freebsd-skq/sys/dev/ex/if_ex.c
jhb b3ec9d20e2 Make ex(4) MPSAFE:
- Add a mutex to the softc to protect the softc and device hardware.
- Use a private watchdog timer.
- Setup interrupt handler after ether_ifattach().
- Use bus_foo() rather than bus_space_foo() and remove bus space tag and
  handle from softc.

Tested by:	imp
2008-06-13 12:14:22 +00:00

1077 lines
26 KiB
C

/*-
* Copyright (c) 1996, Javier Martín Rueda (jmrueda@diatel.upm.es)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*
* MAINTAINER: Matthew N. Dodd <winter@jurai.net>
* <mdodd@FreeBSD.org>
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Intel EtherExpress Pro/10, Pro/10+ Ethernet driver
*
* Revision history:
*
* dd-mmm-yyyy: Multicast support ported from NetBSD's if_iy driver.
* 30-Oct-1996: first beta version. Inet and BPF supported, but no multicast.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/ethernet.h>
#include <net/bpf.h>
#include <netinet/in.h>
#include <netinet/if_ether.h>
#include <isa/isavar.h>
#include <isa/pnpvar.h>
#include <dev/ex/if_exreg.h>
#include <dev/ex/if_exvar.h>
#ifdef EXDEBUG
# define Start_End 1
# define Rcvd_Pkts 2
# define Sent_Pkts 4
# define Status 8
static int debug_mask = 0;
# define DODEBUG(level, action) if (level & debug_mask) action
#else
# define DODEBUG(level, action)
#endif
devclass_t ex_devclass;
char irq2eemap[] =
{ -1, -1, 0, 1, -1, 2, -1, -1, -1, 0, 3, 4, -1, -1, -1, -1 };
u_char ee2irqmap[] =
{ 9, 3, 5, 10, 11, 0, 0, 0 };
char plus_irq2eemap[] =
{ -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, -1, -1, -1 };
u_char plus_ee2irqmap[] =
{ 3, 4, 5, 7, 9, 10, 11, 12 };
/* Network Interface Functions */
static void ex_init(void *);
static void ex_init_locked(struct ex_softc *);
static void ex_start(struct ifnet *);
static void ex_start_locked(struct ifnet *);
static int ex_ioctl(struct ifnet *, u_long, caddr_t);
static void ex_watchdog(void *);
/* ifmedia Functions */
static int ex_ifmedia_upd(struct ifnet *);
static void ex_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int ex_get_media(struct ex_softc *);
static void ex_reset(struct ex_softc *);
static void ex_setmulti(struct ex_softc *);
static void ex_tx_intr(struct ex_softc *);
static void ex_rx_intr(struct ex_softc *);
void
ex_get_address(struct ex_softc *sc, u_char *enaddr)
{
uint16_t eaddr_tmp;
eaddr_tmp = ex_eeprom_read(sc, EE_Eth_Addr_Lo);
enaddr[5] = eaddr_tmp & 0xff;
enaddr[4] = eaddr_tmp >> 8;
eaddr_tmp = ex_eeprom_read(sc, EE_Eth_Addr_Mid);
enaddr[3] = eaddr_tmp & 0xff;
enaddr[2] = eaddr_tmp >> 8;
eaddr_tmp = ex_eeprom_read(sc, EE_Eth_Addr_Hi);
enaddr[1] = eaddr_tmp & 0xff;
enaddr[0] = eaddr_tmp >> 8;
return;
}
int
ex_card_type(u_char *enaddr)
{
if ((enaddr[0] == 0x00) && (enaddr[1] == 0xA0) && (enaddr[2] == 0xC9))
return (CARD_TYPE_EX_10_PLUS);
return (CARD_TYPE_EX_10);
}
/*
* Caller is responsible for eventually calling
* ex_release_resources() on failure.
*/
int
ex_alloc_resources(device_t dev)
{
struct ex_softc * sc = device_get_softc(dev);
int error = 0;
sc->ioport = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
&sc->ioport_rid, RF_ACTIVE);
if (!sc->ioport) {
device_printf(dev, "No I/O space?!\n");
error = ENOMEM;
goto bad;
}
sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
RF_ACTIVE);
if (!sc->irq) {
device_printf(dev, "No IRQ?!\n");
error = ENOMEM;
goto bad;
}
bad:
return (error);
}
void
ex_release_resources(device_t dev)
{
struct ex_softc * sc = device_get_softc(dev);
if (sc->ih) {
bus_teardown_intr(dev, sc->irq, sc->ih);
sc->ih = NULL;
}
if (sc->ioport) {
bus_release_resource(dev, SYS_RES_IOPORT,
sc->ioport_rid, sc->ioport);
sc->ioport = NULL;
}
if (sc->irq) {
bus_release_resource(dev, SYS_RES_IRQ,
sc->irq_rid, sc->irq);
sc->irq = NULL;
}
if (sc->ifp)
if_free(sc->ifp);
return;
}
int
ex_attach(device_t dev)
{
struct ex_softc * sc = device_get_softc(dev);
struct ifnet * ifp;
struct ifmedia * ifm;
int error;
uint16_t temp;
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
return (ENOSPC);
}
/* work out which set of irq <-> internal tables to use */
if (ex_card_type(sc->enaddr) == CARD_TYPE_EX_10_PLUS) {
sc->irq2ee = plus_irq2eemap;
sc->ee2irq = plus_ee2irqmap;
} else {
sc->irq2ee = irq2eemap;
sc->ee2irq = ee2irqmap;
}
sc->mem_size = CARD_RAM_SIZE; /* XXX This should be read from the card itself. */
/*
* Initialize the ifnet structure.
*/
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
ifp->if_start = ex_start;
ifp->if_ioctl = ex_ioctl;
ifp->if_init = ex_init;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
ifmedia_init(&sc->ifmedia, 0, ex_ifmedia_upd, ex_ifmedia_sts);
mtx_init(&sc->lock, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->timer, &sc->lock, 0);
temp = ex_eeprom_read(sc, EE_W5);
if (temp & EE_W5_PORT_TPE)
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
if (temp & EE_W5_PORT_BNC)
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_2, 0, NULL);
if (temp & EE_W5_PORT_AUI)
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->ifmedia, ex_get_media(sc));
ifm = &sc->ifmedia;
ifm->ifm_media = ifm->ifm_cur->ifm_media;
ex_ifmedia_upd(ifp);
/*
* Attach the interface.
*/
ether_ifattach(ifp, sc->enaddr);
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, ex_intr, (void *)sc, &sc->ih);
if (error) {
device_printf(dev, "bus_setup_intr() failed!\n");
ether_ifdetach(ifp);
mtx_destroy(&sc->lock);
return (error);
}
return(0);
}
int
ex_detach(device_t dev)
{
struct ex_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->ifp;
EX_LOCK(sc);
ex_stop(sc);
EX_UNLOCK(sc);
ether_ifdetach(ifp);
callout_drain(&sc->timer);
ex_release_resources(dev);
mtx_destroy(&sc->lock);
return (0);
}
static void
ex_init(void *xsc)
{
struct ex_softc * sc = (struct ex_softc *) xsc;
EX_LOCK(sc);
ex_init_locked(sc);
EX_UNLOCK(sc);
}
static void
ex_init_locked(struct ex_softc *sc)
{
struct ifnet * ifp = sc->ifp;
int i;
unsigned short temp_reg;
DODEBUG(Start_End, printf("%s: ex_init: start\n", ifp->if_xname););
sc->tx_timeout = 0;
/*
* Load the ethernet address into the card.
*/
CSR_WRITE_1(sc, CMD_REG, Bank2_Sel);
temp_reg = CSR_READ_1(sc, EEPROM_REG);
if (temp_reg & Trnoff_Enable) {
CSR_WRITE_1(sc, EEPROM_REG, temp_reg & ~Trnoff_Enable);
}
for (i = 0; i < ETHER_ADDR_LEN; i++) {
CSR_WRITE_1(sc, I_ADDR_REG0 + i, IF_LLADDR(sc->ifp)[i]);
}
/*
* - Setup transmit chaining and discard bad received frames.
* - Match broadcast.
* - Clear test mode.
* - Set receiving mode.
* - Set IRQ number.
*/
CSR_WRITE_1(sc, REG1, CSR_READ_1(sc, REG1) | Tx_Chn_Int_Md | Tx_Chn_ErStp | Disc_Bad_Fr);
CSR_WRITE_1(sc, REG2, CSR_READ_1(sc, REG2) | No_SA_Ins | RX_CRC_InMem);
CSR_WRITE_1(sc, REG3, CSR_READ_1(sc, REG3) & 0x3f /* XXX constants. */ );
CSR_WRITE_1(sc, CMD_REG, Bank1_Sel);
CSR_WRITE_1(sc, INT_NO_REG, (CSR_READ_1(sc, INT_NO_REG) & 0xf8) | sc->irq2ee[sc->irq_no]);
/*
* Divide the available memory in the card into rcv and xmt buffers.
* By default, I use the first 3/4 of the memory for the rcv buffer,
* and the remaining 1/4 of the memory for the xmt buffer.
*/
sc->rx_mem_size = sc->mem_size * 3 / 4;
sc->tx_mem_size = sc->mem_size - sc->rx_mem_size;
sc->rx_lower_limit = 0x0000;
sc->rx_upper_limit = sc->rx_mem_size - 2;
sc->tx_lower_limit = sc->rx_mem_size;
sc->tx_upper_limit = sc->mem_size - 2;
CSR_WRITE_1(sc, RCV_LOWER_LIMIT_REG, sc->rx_lower_limit >> 8);
CSR_WRITE_1(sc, RCV_UPPER_LIMIT_REG, sc->rx_upper_limit >> 8);
CSR_WRITE_1(sc, XMT_LOWER_LIMIT_REG, sc->tx_lower_limit >> 8);
CSR_WRITE_1(sc, XMT_UPPER_LIMIT_REG, sc->tx_upper_limit >> 8);
/*
* Enable receive and transmit interrupts, and clear any pending int.
*/
CSR_WRITE_1(sc, REG1, CSR_READ_1(sc, REG1) | TriST_INT);
CSR_WRITE_1(sc, CMD_REG, Bank0_Sel);
CSR_WRITE_1(sc, MASK_REG, All_Int & ~(Rx_Int | Tx_Int));
CSR_WRITE_1(sc, STATUS_REG, All_Int);
/*
* Initialize receive and transmit ring buffers.
*/
CSR_WRITE_2(sc, RCV_BAR, sc->rx_lower_limit);
sc->rx_head = sc->rx_lower_limit;
CSR_WRITE_2(sc, RCV_STOP_REG, sc->rx_upper_limit | 0xfe);
CSR_WRITE_2(sc, XMT_BAR, sc->tx_lower_limit);
sc->tx_head = sc->tx_tail = sc->tx_lower_limit;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
DODEBUG(Status, printf("OIDLE init\n"););
callout_reset(&sc->timer, hz, ex_watchdog, sc);
ex_setmulti(sc);
/*
* Final reset of the board, and enable operation.
*/
CSR_WRITE_1(sc, CMD_REG, Sel_Reset_CMD);
DELAY(2);
CSR_WRITE_1(sc, CMD_REG, Rcv_Enable_CMD);
ex_start_locked(ifp);
DODEBUG(Start_End, printf("%s: ex_init: finish\n", ifp->if_xname););
}
static void
ex_start(struct ifnet *ifp)
{
struct ex_softc * sc = ifp->if_softc;
EX_LOCK(sc);
ex_start_locked(ifp);
EX_UNLOCK(sc);
}
static void
ex_start_locked(struct ifnet *ifp)
{
struct ex_softc * sc = ifp->if_softc;
int i, len, data_len, avail, dest, next;
unsigned char tmp16[2];
struct mbuf * opkt;
struct mbuf * m;
DODEBUG(Start_End, printf("ex_start%d: start\n", unit););
/*
* Main loop: send outgoing packets to network card until there are no
* more packets left, or the card cannot accept any more yet.
*/
while (((opkt = ifp->if_snd.ifq_head) != NULL) &&
!(ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
/*
* Ensure there is enough free transmit buffer space for
* this packet, including its header. Note: the header
* cannot wrap around the end of the transmit buffer and
* must be kept together, so we allow space for twice the
* length of the header, just in case.
*/
for (len = 0, m = opkt; m != NULL; m = m->m_next) {
len += m->m_len;
}
data_len = len;
DODEBUG(Sent_Pkts, printf("1. Sending packet with %d data bytes. ", data_len););
if (len & 1) {
len += XMT_HEADER_LEN + 1;
} else {
len += XMT_HEADER_LEN;
}
if ((i = sc->tx_tail - sc->tx_head) >= 0) {
avail = sc->tx_mem_size - i;
} else {
avail = -i;
}
DODEBUG(Sent_Pkts, printf("i=%d, avail=%d\n", i, avail););
if (avail >= len + XMT_HEADER_LEN) {
IF_DEQUEUE(&ifp->if_snd, opkt);
#ifdef EX_PSA_INTR
/*
* Disable rx and tx interrupts, to avoid corruption
* of the host address register by interrupt service
* routines.
* XXX Is this necessary with splimp() enabled?
*/
CSR_WRITE_1(sc, MASK_REG, All_Int);
#endif
/*
* Compute the start and end addresses of this
* frame in the tx buffer.
*/
dest = sc->tx_tail;
next = dest + len;
if (next > sc->tx_upper_limit) {
if ((sc->tx_upper_limit + 2 - sc->tx_tail) <=
XMT_HEADER_LEN) {
dest = sc->tx_lower_limit;
next = dest + len;
} else {
next = sc->tx_lower_limit +
next - sc->tx_upper_limit - 2;
}
}
/*
* Build the packet frame in the card's ring buffer.
*/
DODEBUG(Sent_Pkts, printf("2. dest=%d, next=%d. ", dest, next););
CSR_WRITE_2(sc, HOST_ADDR_REG, dest);
CSR_WRITE_2(sc, IO_PORT_REG, Transmit_CMD);
CSR_WRITE_2(sc, IO_PORT_REG, 0);
CSR_WRITE_2(sc, IO_PORT_REG, next);
CSR_WRITE_2(sc, IO_PORT_REG, data_len);
/*
* Output the packet data to the card. Ensure all
* transfers are 16-bit wide, even if individual
* mbufs have odd length.
*/
for (m = opkt, i = 0; m != NULL; m = m->m_next) {
DODEBUG(Sent_Pkts, printf("[%d]", m->m_len););
if (i) {
tmp16[1] = *(mtod(m, caddr_t));
CSR_WRITE_MULTI_2(sc, IO_PORT_REG,
(uint16_t *) tmp16, 1);
}
CSR_WRITE_MULTI_2(sc, IO_PORT_REG,
(uint16_t *) (mtod(m, caddr_t) + i),
(m->m_len - i) / 2);
if ((i = (m->m_len - i) & 1) != 0) {
tmp16[0] = *(mtod(m, caddr_t) +
m->m_len - 1);
}
}
if (i)
CSR_WRITE_MULTI_2(sc, IO_PORT_REG,
(uint16_t *) tmp16, 1);
/*
* If there were other frames chained, update the
* chain in the last one.
*/
if (sc->tx_head != sc->tx_tail) {
if (sc->tx_tail != dest) {
CSR_WRITE_2(sc, HOST_ADDR_REG,
sc->tx_last + XMT_Chain_Point);
CSR_WRITE_2(sc, IO_PORT_REG, dest);
}
CSR_WRITE_2(sc, HOST_ADDR_REG,
sc->tx_last + XMT_Byte_Count);
i = CSR_READ_2(sc, IO_PORT_REG);
CSR_WRITE_2(sc, HOST_ADDR_REG,
sc->tx_last + XMT_Byte_Count);
CSR_WRITE_2(sc, IO_PORT_REG, i | Ch_bit);
}
/*
* Resume normal operation of the card:
* - Make a dummy read to flush the DRAM write
* pipeline.
* - Enable receive and transmit interrupts.
* - Send Transmit or Resume_XMT command, as
* appropriate.
*/
CSR_READ_2(sc, IO_PORT_REG);
#ifdef EX_PSA_INTR
CSR_WRITE_1(sc, MASK_REG, All_Int & ~(Rx_Int | Tx_Int));
#endif
if (sc->tx_head == sc->tx_tail) {
CSR_WRITE_2(sc, XMT_BAR, dest);
CSR_WRITE_1(sc, CMD_REG, Transmit_CMD);
sc->tx_head = dest;
DODEBUG(Sent_Pkts, printf("Transmit\n"););
} else {
CSR_WRITE_1(sc, CMD_REG, Resume_XMT_List_CMD);
DODEBUG(Sent_Pkts, printf("Resume\n"););
}
sc->tx_last = dest;
sc->tx_tail = next;
BPF_MTAP(ifp, opkt);
sc->tx_timeout = 2;
ifp->if_opackets++;
m_freem(opkt);
} else {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
DODEBUG(Status, printf("OACTIVE start\n"););
}
}
DODEBUG(Start_End, printf("ex_start%d: finish\n", unit););
}
void
ex_stop(struct ex_softc *sc)
{
DODEBUG(Start_End, printf("ex_stop%d: start\n", unit););
EX_ASSERT_LOCKED(sc);
/*
* Disable card operation:
* - Disable the interrupt line.
* - Flush transmission and disable reception.
* - Mask and clear all interrupts.
* - Reset the 82595.
*/
CSR_WRITE_1(sc, CMD_REG, Bank1_Sel);
CSR_WRITE_1(sc, REG1, CSR_READ_1(sc, REG1) & ~TriST_INT);
CSR_WRITE_1(sc, CMD_REG, Bank0_Sel);
CSR_WRITE_1(sc, CMD_REG, Rcv_Stop);
sc->tx_head = sc->tx_tail = sc->tx_lower_limit;
sc->tx_last = 0; /* XXX I think these two lines are not necessary, because ex_init will always be called again to reinit the interface. */
CSR_WRITE_1(sc, MASK_REG, All_Int);
CSR_WRITE_1(sc, STATUS_REG, All_Int);
CSR_WRITE_1(sc, CMD_REG, Reset_CMD);
DELAY(200);
sc->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->tx_timeout = 0;
callout_stop(&sc->timer);
DODEBUG(Start_End, printf("ex_stop%d: finish\n", unit););
return;
}
void
ex_intr(void *arg)
{
struct ex_softc *sc = (struct ex_softc *)arg;
struct ifnet *ifp = sc->ifp;
int int_status, send_pkts;
int loops = 100;
DODEBUG(Start_End, printf("ex_intr%d: start\n", unit););
EX_LOCK(sc);
send_pkts = 0;
while (loops-- > 0 &&
(int_status = CSR_READ_1(sc, STATUS_REG)) & (Tx_Int | Rx_Int)) {
/* don't loop forever */
if (int_status == 0xff)
break;
if (int_status & Rx_Int) {
CSR_WRITE_1(sc, STATUS_REG, Rx_Int);
ex_rx_intr(sc);
} else if (int_status & Tx_Int) {
CSR_WRITE_1(sc, STATUS_REG, Tx_Int);
ex_tx_intr(sc);
send_pkts = 1;
}
}
if (loops == 0)
printf("100 loops are not enough\n");
/*
* If any packet has been transmitted, and there are queued packets to
* be sent, attempt to send more packets to the network card.
*/
if (send_pkts && (ifp->if_snd.ifq_head != NULL))
ex_start_locked(ifp);
EX_UNLOCK(sc);
DODEBUG(Start_End, printf("ex_intr%d: finish\n", unit););
return;
}
static void
ex_tx_intr(struct ex_softc *sc)
{
struct ifnet * ifp = sc->ifp;
int tx_status;
DODEBUG(Start_End, printf("ex_tx_intr%d: start\n", unit););
/*
* - Cancel the watchdog.
* For all packets transmitted since last transmit interrupt:
* - Advance chain pointer to next queued packet.
* - Update statistics.
*/
sc->tx_timeout = 0;
while (sc->tx_head != sc->tx_tail) {
CSR_WRITE_2(sc, HOST_ADDR_REG, sc->tx_head);
if (! CSR_READ_2(sc, IO_PORT_REG) & Done_bit)
break;
tx_status = CSR_READ_2(sc, IO_PORT_REG);
sc->tx_head = CSR_READ_2(sc, IO_PORT_REG);
if (tx_status & TX_OK_bit) {
ifp->if_opackets++;
} else {
ifp->if_oerrors++;
}
ifp->if_collisions += tx_status & No_Collisions_bits;
}
/*
* The card should be ready to accept more packets now.
*/
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
DODEBUG(Status, printf("OIDLE tx_intr\n"););
DODEBUG(Start_End, printf("ex_tx_intr%d: finish\n", unit););
return;
}
static void
ex_rx_intr(struct ex_softc *sc)
{
struct ifnet * ifp = sc->ifp;
int rx_status;
int pkt_len;
int QQQ;
struct mbuf * m;
struct mbuf * ipkt;
struct ether_header * eh;
DODEBUG(Start_End, printf("ex_rx_intr%d: start\n", unit););
/*
* For all packets received since last receive interrupt:
* - If packet ok, read it into a new mbuf and queue it to interface,
* updating statistics.
* - If packet bad, just discard it, and update statistics.
* Finally, advance receive stop limit in card's memory to new location.
*/
CSR_WRITE_2(sc, HOST_ADDR_REG, sc->rx_head);
while (CSR_READ_2(sc, IO_PORT_REG) == RCV_Done) {
rx_status = CSR_READ_2(sc, IO_PORT_REG);
sc->rx_head = CSR_READ_2(sc, IO_PORT_REG);
QQQ = pkt_len = CSR_READ_2(sc, IO_PORT_REG);
if (rx_status & RCV_OK_bit) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
ipkt = m;
if (ipkt == NULL) {
ifp->if_iqdrops++;
} else {
ipkt->m_pkthdr.rcvif = ifp;
ipkt->m_pkthdr.len = pkt_len;
ipkt->m_len = MHLEN;
while (pkt_len > 0) {
if (pkt_len >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT) {
m->m_len = MCLBYTES;
} else {
m_freem(ipkt);
ifp->if_iqdrops++;
goto rx_another;
}
}
m->m_len = min(m->m_len, pkt_len);
/*
* NOTE: I'm assuming that all mbufs allocated are of even length,
* except for the last one in an odd-length packet.
*/
CSR_READ_MULTI_2(sc, IO_PORT_REG,
mtod(m, uint16_t *), m->m_len / 2);
if (m->m_len & 1) {
*(mtod(m, caddr_t) + m->m_len - 1) = CSR_READ_1(sc, IO_PORT_REG);
}
pkt_len -= m->m_len;
if (pkt_len > 0) {
MGET(m->m_next, M_DONTWAIT, MT_DATA);
if (m->m_next == NULL) {
m_freem(ipkt);
ifp->if_iqdrops++;
goto rx_another;
}
m = m->m_next;
m->m_len = MLEN;
}
}
eh = mtod(ipkt, struct ether_header *);
#ifdef EXDEBUG
if (debug_mask & Rcvd_Pkts) {
if ((eh->ether_dhost[5] != 0xff) || (eh->ether_dhost[0] != 0xff)) {
printf("Receive packet with %d data bytes: %6D -> ", QQQ, eh->ether_shost, ":");
printf("%6D\n", eh->ether_dhost, ":");
} /* QQQ */
}
#endif
EX_UNLOCK(sc);
(*ifp->if_input)(ifp, ipkt);
EX_LOCK(sc);
ifp->if_ipackets++;
}
} else {
ifp->if_ierrors++;
}
CSR_WRITE_2(sc, HOST_ADDR_REG, sc->rx_head);
rx_another: ;
}
if (sc->rx_head < sc->rx_lower_limit + 2)
CSR_WRITE_2(sc, RCV_STOP_REG, sc->rx_upper_limit);
else
CSR_WRITE_2(sc, RCV_STOP_REG, sc->rx_head - 2);
DODEBUG(Start_End, printf("ex_rx_intr%d: finish\n", unit););
return;
}
static int
ex_ioctl(register struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ex_softc * sc = ifp->if_softc;
struct ifreq * ifr = (struct ifreq *)data;
int error = 0;
DODEBUG(Start_End, printf("%s: ex_ioctl: start ", ifp->if_xname););
switch(cmd) {
case SIOCSIFADDR:
case SIOCGIFADDR:
case SIOCSIFMTU:
error = ether_ioctl(ifp, cmd, data);
break;
case SIOCSIFFLAGS:
DODEBUG(Start_End, printf("SIOCSIFFLAGS"););
EX_LOCK(sc);
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
ex_stop(sc);
} else {
ex_init_locked(sc);
}
EX_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
ex_init(sc);
error = 0;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, cmd);
break;
default:
DODEBUG(Start_End, printf("unknown"););
error = EINVAL;
}
DODEBUG(Start_End, printf("\n%s: ex_ioctl: finish\n", ifp->if_xname););
return(error);
}
static void
ex_setmulti(struct ex_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *maddr;
uint16_t *addr;
int count;
int timeout, status;
ifp = sc->ifp;
count = 0;
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(maddr, &ifp->if_multiaddrs, ifma_link) {
if (maddr->ifma_addr->sa_family != AF_LINK)
continue;
count++;
}
IF_ADDR_UNLOCK(ifp);
if ((ifp->if_flags & IFF_PROMISC) || (ifp->if_flags & IFF_ALLMULTI)
|| count > 63) {
/* Interface is in promiscuous mode or there are too many
* multicast addresses for the card to handle */
CSR_WRITE_1(sc, CMD_REG, Bank2_Sel);
CSR_WRITE_1(sc, REG2, CSR_READ_1(sc, REG2) | Promisc_Mode);
CSR_WRITE_1(sc, REG3, CSR_READ_1(sc, REG3));
CSR_WRITE_1(sc, CMD_REG, Bank0_Sel);
}
else if ((ifp->if_flags & IFF_MULTICAST) && (count > 0)) {
/* Program multicast addresses plus our MAC address
* into the filter */
CSR_WRITE_1(sc, CMD_REG, Bank2_Sel);
CSR_WRITE_1(sc, REG2, CSR_READ_1(sc, REG2) | Multi_IA);
CSR_WRITE_1(sc, REG3, CSR_READ_1(sc, REG3));
CSR_WRITE_1(sc, CMD_REG, Bank0_Sel);
/* Borrow space from TX buffer; this should be safe
* as this is only called from ex_init */
CSR_WRITE_2(sc, HOST_ADDR_REG, sc->tx_lower_limit);
CSR_WRITE_2(sc, IO_PORT_REG, MC_Setup_CMD);
CSR_WRITE_2(sc, IO_PORT_REG, 0);
CSR_WRITE_2(sc, IO_PORT_REG, 0);
CSR_WRITE_2(sc, IO_PORT_REG, (count + 1) * 6);
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(maddr, &ifp->if_multiaddrs, ifma_link) {
if (maddr->ifma_addr->sa_family != AF_LINK)
continue;
addr = (uint16_t*)LLADDR((struct sockaddr_dl *)
maddr->ifma_addr);
CSR_WRITE_2(sc, IO_PORT_REG, *addr++);
CSR_WRITE_2(sc, IO_PORT_REG, *addr++);
CSR_WRITE_2(sc, IO_PORT_REG, *addr++);
}
IF_ADDR_UNLOCK(ifp);
/* Program our MAC address as well */
/* XXX: Is this necessary? The Linux driver does this
* but the NetBSD driver does not */
addr = (uint16_t*)IF_LLADDR(sc->ifp);
CSR_WRITE_2(sc, IO_PORT_REG, *addr++);
CSR_WRITE_2(sc, IO_PORT_REG, *addr++);
CSR_WRITE_2(sc, IO_PORT_REG, *addr++);
CSR_READ_2(sc, IO_PORT_REG);
CSR_WRITE_2(sc, XMT_BAR, sc->tx_lower_limit);
CSR_WRITE_1(sc, CMD_REG, MC_Setup_CMD);
sc->tx_head = sc->tx_lower_limit;
sc->tx_tail = sc->tx_head + XMT_HEADER_LEN + (count + 1) * 6;
for (timeout=0; timeout<100; timeout++) {
DELAY(2);
if ((CSR_READ_1(sc, STATUS_REG) & Exec_Int) == 0)
continue;
status = CSR_READ_1(sc, CMD_REG);
CSR_WRITE_1(sc, STATUS_REG, Exec_Int);
break;
}
sc->tx_head = sc->tx_tail;
}
else
{
/* No multicast or promiscuous mode */
CSR_WRITE_1(sc, CMD_REG, Bank2_Sel);
CSR_WRITE_1(sc, REG2, CSR_READ_1(sc, REG2) & 0xDE);
/* ~(Multi_IA | Promisc_Mode) */
CSR_WRITE_1(sc, REG3, CSR_READ_1(sc, REG3));
CSR_WRITE_1(sc, CMD_REG, Bank0_Sel);
}
}
static void
ex_reset(struct ex_softc *sc)
{
DODEBUG(Start_End, printf("ex_reset%d: start\n", unit););
EX_ASSERT_LOCKED(sc);
ex_stop(sc);
ex_init_locked(sc);
DODEBUG(Start_End, printf("ex_reset%d: finish\n", unit););
return;
}
static void
ex_watchdog(void *arg)
{
struct ex_softc * sc = arg;
struct ifnet *ifp = sc->ifp;
if (sc->tx_timeout && --sc->tx_timeout == 0) {
DODEBUG(Start_End, if_printf(ifp, "ex_watchdog: start\n"););
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
DODEBUG(Status, printf("OIDLE watchdog\n"););
ifp->if_oerrors++;
ex_reset(sc);
ex_start_locked(ifp);
DODEBUG(Start_End, if_printf(ifp, "ex_watchdog: finish\n"););
}
callout_reset(&sc->timer, hz, ex_watchdog, sc);
}
static int
ex_get_media(struct ex_softc *sc)
{
int current;
int media;
media = ex_eeprom_read(sc, EE_W5);
CSR_WRITE_1(sc, CMD_REG, Bank2_Sel);
current = CSR_READ_1(sc, REG3);
CSR_WRITE_1(sc, CMD_REG, Bank0_Sel);
if ((current & TPE_bit) && (media & EE_W5_PORT_TPE))
return(IFM_ETHER|IFM_10_T);
if ((current & BNC_bit) && (media & EE_W5_PORT_BNC))
return(IFM_ETHER|IFM_10_2);
if (media & EE_W5_PORT_AUI)
return (IFM_ETHER|IFM_10_5);
return (IFM_ETHER|IFM_AUTO);
}
static int
ex_ifmedia_upd(ifp)
struct ifnet * ifp;
{
struct ex_softc * sc = ifp->if_softc;
if (IFM_TYPE(sc->ifmedia.ifm_media) != IFM_ETHER)
return EINVAL;
return (0);
}
static void
ex_ifmedia_sts(ifp, ifmr)
struct ifnet * ifp;
struct ifmediareq * ifmr;
{
struct ex_softc * sc = ifp->if_softc;
EX_LOCK(sc);
ifmr->ifm_active = ex_get_media(sc);
ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
EX_UNLOCK(sc);
return;
}
u_short
ex_eeprom_read(struct ex_softc *sc, int location)
{
int i;
u_short data = 0;
int read_cmd = location | EE_READ_CMD;
short ctrl_val = EECS;
CSR_WRITE_1(sc, CMD_REG, Bank2_Sel);
CSR_WRITE_1(sc, EEPROM_REG, EECS);
for (i = 8; i >= 0; i--) {
short outval = (read_cmd & (1 << i)) ? ctrl_val | EEDI : ctrl_val;
CSR_WRITE_1(sc, EEPROM_REG, outval);
CSR_WRITE_1(sc, EEPROM_REG, outval | EESK);
DELAY(3);
CSR_WRITE_1(sc, EEPROM_REG, outval);
DELAY(2);
}
CSR_WRITE_1(sc, EEPROM_REG, ctrl_val);
for (i = 16; i > 0; i--) {
CSR_WRITE_1(sc, EEPROM_REG, ctrl_val | EESK);
DELAY(3);
data = (data << 1) |
((CSR_READ_1(sc, EEPROM_REG) & EEDO) ? 1 : 0);
CSR_WRITE_1(sc, EEPROM_REG, ctrl_val);
DELAY(2);
}
ctrl_val &= ~EECS;
CSR_WRITE_1(sc, EEPROM_REG, ctrl_val | EESK);
DELAY(3);
CSR_WRITE_1(sc, EEPROM_REG, ctrl_val);
DELAY(2);
CSR_WRITE_1(sc, CMD_REG, Bank0_Sel);
return(data);
}