freebsd-skq/sys/dev/acpi_support/acpi_hp.c
jkim c2f9691170 Remove unused assignment.
Found by:	clang static analyzer
Found by:	Coverity Prevent[tm] (CID 4537, 4538, 4539)
2010-06-11 19:53:42 +00:00

1214 lines
34 KiB
C

/*-
* Copyright (c) 2009 Michael Gmelin <freebsd@grem.de>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for extra ACPI-controlled features found on HP laptops
* that use a WMI enabled BIOS (e.g. HP Compaq 8510p and 6510p).
* Allows to control and read status of integrated hardware and read
* BIOS settings through CMI.
* Inspired by the hp-wmi driver, which implements a subset of these
* features (hotkeys) on Linux.
*
* HP CMI whitepaper:
* http://h20331.www2.hp.com/Hpsub/downloads/cmi_whitepaper.pdf
* wmi-hp for Linux:
* http://www.kernel.org
* WMI and ACPI:
* http://www.microsoft.com/whdc/system/pnppwr/wmi/wmi-acpi.mspx
*/
#include "opt_acpi.h"
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/uio.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/sbuf.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <dev/acpica/acpivar.h>
#include "acpi_wmi_if.h"
#define _COMPONENT ACPI_OEM
ACPI_MODULE_NAME("HP")
#define ACPI_HP_WMI_EVENT_GUID "95F24279-4D7B-4334-9387-ACCDC67EF61C"
#define ACPI_HP_WMI_BIOS_GUID "5FB7F034-2C63-45E9-BE91-3D44E2C707E4"
#define ACPI_HP_WMI_CMI_GUID "2D114B49-2DFB-4130-B8FE-4A3C09E75133"
#define ACPI_HP_WMI_DISPLAY_COMMAND 0x1
#define ACPI_HP_WMI_HDDTEMP_COMMAND 0x2
#define ACPI_HP_WMI_ALS_COMMAND 0x3
#define ACPI_HP_WMI_DOCK_COMMAND 0x4
#define ACPI_HP_WMI_WIRELESS_COMMAND 0x5
#define ACPI_HP_METHOD_WLAN_ENABLED 1
#define ACPI_HP_METHOD_WLAN_RADIO 2
#define ACPI_HP_METHOD_WLAN_ON_AIR 3
#define ACPI_HP_METHOD_WLAN_ENABLE_IF_RADIO_ON 4
#define ACPI_HP_METHOD_WLAN_DISABLE_IF_RADIO_OFF 5
#define ACPI_HP_METHOD_BLUETOOTH_ENABLED 6
#define ACPI_HP_METHOD_BLUETOOTH_RADIO 7
#define ACPI_HP_METHOD_BLUETOOTH_ON_AIR 8
#define ACPI_HP_METHOD_BLUETOOTH_ENABLE_IF_RADIO_ON 9
#define ACPI_HP_METHOD_BLUETOOTH_DISABLE_IF_RADIO_OFF 10
#define ACPI_HP_METHOD_WWAN_ENABLED 11
#define ACPI_HP_METHOD_WWAN_RADIO 12
#define ACPI_HP_METHOD_WWAN_ON_AIR 13
#define ACPI_HP_METHOD_WWAN_ENABLE_IF_RADIO_ON 14
#define ACPI_HP_METHOD_WWAN_DISABLE_IF_RADIO_OFF 15
#define ACPI_HP_METHOD_ALS 16
#define ACPI_HP_METHOD_DISPLAY 17
#define ACPI_HP_METHOD_HDDTEMP 18
#define ACPI_HP_METHOD_DOCK 19
#define ACPI_HP_METHOD_CMI_DETAIL 20
#define ACPI_HP_METHOD_VERBOSE 21
#define HP_MASK_WWAN_ON_AIR 0x1000000
#define HP_MASK_BLUETOOTH_ON_AIR 0x10000
#define HP_MASK_WLAN_ON_AIR 0x100
#define HP_MASK_WWAN_RADIO 0x8000000
#define HP_MASK_BLUETOOTH_RADIO 0x80000
#define HP_MASK_WLAN_RADIO 0x800
#define HP_MASK_WWAN_ENABLED 0x2000000
#define HP_MASK_BLUETOOTH_ENABLED 0x20000
#define HP_MASK_WLAN_ENABLED 0x200
#define ACPI_HP_CMI_DETAIL_PATHS 0x01
#define ACPI_HP_CMI_DETAIL_ENUMS 0x02
#define ACPI_HP_CMI_DETAIL_FLAGS 0x04
#define ACPI_HP_CMI_DETAIL_SHOW_MAX_INSTANCE 0x08
struct acpi_hp_inst_seq_pair {
UINT32 sequence; /* sequence number as suggested by cmi bios */
UINT8 instance; /* object instance on guid */
};
struct acpi_hp_softc {
device_t dev;
ACPI_HANDLE handle;
device_t wmi_dev;
int has_notify; /* notification GUID found */
int has_cmi; /* CMI GUID found */
int cmi_detail; /* CMI detail level
(set by sysctl) */
int verbose; /* add debug output */
int wlan_enable_if_radio_on; /* set by sysctl */
int wlan_disable_if_radio_off; /* set by sysctl */
int bluetooth_enable_if_radio_on; /* set by sysctl */
int bluetooth_disable_if_radio_off; /* set by sysctl */
int wwan_enable_if_radio_on; /* set by sysctl */
int wwan_disable_if_radio_off; /* set by sysctl */
int was_wlan_on_air; /* last known WLAN
on air status */
int was_bluetooth_on_air; /* last known BT
on air status */
int was_wwan_on_air; /* last known WWAN
on air status */
struct sysctl_ctx_list *sysctl_ctx;
struct sysctl_oid *sysctl_tree;
struct cdev *hpcmi_dev_t; /* hpcmi device handle */
struct sbuf hpcmi_sbuf; /* /dev/hpcmi output sbuf */
pid_t hpcmi_open_pid; /* pid operating on
/dev/hpcmi */
int hpcmi_bufptr; /* current pointer position
in /dev/hpcmi output buffer
*/
int cmi_order_size; /* size of cmi_order list */
struct acpi_hp_inst_seq_pair cmi_order[128]; /* list of CMI
instances ordered by BIOS suggested sequence */
};
static struct {
char *name;
int method;
char *description;
int access;
} acpi_hp_sysctls[] = {
{
.name = "wlan_enabled",
.method = ACPI_HP_METHOD_WLAN_ENABLED,
.description = "Enable/Disable WLAN (WiFi)",
.access = CTLTYPE_INT | CTLFLAG_RW
},
{
.name = "wlan_radio",
.method = ACPI_HP_METHOD_WLAN_RADIO,
.description = "WLAN radio status",
.access = CTLTYPE_INT | CTLFLAG_RD
},
{
.name = "wlan_on_air",
.method = ACPI_HP_METHOD_WLAN_ON_AIR,
.description = "WLAN radio ready to use (enabled and radio)",
.access = CTLTYPE_INT | CTLFLAG_RD
},
{
.name = "wlan_enable_if_radio_on",
.method = ACPI_HP_METHOD_WLAN_ENABLE_IF_RADIO_ON,
.description = "Enable WLAN if radio is turned on",
.access = CTLTYPE_INT | CTLFLAG_RW
},
{
.name = "wlan_disable_if_radio_off",
.method = ACPI_HP_METHOD_WLAN_DISABLE_IF_RADIO_OFF,
.description = "Disable WLAN if radio is turned off",
.access = CTLTYPE_INT | CTLFLAG_RW
},
{
.name = "bt_enabled",
.method = ACPI_HP_METHOD_BLUETOOTH_ENABLED,
.description = "Enable/Disable Bluetooth",
.access = CTLTYPE_INT | CTLFLAG_RW
},
{
.name = "bt_radio",
.method = ACPI_HP_METHOD_BLUETOOTH_RADIO,
.description = "Bluetooth radio status",
.access = CTLTYPE_INT | CTLFLAG_RD
},
{
.name = "bt_on_air",
.method = ACPI_HP_METHOD_BLUETOOTH_ON_AIR,
.description = "Bluetooth radio ready to use"
" (enabled and radio)",
.access = CTLTYPE_INT | CTLFLAG_RD
},
{
.name = "bt_enable_if_radio_on",
.method = ACPI_HP_METHOD_BLUETOOTH_ENABLE_IF_RADIO_ON,
.description = "Enable bluetooth if radio is turned on",
.access = CTLTYPE_INT | CTLFLAG_RW
},
{
.name = "bt_disable_if_radio_off",
.method = ACPI_HP_METHOD_BLUETOOTH_DISABLE_IF_RADIO_OFF,
.description = "Disable bluetooth if radio is turned off",
.access = CTLTYPE_INT | CTLFLAG_RW
},
{
.name = "wwan_enabled",
.method = ACPI_HP_METHOD_WWAN_ENABLED,
.description = "Enable/Disable WWAN (UMTS)",
.access = CTLTYPE_INT | CTLFLAG_RW
},
{
.name = "wwan_radio",
.method = ACPI_HP_METHOD_WWAN_RADIO,
.description = "WWAN radio status",
.access = CTLTYPE_INT | CTLFLAG_RD
},
{
.name = "wwan_on_air",
.method = ACPI_HP_METHOD_WWAN_ON_AIR,
.description = "WWAN radio ready to use (enabled and radio)",
.access = CTLTYPE_INT | CTLFLAG_RD
},
{
.name = "wwan_enable_if_radio_on",
.method = ACPI_HP_METHOD_WWAN_ENABLE_IF_RADIO_ON,
.description = "Enable WWAN if radio is turned on",
.access = CTLTYPE_INT | CTLFLAG_RW
},
{
.name = "wwan_disable_if_radio_off",
.method = ACPI_HP_METHOD_WWAN_DISABLE_IF_RADIO_OFF,
.description = "Disable WWAN if radio is turned off",
.access = CTLTYPE_INT | CTLFLAG_RW
},
{
.name = "als_enabled",
.method = ACPI_HP_METHOD_ALS,
.description = "Enable/Disable ALS (Ambient light sensor)",
.access = CTLTYPE_INT | CTLFLAG_RW
},
{
.name = "display",
.method = ACPI_HP_METHOD_DISPLAY,
.description = "Display status",
.access = CTLTYPE_INT | CTLFLAG_RD
},
{
.name = "hdd_temperature",
.method = ACPI_HP_METHOD_HDDTEMP,
.description = "HDD temperature",
.access = CTLTYPE_INT | CTLFLAG_RD
},
{
.name = "is_docked",
.method = ACPI_HP_METHOD_DOCK,
.description = "Docking station status",
.access = CTLTYPE_INT | CTLFLAG_RD
},
{
.name = "cmi_detail",
.method = ACPI_HP_METHOD_CMI_DETAIL,
.description = "Details shown in CMI output "
"(cat /dev/hpcmi)",
.access = CTLTYPE_INT | CTLFLAG_RW
},
{
.name = "verbose",
.method = ACPI_HP_METHOD_VERBOSE,
.description = "Verbosity level",
.access = CTLTYPE_INT | CTLFLAG_RW
},
{ NULL, 0, NULL, 0 }
};
ACPI_SERIAL_DECL(hp, "HP ACPI-WMI Mapping");
static int acpi_hp_probe(device_t dev);
static int acpi_hp_attach(device_t dev);
static int acpi_hp_detach(device_t dev);
static void acpi_hp_evaluate_auto_on_off(struct acpi_hp_softc* sc);
static int acpi_hp_sysctl(SYSCTL_HANDLER_ARGS);
static int acpi_hp_sysctl_set(struct acpi_hp_softc *sc, int method,
int arg, int oldarg);
static int acpi_hp_sysctl_get(struct acpi_hp_softc *sc, int method);
static int acpi_hp_exec_wmi_command(device_t wmi_dev, int command,
int is_write, int val);
static void acpi_hp_notify(ACPI_HANDLE h, UINT32 notify, void *context);
static int acpi_hp_get_cmi_block(device_t wmi_dev, const char* guid,
UINT8 instance, char* outbuf, size_t outsize,
UINT32* sequence, int detail);
static void acpi_hp_hex_decode(char* buffer);
static d_open_t acpi_hp_hpcmi_open;
static d_close_t acpi_hp_hpcmi_close;
static d_read_t acpi_hp_hpcmi_read;
/* handler /dev/hpcmi device */
static struct cdevsw hpcmi_cdevsw = {
.d_version = D_VERSION,
.d_open = acpi_hp_hpcmi_open,
.d_close = acpi_hp_hpcmi_close,
.d_read = acpi_hp_hpcmi_read,
.d_name = "hpcmi",
};
static device_method_t acpi_hp_methods[] = {
DEVMETHOD(device_probe, acpi_hp_probe),
DEVMETHOD(device_attach, acpi_hp_attach),
DEVMETHOD(device_detach, acpi_hp_detach),
{0, 0}
};
static driver_t acpi_hp_driver = {
"acpi_hp",
acpi_hp_methods,
sizeof(struct acpi_hp_softc),
};
static devclass_t acpi_hp_devclass;
DRIVER_MODULE(acpi_hp, acpi, acpi_hp_driver, acpi_hp_devclass,
0, 0);
MODULE_DEPEND(acpi_hp, acpi_wmi, 1, 1, 1);
MODULE_DEPEND(acpi_hp, acpi, 1, 1, 1);
static void
acpi_hp_evaluate_auto_on_off(struct acpi_hp_softc *sc)
{
int wireless;
int new_wlan_status;
int new_bluetooth_status;
int new_wwan_status;
wireless = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
new_wlan_status = -1;
new_bluetooth_status = -1;
new_wwan_status = -1;
if (sc->verbose)
device_printf(sc->wmi_dev, "Wireless status is %x\n", wireless);
if (sc->wlan_disable_if_radio_off && !(wireless & HP_MASK_WLAN_RADIO)
&& (wireless & HP_MASK_WLAN_ENABLED)) {
acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x100);
new_wlan_status = 0;
}
else if (sc->wlan_enable_if_radio_on && (wireless & HP_MASK_WLAN_RADIO)
&& !(wireless & HP_MASK_WLAN_ENABLED)) {
acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x101);
new_wlan_status = 1;
}
if (sc->bluetooth_disable_if_radio_off &&
!(wireless & HP_MASK_BLUETOOTH_RADIO) &&
(wireless & HP_MASK_BLUETOOTH_ENABLED)) {
acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x200);
new_bluetooth_status = 0;
}
else if (sc->bluetooth_enable_if_radio_on &&
(wireless & HP_MASK_BLUETOOTH_RADIO) &&
!(wireless & HP_MASK_BLUETOOTH_ENABLED)) {
acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x202);
new_bluetooth_status = 1;
}
if (sc->wwan_disable_if_radio_off &&
!(wireless & HP_MASK_WWAN_RADIO) &&
(wireless & HP_MASK_WWAN_ENABLED)) {
acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x400);
new_wwan_status = 0;
}
else if (sc->wwan_enable_if_radio_on &&
(wireless & HP_MASK_WWAN_RADIO) &&
!(wireless & HP_MASK_WWAN_ENABLED)) {
acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1, 0x404);
new_wwan_status = 1;
}
if (new_wlan_status == -1) {
new_wlan_status = (wireless & HP_MASK_WLAN_ON_AIR);
if ((new_wlan_status?1:0) != sc->was_wlan_on_air) {
sc->was_wlan_on_air = sc->was_wlan_on_air?0:1;
if (sc->verbose)
device_printf(sc->wmi_dev,
"WLAN on air changed to %i "
"(new_wlan_status is %i)\n",
sc->was_wlan_on_air, new_wlan_status);
acpi_UserNotify("HP", sc->handle,
0xc0+sc->was_wlan_on_air);
}
}
if (new_bluetooth_status == -1) {
new_bluetooth_status = (wireless & HP_MASK_BLUETOOTH_ON_AIR);
if ((new_bluetooth_status?1:0) != sc->was_bluetooth_on_air) {
sc->was_bluetooth_on_air = sc->was_bluetooth_on_air?
0:1;
if (sc->verbose)
device_printf(sc->wmi_dev,
"BLUETOOTH on air changed"
" to %i (new_bluetooth_status is %i)\n",
sc->was_bluetooth_on_air,
new_bluetooth_status);
acpi_UserNotify("HP", sc->handle,
0xd0+sc->was_bluetooth_on_air);
}
}
if (new_wwan_status == -1) {
new_wwan_status = (wireless & HP_MASK_WWAN_ON_AIR);
if ((new_wwan_status?1:0) != sc->was_wwan_on_air) {
sc->was_wwan_on_air = sc->was_wwan_on_air?0:1;
if (sc->verbose)
device_printf(sc->wmi_dev,
"WWAN on air changed to %i"
" (new_wwan_status is %i)\n",
sc->was_wwan_on_air, new_wwan_status);
acpi_UserNotify("HP", sc->handle,
0xe0+sc->was_wwan_on_air);
}
}
}
static int
acpi_hp_probe(device_t dev)
{
if (acpi_disabled("hp") || device_get_unit(dev) != 0)
return (ENXIO);
device_set_desc(dev, "HP ACPI-WMI Mapping");
return (0);
}
static int
acpi_hp_attach(device_t dev)
{
struct acpi_hp_softc *sc;
devclass_t wmi_devclass;
int arg;
ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
sc = device_get_softc(dev);
sc->dev = dev;
sc->handle = acpi_get_handle(dev);
sc->has_notify = 0;
sc->has_cmi = 0;
sc->bluetooth_enable_if_radio_on = 0;
sc->bluetooth_disable_if_radio_off = 0;
sc->wlan_enable_if_radio_on = 0;
sc->wlan_disable_if_radio_off = 0;
sc->wlan_enable_if_radio_on = 0;
sc->wlan_disable_if_radio_off = 0;
sc->was_wlan_on_air = 0;
sc->was_bluetooth_on_air = 0;
sc->was_wwan_on_air = 0;
sc->cmi_detail = 0;
sc->cmi_order_size = -1;
sc->verbose = 0;
memset(sc->cmi_order, 0, sizeof(sc->cmi_order));
if (!(wmi_devclass = devclass_find ("acpi_wmi"))) {
device_printf(dev, "Couldn't find acpi_wmi devclass\n");
return (EINVAL);
}
if (!(sc->wmi_dev = devclass_get_device(wmi_devclass, 0))) {
device_printf(dev, "Couldn't find acpi_wmi device\n");
return (EINVAL);
}
if (!ACPI_WMI_PROVIDES_GUID_STRING(sc->wmi_dev,
ACPI_HP_WMI_BIOS_GUID)) {
device_printf(dev,
"WMI device does not provide the HP BIOS GUID\n");
return (EINVAL);
}
if (ACPI_WMI_PROVIDES_GUID_STRING(sc->wmi_dev,
ACPI_HP_WMI_EVENT_GUID)) {
device_printf(dev,
"HP event GUID detected, installing event handler\n");
if (ACPI_WMI_INSTALL_EVENT_HANDLER(sc->wmi_dev,
ACPI_HP_WMI_EVENT_GUID, acpi_hp_notify, dev)) {
device_printf(dev,
"Could not install notification handler!\n");
}
else {
sc->has_notify = 1;
}
}
if ((sc->has_cmi =
ACPI_WMI_PROVIDES_GUID_STRING(sc->wmi_dev, ACPI_HP_WMI_CMI_GUID)
)) {
device_printf(dev, "HP CMI GUID detected\n");
}
if (sc->has_cmi) {
sc->hpcmi_dev_t = make_dev(&hpcmi_cdevsw, 0, UID_ROOT,
GID_WHEEL, 0644, "hpcmi");
sc->hpcmi_dev_t->si_drv1 = sc;
sc->hpcmi_open_pid = 0;
sc->hpcmi_bufptr = -1;
}
ACPI_SERIAL_BEGIN(hp);
sc->sysctl_ctx = device_get_sysctl_ctx(dev);
sc->sysctl_tree = device_get_sysctl_tree(dev);
for (int i = 0; acpi_hp_sysctls[i].name != NULL; ++i) {
arg = 0;
if ((!sc->has_notify &&
(acpi_hp_sysctls[i].method ==
ACPI_HP_METHOD_WLAN_ENABLE_IF_RADIO_ON ||
acpi_hp_sysctls[i].method ==
ACPI_HP_METHOD_WLAN_DISABLE_IF_RADIO_OFF ||
acpi_hp_sysctls[i].method ==
ACPI_HP_METHOD_BLUETOOTH_ENABLE_IF_RADIO_ON ||
acpi_hp_sysctls[i].method ==
ACPI_HP_METHOD_BLUETOOTH_DISABLE_IF_RADIO_OFF ||
acpi_hp_sysctls[i].method ==
ACPI_HP_METHOD_WWAN_ENABLE_IF_RADIO_ON ||
acpi_hp_sysctls[i].method ==
ACPI_HP_METHOD_WWAN_DISABLE_IF_RADIO_OFF)) ||
(arg = acpi_hp_sysctl_get(sc,
acpi_hp_sysctls[i].method)) < 0) {
continue;
}
if (acpi_hp_sysctls[i].method == ACPI_HP_METHOD_WLAN_ON_AIR) {
sc->was_wlan_on_air = arg;
}
else if (acpi_hp_sysctls[i].method ==
ACPI_HP_METHOD_BLUETOOTH_ON_AIR) {
sc->was_bluetooth_on_air = arg;
}
else if (acpi_hp_sysctls[i].method ==
ACPI_HP_METHOD_WWAN_ON_AIR) {
sc->was_wwan_on_air = arg;
}
SYSCTL_ADD_PROC(sc->sysctl_ctx,
SYSCTL_CHILDREN(sc->sysctl_tree), OID_AUTO,
acpi_hp_sysctls[i].name, acpi_hp_sysctls[i].access,
sc, i, acpi_hp_sysctl, "I",
acpi_hp_sysctls[i].description);
}
ACPI_SERIAL_END(hp);
return (0);
}
static int
acpi_hp_detach(device_t dev)
{
int ret;
ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
struct acpi_hp_softc *sc = device_get_softc(dev);
if (sc->has_cmi && sc->hpcmi_open_pid != 0) {
ret = EBUSY;
}
else {
if (sc->has_notify) {
ACPI_WMI_REMOVE_EVENT_HANDLER(dev,
ACPI_HP_WMI_EVENT_GUID);
}
if (sc->hpcmi_bufptr != -1) {
sbuf_delete(&sc->hpcmi_sbuf);
sc->hpcmi_bufptr = -1;
}
sc->hpcmi_open_pid = 0;
destroy_dev(sc->hpcmi_dev_t);
ret = 0;
}
return (ret);
}
static int
acpi_hp_sysctl(SYSCTL_HANDLER_ARGS)
{
struct acpi_hp_softc *sc;
int arg;
int oldarg;
int error = 0;
int function;
int method;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
sc = (struct acpi_hp_softc *)oidp->oid_arg1;
function = oidp->oid_arg2;
method = acpi_hp_sysctls[function].method;
ACPI_SERIAL_BEGIN(hp);
arg = acpi_hp_sysctl_get(sc, method);
oldarg = arg;
error = sysctl_handle_int(oidp, &arg, 0, req);
if (!error && req->newptr != NULL) {
error = acpi_hp_sysctl_set(sc, method, arg, oldarg);
}
ACPI_SERIAL_END(hp);
return (error);
}
static int
acpi_hp_sysctl_get(struct acpi_hp_softc *sc, int method)
{
int val = 0;
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
ACPI_SERIAL_ASSERT(hp);
switch (method) {
case ACPI_HP_METHOD_WLAN_ENABLED:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_WLAN_ENABLED) != 0);
break;
case ACPI_HP_METHOD_WLAN_RADIO:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_WLAN_RADIO) != 0);
break;
case ACPI_HP_METHOD_WLAN_ON_AIR:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_WLAN_ON_AIR) != 0);
break;
case ACPI_HP_METHOD_WLAN_ENABLE_IF_RADIO_ON:
val = sc->wlan_enable_if_radio_on;
break;
case ACPI_HP_METHOD_WLAN_DISABLE_IF_RADIO_OFF:
val = sc->wlan_disable_if_radio_off;
break;
case ACPI_HP_METHOD_BLUETOOTH_ENABLED:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_BLUETOOTH_ENABLED) != 0);
break;
case ACPI_HP_METHOD_BLUETOOTH_RADIO:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_BLUETOOTH_RADIO) != 0);
break;
case ACPI_HP_METHOD_BLUETOOTH_ON_AIR:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_BLUETOOTH_ON_AIR) != 0);
break;
case ACPI_HP_METHOD_BLUETOOTH_ENABLE_IF_RADIO_ON:
val = sc->bluetooth_enable_if_radio_on;
break;
case ACPI_HP_METHOD_BLUETOOTH_DISABLE_IF_RADIO_OFF:
val = sc->bluetooth_disable_if_radio_off;
break;
case ACPI_HP_METHOD_WWAN_ENABLED:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_WWAN_ENABLED) != 0);
break;
case ACPI_HP_METHOD_WWAN_RADIO:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_WWAN_RADIO) != 0);
break;
case ACPI_HP_METHOD_WWAN_ON_AIR:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 0, 0);
val = ((val & HP_MASK_WWAN_ON_AIR) != 0);
break;
case ACPI_HP_METHOD_WWAN_ENABLE_IF_RADIO_ON:
val = sc->wwan_enable_if_radio_on;
break;
case ACPI_HP_METHOD_WWAN_DISABLE_IF_RADIO_OFF:
val = sc->wwan_disable_if_radio_off;
break;
case ACPI_HP_METHOD_ALS:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_ALS_COMMAND, 0, 0);
break;
case ACPI_HP_METHOD_DISPLAY:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_DISPLAY_COMMAND, 0, 0);
break;
case ACPI_HP_METHOD_HDDTEMP:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_HDDTEMP_COMMAND, 0, 0);
break;
case ACPI_HP_METHOD_DOCK:
val = acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_DOCK_COMMAND, 0, 0);
break;
case ACPI_HP_METHOD_CMI_DETAIL:
val = sc->cmi_detail;
break;
case ACPI_HP_METHOD_VERBOSE:
val = sc->verbose;
break;
}
return (val);
}
static int
acpi_hp_sysctl_set(struct acpi_hp_softc *sc, int method, int arg, int oldarg)
{
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
ACPI_SERIAL_ASSERT(hp);
if (method != ACPI_HP_METHOD_CMI_DETAIL &&
method != ACPI_HP_METHOD_VERBOSE)
arg = arg?1:0;
if (arg != oldarg) {
switch (method) {
case ACPI_HP_METHOD_WLAN_ENABLED:
return (acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1,
arg?0x101:0x100));
case ACPI_HP_METHOD_WLAN_ENABLE_IF_RADIO_ON:
sc->wlan_enable_if_radio_on = arg;
acpi_hp_evaluate_auto_on_off(sc);
break;
case ACPI_HP_METHOD_WLAN_DISABLE_IF_RADIO_OFF:
sc->wlan_disable_if_radio_off = arg;
acpi_hp_evaluate_auto_on_off(sc);
break;
case ACPI_HP_METHOD_BLUETOOTH_ENABLED:
return (acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1,
arg?0x202:0x200));
case ACPI_HP_METHOD_BLUETOOTH_ENABLE_IF_RADIO_ON:
sc->bluetooth_enable_if_radio_on = arg;
acpi_hp_evaluate_auto_on_off(sc);
break;
case ACPI_HP_METHOD_BLUETOOTH_DISABLE_IF_RADIO_OFF:
sc->bluetooth_disable_if_radio_off = arg?1:0;
acpi_hp_evaluate_auto_on_off(sc);
break;
case ACPI_HP_METHOD_WWAN_ENABLED:
return (acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_WIRELESS_COMMAND, 1,
arg?0x404:0x400));
case ACPI_HP_METHOD_WWAN_ENABLE_IF_RADIO_ON:
sc->wwan_enable_if_radio_on = arg?1:0;
acpi_hp_evaluate_auto_on_off(sc);
break;
case ACPI_HP_METHOD_WWAN_DISABLE_IF_RADIO_OFF:
sc->wwan_disable_if_radio_off = arg?1:0;
acpi_hp_evaluate_auto_on_off(sc);
break;
case ACPI_HP_METHOD_ALS:
return (acpi_hp_exec_wmi_command(sc->wmi_dev,
ACPI_HP_WMI_ALS_COMMAND, 1,
arg?1:0));
case ACPI_HP_METHOD_CMI_DETAIL:
sc->cmi_detail = arg;
if ((arg & ACPI_HP_CMI_DETAIL_SHOW_MAX_INSTANCE) !=
(oldarg & ACPI_HP_CMI_DETAIL_SHOW_MAX_INSTANCE)) {
sc->cmi_order_size = -1;
}
break;
case ACPI_HP_METHOD_VERBOSE:
sc->verbose = arg;
break;
}
}
return (0);
}
static __inline void
acpi_hp_free_buffer(ACPI_BUFFER* buf) {
if (buf && buf->Pointer) {
AcpiOsFree(buf->Pointer);
}
}
static void
acpi_hp_notify(ACPI_HANDLE h, UINT32 notify, void *context)
{
device_t dev = context;
ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, notify);
struct acpi_hp_softc *sc = device_get_softc(dev);
ACPI_BUFFER response = { ACPI_ALLOCATE_BUFFER, NULL };
ACPI_OBJECT *obj;
ACPI_WMI_GET_EVENT_DATA(sc->wmi_dev, notify, &response);
obj = (ACPI_OBJECT*) response.Pointer;
if (obj && obj->Type == ACPI_TYPE_BUFFER && obj->Buffer.Length == 8) {
if (*((UINT8 *) obj->Buffer.Pointer) == 0x5) {
acpi_hp_evaluate_auto_on_off(sc);
}
}
acpi_hp_free_buffer(&response);
}
static int
acpi_hp_exec_wmi_command(device_t wmi_dev, int command, int is_write, int val)
{
UINT32 params[5] = { 0x55434553,
is_write?2:1,
command,
is_write?4:0,
val};
UINT32* result;
ACPI_OBJECT *obj;
ACPI_BUFFER in = { sizeof(params), &params };
ACPI_BUFFER out = { ACPI_ALLOCATE_BUFFER, NULL };
int retval;
if (ACPI_FAILURE(ACPI_WMI_EVALUATE_CALL(wmi_dev, ACPI_HP_WMI_BIOS_GUID,
0, 0x3, &in, &out))) {
acpi_hp_free_buffer(&out);
return (-EINVAL);
}
obj = out.Pointer;
if (!obj || obj->Type != ACPI_TYPE_BUFFER) {
acpi_hp_free_buffer(&out);
return (-EINVAL);
}
result = (UINT32*) obj->Buffer.Pointer;
retval = result[2];
if (result[1] > 0) {
retval = result[1];
}
acpi_hp_free_buffer(&out);
return (retval);
}
static __inline char*
acpi_hp_get_string_from_object(ACPI_OBJECT* obj, char* dst, size_t size) {
int length;
dst[0] = 0;
if (obj->Type == ACPI_TYPE_STRING) {
length = obj->String.Length+1;
if (length > size) {
length = size - 1;
}
strlcpy(dst, obj->String.Pointer, length);
acpi_hp_hex_decode(dst);
}
return (dst);
}
/*
* Read BIOS Setting block in instance "instance".
* The block returned is ACPI_TYPE_PACKAGE which should contain the following
* elements:
* Index Meaning
* 0 Setting Name [string]
* 1 Value (comma separated, asterisk marks the current value) [string]
* 2 Path within the bios hierarchy [string]
* 3 IsReadOnly [int]
* 4 DisplayInUI [int]
* 5 RequiresPhysicalPresence [int]
* 6 Sequence for ordering within the bios settings (absolute) [int]
* 7 Length of prerequisites array [int]
* 8..8+[7] PrerequisiteN [string]
* 9+[7] Current value (in case of enum) [string] / Array length [int]
* 10+[7] Enum length [int] / Array values
* 11+[7]ff Enum value at index x [string]
*/
static int
acpi_hp_get_cmi_block(device_t wmi_dev, const char* guid, UINT8 instance,
char* outbuf, size_t outsize, UINT32* sequence, int detail)
{
ACPI_OBJECT *obj;
ACPI_BUFFER out = { ACPI_ALLOCATE_BUFFER, NULL };
int i;
int outlen;
int size = 255;
int has_enums = 0;
int valuebase = 0;
char string_buffer[size];
int enumbase;
outlen = 0;
outbuf[0] = 0;
if (ACPI_FAILURE(ACPI_WMI_GET_BLOCK(wmi_dev, guid, instance, &out))) {
acpi_hp_free_buffer(&out);
return (-EINVAL);
}
obj = out.Pointer;
if (!obj || obj->Type != ACPI_TYPE_PACKAGE) {
acpi_hp_free_buffer(&out);
return (-EINVAL);
}
if (obj->Package.Count >= 8 &&
obj->Package.Elements[7].Type == ACPI_TYPE_INTEGER) {
valuebase = 8 + obj->Package.Elements[7].Integer.Value;
}
/* check if this matches our expectations based on limited knowledge */
if (valuebase > 7 && obj->Package.Count > valuebase + 1 &&
obj->Package.Elements[0].Type == ACPI_TYPE_STRING &&
obj->Package.Elements[1].Type == ACPI_TYPE_STRING &&
obj->Package.Elements[2].Type == ACPI_TYPE_STRING &&
obj->Package.Elements[3].Type == ACPI_TYPE_INTEGER &&
obj->Package.Elements[4].Type == ACPI_TYPE_INTEGER &&
obj->Package.Elements[5].Type == ACPI_TYPE_INTEGER &&
obj->Package.Elements[6].Type == ACPI_TYPE_INTEGER &&
obj->Package.Elements[valuebase].Type == ACPI_TYPE_STRING &&
obj->Package.Elements[valuebase+1].Type == ACPI_TYPE_INTEGER &&
obj->Package.Count > valuebase +
obj->Package.Elements[valuebase+1].Integer.Value
) {
enumbase = valuebase + 1;
if (detail & ACPI_HP_CMI_DETAIL_PATHS) {
strlcat(outbuf, acpi_hp_get_string_from_object(
&obj->Package.Elements[2], string_buffer, size),
outsize);
outlen += 48;
while (strlen(outbuf) < outlen)
strlcat(outbuf, " ", outsize);
}
strlcat(outbuf, acpi_hp_get_string_from_object(
&obj->Package.Elements[0], string_buffer, size),
outsize);
outlen += 43;
while (strlen(outbuf) < outlen)
strlcat(outbuf, " ", outsize);
strlcat(outbuf, acpi_hp_get_string_from_object(
&obj->Package.Elements[valuebase], string_buffer,
size),
outsize);
outlen += 21;
while (strlen(outbuf) < outlen)
strlcat(outbuf, " ", outsize);
for (i = 0; i < strlen(outbuf); ++i)
if (outbuf[i] == '\\')
outbuf[i] = '/';
if (detail & ACPI_HP_CMI_DETAIL_ENUMS) {
for (i = enumbase + 1; i < enumbase + 1 +
obj->Package.Elements[enumbase].Integer.Value;
++i) {
acpi_hp_get_string_from_object(
&obj->Package.Elements[i], string_buffer,
size);
if (strlen(string_buffer) > 1 ||
(strlen(string_buffer) == 1 &&
string_buffer[0] != ' ')) {
if (has_enums)
strlcat(outbuf, "/", outsize);
else
strlcat(outbuf, " (", outsize);
strlcat(outbuf, string_buffer, outsize);
has_enums = 1;
}
}
}
if (has_enums)
strlcat(outbuf, ")", outsize);
if (detail & ACPI_HP_CMI_DETAIL_FLAGS) {
strlcat(outbuf, obj->Package.Elements[3].Integer.Value?
" [ReadOnly]":"", outsize);
strlcat(outbuf, obj->Package.Elements[4].Integer.Value?
"":" [NOUI]", outsize);
strlcat(outbuf, obj->Package.Elements[5].Integer.Value?
" [RPP]":"", outsize);
}
*sequence = (UINT32) obj->Package.Elements[6].Integer.Value;
}
acpi_hp_free_buffer(&out);
return (0);
}
/*
* Convert given two digit hex string (hexin) to an UINT8 referenced
* by byteout.
* Return != 0 if the was a problem (invalid input)
*/
static __inline int acpi_hp_hex_to_int(const UINT8 *hexin, UINT8 *byteout)
{
unsigned int hi;
unsigned int lo;
hi = hexin[0];
lo = hexin[1];
if ('0' <= hi && hi <= '9')
hi -= '0';
else if ('A' <= hi && hi <= 'F')
hi -= ('A' - 10);
else if ('a' <= hi && hi <= 'f')
hi -= ('a' - 10);
else
return (1);
if ('0' <= lo && lo <= '9')
lo -= '0';
else if ('A' <= lo && lo <= 'F')
lo -= ('A' - 10);
else if ('a' <= lo && lo <= 'f')
lo -= ('a' - 10);
else
return (1);
*byteout = (hi << 4) + lo;
return (0);
}
static void
acpi_hp_hex_decode(char* buffer)
{
int i;
int length = strlen(buffer);
UINT8 *uin;
UINT8 uout;
if (((int)length/2)*2 == length || length < 10) return;
for (i = 0; i<length; ++i) {
if (!((i+1)%3)) {
if (buffer[i] != ' ')
return;
}
else
if (!((buffer[i] >= '0' && buffer[i] <= '9') ||
(buffer[i] >= 'A' && buffer[i] <= 'F')))
return;
}
for (i = 0; i<length; i += 3) {
uin = &buffer[i];
uout = 0;
acpi_hp_hex_to_int(uin, &uout);
buffer[i/3] = (char) uout;
}
buffer[(length+1)/3] = 0;
}
/*
* open hpcmi device
*/
static int
acpi_hp_hpcmi_open(struct cdev* dev, int flags, int mode, struct thread *td)
{
struct acpi_hp_softc *sc;
int ret;
if (dev == NULL || dev->si_drv1 == NULL)
return (EBADF);
sc = dev->si_drv1;
ACPI_SERIAL_BEGIN(hp);
if (sc->hpcmi_open_pid != 0) {
ret = EBUSY;
}
else {
if (sbuf_new(&sc->hpcmi_sbuf, NULL, 4096, SBUF_AUTOEXTEND)
== NULL) {
ret = ENXIO;
} else {
sc->hpcmi_open_pid = td->td_proc->p_pid;
sc->hpcmi_bufptr = 0;
ret = 0;
}
}
ACPI_SERIAL_END(hp);
return (ret);
}
/*
* close hpcmi device
*/
static int
acpi_hp_hpcmi_close(struct cdev* dev, int flags, int mode, struct thread *td)
{
struct acpi_hp_softc *sc;
int ret;
if (dev == NULL || dev->si_drv1 == NULL)
return (EBADF);
sc = dev->si_drv1;
ACPI_SERIAL_BEGIN(hp);
if (sc->hpcmi_open_pid == 0) {
ret = EBADF;
}
else {
if (sc->hpcmi_bufptr != -1) {
sbuf_delete(&sc->hpcmi_sbuf);
sc->hpcmi_bufptr = -1;
}
sc->hpcmi_open_pid = 0;
ret = 0;
}
ACPI_SERIAL_END(hp);
return (ret);
}
/*
* Read from hpcmi bios information
*/
static int
acpi_hp_hpcmi_read(struct cdev *dev, struct uio *buf, int flag)
{
struct acpi_hp_softc *sc;
int pos, i, l, ret;
UINT8 instance;
UINT8 maxInstance;
UINT32 sequence;
int linesize = 1025;
char line[linesize];
if (dev == NULL || dev->si_drv1 == NULL)
return (EBADF);
sc = dev->si_drv1;
ACPI_SERIAL_BEGIN(hp);
if (sc->hpcmi_open_pid != buf->uio_td->td_proc->p_pid
|| sc->hpcmi_bufptr == -1) {
ret = EBADF;
}
else {
if (!sbuf_done(&sc->hpcmi_sbuf)) {
if (sc->cmi_order_size < 0) {
maxInstance = sc->has_cmi;
if (!(sc->cmi_detail &
ACPI_HP_CMI_DETAIL_SHOW_MAX_INSTANCE) &&
maxInstance > 0) {
maxInstance--;
}
sc->cmi_order_size = 0;
for (instance = 0; instance < maxInstance;
++instance) {
if (acpi_hp_get_cmi_block(sc->wmi_dev,
ACPI_HP_WMI_CMI_GUID, instance,
line, linesize, &sequence,
sc->cmi_detail)) {
instance = maxInstance;
}
else {
pos = sc->cmi_order_size;
for (i=0;
i<sc->cmi_order_size && i<127;
++i) {
if (sc->cmi_order[i].sequence > sequence) {
pos = i;
break;
}
}
for (i=sc->cmi_order_size;
i>pos;
--i) {
sc->cmi_order[i].sequence =
sc->cmi_order[i-1].sequence;
sc->cmi_order[i].instance =
sc->cmi_order[i-1].instance;
}
sc->cmi_order[pos].sequence =
sequence;
sc->cmi_order[pos].instance =
instance;
sc->cmi_order_size++;
}
}
}
for (i=0; i<sc->cmi_order_size; ++i) {
if (!acpi_hp_get_cmi_block(sc->wmi_dev,
ACPI_HP_WMI_CMI_GUID,
sc->cmi_order[i].instance, line, linesize,
&sequence, sc->cmi_detail)) {
sbuf_printf(&sc->hpcmi_sbuf, "%s\n", line);
}
}
sbuf_finish(&sc->hpcmi_sbuf);
}
if (sbuf_len(&sc->hpcmi_sbuf) <= 0) {
sbuf_delete(&sc->hpcmi_sbuf);
sc->hpcmi_bufptr = -1;
sc->hpcmi_open_pid = 0;
ret = ENOMEM;
} else {
l = min(buf->uio_resid, sbuf_len(&sc->hpcmi_sbuf) -
sc->hpcmi_bufptr);
ret = (l > 0)?uiomove(sbuf_data(&sc->hpcmi_sbuf) +
sc->hpcmi_bufptr, l, buf) : 0;
sc->hpcmi_bufptr += l;
}
}
ACPI_SERIAL_END(hp);
return (ret);
}