b8152ba793
directly to a merged model where only one callout, the next to fire, is registered. Instead of callout_reset(9) and callout_stop(9) the new function tcp_timer_activate() is used which then internally manages the callout. The single new callout is a mutex callout on inpcb simplifying the locking a bit. tcp_timer() is the called function which handles all race conditions in one place and then dispatches the individual timer functions. Reviewed by: rwatson (earlier version)
742 lines
21 KiB
C
742 lines
21 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)tcp_timer.c 8.2 (Berkeley) 5/24/95
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_inet6.h"
|
|
#include "opt_tcpdebug.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/in_systm.h>
|
|
#ifdef INET6
|
|
#include <netinet6/in6_pcb.h>
|
|
#endif
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/tcp_fsm.h>
|
|
#include <netinet/tcp_timer.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet/tcpip.h>
|
|
#ifdef TCPDEBUG
|
|
#include <netinet/tcp_debug.h>
|
|
#endif
|
|
|
|
int tcp_keepinit;
|
|
SYSCTL_PROC(_net_inet_tcp, TCPCTL_KEEPINIT, keepinit, CTLTYPE_INT|CTLFLAG_RW,
|
|
&tcp_keepinit, 0, sysctl_msec_to_ticks, "I", "");
|
|
|
|
int tcp_keepidle;
|
|
SYSCTL_PROC(_net_inet_tcp, TCPCTL_KEEPIDLE, keepidle, CTLTYPE_INT|CTLFLAG_RW,
|
|
&tcp_keepidle, 0, sysctl_msec_to_ticks, "I", "");
|
|
|
|
int tcp_keepintvl;
|
|
SYSCTL_PROC(_net_inet_tcp, TCPCTL_KEEPINTVL, keepintvl, CTLTYPE_INT|CTLFLAG_RW,
|
|
&tcp_keepintvl, 0, sysctl_msec_to_ticks, "I", "");
|
|
|
|
int tcp_delacktime;
|
|
SYSCTL_PROC(_net_inet_tcp, TCPCTL_DELACKTIME, delacktime, CTLTYPE_INT|CTLFLAG_RW,
|
|
&tcp_delacktime, 0, sysctl_msec_to_ticks, "I",
|
|
"Time before a delayed ACK is sent");
|
|
|
|
int tcp_msl;
|
|
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, msl, CTLTYPE_INT|CTLFLAG_RW,
|
|
&tcp_msl, 0, sysctl_msec_to_ticks, "I", "Maximum segment lifetime");
|
|
|
|
int tcp_rexmit_min;
|
|
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, rexmit_min, CTLTYPE_INT|CTLFLAG_RW,
|
|
&tcp_rexmit_min, 0, sysctl_msec_to_ticks, "I",
|
|
"Minimum Retransmission Timeout");
|
|
|
|
int tcp_rexmit_slop;
|
|
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, rexmit_slop, CTLTYPE_INT|CTLFLAG_RW,
|
|
&tcp_rexmit_slop, 0, sysctl_msec_to_ticks, "I",
|
|
"Retransmission Timer Slop");
|
|
|
|
static int always_keepalive = 1;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, always_keepalive, CTLFLAG_RW,
|
|
&always_keepalive , 0, "Assume SO_KEEPALIVE on all TCP connections");
|
|
|
|
int tcp_fast_finwait2_recycle = 0;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, fast_finwait2_recycle, CTLFLAG_RW,
|
|
&tcp_fast_finwait2_recycle, 0,
|
|
"Recycle closed FIN_WAIT_2 connections faster");
|
|
|
|
int tcp_finwait2_timeout;
|
|
SYSCTL_PROC(_net_inet_tcp, OID_AUTO, finwait2_timeout, CTLTYPE_INT|CTLFLAG_RW,
|
|
&tcp_finwait2_timeout, 0, sysctl_msec_to_ticks, "I", "FIN-WAIT2 timeout");
|
|
|
|
|
|
static int tcp_keepcnt = TCPTV_KEEPCNT;
|
|
/* max idle probes */
|
|
int tcp_maxpersistidle;
|
|
/* max idle time in persist */
|
|
int tcp_maxidle;
|
|
|
|
static void tcp_timer(void *);
|
|
static int tcp_timer_delack(struct tcpcb *, struct inpcb *);
|
|
static int tcp_timer_2msl(struct tcpcb *, struct inpcb *);
|
|
static int tcp_timer_keep(struct tcpcb *, struct inpcb *);
|
|
static int tcp_timer_persist(struct tcpcb *, struct inpcb *);
|
|
static int tcp_timer_rexmt(struct tcpcb *, struct inpcb *);
|
|
|
|
/*
|
|
* Tcp protocol timeout routine called every 500 ms.
|
|
* Updates timestamps used for TCP
|
|
* causes finite state machine actions if timers expire.
|
|
*/
|
|
void
|
|
tcp_slowtimo()
|
|
{
|
|
|
|
tcp_maxidle = tcp_keepcnt * tcp_keepintvl;
|
|
INP_INFO_WLOCK(&tcbinfo);
|
|
(void) tcp_timer_2msl_tw(0);
|
|
INP_INFO_WUNLOCK(&tcbinfo);
|
|
}
|
|
|
|
int tcp_syn_backoff[TCP_MAXRXTSHIFT + 1] =
|
|
{ 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 64, 64 };
|
|
|
|
int tcp_backoff[TCP_MAXRXTSHIFT + 1] =
|
|
{ 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 512, 512, 512 };
|
|
|
|
static int tcp_totbackoff = 2559; /* sum of tcp_backoff[] */
|
|
|
|
static int tcp_timer_race;
|
|
SYSCTL_INT(_net_inet_tcp, OID_AUTO, timer_race, CTLFLAG_RD, &tcp_timer_race,
|
|
0, "Count of t_inpcb races on tcp_discardcb");
|
|
|
|
|
|
void
|
|
tcp_timer_activate(struct tcpcb *tp, int timer_type, u_int delta)
|
|
{
|
|
struct inpcb *inp = tp->t_inpcb;
|
|
struct tcp_timer *tt = tp->t_timers;
|
|
int tick = ticks; /* Stable time base. */
|
|
int next = delta ? tick + delta : 0;
|
|
|
|
INP_LOCK_ASSERT(inp);
|
|
|
|
CTR6(KTR_NET, "%p %s inp %p active %x delta %i nextc %i",
|
|
tp, __func__, inp, tt->tt_active, delta, tt->tt_nextc);
|
|
|
|
/* Set new value for timer. */
|
|
switch(timer_type) {
|
|
case TT_DELACK:
|
|
CTR4(KTR_NET, "%p %s TT_DELACK old %i new %i",
|
|
tp, __func__, tt->tt_delack, next);
|
|
tt->tt_delack = next;
|
|
break;
|
|
case TT_REXMT:
|
|
CTR4(KTR_NET, "%p %s TT_REXMT old %i new %i",
|
|
tp, __func__, tt->tt_rexmt, next);
|
|
tt->tt_rexmt = next;
|
|
break;
|
|
case TT_PERSIST:
|
|
CTR4(KTR_NET, "%p %s TT_PERSIST old %i new %i",
|
|
tp, __func__, tt->tt_persist, next);
|
|
tt->tt_persist = next;
|
|
break;
|
|
case TT_KEEP:
|
|
CTR4(KTR_NET, "%p %s TT_KEEP old %i new %i",
|
|
tp, __func__, tt->tt_keep, next);
|
|
tt->tt_keep = next;
|
|
break;
|
|
case TT_2MSL:
|
|
CTR4(KTR_NET, "%p %s TT_2MSL old %i new %i",
|
|
tp, __func__, tt->tt_2msl, next);
|
|
tt->tt_2msl = next;
|
|
break;
|
|
case 0: /* Dummy for timer rescan. */
|
|
CTR3(KTR_NET, "%p %s timer rescan new %i", tp, __func__, next);
|
|
break;
|
|
}
|
|
|
|
/* If some other timer is active and is schedules sooner just return. */
|
|
if (tt->tt_active != timer_type && tt->tt_nextc < next &&
|
|
callout_active(&tt->tt_timer))
|
|
return;
|
|
|
|
/* Select next timer to schedule. */
|
|
tt->tt_nextc = INT_MAX;
|
|
tt->tt_active = 0;
|
|
if (tt->tt_delack && tt->tt_delack < tt->tt_nextc) {
|
|
tt->tt_nextc = tt->tt_delack;
|
|
tt->tt_active = TT_DELACK;
|
|
}
|
|
if (tt->tt_rexmt && tt->tt_rexmt < tt->tt_nextc) {
|
|
tt->tt_nextc = tt->tt_rexmt;
|
|
tt->tt_active = TT_REXMT;
|
|
}
|
|
if (tt->tt_persist && tt->tt_persist < tt->tt_nextc) {
|
|
tt->tt_nextc = tt->tt_persist;
|
|
tt->tt_active = TT_PERSIST;
|
|
}
|
|
if (tt->tt_keep && tt->tt_keep < tt->tt_nextc) {
|
|
tt->tt_nextc = tt->tt_keep;
|
|
tt->tt_active = TT_KEEP;
|
|
}
|
|
if (tt->tt_2msl && tt->tt_2msl < tt->tt_nextc) {
|
|
tt->tt_nextc = tt->tt_2msl;
|
|
tt->tt_active = TT_2MSL;
|
|
}
|
|
|
|
/* Rearm callout with new timer if we found one. */
|
|
if (tt->tt_active) {
|
|
CTR4(KTR_NET, "%p %s callout_reset active %x nextc in %i",
|
|
tp, __func__, tt->tt_active, tt->tt_nextc - tick);
|
|
callout_reset(&tt->tt_timer,
|
|
tt->tt_nextc - tick, tcp_timer, (void *)inp);
|
|
} else {
|
|
CTR2(KTR_NET, "%p %s callout_stop", tp, __func__);
|
|
callout_stop(&tt->tt_timer);
|
|
tt->tt_nextc = 0;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
int
|
|
tcp_timer_active(struct tcpcb *tp, int timer_type)
|
|
{
|
|
|
|
switch (timer_type) {
|
|
case TT_DELACK:
|
|
CTR3(KTR_NET, "%p %s TT_DELACK %i",
|
|
tp, __func__, tp->t_timers->tt_delack);
|
|
return (tp->t_timers->tt_delack ? 1 : 0);
|
|
break;
|
|
case TT_REXMT:
|
|
CTR3(KTR_NET, "%p %s TT_REXMT %i",
|
|
tp, __func__, tp->t_timers->tt_rexmt);
|
|
return (tp->t_timers->tt_rexmt ? 1 : 0);
|
|
break;
|
|
case TT_PERSIST:
|
|
CTR3(KTR_NET, "%p %s TT_PERSIST %i",
|
|
tp, __func__, tp->t_timers->tt_persist);
|
|
return (tp->t_timers->tt_persist ? 1 : 0);
|
|
break;
|
|
case TT_KEEP:
|
|
CTR3(KTR_NET, "%p %s TT_KEEP %i",
|
|
tp, __func__, tp->t_timers->tt_keep);
|
|
return (tp->t_timers->tt_keep ? 1 : 0);
|
|
break;
|
|
case TT_2MSL:
|
|
CTR3(KTR_NET, "%p %s TT_2MSL %i",
|
|
tp, __func__, tp->t_timers->tt_2msl);
|
|
return (tp->t_timers->tt_2msl ? 1 : 0);
|
|
break;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
tcp_timer(void *xinp)
|
|
{
|
|
struct inpcb *inp = (struct inpcb *)xinp;
|
|
struct tcpcb *tp = intotcpcb(inp);
|
|
struct tcp_timer *tt;
|
|
int tick = ticks;
|
|
int down, timer;
|
|
|
|
/* INP lock was obtained by callout. */
|
|
INP_LOCK_ASSERT(inp);
|
|
|
|
/*
|
|
* We've got a couple of race conditions here:
|
|
* - The tcpcb was converted into a compressed TW pcb. All our
|
|
* timers have been stopped while this callout already tried
|
|
* to obtain the inpcb lock. TW pcbs have their own timers
|
|
* and we just return.
|
|
*/
|
|
if (inp->inp_vflag & INP_TIMEWAIT)
|
|
return;
|
|
/*
|
|
* - The tcpcb was discarded. All our timers have been stopped
|
|
* while this callout already tried to obtain the inpcb lock
|
|
* and we just return.
|
|
*/
|
|
if (tp == NULL)
|
|
return;
|
|
|
|
tt = tp->t_timers; /* Initialize. */
|
|
CTR6(KTR_NET, "%p %s inp %p active %x tick %i nextc %i",
|
|
tp, __func__, inp, tt->tt_active, tick, tt->tt_nextc);
|
|
|
|
/*
|
|
* - We may have been waiting on the lock while the tcpcb has
|
|
* been scheduled for destruction. In this case no active
|
|
* timers remain and we just return.
|
|
*/
|
|
if (tt->tt_active == 0)
|
|
goto done;
|
|
|
|
/*
|
|
* - The timer was rescheduled while this callout was already
|
|
* waiting on the lock. This may happen when a packet just
|
|
* came in. Rescan and reschedule the the timer in case we
|
|
* just turned it off.
|
|
*/
|
|
if (tick < tt->tt_nextc)
|
|
goto rescan;
|
|
|
|
/*
|
|
* Mark as done. The active bit in struct callout is not
|
|
* automatically cleared. See callout(9) for more info.
|
|
* In tcp_discardcb() we depend on the correctly cleared
|
|
* active bit for faster processing.
|
|
*/
|
|
callout_deactivate(&tt->tt_timer);
|
|
|
|
/* Check which timer has fired and remove this timer activation. */
|
|
timer = tt->tt_active;
|
|
tt->tt_active = 0;
|
|
tt->tt_nextc = 0;
|
|
|
|
switch (timer) {
|
|
case TT_DELACK:
|
|
CTR2(KTR_NET, "%p %s running TT_DELACK", tp, __func__);
|
|
tt->tt_delack = 0;
|
|
down = tcp_timer_delack(tp, inp); /* down == 0 */
|
|
break;
|
|
case TT_REXMT:
|
|
CTR2(KTR_NET, "%p %s running TT_REXMT", tp, __func__);
|
|
tt->tt_rexmt = 0;
|
|
down = tcp_timer_rexmt(tp, inp);
|
|
break;
|
|
case TT_PERSIST:
|
|
CTR2(KTR_NET, "%p %s running TT_PERSIST", tp, __func__);
|
|
tt->tt_persist = 0;
|
|
down = tcp_timer_persist(tp, inp);
|
|
break;
|
|
case TT_KEEP:
|
|
CTR2(KTR_NET, "%p %s running TT_KEEP", tp, __func__);
|
|
tt->tt_keep = 0;
|
|
down = tcp_timer_keep(tp, inp);
|
|
break;
|
|
case TT_2MSL:
|
|
CTR2(KTR_NET, "%p %s running TT_2MSL", tp, __func__);
|
|
tt->tt_2msl = 0;
|
|
down = tcp_timer_2msl(tp, inp);
|
|
break;
|
|
default:
|
|
CTR2(KTR_NET, "%p %s running nothing", tp, __func__);
|
|
down = 0;
|
|
}
|
|
|
|
CTR4(KTR_NET, "%p %s down %i active %x",
|
|
tp, __func__, down, tt->tt_active);
|
|
/* Do we still exist? */
|
|
if (down)
|
|
goto shutdown;
|
|
|
|
rescan:
|
|
/* Rescan if no timer was reactivated above. */
|
|
if (tt->tt_active == 0)
|
|
tcp_timer_activate(tp, 0, 0);
|
|
|
|
done:
|
|
INP_UNLOCK(inp); /* CALLOUT_RETURNUNLOCKED */
|
|
return;
|
|
|
|
shutdown:
|
|
INP_UNLOCK(inp); /* Prevent LOR at expense of race. */
|
|
INP_INFO_WLOCK(&tcbinfo);
|
|
INP_LOCK(inp);
|
|
|
|
/* When tp is gone we've lost the race. */
|
|
if (inp->inp_ppcb == NULL) {
|
|
CTR3(KTR_NET, "%p %s inp %p lost shutdown race",
|
|
tp, __func__, inp);
|
|
tcp_timer_race++;
|
|
INP_UNLOCK(inp); /* CALLOUT_RETURNUNLOCKED */
|
|
INP_INFO_WUNLOCK(&tcbinfo);
|
|
return;
|
|
}
|
|
KASSERT(tp == inp->inp_ppcb, ("%s: tp changed", __func__));
|
|
|
|
/* Shutdown the connection. */
|
|
switch (down) {
|
|
case 1:
|
|
tp = tcp_close(tp);
|
|
break;
|
|
case 2:
|
|
tp = tcp_drop(tp,
|
|
tp->t_softerror ? tp->t_softerror : ETIMEDOUT);
|
|
break;
|
|
}
|
|
CTR3(KTR_NET, "%p %s inp %p after shutdown", tp, __func__, inp);
|
|
|
|
if (tp)
|
|
INP_UNLOCK(inp); /* CALLOUT_RETURNUNLOCKED */
|
|
|
|
INP_INFO_WUNLOCK(&tcbinfo);
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* TCP timer processing.
|
|
*/
|
|
static int
|
|
tcp_timer_delack(struct tcpcb *tp, struct inpcb *inp)
|
|
{
|
|
|
|
tp->t_flags |= TF_ACKNOW;
|
|
tcpstat.tcps_delack++;
|
|
(void) tcp_output(tp);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
tcp_timer_2msl(struct tcpcb *tp, struct inpcb *inp)
|
|
{
|
|
#ifdef TCPDEBUG
|
|
int ostate;
|
|
|
|
ostate = tp->t_state;
|
|
#endif
|
|
/*
|
|
* 2 MSL timeout in shutdown went off. If we're closed but
|
|
* still waiting for peer to close and connection has been idle
|
|
* too long, or if 2MSL time is up from TIME_WAIT, delete connection
|
|
* control block. Otherwise, check again in a bit.
|
|
*
|
|
* If fastrecycle of FIN_WAIT_2, in FIN_WAIT_2 and receiver has closed,
|
|
* there's no point in hanging onto FIN_WAIT_2 socket. Just close it.
|
|
* Ignore fact that there were recent incoming segments.
|
|
*/
|
|
if (tcp_fast_finwait2_recycle && tp->t_state == TCPS_FIN_WAIT_2 &&
|
|
tp->t_inpcb->inp_socket &&
|
|
(tp->t_inpcb->inp_socket->so_rcv.sb_state & SBS_CANTRCVMORE)) {
|
|
tcpstat.tcps_finwait2_drops++;
|
|
return (1); /* tcp_close() */
|
|
} else {
|
|
if (tp->t_state != TCPS_TIME_WAIT &&
|
|
(ticks - tp->t_rcvtime) <= tcp_maxidle)
|
|
tcp_timer_activate(tp, TT_2MSL, tcp_keepintvl);
|
|
else
|
|
return (1); /* tcp_close( */
|
|
}
|
|
|
|
#ifdef TCPDEBUG
|
|
if (tp != NULL && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
|
|
tcp_trace(TA_USER, ostate, tp, (void *)0, (struct tcphdr *)0,
|
|
PRU_SLOWTIMO);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The timed wait queue contains references to each of the TCP sessions
|
|
* currently in the TIME_WAIT state. The queue pointers, including the
|
|
* queue pointers in each tcptw structure, are protected using the global
|
|
* tcbinfo lock, which must be held over queue iteration and modification.
|
|
*/
|
|
static TAILQ_HEAD(, tcptw) twq_2msl;
|
|
|
|
void
|
|
tcp_timer_init(void)
|
|
{
|
|
|
|
TAILQ_INIT(&twq_2msl);
|
|
}
|
|
|
|
void
|
|
tcp_timer_2msl_reset(struct tcptw *tw, int rearm)
|
|
{
|
|
|
|
INP_INFO_WLOCK_ASSERT(&tcbinfo);
|
|
INP_LOCK_ASSERT(tw->tw_inpcb);
|
|
if (rearm)
|
|
TAILQ_REMOVE(&twq_2msl, tw, tw_2msl);
|
|
tw->tw_time = ticks + 2 * tcp_msl;
|
|
TAILQ_INSERT_TAIL(&twq_2msl, tw, tw_2msl);
|
|
}
|
|
|
|
void
|
|
tcp_timer_2msl_stop(struct tcptw *tw)
|
|
{
|
|
|
|
INP_INFO_WLOCK_ASSERT(&tcbinfo);
|
|
TAILQ_REMOVE(&twq_2msl, tw, tw_2msl);
|
|
}
|
|
|
|
struct tcptw *
|
|
tcp_timer_2msl_tw(int reuse)
|
|
{
|
|
struct tcptw *tw;
|
|
|
|
INP_INFO_WLOCK_ASSERT(&tcbinfo);
|
|
for (;;) {
|
|
tw = TAILQ_FIRST(&twq_2msl);
|
|
if (tw == NULL || (!reuse && tw->tw_time > ticks))
|
|
break;
|
|
INP_LOCK(tw->tw_inpcb);
|
|
tcp_twclose(tw, reuse);
|
|
if (reuse)
|
|
return (tw);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
tcp_timer_keep(struct tcpcb *tp, struct inpcb *inp)
|
|
{
|
|
struct tcptemp *t_template;
|
|
#ifdef TCPDEBUG
|
|
int ostate;
|
|
|
|
ostate = tp->t_state;
|
|
#endif
|
|
/*
|
|
* Keep-alive timer went off; send something
|
|
* or drop connection if idle for too long.
|
|
*/
|
|
tcpstat.tcps_keeptimeo++;
|
|
if (tp->t_state < TCPS_ESTABLISHED)
|
|
goto dropit;
|
|
if ((always_keepalive || inp->inp_socket->so_options & SO_KEEPALIVE) &&
|
|
tp->t_state <= TCPS_CLOSING) {
|
|
if ((ticks - tp->t_rcvtime) >= tcp_keepidle + tcp_maxidle)
|
|
goto dropit;
|
|
/*
|
|
* Send a packet designed to force a response
|
|
* if the peer is up and reachable:
|
|
* either an ACK if the connection is still alive,
|
|
* or an RST if the peer has closed the connection
|
|
* due to timeout or reboot.
|
|
* Using sequence number tp->snd_una-1
|
|
* causes the transmitted zero-length segment
|
|
* to lie outside the receive window;
|
|
* by the protocol spec, this requires the
|
|
* correspondent TCP to respond.
|
|
*/
|
|
tcpstat.tcps_keepprobe++;
|
|
t_template = tcpip_maketemplate(inp);
|
|
if (t_template) {
|
|
tcp_respond(tp, t_template->tt_ipgen,
|
|
&t_template->tt_t, (struct mbuf *)NULL,
|
|
tp->rcv_nxt, tp->snd_una - 1, 0);
|
|
(void) m_free(dtom(t_template));
|
|
}
|
|
tcp_timer_activate(tp, TT_KEEP, tcp_keepintvl);
|
|
} else
|
|
tcp_timer_activate(tp, TT_KEEP, tcp_keepidle);
|
|
|
|
#ifdef TCPDEBUG
|
|
if (inp->inp_socket->so_options & SO_DEBUG)
|
|
tcp_trace(TA_USER, ostate, tp, (void *)0, (struct tcphdr *)0,
|
|
PRU_SLOWTIMO);
|
|
#endif
|
|
return (0);
|
|
|
|
dropit:
|
|
tcpstat.tcps_keepdrops++;
|
|
return (2); /* tcp_drop() */
|
|
}
|
|
|
|
static int
|
|
tcp_timer_persist(struct tcpcb *tp, struct inpcb *inp)
|
|
{
|
|
#ifdef TCPDEBUG
|
|
int ostate;
|
|
|
|
ostate = tp->t_state;
|
|
#endif
|
|
/*
|
|
* Persistance timer into zero window.
|
|
* Force a byte to be output, if possible.
|
|
*/
|
|
tcpstat.tcps_persisttimeo++;
|
|
/*
|
|
* Hack: if the peer is dead/unreachable, we do not
|
|
* time out if the window is closed. After a full
|
|
* backoff, drop the connection if the idle time
|
|
* (no responses to probes) reaches the maximum
|
|
* backoff that we would use if retransmitting.
|
|
*/
|
|
if (tp->t_rxtshift == TCP_MAXRXTSHIFT &&
|
|
((ticks - tp->t_rcvtime) >= tcp_maxpersistidle ||
|
|
(ticks - tp->t_rcvtime) >= TCP_REXMTVAL(tp) * tcp_totbackoff)) {
|
|
tcpstat.tcps_persistdrop++;
|
|
return (2); /* tcp_drop() */
|
|
}
|
|
tcp_setpersist(tp);
|
|
tp->t_flags |= TF_FORCEDATA;
|
|
(void) tcp_output(tp);
|
|
tp->t_flags &= ~TF_FORCEDATA;
|
|
|
|
#ifdef TCPDEBUG
|
|
if (tp != NULL && tp->t_inpcb->inp_socket->so_options & SO_DEBUG)
|
|
tcp_trace(TA_USER, ostate, tp, NULL, NULL, PRU_SLOWTIMO);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
tcp_timer_rexmt(struct tcpcb *tp, struct inpcb *inp)
|
|
{
|
|
int rexmt;
|
|
#ifdef TCPDEBUG
|
|
int ostate;
|
|
|
|
ostate = tp->t_state;
|
|
#endif
|
|
tcp_free_sackholes(tp);
|
|
/*
|
|
* Retransmission timer went off. Message has not
|
|
* been acked within retransmit interval. Back off
|
|
* to a longer retransmit interval and retransmit one segment.
|
|
*/
|
|
if (++tp->t_rxtshift > TCP_MAXRXTSHIFT) {
|
|
tp->t_rxtshift = TCP_MAXRXTSHIFT;
|
|
tcpstat.tcps_timeoutdrop++;
|
|
return (2); /* tcp_drop() */
|
|
}
|
|
if (tp->t_rxtshift == 1) {
|
|
/*
|
|
* first retransmit; record ssthresh and cwnd so they can
|
|
* be recovered if this turns out to be a "bad" retransmit.
|
|
* A retransmit is considered "bad" if an ACK for this
|
|
* segment is received within RTT/2 interval; the assumption
|
|
* here is that the ACK was already in flight. See
|
|
* "On Estimating End-to-End Network Path Properties" by
|
|
* Allman and Paxson for more details.
|
|
*/
|
|
tp->snd_cwnd_prev = tp->snd_cwnd;
|
|
tp->snd_ssthresh_prev = tp->snd_ssthresh;
|
|
tp->snd_recover_prev = tp->snd_recover;
|
|
if (IN_FASTRECOVERY(tp))
|
|
tp->t_flags |= TF_WASFRECOVERY;
|
|
else
|
|
tp->t_flags &= ~TF_WASFRECOVERY;
|
|
tp->t_badrxtwin = ticks + (tp->t_srtt >> (TCP_RTT_SHIFT + 1));
|
|
}
|
|
tcpstat.tcps_rexmttimeo++;
|
|
if (tp->t_state == TCPS_SYN_SENT)
|
|
rexmt = TCP_REXMTVAL(tp) * tcp_syn_backoff[tp->t_rxtshift];
|
|
else
|
|
rexmt = TCP_REXMTVAL(tp) * tcp_backoff[tp->t_rxtshift];
|
|
TCPT_RANGESET(tp->t_rxtcur, rexmt,
|
|
tp->t_rttmin, TCPTV_REXMTMAX);
|
|
/*
|
|
* Disable rfc1323 if we havn't got any response to
|
|
* our third SYN to work-around some broken terminal servers
|
|
* (most of which have hopefully been retired) that have bad VJ
|
|
* header compression code which trashes TCP segments containing
|
|
* unknown-to-them TCP options.
|
|
*/
|
|
if ((tp->t_state == TCPS_SYN_SENT) && (tp->t_rxtshift == 3))
|
|
tp->t_flags &= ~(TF_REQ_SCALE|TF_REQ_TSTMP);
|
|
/*
|
|
* If we backed off this far, our srtt estimate is probably bogus.
|
|
* Clobber it so we'll take the next rtt measurement as our srtt;
|
|
* move the current srtt into rttvar to keep the current
|
|
* retransmit times until then.
|
|
*/
|
|
if (tp->t_rxtshift > TCP_MAXRXTSHIFT / 4) {
|
|
#ifdef INET6
|
|
if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0)
|
|
in6_losing(tp->t_inpcb);
|
|
else
|
|
#endif
|
|
tp->t_rttvar += (tp->t_srtt >> TCP_RTT_SHIFT);
|
|
tp->t_srtt = 0;
|
|
}
|
|
tp->snd_nxt = tp->snd_una;
|
|
tp->snd_recover = tp->snd_max;
|
|
/*
|
|
* Force a segment to be sent.
|
|
*/
|
|
tp->t_flags |= TF_ACKNOW;
|
|
/*
|
|
* If timing a segment in this window, stop the timer.
|
|
*/
|
|
tp->t_rtttime = 0;
|
|
/*
|
|
* Close the congestion window down to one segment
|
|
* (we'll open it by one segment for each ack we get).
|
|
* Since we probably have a window's worth of unacked
|
|
* data accumulated, this "slow start" keeps us from
|
|
* dumping all that data as back-to-back packets (which
|
|
* might overwhelm an intermediate gateway).
|
|
*
|
|
* There are two phases to the opening: Initially we
|
|
* open by one mss on each ack. This makes the window
|
|
* size increase exponentially with time. If the
|
|
* window is larger than the path can handle, this
|
|
* exponential growth results in dropped packet(s)
|
|
* almost immediately. To get more time between
|
|
* drops but still "push" the network to take advantage
|
|
* of improving conditions, we switch from exponential
|
|
* to linear window opening at some threshhold size.
|
|
* For a threshhold, we use half the current window
|
|
* size, truncated to a multiple of the mss.
|
|
*
|
|
* (the minimum cwnd that will give us exponential
|
|
* growth is 2 mss. We don't allow the threshhold
|
|
* to go below this.)
|
|
*/
|
|
{
|
|
u_int win = min(tp->snd_wnd, tp->snd_cwnd) / 2 / tp->t_maxseg;
|
|
if (win < 2)
|
|
win = 2;
|
|
tp->snd_cwnd = tp->t_maxseg;
|
|
tp->snd_ssthresh = win * tp->t_maxseg;
|
|
tp->t_dupacks = 0;
|
|
}
|
|
EXIT_FASTRECOVERY(tp);
|
|
(void) tcp_output(tp);
|
|
|
|
#ifdef TCPDEBUG
|
|
if (tp != NULL && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
|
|
tcp_trace(TA_USER, ostate, tp, (void *)0, (struct tcphdr *)0,
|
|
PRU_SLOWTIMO);
|
|
#endif
|
|
return (0);
|
|
}
|