
int
sdhci_generic_tune(device_t brdev __unused, device_t reqdev, bool hs400)
{
struct sdhci_slot *slot = device_get_ivars(reqdev);
const struct mmc_ios *ios = &slot->host.ios;
struct mmc_command *tune_cmd;
struct mmc_data *tune_data;
uint32_t opcode;
int err;
if (!(slot->opt & SDHCI_TUNING_SUPPORTED))
return (0);
slot->retune_ticks = slot->retune_count * hz;
opcode = MMC_SEND_TUNING_BLOCK;
SDHCI_LOCK(slot);
switch (ios->timing) {
case bus_timing_mmc_hs400:
slot_printf(slot, "HS400 must be tuned in HS200 mode\n");
SDHCI_UNLOCK(slot);
return (EINVAL);
case bus_timing_mmc_hs200:
/*
* In HS400 mode, controllers use the data strobe line to
* latch data from the devices so periodic re-tuning isn't
* expected to be required.
*/
if (hs400)
slot->retune_ticks = 0;
opcode = MMC_SEND_TUNING_BLOCK_HS200;
break;
case bus_timing_uhs_ddr50:
case bus_timing_uhs_sdr104:
break;
case bus_timing_uhs_sdr50:
if (slot->opt & SDHCI_SDR50_NEEDS_TUNING)
break;
/* FALLTHROUGH */
default:
SDHCI_UNLOCK(slot);
return (0);
}
tune_cmd = slot->tune_cmd;
memset(tune_cmd, 0, sizeof(*tune_cmd));
tune_cmd->opcode = opcode;
tune_cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
tune_data = tune_cmd->data = slot->tune_data;
memset(tune_data, 0, sizeof(*tune_data));
tune_data->len = (opcode == MMC_SEND_TUNING_BLOCK_HS200 &&
ios->bus_width == bus_width_8) ? MMC_TUNING_LEN_HS200 :
MMC_TUNING_LEN;
tune_data->flags = MMC_DATA_READ;
tune_data->mrq = tune_cmd->mrq = slot->tune_req;
slot->opt &= ~SDHCI_TUNING_ENABLED;
err = sdhci_exec_tuning(slot, true);
if (err == 0) {
slot->opt |= SDHCI_TUNING_ENABLED;
slot->intmask |= sdhci_tuning_intmask(slot);
WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
if (slot->retune_ticks) {
callout_reset(&slot->retune_callout, slot->retune_ticks,
sdhci_retune, slot);
}
}
SDHCI_UNLOCK(slot);
return (err);
}
int
sdhci_generic_retune(device_t brdev __unused, device_t reqdev, bool reset)
{
struct sdhci_slot *slot = device_get_ivars(reqdev);
int err;
if (!(slot->opt & SDHCI_TUNING_ENABLED))
return (0);
/* HS400 must be tuned in HS200 mode. */
if (slot->host.ios.timing == bus_timing_mmc_hs400)
return (EINVAL);
SDHCI_LOCK(slot);
err = sdhci_exec_tuning(slot, reset);
/*
* There are two ways sdhci_exec_tuning() can fail:
* EBUSY should not actually happen when requests are only issued
* with the host properly acquired, and
* EIO re-tuning failed (but it did work initially).
*
* In both cases, we should retry at later point if periodic re-tuning
* is enabled. Note that due to slot->retune_req not being cleared in
* these failure cases, the MMC layer should trigger another attempt at
* re-tuning with the next request anyway, though.
*/
if (slot->retune_ticks) {
callout_reset(&slot->retune_callout, slot->retune_ticks,
sdhci_retune, slot);
}
SDHCI_UNLOCK(slot);
return (err);
}
static int
sdhci_exec_tuning(struct sdhci_slot *slot, bool reset)
{
struct mmc_request *tune_req;
struct mmc_command *tune_cmd;
int i;
uint32_t intmask;
uint16_t hostctrl2;
u_char opt;
SDHCI_ASSERT_LOCKED(slot);
if (slot->req != NULL)
return (EBUSY);
/* Tuning doesn't work with DMA enabled. */
opt = slot->opt;
slot->opt = opt & ~SDHCI_HAVE_DMA;
/*
* Ensure that as documented, SDHCI_INT_DATA_AVAIL is the only
* kind of interrupt we receive in response to a tuning request.
*/
intmask = slot->intmask;
slot->intmask = SDHCI_INT_DATA_AVAIL;
WR4(slot, SDHCI_INT_ENABLE, SDHCI_INT_DATA_AVAIL);
WR4(slot, SDHCI_SIGNAL_ENABLE, SDHCI_INT_DATA_AVAIL);
hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
if (reset)
hostctrl2 &= ~SDHCI_CTRL2_SAMPLING_CLOCK;
else
hostctrl2 |= SDHCI_CTRL2_SAMPLING_CLOCK;
WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 | SDHCI_CTRL2_EXEC_TUNING);
tune_req = slot->tune_req;
tune_cmd = slot->tune_cmd;
for (i = 0; i < MMC_TUNING_MAX; i++) {
memset(tune_req, 0, sizeof(*tune_req));
tune_req->cmd = tune_cmd;
tune_req->done = sdhci_req_wakeup;
tune_req->done_data = slot;
slot->req = tune_req;
slot->flags = 0;
sdhci_start(slot);
while (!(tune_req->flags & MMC_REQ_DONE))
msleep(tune_req, &slot->mtx, 0, "sdhciet", 0);
if (!(tune_req->flags & MMC_TUNE_DONE))
break;
hostctrl2 = RD2(slot, SDHCI_HOST_CONTROL2);
if (!(hostctrl2 & SDHCI_CTRL2_EXEC_TUNING))
break;
if (tune_cmd->opcode == MMC_SEND_TUNING_BLOCK)
DELAY(1000);
}
/*
* Restore DMA usage and interrupts.
* Note that the interrupt aggregation code might have cleared
* SDHCI_INT_DMA_END and/or SDHCI_INT_RESPONSE in slot->intmask
* and SDHCI_SIGNAL_ENABLE respectively so ensure SDHCI_INT_ENABLE
* doesn't lose these.
*/
slot->opt = opt;
slot->intmask = intmask;
WR4(slot, SDHCI_INT_ENABLE, intmask | SDHCI_INT_DMA_END |
SDHCI_INT_RESPONSE);
WR4(slot, SDHCI_SIGNAL_ENABLE, intmask);
if ((hostctrl2 & (SDHCI_CTRL2_EXEC_TUNING |
SDHCI_CTRL2_SAMPLING_CLOCK)) == SDHCI_CTRL2_SAMPLING_CLOCK) {
slot->retune_req = 0;
return (0);
}
slot_printf(slot, "Tuning failed, using fixed sampling clock\n");
WR2(slot, SDHCI_HOST_CONTROL2, hostctrl2 & ~(SDHCI_CTRL2_EXEC_TUNING |
SDHCI_CTRL2_SAMPLING_CLOCK));
sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
return (EIO);
}
static void
sdhci_retune(void *arg)
{
struct sdhci_slot *slot = arg;
slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED;
}
#ifdef MMCCAM
static void
sdhci_req_done(struct sdhci_slot *slot)
{
union ccb *ccb;
if (__predict_false(sdhci_debug > 1))
slot_printf(slot, "%s\n", __func__);
if (slot->ccb != NULL && slot->curcmd != NULL) {
callout_stop(&slot->timeout_callout);
ccb = slot->ccb;
slot->ccb = NULL;
slot->curcmd = NULL;
/* Tell CAM the request is finished */
struct ccb_mmcio *mmcio;
mmcio = &ccb->mmcio;
ccb->ccb_h.status =
(mmcio->cmd.error == 0 ? CAM_REQ_CMP : CAM_REQ_CMP_ERR);
xpt_done(ccb);
}
}
#else
static void
sdhci_req_done(struct sdhci_slot *slot)
{
struct mmc_request *req;
if (slot->req != NULL && slot->curcmd != NULL) {
callout_stop(&slot->timeout_callout);
req = slot->req;
slot->req = NULL;
slot->curcmd = NULL;
req->done(req);
}
}
#endif
static void
sdhci_req_wakeup(struct mmc_request *req)
{
struct sdhci_slot *slot;
slot = req->done_data;
req->flags |= MMC_REQ_DONE;
wakeup(req);
}
static void
sdhci_timeout(void *arg)
{
struct sdhci_slot *slot = arg;
if (slot->curcmd != NULL) {
slot_printf(slot, "Controller timeout\n");
sdhci_dumpregs(slot);
sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
slot->curcmd->error = MMC_ERR_TIMEOUT;
sdhci_req_done(slot);
} else {
slot_printf(slot, "Spurious timeout - no active command\n");
}
}
static void
sdhci_set_transfer_mode(struct sdhci_slot *slot, const struct mmc_data *data)
{
uint16_t mode;
if (data == NULL)
return;
mode = SDHCI_TRNS_BLK_CNT_EN;
if (data->len > 512 || data->block_count > 1) {
mode |= SDHCI_TRNS_MULTI;
if (data->block_count == 0 && __predict_true(
#ifdef MMCCAM
slot->ccb->mmcio.stop.opcode == MMC_STOP_TRANSMISSION &&
#else
slot->req->stop != NULL &&
#endif
!(slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)))
mode |= SDHCI_TRNS_ACMD12;
}
if (data->flags & MMC_DATA_READ)
mode |= SDHCI_TRNS_READ;
if (slot->flags & SDHCI_USE_DMA)
mode |= SDHCI_TRNS_DMA;
WR2(slot, SDHCI_TRANSFER_MODE, mode);
}
static void
sdhci_start_command(struct sdhci_slot *slot, struct mmc_command *cmd)
{
int flags, timeout;
uint32_t mask;
slot->curcmd = cmd;
slot->cmd_done = 0;
cmd->error = MMC_ERR_NONE;
/* This flags combination is not supported by controller. */
if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) {
slot_printf(slot, "Unsupported response type!\n");
cmd->error = MMC_ERR_FAILED;
sdhci_req_done(slot);
return;
}
/*
* Do not issue command if there is no card, clock or power.
* Controller will not detect timeout without clock active.
*/
if (!SDHCI_GET_CARD_PRESENT(slot->bus, slot) ||
slot->power == 0 ||
slot->clock == 0) {
slot_printf(slot,
"Cannot issue a command (power=%d clock=%d)",
slot->power, slot->clock);
cmd->error = MMC_ERR_FAILED;
sdhci_req_done(slot);
return;
}
/* Always wait for free CMD bus. */
mask = SDHCI_CMD_INHIBIT;
/* Wait for free DAT if we have data or busy signal. */
if (cmd->data != NULL || (cmd->flags & MMC_RSP_BUSY))
mask |= SDHCI_DAT_INHIBIT;
/*
* We shouldn't wait for DAT for stop commands or CMD19/CMD21. Note
* that these latter are also special in that SDHCI_CMD_DATA should
* be set below but no actual data is ever read from the controller.
*/
#ifdef MMCCAM
if (cmd == &slot->ccb->mmcio.stop ||
#else
if (cmd == slot->req->stop ||
#endif
__predict_false(cmd->opcode == MMC_SEND_TUNING_BLOCK ||
cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200))
mask &= ~SDHCI_DAT_INHIBIT;
/*
* Wait for bus no more then 250 ms. Typically there will be no wait
* here at all, but when writing a crash dump we may be bypassing the
* host platform's interrupt handler, and in some cases that handler
* may be working around hardware quirks such as not respecting r1b
* busy indications. In those cases, this wait-loop serves the purpose
* of waiting for the prior command and data transfers to be done, and
* SD cards are allowed to take up to 250ms for write and erase ops.
* (It's usually more like 20-30ms in the real world.)
*/
timeout = 250;
while (mask & RD4(slot, SDHCI_PRESENT_STATE)) {
if (timeout == 0) {
slot_printf(slot, "Controller never released "
"inhibit bit(s).\n");
sdhci_dumpregs(slot);
cmd->error = MMC_ERR_FAILED;
sdhci_req_done(slot);
return;
}
timeout--;
DELAY(1000);
}
/* Prepare command flags. */
if (!(cmd->flags & MMC_RSP_PRESENT))
flags = SDHCI_CMD_RESP_NONE;
else if (cmd->flags & MMC_RSP_136)
flags = SDHCI_CMD_RESP_LONG;
else if (cmd->flags & MMC_RSP_BUSY)
flags = SDHCI_CMD_RESP_SHORT_BUSY;
else
flags = SDHCI_CMD_RESP_SHORT;
if (cmd->flags & MMC_RSP_CRC)
flags |= SDHCI_CMD_CRC;
if (cmd->flags & MMC_RSP_OPCODE)
flags |= SDHCI_CMD_INDEX;
if (cmd->data != NULL)
flags |= SDHCI_CMD_DATA;
if (cmd->opcode == MMC_STOP_TRANSMISSION)
flags |= SDHCI_CMD_TYPE_ABORT;
/* Prepare data. */
sdhci_start_data(slot, cmd->data);
/*
* Interrupt aggregation: To reduce total number of interrupts
* group response interrupt with data interrupt when possible.
* If there going to be data interrupt, mask response one.
*/
if (slot->data_done == 0) {
WR4(slot, SDHCI_SIGNAL_ENABLE,
slot->intmask &= ~SDHCI_INT_RESPONSE);
}
/* Set command argument. */
WR4(slot, SDHCI_ARGUMENT, cmd->arg);
/* Set data transfer mode. */
sdhci_set_transfer_mode(slot, cmd->data);
if (__predict_false(sdhci_debug > 1))
slot_printf(slot, "Starting command!\n");
/* Start command. */
WR2(slot, SDHCI_COMMAND_FLAGS, (cmd->opcode << 8) | (flags & 0xff));
/* Start timeout callout. */
callout_reset(&slot->timeout_callout, slot->timeout * hz,
sdhci_timeout, slot);
}
static void
sdhci_finish_command(struct sdhci_slot *slot)
{
int i;
uint32_t val;
uint8_t extra;
if (__predict_false(sdhci_debug > 1))
slot_printf(slot, "%s: called, err %d flags %d\n",
__func__, slot->curcmd->error, slot->curcmd->flags);
slot->cmd_done = 1;
/*
* Interrupt aggregation: Restore command interrupt.
* Main restore point for the case when command interrupt
* happened first.
*/
if (__predict_true(slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK &&
slot->curcmd->opcode != MMC_SEND_TUNING_BLOCK_HS200))
WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask |=
SDHCI_INT_RESPONSE);
/* In case of error - reset host and return. */
if (slot->curcmd->error) {
if (slot->curcmd->error == MMC_ERR_BADCRC)
slot->retune_req |= SDHCI_RETUNE_REQ_RESET;
sdhci_reset(slot, SDHCI_RESET_CMD);
sdhci_reset(slot, SDHCI_RESET_DATA);
sdhci_start(slot);
return;
}
/* If command has response - fetch it. */
if (slot->curcmd->flags & MMC_RSP_PRESENT) {
if (slot->curcmd->flags & MMC_RSP_136) {
/* CRC is stripped so we need one byte shift. */
extra = 0;
for (i = 0; i < 4; i++) {
val = RD4(slot, SDHCI_RESPONSE + i * 4);
if (slot->quirks &
SDHCI_QUIRK_DONT_SHIFT_RESPONSE)
slot->curcmd->resp[3 - i] = val;
else {
slot->curcmd->resp[3 - i] =
(val << 8) | extra;
extra = val >> 24;
}
}
} else
slot->curcmd->resp[0] = RD4(slot, SDHCI_RESPONSE);
}
if (__predict_false(sdhci_debug > 1))
printf("Resp: %02x %02x %02x %02x\n",
slot->curcmd->resp[0], slot->curcmd->resp[1],
slot->curcmd->resp[2], slot->curcmd->resp[3]);
/* If data ready - finish. */
if (slot->data_done)
sdhci_start(slot);
}
static void
sdhci_start_data(struct sdhci_slot *slot, const struct mmc_data *data)
{
uint32_t blkcnt, blksz, current_timeout, sdma_bbufsz, target_timeout;
uint8_t div;
if (data == NULL && (slot->curcmd->flags & MMC_RSP_BUSY) == 0) {
slot->data_done = 1;
return;
}
slot->data_done = 0;
/* Calculate and set data timeout.*/
/* XXX: We should have this from mmc layer, now assume 1 sec. */
if (slot->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL) {
div = 0xE;
} else {
target_timeout = 1000000;
div = 0;
current_timeout = (1 << 13) * 1000 / slot->timeout_clk;
while (current_timeout < target_timeout && div < 0xE) {
++div;
current_timeout <<= 1;
}
/* Compensate for an off-by-one error in the CaFe chip.*/
if (div < 0xE &&
(slot->quirks & SDHCI_QUIRK_INCR_TIMEOUT_CONTROL)) {
++div;
}
}
WR1(slot, SDHCI_TIMEOUT_CONTROL, div);
if (data == NULL)
return;
/* Use DMA if possible. */
if ((slot->opt & SDHCI_HAVE_DMA))
slot->flags |= SDHCI_USE_DMA;
/* If data is small, broken DMA may return zeroes instead of data. */
if ((slot->quirks & SDHCI_QUIRK_BROKEN_TIMINGS) &&
(data->len <= 512))
slot->flags &= ~SDHCI_USE_DMA;
/* Some controllers require even block sizes. */
if ((slot->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE) &&
((data->len) & 0x3))
slot->flags &= ~SDHCI_USE_DMA;
/* Load DMA buffer. */
if (slot->flags & SDHCI_USE_DMA) {
sdma_bbufsz = slot->sdma_bbufsz;
if (data->flags & MMC_DATA_READ)
bus_dmamap_sync(slot->dmatag, slot->dmamap,
BUS_DMASYNC_PREREAD);
else {
memcpy(slot->dmamem, data->data, ulmin(data->len,
sdma_bbufsz));
bus_dmamap_sync(slot->dmatag, slot->dmamap,
BUS_DMASYNC_PREWRITE);
}
WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr);
/*
* Interrupt aggregation: Mask border interrupt for the last
* bounce buffer and unmask otherwise.
*/
if (data->len == sdma_bbufsz)
slot->intmask &= ~SDHCI_INT_DMA_END;
else
slot->intmask |= SDHCI_INT_DMA_END;
WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
}
/* Current data offset for both PIO and DMA. */
slot->offset = 0;
#ifdef MMCCAM
if (data->flags & MMC_DATA_BLOCK_SIZE) {
/* Set block size and request border interrupts on the SDMA boundary. */
blksz = SDHCI_MAKE_BLKSZ(slot->sdma_boundary, data->block_size);
blkcnt = data->block_count;
if (__predict_false(sdhci_debug > 0))
slot_printf(slot, "SDIO Custom block params: blksz: "
"%#10x, blk cnt: %#10x\n", blksz, blkcnt);
} else
#endif
{
/* Set block size and request border interrupts on the SDMA boundary. */
blksz = SDHCI_MAKE_BLKSZ(slot->sdma_boundary, ulmin(data->len, 512));
blkcnt = howmany(data->len, 512);
}
WR2(slot, SDHCI_BLOCK_SIZE, blksz);
WR2(slot, SDHCI_BLOCK_COUNT, blkcnt);
if (__predict_false(sdhci_debug > 1))
slot_printf(slot, "Blk size: 0x%08x | Blk cnt: 0x%08x\n",
blksz, blkcnt);
}
void
sdhci_finish_data(struct sdhci_slot *slot)
{
struct mmc_data *data = slot->curcmd->data;
size_t left;
/* Interrupt aggregation: Restore command interrupt.
* Auxiliary restore point for the case when data interrupt
* happened first. */
if (!slot->cmd_done) {
WR4(slot, SDHCI_SIGNAL_ENABLE,
slot->intmask |= SDHCI_INT_RESPONSE);
}
/* Unload rest of data from DMA buffer. */
if (!slot->data_done && (slot->flags & SDHCI_USE_DMA) &&
slot->curcmd->data != NULL) {
if (data->flags & MMC_DATA_READ) {
left = data->len - slot->offset;
bus_dmamap_sync(slot->dmatag, slot->dmamap,
BUS_DMASYNC_POSTREAD);
memcpy((u_char*)data->data + slot->offset, slot->dmamem,
ulmin(left, slot->sdma_bbufsz));
} else
bus_dmamap_sync(slot->dmatag, slot->dmamap,
BUS_DMASYNC_POSTWRITE);
}
slot->data_done = 1;
/* If there was error - reset the host. */
if (slot->curcmd->error) {
if (slot->curcmd->error == MMC_ERR_BADCRC)
slot->retune_req |= SDHCI_RETUNE_REQ_RESET;
sdhci_reset(slot, SDHCI_RESET_CMD);
sdhci_reset(slot, SDHCI_RESET_DATA);
sdhci_start(slot);
return;
}
/* If we already have command response - finish. */
if (slot->cmd_done)
sdhci_start(slot);
}
#ifdef MMCCAM
static void
sdhci_start(struct sdhci_slot *slot)
{
union ccb *ccb;
struct ccb_mmcio *mmcio;
ccb = slot->ccb;
if (ccb == NULL)
return;
mmcio = &ccb->mmcio;
if (!(slot->flags & CMD_STARTED)) {
slot->flags |= CMD_STARTED;
sdhci_start_command(slot, &mmcio->cmd);
return;
}
/*
* Old stack doesn't use this!
* Enabling this code causes significant performance degradation
* and IRQ storms on BBB, Wandboard behaves fine.
* Not using this code does no harm...
if (!(slot->flags & STOP_STARTED) && mmcio->stop.opcode != 0) {
slot->flags |= STOP_STARTED;
sdhci_start_command(slot, &mmcio->stop);
return;
}
*/
if (__predict_false(sdhci_debug > 1))
slot_printf(slot, "result: %d\n", mmcio->cmd.error);
if (mmcio->cmd.error == 0 &&
(slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)) {
sdhci_reset(slot, SDHCI_RESET_CMD);
sdhci_reset(slot, SDHCI_RESET_DATA);
}
sdhci_req_done(slot);
}
#else
static void
sdhci_start(struct sdhci_slot *slot)
{
const struct mmc_request *req;
req = slot->req;
if (req == NULL)
return;
if (!(slot->flags & CMD_STARTED)) {
slot->flags |= CMD_STARTED;
sdhci_start_command(slot, req->cmd);
return;
}
if ((slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP) &&
!(slot->flags & STOP_STARTED) && req->stop) {
slot->flags |= STOP_STARTED;
sdhci_start_command(slot, req->stop);
return;
}
if (__predict_false(sdhci_debug > 1))
slot_printf(slot, "result: %d\n", req->cmd->error);
if (!req->cmd->error &&
((slot->curcmd == req->stop &&
(slot->quirks & SDHCI_QUIRK_BROKEN_AUTO_STOP)) ||
(slot->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))) {
sdhci_reset(slot, SDHCI_RESET_CMD);
sdhci_reset(slot, SDHCI_RESET_DATA);
}
sdhci_req_done(slot);
}
#endif
int
sdhci_generic_request(device_t brdev __unused, device_t reqdev,
struct mmc_request *req)
{
struct sdhci_slot *slot = device_get_ivars(reqdev);
SDHCI_LOCK(slot);
if (slot->req != NULL) {
SDHCI_UNLOCK(slot);
return (EBUSY);
}
if (__predict_false(sdhci_debug > 1)) {
slot_printf(slot,
"CMD%u arg %#x flags %#x dlen %u dflags %#x\n",
req->cmd->opcode, req->cmd->arg, req->cmd->flags,
(req->cmd->data)?(u_int)req->cmd->data->len:0,
(req->cmd->data)?req->cmd->data->flags:0);
}
slot->req = req;
slot->flags = 0;
sdhci_start(slot);
SDHCI_UNLOCK(slot);
if (dumping) {
while (slot->req != NULL) {
sdhci_generic_intr(slot);
DELAY(10);
}
}
return (0);
}
int
sdhci_generic_get_ro(device_t brdev __unused, device_t reqdev)
{
struct sdhci_slot *slot = device_get_ivars(reqdev);
uint32_t val;
SDHCI_LOCK(slot);
val = RD4(slot, SDHCI_PRESENT_STATE);
SDHCI_UNLOCK(slot);
return (!(val & SDHCI_WRITE_PROTECT));
}
int
sdhci_generic_acquire_host(device_t brdev __unused, device_t reqdev)
{
struct sdhci_slot *slot = device_get_ivars(reqdev);
int err = 0;
SDHCI_LOCK(slot);
while (slot->bus_busy)
msleep(slot, &slot->mtx, 0, "sdhciah", 0);
slot->bus_busy++;
/* Activate led. */
WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl |= SDHCI_CTRL_LED);
SDHCI_UNLOCK(slot);
return (err);
}
int
sdhci_generic_release_host(device_t brdev __unused, device_t reqdev)
{
struct sdhci_slot *slot = device_get_ivars(reqdev);
SDHCI_LOCK(slot);
/* Deactivate led. */
WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl &= ~SDHCI_CTRL_LED);
slot->bus_busy--;
SDHCI_UNLOCK(slot);
wakeup(slot);
return (0);
}
static void
sdhci_cmd_irq(struct sdhci_slot *slot, uint32_t intmask)
{
if (!slot->curcmd) {
slot_printf(slot, "Got command interrupt 0x%08x, but "
"there is no active command.\n", intmask);
sdhci_dumpregs(slot);
return;
}
if (intmask & SDHCI_INT_TIMEOUT)
slot->curcmd->error = MMC_ERR_TIMEOUT;
else if (intmask & SDHCI_INT_CRC)
slot->curcmd->error = MMC_ERR_BADCRC;
else if (intmask & (SDHCI_INT_END_BIT | SDHCI_INT_INDEX))
slot->curcmd->error = MMC_ERR_FIFO;
sdhci_finish_command(slot);
}
static void
sdhci_data_irq(struct sdhci_slot *slot, uint32_t intmask)
{
struct mmc_data *data;
size_t left;
uint32_t sdma_bbufsz;
if (!slot->curcmd) {
slot_printf(slot, "Got data interrupt 0x%08x, but "
"there is no active command.\n", intmask);
sdhci_dumpregs(slot);
return;
}
if (slot->curcmd->data == NULL &&
(slot->curcmd->flags & MMC_RSP_BUSY) == 0) {
slot_printf(slot, "Got data interrupt 0x%08x, but "
"there is no active data operation.\n",
intmask);
sdhci_dumpregs(slot);
return;
}
if (intmask & SDHCI_INT_DATA_TIMEOUT)
slot->curcmd->error = MMC_ERR_TIMEOUT;
else if (intmask & (SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_END_BIT))
slot->curcmd->error = MMC_ERR_BADCRC;
if (slot->curcmd->data == NULL &&
(intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL |
SDHCI_INT_DMA_END))) {
slot_printf(slot, "Got data interrupt 0x%08x, but "
"there is busy-only command.\n", intmask);
sdhci_dumpregs(slot);
slot->curcmd->error = MMC_ERR_INVALID;
}
if (slot->curcmd->error) {
/* No need to continue after any error. */
goto done;
}
/* Handle tuning completion interrupt. */
if (__predict_false((intmask & SDHCI_INT_DATA_AVAIL) &&
(slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK ||
slot->curcmd->opcode == MMC_SEND_TUNING_BLOCK_HS200))) {
slot->req->flags |= MMC_TUNE_DONE;
sdhci_finish_command(slot);
sdhci_finish_data(slot);
return;
}
/* Handle PIO interrupt. */
if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL)) {
if ((slot->opt & SDHCI_PLATFORM_TRANSFER) &&
SDHCI_PLATFORM_WILL_HANDLE(slot->bus, slot)) {
SDHCI_PLATFORM_START_TRANSFER(slot->bus, slot,
&intmask);
slot->flags |= PLATFORM_DATA_STARTED;
} else
sdhci_transfer_pio(slot);
}
/* Handle DMA border. */
if (intmask & SDHCI_INT_DMA_END) {
data = slot->curcmd->data;
sdma_bbufsz = slot->sdma_bbufsz;
/* Unload DMA buffer ... */
left = data->len - slot->offset;
if (data->flags & MMC_DATA_READ) {
bus_dmamap_sync(slot->dmatag, slot->dmamap,
BUS_DMASYNC_POSTREAD);
memcpy((u_char*)data->data + slot->offset, slot->dmamem,
ulmin(left, sdma_bbufsz));
} else {
bus_dmamap_sync(slot->dmatag, slot->dmamap,
BUS_DMASYNC_POSTWRITE);
}
/* ... and reload it again. */
slot->offset += sdma_bbufsz;
left = data->len - slot->offset;
if (data->flags & MMC_DATA_READ) {
bus_dmamap_sync(slot->dmatag, slot->dmamap,
BUS_DMASYNC_PREREAD);
} else {
memcpy(slot->dmamem, (u_char*)data->data + slot->offset,
ulmin(left, sdma_bbufsz));
bus_dmamap_sync(slot->dmatag, slot->dmamap,
BUS_DMASYNC_PREWRITE);
}
/*
* Interrupt aggregation: Mask border interrupt for the last
* bounce buffer.
*/
if (left == sdma_bbufsz) {
slot->intmask &= ~SDHCI_INT_DMA_END;
WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
}
/* Restart DMA. */
WR4(slot, SDHCI_DMA_ADDRESS, slot->paddr);
}
/* We have got all data. */
if (intmask & SDHCI_INT_DATA_END) {
if (slot->flags & PLATFORM_DATA_STARTED) {
slot->flags &= ~PLATFORM_DATA_STARTED;
SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot);
} else
sdhci_finish_data(slot);
}
done:
if (slot->curcmd != NULL && slot->curcmd->error != 0) {
if (slot->flags & PLATFORM_DATA_STARTED) {
slot->flags &= ~PLATFORM_DATA_STARTED;
SDHCI_PLATFORM_FINISH_TRANSFER(slot->bus, slot);
} else
sdhci_finish_data(slot);
}
}
static void
sdhci_acmd_irq(struct sdhci_slot *slot, uint16_t acmd_err)
{
if (!slot->curcmd) {
slot_printf(slot, "Got AutoCMD12 error 0x%04x, but "
"there is no active command.\n", acmd_err);
sdhci_dumpregs(slot);
return;
}
slot_printf(slot, "Got AutoCMD12 error 0x%04x\n", acmd_err);
sdhci_reset(slot, SDHCI_RESET_CMD);
}
void
sdhci_generic_intr(struct sdhci_slot *slot)
{
uint32_t intmask, present;
uint16_t val16;
SDHCI_LOCK(slot);
/* Read slot interrupt status. */
intmask = RD4(slot, SDHCI_INT_STATUS);
if (intmask == 0 || intmask == 0xffffffff) {
SDHCI_UNLOCK(slot);
return;
}
if (__predict_false(sdhci_debug > 2))
slot_printf(slot, "Interrupt %#x\n", intmask);
/* Handle tuning error interrupt. */
if (__predict_false(intmask & SDHCI_INT_TUNEERR)) {
WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_TUNEERR);
slot_printf(slot, "Tuning error indicated\n");
slot->retune_req |= SDHCI_RETUNE_REQ_RESET;
if (slot->curcmd) {
slot->curcmd->error = MMC_ERR_BADCRC;
sdhci_finish_command(slot);
}
}
/* Handle re-tuning interrupt. */
if (__predict_false(intmask & SDHCI_INT_RETUNE))
slot->retune_req |= SDHCI_RETUNE_REQ_NEEDED;
/* Handle card presence interrupts. */
if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
present = (intmask & SDHCI_INT_CARD_INSERT) != 0;
slot->intmask &=
~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE);
slot->intmask |= present ? SDHCI_INT_CARD_REMOVE :
SDHCI_INT_CARD_INSERT;
WR4(slot, SDHCI_INT_ENABLE, slot->intmask);
WR4(slot, SDHCI_SIGNAL_ENABLE, slot->intmask);
WR4(slot, SDHCI_INT_STATUS, intmask &
(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE));
sdhci_handle_card_present_locked(slot, present);
}
/* Handle command interrupts. */
if (intmask & SDHCI_INT_CMD_MASK) {
WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_CMD_MASK);
sdhci_cmd_irq(slot, intmask & SDHCI_INT_CMD_MASK);
}
/* Handle data interrupts. */
if (intmask & SDHCI_INT_DATA_MASK) {
WR4(slot, SDHCI_INT_STATUS, intmask & SDHCI_INT_DATA_MASK);
/* Don't call data_irq in case of errored command. */
if ((intmask & SDHCI_INT_CMD_ERROR_MASK) == 0)
sdhci_data_irq(slot, intmask & SDHCI_INT_DATA_MASK);
}
/* Handle AutoCMD12 error interrupt. */
if (intmask & SDHCI_INT_ACMD12ERR) {
/* Clearing SDHCI_INT_ACMD12ERR may clear SDHCI_ACMD12_ERR. */
val16 = RD2(slot, SDHCI_ACMD12_ERR);
WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_ACMD12ERR);
sdhci_acmd_irq(slot, val16);
}
/* Handle bus power interrupt. */
if (intmask & SDHCI_INT_BUS_POWER) {
WR4(slot, SDHCI_INT_STATUS, SDHCI_INT_BUS_POWER);
slot_printf(slot, "Card is consuming too much power!\n");
}
intmask &= ~(SDHCI_INT_ERROR | SDHCI_INT_TUNEERR | SDHCI_INT_RETUNE |
SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE | SDHCI_INT_CMD_MASK |
SDHCI_INT_DATA_MASK | SDHCI_INT_ACMD12ERR | SDHCI_INT_BUS_POWER);
/* The rest is unknown. */
if (intmask) {
WR4(slot, SDHCI_INT_STATUS, intmask);
slot_printf(slot, "Unexpected interrupt 0x%08x.\n",
intmask);
sdhci_dumpregs(slot);
}
SDHCI_UNLOCK(slot);
}
int
sdhci_generic_read_ivar(device_t bus, device_t child, int which,
uintptr_t *result)
{
const struct sdhci_slot *slot = device_get_ivars(child);
switch (which) {
default:
return (EINVAL);
case MMCBR_IVAR_BUS_MODE:
*result = slot->host.ios.bus_mode;
break;
case MMCBR_IVAR_BUS_WIDTH:
*result = slot->host.ios.bus_width;
break;
case MMCBR_IVAR_CHIP_SELECT:
*result = slot->host.ios.chip_select;
break;
case MMCBR_IVAR_CLOCK:
*result = slot->host.ios.clock;
break;
case MMCBR_IVAR_F_MIN:
*result = slot->host.f_min;
break;
case MMCBR_IVAR_F_MAX:
*result = slot->host.f_max;
break;
case MMCBR_IVAR_HOST_OCR:
*result = slot->host.host_ocr;
break;
case MMCBR_IVAR_MODE:
*result = slot->host.mode;
break;
case MMCBR_IVAR_OCR:
*result = slot->host.ocr;
break;
case MMCBR_IVAR_POWER_MODE:
*result = slot->host.ios.power_mode;
break;
case MMCBR_IVAR_VDD:
*result = slot->host.ios.vdd;
break;
case MMCBR_IVAR_RETUNE_REQ:
if (slot->opt & SDHCI_TUNING_ENABLED) {
if (slot->retune_req & SDHCI_RETUNE_REQ_RESET) {
*result = retune_req_reset;
break;
}
if (slot->retune_req & SDHCI_RETUNE_REQ_NEEDED) {
*result = retune_req_normal;
break;
}
}
*result = retune_req_none;
break;
case MMCBR_IVAR_VCCQ:
*result = slot->host.ios.vccq;
break;
case MMCBR_IVAR_CAPS:
*result = slot->host.caps;
break;
case MMCBR_IVAR_TIMING:
*result = slot->host.ios.timing;
break;
case MMCBR_IVAR_MAX_DATA:
/*
* Re-tuning modes 1 and 2 restrict the maximum data length
* per read/write command to 4 MiB.
*/
if (slot->opt & SDHCI_TUNING_ENABLED &&
(slot->retune_mode == SDHCI_RETUNE_MODE_1 ||
slot->retune_mode == SDHCI_RETUNE_MODE_2)) {
*result = 4 * 1024 * 1024 / MMC_SECTOR_SIZE;
break;
}
*result = 65535;
break;
case MMCBR_IVAR_MAX_BUSY_TIMEOUT:
/*
* Currently, sdhci_start_data() hardcodes 1 s for all CMDs.
*/
*result = 1000000;
break;
}
return (0);
}
int
sdhci_generic_write_ivar(device_t bus, device_t child, int which,
uintptr_t value)
{
struct sdhci_slot *slot = device_get_ivars(child);
uint32_t clock, max_clock;
int i;
if (sdhci_debug > 1)
slot_printf(slot, "%s: var=%d\n", __func__, which);
switch (which) {
default:
return (EINVAL);
case MMCBR_IVAR_BUS_MODE:
slot->host.ios.bus_mode = value;
break;
case MMCBR_IVAR_BUS_WIDTH:
slot->host.ios.bus_width = value;
break;
case MMCBR_IVAR_CHIP_SELECT:
slot->host.ios.chip_select = value;
break;
case MMCBR_IVAR_CLOCK:
if (value > 0) {
max_clock = slot->max_clk;
clock = max_clock;
if (slot->version < SDHCI_SPEC_300) {
for (i = 0; i < SDHCI_200_MAX_DIVIDER;
i <<= 1) {
if (clock <= value)
break;
clock >>= 1;
}
} else {
for (i = 0; i < SDHCI_300_MAX_DIVIDER;
i += 2) {
if (clock <= value)
break;
clock = max_clock / (i + 2);
}
}
slot->host.ios.clock = clock;
} else
slot->host.ios.clock = 0;
break;
case MMCBR_IVAR_MODE:
slot->host.mode = value;
break;
case MMCBR_IVAR_OCR:
slot->host.ocr = value;
break;
case MMCBR_IVAR_POWER_MODE:
slot->host.ios.power_mode = value;
break;
case MMCBR_IVAR_VDD:
slot->host.ios.vdd = value;
break;
case MMCBR_IVAR_VCCQ:
slot->host.ios.vccq = value;
break;
case MMCBR_IVAR_TIMING:
slot->host.ios.timing = value;
break;
case MMCBR_IVAR_CAPS:
case MMCBR_IVAR_HOST_OCR:
case MMCBR_IVAR_F_MIN:
case MMCBR_IVAR_F_MAX:
case MMCBR_IVAR_MAX_DATA:
case MMCBR_IVAR_RETUNE_REQ:
return (EINVAL);
}
return (0);
}
#ifdef MMCCAM
void
sdhci_start_slot(struct sdhci_slot *slot)
{
if ((slot->devq = cam_simq_alloc(1)) == NULL)
goto fail;
mtx_init(&slot->sim_mtx, "sdhcisim", NULL, MTX_DEF);
slot->sim = cam_sim_alloc(sdhci_cam_action, sdhci_cam_poll,
"sdhci_slot", slot, device_get_unit(slot->bus),
&slot->sim_mtx, 1, 1, slot->devq);
if (slot->sim == NULL) {
cam_simq_free(slot->devq);
slot_printf(slot, "cannot allocate CAM SIM\n");
goto fail;
}
mtx_lock(&slot->sim_mtx);
if (xpt_bus_register(slot->sim, slot->bus, 0) != 0) {
slot_printf(slot, "cannot register SCSI pass-through bus\n");
cam_sim_free(slot->sim, FALSE);
cam_simq_free(slot->devq);
mtx_unlock(&slot->sim_mtx);
goto fail;
}
mtx_unlock(&slot->sim_mtx);
/* End CAM-specific init */
slot->card_present = 0;
sdhci_card_task(slot, 0);
return;
fail:
if (slot->sim != NULL) {
mtx_lock(&slot->sim_mtx);
xpt_bus_deregister(cam_sim_path(slot->sim));
cam_sim_free(slot->sim, FALSE);
mtx_unlock(&slot->sim_mtx);
}
if (slot->devq != NULL)
cam_simq_free(slot->devq);
}
static void
sdhci_cam_handle_mmcio(struct cam_sim *sim, union ccb *ccb)
{
struct sdhci_slot *slot;
slot = cam_sim_softc(sim);
sdhci_cam_request(slot, ccb);
}
void
sdhci_cam_action(struct cam_sim *sim, union ccb *ccb)
{
struct sdhci_slot *slot;
slot = cam_sim_softc(sim);
if (slot == NULL) {
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
xpt_done(ccb);
return;
}
mtx_assert(&slot->sim_mtx, MA_OWNED);
switch (ccb->ccb_h.func_code) {
case XPT_PATH_INQ:
{
struct ccb_pathinq *cpi;
cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = 0;
cpi->target_sprt = 0;
cpi->hba_misc = PIM_NOBUSRESET | PIM_SEQSCAN;
cpi->hba_eng_cnt = 0;
cpi->max_target = 0;
cpi->max_lun = 0;
cpi->initiator_id = 1;
cpi->maxio = MAXPHYS;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Deglitch Networks", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 100; /* XXX WTF? */
cpi->protocol = PROTO_MMCSD;
cpi->protocol_version = SCSI_REV_0;
cpi->transport = XPORT_MMCSD;
cpi->transport_version = 0;
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &ccb->cts;
uint32_t max_data;
if (sdhci_debug > 1)
slot_printf(slot, "Got XPT_GET_TRAN_SETTINGS\n");
cts->protocol = PROTO_MMCSD;
cts->protocol_version = 1;
cts->transport = XPORT_MMCSD;
cts->transport_version = 1;
cts->xport_specific.valid = 0;
cts->proto_specific.mmc.host_ocr = slot->host.host_ocr;
cts->proto_specific.mmc.host_f_min = slot->host.f_min;
cts->proto_specific.mmc.host_f_max = slot->host.f_max;
cts->proto_specific.mmc.host_caps = slot->host.caps;
/*
* Re-tuning modes 1 and 2 restrict the maximum data length
* per read/write command to 4 MiB.
*/
if (slot->opt & SDHCI_TUNING_ENABLED &&
(slot->retune_mode == SDHCI_RETUNE_MODE_1 ||
slot->retune_mode == SDHCI_RETUNE_MODE_2)) {
max_data = 4 * 1024 * 1024 / MMC_SECTOR_SIZE;
} else {
max_data = 65535;
}
cts->proto_specific.mmc.host_max_data = max_data;
memcpy(&cts->proto_specific.mmc.ios, &slot->host.ios, sizeof(struct mmc_ios));
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_SET_TRAN_SETTINGS:
{
if (sdhci_debug > 1)
slot_printf(slot, "Got XPT_SET_TRAN_SETTINGS\n");
sdhci_cam_settran_settings(slot, ccb);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_RESET_BUS:
if (sdhci_debug > 1)
slot_printf(slot, "Got XPT_RESET_BUS, ACK it...\n");
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_MMC_IO:
/*
* Here is the HW-dependent part of
* sending the command to the underlying h/w
* At some point in the future an interrupt comes.
* Then the request will be marked as completed.
*/
if (__predict_false(sdhci_debug > 1))
slot_printf(slot, "Got XPT_MMC_IO\n");
ccb->ccb_h.status = CAM_REQ_INPROG;
sdhci_cam_handle_mmcio(sim, ccb);
return;
/* NOTREACHED */
break;
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
return;
}
void
sdhci_cam_poll(struct cam_sim *sim)
{
return;
}
static int
sdhci_cam_get_possible_host_clock(const struct sdhci_slot *slot,
int proposed_clock)
{
int max_clock, clock, i;
if (proposed_clock == 0)
return 0;
max_clock = slot->max_clk;
clock = max_clock;
if (slot->version < SDHCI_SPEC_300) {
for (i = 0; i < SDHCI_200_MAX_DIVIDER; i <<= 1) {
if (clock <= proposed_clock)
break;
clock >>= 1;
}
} else {
for (i = 0; i < SDHCI_300_MAX_DIVIDER; i += 2) {
if (clock <= proposed_clock)
break;
clock = max_clock / (i + 2);
}
}
return clock;
}
static int
sdhci_cam_settran_settings(struct sdhci_slot *slot, union ccb *ccb)
{
struct mmc_ios *ios;
const struct mmc_ios *new_ios;
const struct ccb_trans_settings_mmc *cts;
ios = &slot->host.ios;
cts = &ccb->cts.proto_specific.mmc;
new_ios = &cts->ios;
/* Update only requested fields */
if (cts->ios_valid & MMC_CLK) {
ios->clock = sdhci_cam_get_possible_host_clock(slot, new_ios->clock);
slot_printf(slot, "Clock => %d\n", ios->clock);
}
if (cts->ios_valid & MMC_VDD) {
ios->vdd = new_ios->vdd;
slot_printf(slot, "VDD => %d\n", ios->vdd);
}
if (cts->ios_valid & MMC_CS) {
ios->chip_select = new_ios->chip_select;
slot_printf(slot, "CS => %d\n", ios->chip_select);
}
if (cts->ios_valid & MMC_BW) {
ios->bus_width = new_ios->bus_width;
slot_printf(slot, "Bus width => %d\n", ios->bus_width);
}
if (cts->ios_valid & MMC_PM) {
ios->power_mode = new_ios->power_mode;
slot_printf(slot, "Power mode => %d\n", ios->power_mode);
}
if (cts->ios_valid & MMC_BT) {
ios->timing = new_ios->timing;
slot_printf(slot, "Timing => %d\n", ios->timing);
}
if (cts->ios_valid & MMC_BM) {
ios->bus_mode = new_ios->bus_mode;
slot_printf(slot, "Bus mode => %d\n", ios->bus_mode);
}
/* XXX Provide a way to call a chip-specific IOS update, required for TI */
return (sdhci_cam_update_ios(slot));
}
static int
sdhci_cam_update_ios(struct sdhci_slot *slot)
{
struct mmc_ios *ios = &slot->host.ios;
slot_printf(slot, "%s: power_mode=%d, clk=%d, bus_width=%d, timing=%d\n",
__func__, ios->power_mode, ios->clock, ios->bus_width, ios->timing);
SDHCI_LOCK(slot);
/* Do full reset on bus power down to clear from any state. */
if (ios->power_mode == power_off) {
WR4(slot, SDHCI_SIGNAL_ENABLE, 0);
sdhci_init(slot);
}
/* Configure the bus. */
sdhci_set_clock(slot, ios->clock);
sdhci_set_power(slot, (ios->power_mode == power_off) ? 0 : ios->vdd);
if (ios->bus_width == bus_width_8) {
slot->hostctrl |= SDHCI_CTRL_8BITBUS;
slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
} else if (ios->bus_width == bus_width_4) {
slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
slot->hostctrl |= SDHCI_CTRL_4BITBUS;
} else if (ios->bus_width == bus_width_1) {
slot->hostctrl &= ~SDHCI_CTRL_8BITBUS;
slot->hostctrl &= ~SDHCI_CTRL_4BITBUS;
} else {
panic("Invalid bus width: %d", ios->bus_width);
}
if (ios->timing == bus_timing_hs &&
!(slot->quirks & SDHCI_QUIRK_DONT_SET_HISPD_BIT))
slot->hostctrl |= SDHCI_CTRL_HISPD;
else
slot->hostctrl &= ~SDHCI_CTRL_HISPD;
WR1(slot, SDHCI_HOST_CONTROL, slot->hostctrl);
/* Some controllers like reset after bus changes. */
if(slot->quirks & SDHCI_QUIRK_RESET_ON_IOS)
sdhci_reset(slot, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
SDHCI_UNLOCK(slot);
return (0);
}
static int
sdhci_cam_request(struct sdhci_slot *slot, union ccb *ccb)
{
const struct ccb_mmcio *mmcio;
mmcio = &ccb->mmcio;
SDHCI_LOCK(slot);
/* if (slot->req != NULL) {
SDHCI_UNLOCK(slot);
return (EBUSY);
}
*/
if (__predict_false(sdhci_debug > 1)) {
slot_printf(slot, "CMD%u arg %#x flags %#x dlen %u dflags %#x "
"blksz=%zu blkcnt=%zu\n",
mmcio->cmd.opcode, mmcio->cmd.arg, mmcio->cmd.flags,
mmcio->cmd.data != NULL ? (unsigned int) mmcio->cmd.data->len : 0,
mmcio->cmd.data != NULL ? mmcio->cmd.data->flags : 0,
mmcio->cmd.data != NULL ? mmcio->cmd.data->block_size : 0,
mmcio->cmd.data != NULL ? mmcio->cmd.data->block_count : 0);
}
if (mmcio->cmd.data != NULL) {
if (mmcio->cmd.data->len == 0 || mmcio->cmd.data->flags == 0)
panic("data->len = %d, data->flags = %d -- something is b0rked",
(int)mmcio->cmd.data->len, mmcio->cmd.data->flags);
}
slot->ccb = ccb;
slot->flags = 0;
sdhci_start(slot);
SDHCI_UNLOCK(slot);
if (dumping) {
while (slot->ccb != NULL) {
sdhci_generic_intr(slot);
DELAY(10);
}
}
return (0);
}
#endif /* MMCCAM */
MODULE_VERSION(sdhci, SDHCI_VERSION);