freebsd-skq/sys/netpfil/pf/pf_ioctl.c
Kristof Provost 4483fb4773 pf: fix ioctl() memory leak
When we create an nvlist and insert it into another nvlist we must
remember to destroy it. The nvlist_add_nvlist() function makes a copy,
just like nvlist_add_string() makes a copy of the string. If we don't
we're leaking memory on every (nvlist-based) ioctl() call.

While here remove two redundant 'break' statements.

PR:		255971
MFC after:	3 days
Sponsored by:	Rubicon Communications, LLC ("Netgate")
2021-05-24 15:56:24 +02:00

6431 lines
155 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2001 Daniel Hartmeier
* Copyright (c) 2002,2003 Henning Brauer
* Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Effort sponsored in part by the Defense Advanced Research Projects
* Agency (DARPA) and Air Force Research Laboratory, Air Force
* Materiel Command, USAF, under agreement number F30602-01-2-0537.
*
* $OpenBSD: pf_ioctl.c,v 1.213 2009/02/15 21:46:12 mbalmer Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_bpf.h"
#include "opt_pf.h"
#include <sys/param.h>
#include <sys/_bitset.h>
#include <sys/bitset.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/endian.h>
#include <sys/fcntl.h>
#include <sys/filio.h>
#include <sys/hash.h>
#include <sys/interrupt.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/nv.h>
#include <sys/proc.h>
#include <sys/sdt.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/md5.h>
#include <sys/ucred.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/vnet.h>
#include <net/route.h>
#include <net/pfil.h>
#include <net/pfvar.h>
#include <net/if_pfsync.h>
#include <net/if_pflog.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet6/ip6_var.h>
#include <netinet/ip_icmp.h>
#include <netpfil/pf/pf_nv.h>
#ifdef INET6
#include <netinet/ip6.h>
#endif /* INET6 */
#ifdef ALTQ
#include <net/altq/altq.h>
#endif
SDT_PROVIDER_DECLARE(pf);
SDT_PROBE_DEFINE3(pf, ioctl, ioctl, error, "int", "int", "int");
SDT_PROBE_DEFINE3(pf, ioctl, function, error, "char *", "int", "int");
SDT_PROBE_DEFINE2(pf, ioctl, addrule, error, "int", "int");
SDT_PROBE_DEFINE2(pf, ioctl, nvchk, error, "int", "int");
static struct pf_kpool *pf_get_kpool(char *, u_int32_t, u_int8_t, u_int32_t,
u_int8_t, u_int8_t, u_int8_t);
static void pf_mv_kpool(struct pf_kpalist *, struct pf_kpalist *);
static void pf_empty_kpool(struct pf_kpalist *);
static int pfioctl(struct cdev *, u_long, caddr_t, int,
struct thread *);
#ifdef ALTQ
static int pf_begin_altq(u_int32_t *);
static int pf_rollback_altq(u_int32_t);
static int pf_commit_altq(u_int32_t);
static int pf_enable_altq(struct pf_altq *);
static int pf_disable_altq(struct pf_altq *);
static u_int32_t pf_qname2qid(char *);
static void pf_qid_unref(u_int32_t);
#endif /* ALTQ */
static int pf_begin_rules(u_int32_t *, int, const char *);
static int pf_rollback_rules(u_int32_t, int, char *);
static int pf_setup_pfsync_matching(struct pf_kruleset *);
static void pf_hash_rule(MD5_CTX *, struct pf_krule *);
static void pf_hash_rule_addr(MD5_CTX *, struct pf_rule_addr *);
static int pf_commit_rules(u_int32_t, int, char *);
static int pf_addr_setup(struct pf_kruleset *,
struct pf_addr_wrap *, sa_family_t);
static void pf_addr_copyout(struct pf_addr_wrap *);
static void pf_src_node_copy(const struct pf_ksrc_node *,
struct pf_src_node *);
#ifdef ALTQ
static int pf_export_kaltq(struct pf_altq *,
struct pfioc_altq_v1 *, size_t);
static int pf_import_kaltq(struct pfioc_altq_v1 *,
struct pf_altq *, size_t);
#endif /* ALTQ */
VNET_DEFINE(struct pf_krule, pf_default_rule);
#ifdef ALTQ
VNET_DEFINE_STATIC(int, pf_altq_running);
#define V_pf_altq_running VNET(pf_altq_running)
#endif
#define TAGID_MAX 50000
struct pf_tagname {
TAILQ_ENTRY(pf_tagname) namehash_entries;
TAILQ_ENTRY(pf_tagname) taghash_entries;
char name[PF_TAG_NAME_SIZE];
uint16_t tag;
int ref;
};
struct pf_tagset {
TAILQ_HEAD(, pf_tagname) *namehash;
TAILQ_HEAD(, pf_tagname) *taghash;
unsigned int mask;
uint32_t seed;
BITSET_DEFINE(, TAGID_MAX) avail;
};
VNET_DEFINE(struct pf_tagset, pf_tags);
#define V_pf_tags VNET(pf_tags)
static unsigned int pf_rule_tag_hashsize;
#define PF_RULE_TAG_HASH_SIZE_DEFAULT 128
SYSCTL_UINT(_net_pf, OID_AUTO, rule_tag_hashsize, CTLFLAG_RDTUN,
&pf_rule_tag_hashsize, PF_RULE_TAG_HASH_SIZE_DEFAULT,
"Size of pf(4) rule tag hashtable");
#ifdef ALTQ
VNET_DEFINE(struct pf_tagset, pf_qids);
#define V_pf_qids VNET(pf_qids)
static unsigned int pf_queue_tag_hashsize;
#define PF_QUEUE_TAG_HASH_SIZE_DEFAULT 128
SYSCTL_UINT(_net_pf, OID_AUTO, queue_tag_hashsize, CTLFLAG_RDTUN,
&pf_queue_tag_hashsize, PF_QUEUE_TAG_HASH_SIZE_DEFAULT,
"Size of pf(4) queue tag hashtable");
#endif
VNET_DEFINE(uma_zone_t, pf_tag_z);
#define V_pf_tag_z VNET(pf_tag_z)
static MALLOC_DEFINE(M_PFALTQ, "pf_altq", "pf(4) altq configuration db");
static MALLOC_DEFINE(M_PFRULE, "pf_rule", "pf(4) rules");
#if (PF_QNAME_SIZE != PF_TAG_NAME_SIZE)
#error PF_QNAME_SIZE must be equal to PF_TAG_NAME_SIZE
#endif
static void pf_init_tagset(struct pf_tagset *, unsigned int *,
unsigned int);
static void pf_cleanup_tagset(struct pf_tagset *);
static uint16_t tagname2hashindex(const struct pf_tagset *, const char *);
static uint16_t tag2hashindex(const struct pf_tagset *, uint16_t);
static u_int16_t tagname2tag(struct pf_tagset *, char *);
static u_int16_t pf_tagname2tag(char *);
static void tag_unref(struct pf_tagset *, u_int16_t);
#define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x
struct cdev *pf_dev;
/*
* XXX - These are new and need to be checked when moveing to a new version
*/
static void pf_clear_all_states(void);
static unsigned int pf_clear_states(const struct pf_kstate_kill *);
static int pf_killstates(struct pf_kstate_kill *,
unsigned int *);
static int pf_killstates_row(struct pf_kstate_kill *,
struct pf_idhash *);
static int pf_killstates_nv(struct pfioc_nv *);
static int pf_clearstates_nv(struct pfioc_nv *);
static int pf_getstate(struct pfioc_nv *);
static int pf_getstates(struct pfioc_nv *);
static int pf_clear_tables(void);
static void pf_clear_srcnodes(struct pf_ksrc_node *);
static void pf_kill_srcnodes(struct pfioc_src_node_kill *);
static int pf_keepcounters(struct pfioc_nv *);
static void pf_tbladdr_copyout(struct pf_addr_wrap *);
/*
* Wrapper functions for pfil(9) hooks
*/
#ifdef INET
static pfil_return_t pf_check_in(struct mbuf **m, struct ifnet *ifp,
int flags, void *ruleset __unused, struct inpcb *inp);
static pfil_return_t pf_check_out(struct mbuf **m, struct ifnet *ifp,
int flags, void *ruleset __unused, struct inpcb *inp);
#endif
#ifdef INET6
static pfil_return_t pf_check6_in(struct mbuf **m, struct ifnet *ifp,
int flags, void *ruleset __unused, struct inpcb *inp);
static pfil_return_t pf_check6_out(struct mbuf **m, struct ifnet *ifp,
int flags, void *ruleset __unused, struct inpcb *inp);
#endif
static void hook_pf(void);
static void dehook_pf(void);
static int shutdown_pf(void);
static int pf_load(void);
static void pf_unload(void);
static struct cdevsw pf_cdevsw = {
.d_ioctl = pfioctl,
.d_name = PF_NAME,
.d_version = D_VERSION,
};
volatile VNET_DEFINE_STATIC(int, pf_pfil_hooked);
#define V_pf_pfil_hooked VNET(pf_pfil_hooked)
/*
* We need a flag that is neither hooked nor running to know when
* the VNET is "valid". We primarily need this to control (global)
* external event, e.g., eventhandlers.
*/
VNET_DEFINE(int, pf_vnet_active);
#define V_pf_vnet_active VNET(pf_vnet_active)
int pf_end_threads;
struct proc *pf_purge_proc;
struct rmlock pf_rules_lock;
struct sx pf_ioctl_lock;
struct sx pf_end_lock;
/* pfsync */
VNET_DEFINE(pfsync_state_import_t *, pfsync_state_import_ptr);
VNET_DEFINE(pfsync_insert_state_t *, pfsync_insert_state_ptr);
VNET_DEFINE(pfsync_update_state_t *, pfsync_update_state_ptr);
VNET_DEFINE(pfsync_delete_state_t *, pfsync_delete_state_ptr);
VNET_DEFINE(pfsync_clear_states_t *, pfsync_clear_states_ptr);
VNET_DEFINE(pfsync_defer_t *, pfsync_defer_ptr);
pfsync_detach_ifnet_t *pfsync_detach_ifnet_ptr;
/* pflog */
pflog_packet_t *pflog_packet_ptr = NULL;
extern u_long pf_ioctl_maxcount;
#define ERROUT_FUNCTION(target, x) \
do { \
error = (x); \
SDT_PROBE3(pf, ioctl, function, error, __func__, error, \
__LINE__); \
goto target; \
} while (0)
static void
pfattach_vnet(void)
{
u_int32_t *my_timeout = V_pf_default_rule.timeout;
pf_initialize();
pfr_initialize();
pfi_initialize_vnet();
pf_normalize_init();
V_pf_limits[PF_LIMIT_STATES].limit = PFSTATE_HIWAT;
V_pf_limits[PF_LIMIT_SRC_NODES].limit = PFSNODE_HIWAT;
RB_INIT(&V_pf_anchors);
pf_init_kruleset(&pf_main_ruleset);
/* default rule should never be garbage collected */
V_pf_default_rule.entries.tqe_prev = &V_pf_default_rule.entries.tqe_next;
#ifdef PF_DEFAULT_TO_DROP
V_pf_default_rule.action = PF_DROP;
#else
V_pf_default_rule.action = PF_PASS;
#endif
V_pf_default_rule.nr = -1;
V_pf_default_rule.rtableid = -1;
V_pf_default_rule.evaluations = counter_u64_alloc(M_WAITOK);
for (int i = 0; i < 2; i++) {
V_pf_default_rule.packets[i] = counter_u64_alloc(M_WAITOK);
V_pf_default_rule.bytes[i] = counter_u64_alloc(M_WAITOK);
}
V_pf_default_rule.states_cur = counter_u64_alloc(M_WAITOK);
V_pf_default_rule.states_tot = counter_u64_alloc(M_WAITOK);
V_pf_default_rule.src_nodes = counter_u64_alloc(M_WAITOK);
/* initialize default timeouts */
my_timeout[PFTM_TCP_FIRST_PACKET] = PFTM_TCP_FIRST_PACKET_VAL;
my_timeout[PFTM_TCP_OPENING] = PFTM_TCP_OPENING_VAL;
my_timeout[PFTM_TCP_ESTABLISHED] = PFTM_TCP_ESTABLISHED_VAL;
my_timeout[PFTM_TCP_CLOSING] = PFTM_TCP_CLOSING_VAL;
my_timeout[PFTM_TCP_FIN_WAIT] = PFTM_TCP_FIN_WAIT_VAL;
my_timeout[PFTM_TCP_CLOSED] = PFTM_TCP_CLOSED_VAL;
my_timeout[PFTM_UDP_FIRST_PACKET] = PFTM_UDP_FIRST_PACKET_VAL;
my_timeout[PFTM_UDP_SINGLE] = PFTM_UDP_SINGLE_VAL;
my_timeout[PFTM_UDP_MULTIPLE] = PFTM_UDP_MULTIPLE_VAL;
my_timeout[PFTM_ICMP_FIRST_PACKET] = PFTM_ICMP_FIRST_PACKET_VAL;
my_timeout[PFTM_ICMP_ERROR_REPLY] = PFTM_ICMP_ERROR_REPLY_VAL;
my_timeout[PFTM_OTHER_FIRST_PACKET] = PFTM_OTHER_FIRST_PACKET_VAL;
my_timeout[PFTM_OTHER_SINGLE] = PFTM_OTHER_SINGLE_VAL;
my_timeout[PFTM_OTHER_MULTIPLE] = PFTM_OTHER_MULTIPLE_VAL;
my_timeout[PFTM_FRAG] = PFTM_FRAG_VAL;
my_timeout[PFTM_INTERVAL] = PFTM_INTERVAL_VAL;
my_timeout[PFTM_SRC_NODE] = PFTM_SRC_NODE_VAL;
my_timeout[PFTM_TS_DIFF] = PFTM_TS_DIFF_VAL;
my_timeout[PFTM_ADAPTIVE_START] = PFSTATE_ADAPT_START;
my_timeout[PFTM_ADAPTIVE_END] = PFSTATE_ADAPT_END;
bzero(&V_pf_status, sizeof(V_pf_status));
V_pf_status.debug = PF_DEBUG_URGENT;
V_pf_pfil_hooked = 0;
/* XXX do our best to avoid a conflict */
V_pf_status.hostid = arc4random();
for (int i = 0; i < PFRES_MAX; i++)
V_pf_status.counters[i] = counter_u64_alloc(M_WAITOK);
for (int i = 0; i < LCNT_MAX; i++)
V_pf_status.lcounters[i] = counter_u64_alloc(M_WAITOK);
for (int i = 0; i < FCNT_MAX; i++)
V_pf_status.fcounters[i] = counter_u64_alloc(M_WAITOK);
for (int i = 0; i < SCNT_MAX; i++)
V_pf_status.scounters[i] = counter_u64_alloc(M_WAITOK);
if (swi_add(&V_pf_swi_ie, "pf send", pf_intr, curvnet, SWI_NET,
INTR_MPSAFE, &V_pf_swi_cookie) != 0)
/* XXXGL: leaked all above. */
return;
}
static struct pf_kpool *
pf_get_kpool(char *anchor, u_int32_t ticket, u_int8_t rule_action,
u_int32_t rule_number, u_int8_t r_last, u_int8_t active,
u_int8_t check_ticket)
{
struct pf_kruleset *ruleset;
struct pf_krule *rule;
int rs_num;
ruleset = pf_find_kruleset(anchor);
if (ruleset == NULL)
return (NULL);
rs_num = pf_get_ruleset_number(rule_action);
if (rs_num >= PF_RULESET_MAX)
return (NULL);
if (active) {
if (check_ticket && ticket !=
ruleset->rules[rs_num].active.ticket)
return (NULL);
if (r_last)
rule = TAILQ_LAST(ruleset->rules[rs_num].active.ptr,
pf_krulequeue);
else
rule = TAILQ_FIRST(ruleset->rules[rs_num].active.ptr);
} else {
if (check_ticket && ticket !=
ruleset->rules[rs_num].inactive.ticket)
return (NULL);
if (r_last)
rule = TAILQ_LAST(ruleset->rules[rs_num].inactive.ptr,
pf_krulequeue);
else
rule = TAILQ_FIRST(ruleset->rules[rs_num].inactive.ptr);
}
if (!r_last) {
while ((rule != NULL) && (rule->nr != rule_number))
rule = TAILQ_NEXT(rule, entries);
}
if (rule == NULL)
return (NULL);
return (&rule->rpool);
}
static void
pf_mv_kpool(struct pf_kpalist *poola, struct pf_kpalist *poolb)
{
struct pf_kpooladdr *mv_pool_pa;
while ((mv_pool_pa = TAILQ_FIRST(poola)) != NULL) {
TAILQ_REMOVE(poola, mv_pool_pa, entries);
TAILQ_INSERT_TAIL(poolb, mv_pool_pa, entries);
}
}
static void
pf_empty_kpool(struct pf_kpalist *poola)
{
struct pf_kpooladdr *pa;
while ((pa = TAILQ_FIRST(poola)) != NULL) {
switch (pa->addr.type) {
case PF_ADDR_DYNIFTL:
pfi_dynaddr_remove(pa->addr.p.dyn);
break;
case PF_ADDR_TABLE:
/* XXX: this could be unfinished pooladdr on pabuf */
if (pa->addr.p.tbl != NULL)
pfr_detach_table(pa->addr.p.tbl);
break;
}
if (pa->kif)
pfi_kkif_unref(pa->kif);
TAILQ_REMOVE(poola, pa, entries);
free(pa, M_PFRULE);
}
}
static void
pf_unlink_rule(struct pf_krulequeue *rulequeue, struct pf_krule *rule)
{
PF_RULES_WASSERT();
TAILQ_REMOVE(rulequeue, rule, entries);
PF_UNLNKDRULES_LOCK();
rule->rule_ref |= PFRULE_REFS;
TAILQ_INSERT_TAIL(&V_pf_unlinked_rules, rule, entries);
PF_UNLNKDRULES_UNLOCK();
}
void
pf_free_rule(struct pf_krule *rule)
{
PF_RULES_WASSERT();
if (rule->tag)
tag_unref(&V_pf_tags, rule->tag);
if (rule->match_tag)
tag_unref(&V_pf_tags, rule->match_tag);
#ifdef ALTQ
if (rule->pqid != rule->qid)
pf_qid_unref(rule->pqid);
pf_qid_unref(rule->qid);
#endif
switch (rule->src.addr.type) {
case PF_ADDR_DYNIFTL:
pfi_dynaddr_remove(rule->src.addr.p.dyn);
break;
case PF_ADDR_TABLE:
pfr_detach_table(rule->src.addr.p.tbl);
break;
}
switch (rule->dst.addr.type) {
case PF_ADDR_DYNIFTL:
pfi_dynaddr_remove(rule->dst.addr.p.dyn);
break;
case PF_ADDR_TABLE:
pfr_detach_table(rule->dst.addr.p.tbl);
break;
}
if (rule->overload_tbl)
pfr_detach_table(rule->overload_tbl);
if (rule->kif)
pfi_kkif_unref(rule->kif);
pf_kanchor_remove(rule);
pf_empty_kpool(&rule->rpool.list);
pf_krule_free(rule);
}
static void
pf_init_tagset(struct pf_tagset *ts, unsigned int *tunable_size,
unsigned int default_size)
{
unsigned int i;
unsigned int hashsize;
if (*tunable_size == 0 || !powerof2(*tunable_size))
*tunable_size = default_size;
hashsize = *tunable_size;
ts->namehash = mallocarray(hashsize, sizeof(*ts->namehash), M_PFHASH,
M_WAITOK);
ts->taghash = mallocarray(hashsize, sizeof(*ts->taghash), M_PFHASH,
M_WAITOK);
ts->mask = hashsize - 1;
ts->seed = arc4random();
for (i = 0; i < hashsize; i++) {
TAILQ_INIT(&ts->namehash[i]);
TAILQ_INIT(&ts->taghash[i]);
}
BIT_FILL(TAGID_MAX, &ts->avail);
}
static void
pf_cleanup_tagset(struct pf_tagset *ts)
{
unsigned int i;
unsigned int hashsize;
struct pf_tagname *t, *tmp;
/*
* Only need to clean up one of the hashes as each tag is hashed
* into each table.
*/
hashsize = ts->mask + 1;
for (i = 0; i < hashsize; i++)
TAILQ_FOREACH_SAFE(t, &ts->namehash[i], namehash_entries, tmp)
uma_zfree(V_pf_tag_z, t);
free(ts->namehash, M_PFHASH);
free(ts->taghash, M_PFHASH);
}
static uint16_t
tagname2hashindex(const struct pf_tagset *ts, const char *tagname)
{
size_t len;
len = strnlen(tagname, PF_TAG_NAME_SIZE - 1);
return (murmur3_32_hash(tagname, len, ts->seed) & ts->mask);
}
static uint16_t
tag2hashindex(const struct pf_tagset *ts, uint16_t tag)
{
return (tag & ts->mask);
}
static u_int16_t
tagname2tag(struct pf_tagset *ts, char *tagname)
{
struct pf_tagname *tag;
u_int32_t index;
u_int16_t new_tagid;
PF_RULES_WASSERT();
index = tagname2hashindex(ts, tagname);
TAILQ_FOREACH(tag, &ts->namehash[index], namehash_entries)
if (strcmp(tagname, tag->name) == 0) {
tag->ref++;
return (tag->tag);
}
/*
* new entry
*
* to avoid fragmentation, we do a linear search from the beginning
* and take the first free slot we find.
*/
new_tagid = BIT_FFS(TAGID_MAX, &ts->avail);
/*
* Tags are 1-based, with valid tags in the range [1..TAGID_MAX].
* BIT_FFS() returns a 1-based bit number, with 0 indicating no bits
* set. It may also return a bit number greater than TAGID_MAX due
* to rounding of the number of bits in the vector up to a multiple
* of the vector word size at declaration/allocation time.
*/
if ((new_tagid == 0) || (new_tagid > TAGID_MAX))
return (0);
/* Mark the tag as in use. Bits are 0-based for BIT_CLR() */
BIT_CLR(TAGID_MAX, new_tagid - 1, &ts->avail);
/* allocate and fill new struct pf_tagname */
tag = uma_zalloc(V_pf_tag_z, M_NOWAIT);
if (tag == NULL)
return (0);
strlcpy(tag->name, tagname, sizeof(tag->name));
tag->tag = new_tagid;
tag->ref = 1;
/* Insert into namehash */
TAILQ_INSERT_TAIL(&ts->namehash[index], tag, namehash_entries);
/* Insert into taghash */
index = tag2hashindex(ts, new_tagid);
TAILQ_INSERT_TAIL(&ts->taghash[index], tag, taghash_entries);
return (tag->tag);
}
static void
tag_unref(struct pf_tagset *ts, u_int16_t tag)
{
struct pf_tagname *t;
uint16_t index;
PF_RULES_WASSERT();
index = tag2hashindex(ts, tag);
TAILQ_FOREACH(t, &ts->taghash[index], taghash_entries)
if (tag == t->tag) {
if (--t->ref == 0) {
TAILQ_REMOVE(&ts->taghash[index], t,
taghash_entries);
index = tagname2hashindex(ts, t->name);
TAILQ_REMOVE(&ts->namehash[index], t,
namehash_entries);
/* Bits are 0-based for BIT_SET() */
BIT_SET(TAGID_MAX, tag - 1, &ts->avail);
uma_zfree(V_pf_tag_z, t);
}
break;
}
}
static u_int16_t
pf_tagname2tag(char *tagname)
{
return (tagname2tag(&V_pf_tags, tagname));
}
#ifdef ALTQ
static u_int32_t
pf_qname2qid(char *qname)
{
return ((u_int32_t)tagname2tag(&V_pf_qids, qname));
}
static void
pf_qid_unref(u_int32_t qid)
{
tag_unref(&V_pf_qids, (u_int16_t)qid);
}
static int
pf_begin_altq(u_int32_t *ticket)
{
struct pf_altq *altq, *tmp;
int error = 0;
PF_RULES_WASSERT();
/* Purge the old altq lists */
TAILQ_FOREACH_SAFE(altq, V_pf_altq_ifs_inactive, entries, tmp) {
if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) {
/* detach and destroy the discipline */
error = altq_remove(altq);
}
free(altq, M_PFALTQ);
}
TAILQ_INIT(V_pf_altq_ifs_inactive);
TAILQ_FOREACH_SAFE(altq, V_pf_altqs_inactive, entries, tmp) {
pf_qid_unref(altq->qid);
free(altq, M_PFALTQ);
}
TAILQ_INIT(V_pf_altqs_inactive);
if (error)
return (error);
*ticket = ++V_ticket_altqs_inactive;
V_altqs_inactive_open = 1;
return (0);
}
static int
pf_rollback_altq(u_int32_t ticket)
{
struct pf_altq *altq, *tmp;
int error = 0;
PF_RULES_WASSERT();
if (!V_altqs_inactive_open || ticket != V_ticket_altqs_inactive)
return (0);
/* Purge the old altq lists */
TAILQ_FOREACH_SAFE(altq, V_pf_altq_ifs_inactive, entries, tmp) {
if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) {
/* detach and destroy the discipline */
error = altq_remove(altq);
}
free(altq, M_PFALTQ);
}
TAILQ_INIT(V_pf_altq_ifs_inactive);
TAILQ_FOREACH_SAFE(altq, V_pf_altqs_inactive, entries, tmp) {
pf_qid_unref(altq->qid);
free(altq, M_PFALTQ);
}
TAILQ_INIT(V_pf_altqs_inactive);
V_altqs_inactive_open = 0;
return (error);
}
static int
pf_commit_altq(u_int32_t ticket)
{
struct pf_altqqueue *old_altqs, *old_altq_ifs;
struct pf_altq *altq, *tmp;
int err, error = 0;
PF_RULES_WASSERT();
if (!V_altqs_inactive_open || ticket != V_ticket_altqs_inactive)
return (EBUSY);
/* swap altqs, keep the old. */
old_altqs = V_pf_altqs_active;
old_altq_ifs = V_pf_altq_ifs_active;
V_pf_altqs_active = V_pf_altqs_inactive;
V_pf_altq_ifs_active = V_pf_altq_ifs_inactive;
V_pf_altqs_inactive = old_altqs;
V_pf_altq_ifs_inactive = old_altq_ifs;
V_ticket_altqs_active = V_ticket_altqs_inactive;
/* Attach new disciplines */
TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) {
if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) {
/* attach the discipline */
error = altq_pfattach(altq);
if (error == 0 && V_pf_altq_running)
error = pf_enable_altq(altq);
if (error != 0)
return (error);
}
}
/* Purge the old altq lists */
TAILQ_FOREACH_SAFE(altq, V_pf_altq_ifs_inactive, entries, tmp) {
if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) {
/* detach and destroy the discipline */
if (V_pf_altq_running)
error = pf_disable_altq(altq);
err = altq_pfdetach(altq);
if (err != 0 && error == 0)
error = err;
err = altq_remove(altq);
if (err != 0 && error == 0)
error = err;
}
free(altq, M_PFALTQ);
}
TAILQ_INIT(V_pf_altq_ifs_inactive);
TAILQ_FOREACH_SAFE(altq, V_pf_altqs_inactive, entries, tmp) {
pf_qid_unref(altq->qid);
free(altq, M_PFALTQ);
}
TAILQ_INIT(V_pf_altqs_inactive);
V_altqs_inactive_open = 0;
return (error);
}
static int
pf_enable_altq(struct pf_altq *altq)
{
struct ifnet *ifp;
struct tb_profile tb;
int error = 0;
if ((ifp = ifunit(altq->ifname)) == NULL)
return (EINVAL);
if (ifp->if_snd.altq_type != ALTQT_NONE)
error = altq_enable(&ifp->if_snd);
/* set tokenbucket regulator */
if (error == 0 && ifp != NULL && ALTQ_IS_ENABLED(&ifp->if_snd)) {
tb.rate = altq->ifbandwidth;
tb.depth = altq->tbrsize;
error = tbr_set(&ifp->if_snd, &tb);
}
return (error);
}
static int
pf_disable_altq(struct pf_altq *altq)
{
struct ifnet *ifp;
struct tb_profile tb;
int error;
if ((ifp = ifunit(altq->ifname)) == NULL)
return (EINVAL);
/*
* when the discipline is no longer referenced, it was overridden
* by a new one. if so, just return.
*/
if (altq->altq_disc != ifp->if_snd.altq_disc)
return (0);
error = altq_disable(&ifp->if_snd);
if (error == 0) {
/* clear tokenbucket regulator */
tb.rate = 0;
error = tbr_set(&ifp->if_snd, &tb);
}
return (error);
}
static int
pf_altq_ifnet_event_add(struct ifnet *ifp, int remove, u_int32_t ticket,
struct pf_altq *altq)
{
struct ifnet *ifp1;
int error = 0;
/* Deactivate the interface in question */
altq->local_flags &= ~PFALTQ_FLAG_IF_REMOVED;
if ((ifp1 = ifunit(altq->ifname)) == NULL ||
(remove && ifp1 == ifp)) {
altq->local_flags |= PFALTQ_FLAG_IF_REMOVED;
} else {
error = altq_add(ifp1, altq);
if (ticket != V_ticket_altqs_inactive)
error = EBUSY;
if (error)
free(altq, M_PFALTQ);
}
return (error);
}
void
pf_altq_ifnet_event(struct ifnet *ifp, int remove)
{
struct pf_altq *a1, *a2, *a3;
u_int32_t ticket;
int error = 0;
/*
* No need to re-evaluate the configuration for events on interfaces
* that do not support ALTQ, as it's not possible for such
* interfaces to be part of the configuration.
*/
if (!ALTQ_IS_READY(&ifp->if_snd))
return;
/* Interrupt userland queue modifications */
if (V_altqs_inactive_open)
pf_rollback_altq(V_ticket_altqs_inactive);
/* Start new altq ruleset */
if (pf_begin_altq(&ticket))
return;
/* Copy the current active set */
TAILQ_FOREACH(a1, V_pf_altq_ifs_active, entries) {
a2 = malloc(sizeof(*a2), M_PFALTQ, M_NOWAIT);
if (a2 == NULL) {
error = ENOMEM;
break;
}
bcopy(a1, a2, sizeof(struct pf_altq));
error = pf_altq_ifnet_event_add(ifp, remove, ticket, a2);
if (error)
break;
TAILQ_INSERT_TAIL(V_pf_altq_ifs_inactive, a2, entries);
}
if (error)
goto out;
TAILQ_FOREACH(a1, V_pf_altqs_active, entries) {
a2 = malloc(sizeof(*a2), M_PFALTQ, M_NOWAIT);
if (a2 == NULL) {
error = ENOMEM;
break;
}
bcopy(a1, a2, sizeof(struct pf_altq));
if ((a2->qid = pf_qname2qid(a2->qname)) == 0) {
error = EBUSY;
free(a2, M_PFALTQ);
break;
}
a2->altq_disc = NULL;
TAILQ_FOREACH(a3, V_pf_altq_ifs_inactive, entries) {
if (strncmp(a3->ifname, a2->ifname,
IFNAMSIZ) == 0) {
a2->altq_disc = a3->altq_disc;
break;
}
}
error = pf_altq_ifnet_event_add(ifp, remove, ticket, a2);
if (error)
break;
TAILQ_INSERT_TAIL(V_pf_altqs_inactive, a2, entries);
}
out:
if (error != 0)
pf_rollback_altq(ticket);
else
pf_commit_altq(ticket);
}
#endif /* ALTQ */
static int
pf_begin_rules(u_int32_t *ticket, int rs_num, const char *anchor)
{
struct pf_kruleset *rs;
struct pf_krule *rule;
PF_RULES_WASSERT();
if (rs_num < 0 || rs_num >= PF_RULESET_MAX)
return (EINVAL);
rs = pf_find_or_create_kruleset(anchor);
if (rs == NULL)
return (EINVAL);
while ((rule = TAILQ_FIRST(rs->rules[rs_num].inactive.ptr)) != NULL) {
pf_unlink_rule(rs->rules[rs_num].inactive.ptr, rule);
rs->rules[rs_num].inactive.rcount--;
}
*ticket = ++rs->rules[rs_num].inactive.ticket;
rs->rules[rs_num].inactive.open = 1;
return (0);
}
static int
pf_rollback_rules(u_int32_t ticket, int rs_num, char *anchor)
{
struct pf_kruleset *rs;
struct pf_krule *rule;
PF_RULES_WASSERT();
if (rs_num < 0 || rs_num >= PF_RULESET_MAX)
return (EINVAL);
rs = pf_find_kruleset(anchor);
if (rs == NULL || !rs->rules[rs_num].inactive.open ||
rs->rules[rs_num].inactive.ticket != ticket)
return (0);
while ((rule = TAILQ_FIRST(rs->rules[rs_num].inactive.ptr)) != NULL) {
pf_unlink_rule(rs->rules[rs_num].inactive.ptr, rule);
rs->rules[rs_num].inactive.rcount--;
}
rs->rules[rs_num].inactive.open = 0;
return (0);
}
#define PF_MD5_UPD(st, elm) \
MD5Update(ctx, (u_int8_t *) &(st)->elm, sizeof((st)->elm))
#define PF_MD5_UPD_STR(st, elm) \
MD5Update(ctx, (u_int8_t *) (st)->elm, strlen((st)->elm))
#define PF_MD5_UPD_HTONL(st, elm, stor) do { \
(stor) = htonl((st)->elm); \
MD5Update(ctx, (u_int8_t *) &(stor), sizeof(u_int32_t));\
} while (0)
#define PF_MD5_UPD_HTONS(st, elm, stor) do { \
(stor) = htons((st)->elm); \
MD5Update(ctx, (u_int8_t *) &(stor), sizeof(u_int16_t));\
} while (0)
static void
pf_hash_rule_addr(MD5_CTX *ctx, struct pf_rule_addr *pfr)
{
PF_MD5_UPD(pfr, addr.type);
switch (pfr->addr.type) {
case PF_ADDR_DYNIFTL:
PF_MD5_UPD(pfr, addr.v.ifname);
PF_MD5_UPD(pfr, addr.iflags);
break;
case PF_ADDR_TABLE:
PF_MD5_UPD(pfr, addr.v.tblname);
break;
case PF_ADDR_ADDRMASK:
/* XXX ignore af? */
PF_MD5_UPD(pfr, addr.v.a.addr.addr32);
PF_MD5_UPD(pfr, addr.v.a.mask.addr32);
break;
}
PF_MD5_UPD(pfr, port[0]);
PF_MD5_UPD(pfr, port[1]);
PF_MD5_UPD(pfr, neg);
PF_MD5_UPD(pfr, port_op);
}
static void
pf_hash_rule(MD5_CTX *ctx, struct pf_krule *rule)
{
u_int16_t x;
u_int32_t y;
pf_hash_rule_addr(ctx, &rule->src);
pf_hash_rule_addr(ctx, &rule->dst);
for (int i = 0; i < PF_RULE_MAX_LABEL_COUNT; i++)
PF_MD5_UPD_STR(rule, label[i]);
PF_MD5_UPD_STR(rule, ifname);
PF_MD5_UPD_STR(rule, match_tagname);
PF_MD5_UPD_HTONS(rule, match_tag, x); /* dup? */
PF_MD5_UPD_HTONL(rule, os_fingerprint, y);
PF_MD5_UPD_HTONL(rule, prob, y);
PF_MD5_UPD_HTONL(rule, uid.uid[0], y);
PF_MD5_UPD_HTONL(rule, uid.uid[1], y);
PF_MD5_UPD(rule, uid.op);
PF_MD5_UPD_HTONL(rule, gid.gid[0], y);
PF_MD5_UPD_HTONL(rule, gid.gid[1], y);
PF_MD5_UPD(rule, gid.op);
PF_MD5_UPD_HTONL(rule, rule_flag, y);
PF_MD5_UPD(rule, action);
PF_MD5_UPD(rule, direction);
PF_MD5_UPD(rule, af);
PF_MD5_UPD(rule, quick);
PF_MD5_UPD(rule, ifnot);
PF_MD5_UPD(rule, match_tag_not);
PF_MD5_UPD(rule, natpass);
PF_MD5_UPD(rule, keep_state);
PF_MD5_UPD(rule, proto);
PF_MD5_UPD(rule, type);
PF_MD5_UPD(rule, code);
PF_MD5_UPD(rule, flags);
PF_MD5_UPD(rule, flagset);
PF_MD5_UPD(rule, allow_opts);
PF_MD5_UPD(rule, rt);
PF_MD5_UPD(rule, tos);
}
static bool
pf_krule_compare(struct pf_krule *a, struct pf_krule *b)
{
MD5_CTX ctx[2];
u_int8_t digest[2][PF_MD5_DIGEST_LENGTH];
MD5Init(&ctx[0]);
MD5Init(&ctx[1]);
pf_hash_rule(&ctx[0], a);
pf_hash_rule(&ctx[1], b);
MD5Final(digest[0], &ctx[0]);
MD5Final(digest[1], &ctx[1]);
return (memcmp(digest[0], digest[1], PF_MD5_DIGEST_LENGTH) == 0);
}
static int
pf_commit_rules(u_int32_t ticket, int rs_num, char *anchor)
{
struct pf_kruleset *rs;
struct pf_krule *rule, **old_array, *tail;
struct pf_krulequeue *old_rules;
int error;
u_int32_t old_rcount;
PF_RULES_WASSERT();
if (rs_num < 0 || rs_num >= PF_RULESET_MAX)
return (EINVAL);
rs = pf_find_kruleset(anchor);
if (rs == NULL || !rs->rules[rs_num].inactive.open ||
ticket != rs->rules[rs_num].inactive.ticket)
return (EBUSY);
/* Calculate checksum for the main ruleset */
if (rs == &pf_main_ruleset) {
error = pf_setup_pfsync_matching(rs);
if (error != 0)
return (error);
}
/* Swap rules, keep the old. */
old_rules = rs->rules[rs_num].active.ptr;
old_rcount = rs->rules[rs_num].active.rcount;
old_array = rs->rules[rs_num].active.ptr_array;
rs->rules[rs_num].active.ptr =
rs->rules[rs_num].inactive.ptr;
rs->rules[rs_num].active.ptr_array =
rs->rules[rs_num].inactive.ptr_array;
rs->rules[rs_num].active.rcount =
rs->rules[rs_num].inactive.rcount;
/* Attempt to preserve counter information. */
if (V_pf_status.keep_counters) {
TAILQ_FOREACH(rule, rs->rules[rs_num].active.ptr,
entries) {
tail = TAILQ_FIRST(old_rules);
while ((tail != NULL) && ! pf_krule_compare(tail, rule))
tail = TAILQ_NEXT(tail, entries);
if (tail != NULL) {
counter_u64_add(rule->evaluations,
counter_u64_fetch(tail->evaluations));
counter_u64_add(rule->packets[0],
counter_u64_fetch(tail->packets[0]));
counter_u64_add(rule->packets[1],
counter_u64_fetch(tail->packets[1]));
counter_u64_add(rule->bytes[0],
counter_u64_fetch(tail->bytes[0]));
counter_u64_add(rule->bytes[1],
counter_u64_fetch(tail->bytes[1]));
}
}
}
rs->rules[rs_num].inactive.ptr = old_rules;
rs->rules[rs_num].inactive.ptr_array = old_array;
rs->rules[rs_num].inactive.rcount = old_rcount;
rs->rules[rs_num].active.ticket =
rs->rules[rs_num].inactive.ticket;
pf_calc_skip_steps(rs->rules[rs_num].active.ptr);
/* Purge the old rule list. */
while ((rule = TAILQ_FIRST(old_rules)) != NULL)
pf_unlink_rule(old_rules, rule);
if (rs->rules[rs_num].inactive.ptr_array)
free(rs->rules[rs_num].inactive.ptr_array, M_TEMP);
rs->rules[rs_num].inactive.ptr_array = NULL;
rs->rules[rs_num].inactive.rcount = 0;
rs->rules[rs_num].inactive.open = 0;
pf_remove_if_empty_kruleset(rs);
return (0);
}
static int
pf_setup_pfsync_matching(struct pf_kruleset *rs)
{
MD5_CTX ctx;
struct pf_krule *rule;
int rs_cnt;
u_int8_t digest[PF_MD5_DIGEST_LENGTH];
MD5Init(&ctx);
for (rs_cnt = 0; rs_cnt < PF_RULESET_MAX; rs_cnt++) {
/* XXX PF_RULESET_SCRUB as well? */
if (rs_cnt == PF_RULESET_SCRUB)
continue;
if (rs->rules[rs_cnt].inactive.ptr_array)
free(rs->rules[rs_cnt].inactive.ptr_array, M_TEMP);
rs->rules[rs_cnt].inactive.ptr_array = NULL;
if (rs->rules[rs_cnt].inactive.rcount) {
rs->rules[rs_cnt].inactive.ptr_array =
malloc(sizeof(caddr_t) *
rs->rules[rs_cnt].inactive.rcount,
M_TEMP, M_NOWAIT);
if (!rs->rules[rs_cnt].inactive.ptr_array)
return (ENOMEM);
}
TAILQ_FOREACH(rule, rs->rules[rs_cnt].inactive.ptr,
entries) {
pf_hash_rule(&ctx, rule);
(rs->rules[rs_cnt].inactive.ptr_array)[rule->nr] = rule;
}
}
MD5Final(digest, &ctx);
memcpy(V_pf_status.pf_chksum, digest, sizeof(V_pf_status.pf_chksum));
return (0);
}
static int
pf_addr_setup(struct pf_kruleset *ruleset, struct pf_addr_wrap *addr,
sa_family_t af)
{
int error = 0;
switch (addr->type) {
case PF_ADDR_TABLE:
addr->p.tbl = pfr_attach_table(ruleset, addr->v.tblname);
if (addr->p.tbl == NULL)
error = ENOMEM;
break;
case PF_ADDR_DYNIFTL:
error = pfi_dynaddr_setup(addr, af);
break;
}
return (error);
}
static void
pf_addr_copyout(struct pf_addr_wrap *addr)
{
switch (addr->type) {
case PF_ADDR_DYNIFTL:
pfi_dynaddr_copyout(addr);
break;
case PF_ADDR_TABLE:
pf_tbladdr_copyout(addr);
break;
}
}
static void
pf_src_node_copy(const struct pf_ksrc_node *in, struct pf_src_node *out)
{
int secs = time_uptime, diff;
bzero(out, sizeof(struct pf_src_node));
bcopy(&in->addr, &out->addr, sizeof(struct pf_addr));
bcopy(&in->raddr, &out->raddr, sizeof(struct pf_addr));
if (in->rule.ptr != NULL)
out->rule.nr = in->rule.ptr->nr;
for (int i = 0; i < 2; i++) {
out->bytes[i] = counter_u64_fetch(in->bytes[i]);
out->packets[i] = counter_u64_fetch(in->packets[i]);
}
out->states = in->states;
out->conn = in->conn;
out->af = in->af;
out->ruletype = in->ruletype;
out->creation = secs - in->creation;
if (out->expire > secs)
out->expire -= secs;
else
out->expire = 0;
/* Adjust the connection rate estimate. */
diff = secs - in->conn_rate.last;
if (diff >= in->conn_rate.seconds)
out->conn_rate.count = 0;
else
out->conn_rate.count -=
in->conn_rate.count * diff /
in->conn_rate.seconds;
}
#ifdef ALTQ
/*
* Handle export of struct pf_kaltq to user binaries that may be using any
* version of struct pf_altq.
*/
static int
pf_export_kaltq(struct pf_altq *q, struct pfioc_altq_v1 *pa, size_t ioc_size)
{
u_int32_t version;
if (ioc_size == sizeof(struct pfioc_altq_v0))
version = 0;
else
version = pa->version;
if (version > PFIOC_ALTQ_VERSION)
return (EINVAL);
#define ASSIGN(x) exported_q->x = q->x
#define COPY(x) \
bcopy(&q->x, &exported_q->x, min(sizeof(q->x), sizeof(exported_q->x)))
#define SATU16(x) (u_int32_t)uqmin((x), USHRT_MAX)
#define SATU32(x) (u_int32_t)uqmin((x), UINT_MAX)
switch (version) {
case 0: {
struct pf_altq_v0 *exported_q =
&((struct pfioc_altq_v0 *)pa)->altq;
COPY(ifname);
ASSIGN(scheduler);
ASSIGN(tbrsize);
exported_q->tbrsize = SATU16(q->tbrsize);
exported_q->ifbandwidth = SATU32(q->ifbandwidth);
COPY(qname);
COPY(parent);
ASSIGN(parent_qid);
exported_q->bandwidth = SATU32(q->bandwidth);
ASSIGN(priority);
ASSIGN(local_flags);
ASSIGN(qlimit);
ASSIGN(flags);
if (q->scheduler == ALTQT_HFSC) {
#define ASSIGN_OPT(x) exported_q->pq_u.hfsc_opts.x = q->pq_u.hfsc_opts.x
#define ASSIGN_OPT_SATU32(x) exported_q->pq_u.hfsc_opts.x = \
SATU32(q->pq_u.hfsc_opts.x)
ASSIGN_OPT_SATU32(rtsc_m1);
ASSIGN_OPT(rtsc_d);
ASSIGN_OPT_SATU32(rtsc_m2);
ASSIGN_OPT_SATU32(lssc_m1);
ASSIGN_OPT(lssc_d);
ASSIGN_OPT_SATU32(lssc_m2);
ASSIGN_OPT_SATU32(ulsc_m1);
ASSIGN_OPT(ulsc_d);
ASSIGN_OPT_SATU32(ulsc_m2);
ASSIGN_OPT(flags);
#undef ASSIGN_OPT
#undef ASSIGN_OPT_SATU32
} else
COPY(pq_u);
ASSIGN(qid);
break;
}
case 1: {
struct pf_altq_v1 *exported_q =
&((struct pfioc_altq_v1 *)pa)->altq;
COPY(ifname);
ASSIGN(scheduler);
ASSIGN(tbrsize);
ASSIGN(ifbandwidth);
COPY(qname);
COPY(parent);
ASSIGN(parent_qid);
ASSIGN(bandwidth);
ASSIGN(priority);
ASSIGN(local_flags);
ASSIGN(qlimit);
ASSIGN(flags);
COPY(pq_u);
ASSIGN(qid);
break;
}
default:
panic("%s: unhandled struct pfioc_altq version", __func__);
break;
}
#undef ASSIGN
#undef COPY
#undef SATU16
#undef SATU32
return (0);
}
/*
* Handle import to struct pf_kaltq of struct pf_altq from user binaries
* that may be using any version of it.
*/
static int
pf_import_kaltq(struct pfioc_altq_v1 *pa, struct pf_altq *q, size_t ioc_size)
{
u_int32_t version;
if (ioc_size == sizeof(struct pfioc_altq_v0))
version = 0;
else
version = pa->version;
if (version > PFIOC_ALTQ_VERSION)
return (EINVAL);
#define ASSIGN(x) q->x = imported_q->x
#define COPY(x) \
bcopy(&imported_q->x, &q->x, min(sizeof(imported_q->x), sizeof(q->x)))
switch (version) {
case 0: {
struct pf_altq_v0 *imported_q =
&((struct pfioc_altq_v0 *)pa)->altq;
COPY(ifname);
ASSIGN(scheduler);
ASSIGN(tbrsize); /* 16-bit -> 32-bit */
ASSIGN(ifbandwidth); /* 32-bit -> 64-bit */
COPY(qname);
COPY(parent);
ASSIGN(parent_qid);
ASSIGN(bandwidth); /* 32-bit -> 64-bit */
ASSIGN(priority);
ASSIGN(local_flags);
ASSIGN(qlimit);
ASSIGN(flags);
if (imported_q->scheduler == ALTQT_HFSC) {
#define ASSIGN_OPT(x) q->pq_u.hfsc_opts.x = imported_q->pq_u.hfsc_opts.x
/*
* The m1 and m2 parameters are being copied from
* 32-bit to 64-bit.
*/
ASSIGN_OPT(rtsc_m1);
ASSIGN_OPT(rtsc_d);
ASSIGN_OPT(rtsc_m2);
ASSIGN_OPT(lssc_m1);
ASSIGN_OPT(lssc_d);
ASSIGN_OPT(lssc_m2);
ASSIGN_OPT(ulsc_m1);
ASSIGN_OPT(ulsc_d);
ASSIGN_OPT(ulsc_m2);
ASSIGN_OPT(flags);
#undef ASSIGN_OPT
} else
COPY(pq_u);
ASSIGN(qid);
break;
}
case 1: {
struct pf_altq_v1 *imported_q =
&((struct pfioc_altq_v1 *)pa)->altq;
COPY(ifname);
ASSIGN(scheduler);
ASSIGN(tbrsize);
ASSIGN(ifbandwidth);
COPY(qname);
COPY(parent);
ASSIGN(parent_qid);
ASSIGN(bandwidth);
ASSIGN(priority);
ASSIGN(local_flags);
ASSIGN(qlimit);
ASSIGN(flags);
COPY(pq_u);
ASSIGN(qid);
break;
}
default:
panic("%s: unhandled struct pfioc_altq version", __func__);
break;
}
#undef ASSIGN
#undef COPY
return (0);
}
static struct pf_altq *
pf_altq_get_nth_active(u_int32_t n)
{
struct pf_altq *altq;
u_int32_t nr;
nr = 0;
TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) {
if (nr == n)
return (altq);
nr++;
}
TAILQ_FOREACH(altq, V_pf_altqs_active, entries) {
if (nr == n)
return (altq);
nr++;
}
return (NULL);
}
#endif /* ALTQ */
void
pf_krule_free(struct pf_krule *rule)
{
if (rule == NULL)
return;
counter_u64_free(rule->evaluations);
for (int i = 0; i < 2; i++) {
counter_u64_free(rule->packets[i]);
counter_u64_free(rule->bytes[i]);
}
counter_u64_free(rule->states_cur);
counter_u64_free(rule->states_tot);
counter_u64_free(rule->src_nodes);
free(rule, M_PFRULE);
}
static void
pf_kpooladdr_to_pooladdr(const struct pf_kpooladdr *kpool,
struct pf_pooladdr *pool)
{
bzero(pool, sizeof(*pool));
bcopy(&kpool->addr, &pool->addr, sizeof(pool->addr));
strlcpy(pool->ifname, kpool->ifname, sizeof(pool->ifname));
}
static void
pf_pooladdr_to_kpooladdr(const struct pf_pooladdr *pool,
struct pf_kpooladdr *kpool)
{
bzero(kpool, sizeof(*kpool));
bcopy(&pool->addr, &kpool->addr, sizeof(kpool->addr));
strlcpy(kpool->ifname, pool->ifname, sizeof(kpool->ifname));
}
static void
pf_kpool_to_pool(const struct pf_kpool *kpool, struct pf_pool *pool)
{
bzero(pool, sizeof(*pool));
bcopy(&kpool->key, &pool->key, sizeof(pool->key));
bcopy(&kpool->counter, &pool->counter, sizeof(pool->counter));
pool->tblidx = kpool->tblidx;
pool->proxy_port[0] = kpool->proxy_port[0];
pool->proxy_port[1] = kpool->proxy_port[1];
pool->opts = kpool->opts;
}
static int
pf_pool_to_kpool(const struct pf_pool *pool, struct pf_kpool *kpool)
{
_Static_assert(sizeof(pool->key) == sizeof(kpool->key), "");
_Static_assert(sizeof(pool->counter) == sizeof(kpool->counter), "");
bzero(kpool, sizeof(*kpool));
bcopy(&pool->key, &kpool->key, sizeof(kpool->key));
bcopy(&pool->counter, &kpool->counter, sizeof(kpool->counter));
kpool->tblidx = pool->tblidx;
kpool->proxy_port[0] = pool->proxy_port[0];
kpool->proxy_port[1] = pool->proxy_port[1];
kpool->opts = pool->opts;
return (0);
}
static void
pf_krule_to_rule(const struct pf_krule *krule, struct pf_rule *rule)
{
bzero(rule, sizeof(*rule));
bcopy(&krule->src, &rule->src, sizeof(rule->src));
bcopy(&krule->dst, &rule->dst, sizeof(rule->dst));
for (int i = 0; i < PF_SKIP_COUNT; ++i) {
if (rule->skip[i].ptr == NULL)
rule->skip[i].nr = -1;
else
rule->skip[i].nr = krule->skip[i].ptr->nr;
}
strlcpy(rule->label, krule->label[0], sizeof(rule->label));
strlcpy(rule->ifname, krule->ifname, sizeof(rule->ifname));
strlcpy(rule->qname, krule->qname, sizeof(rule->qname));
strlcpy(rule->pqname, krule->pqname, sizeof(rule->pqname));
strlcpy(rule->tagname, krule->tagname, sizeof(rule->tagname));
strlcpy(rule->match_tagname, krule->match_tagname,
sizeof(rule->match_tagname));
strlcpy(rule->overload_tblname, krule->overload_tblname,
sizeof(rule->overload_tblname));
pf_kpool_to_pool(&krule->rpool, &rule->rpool);
rule->evaluations = counter_u64_fetch(krule->evaluations);
for (int i = 0; i < 2; i++) {
rule->packets[i] = counter_u64_fetch(krule->packets[i]);
rule->bytes[i] = counter_u64_fetch(krule->bytes[i]);
}
/* kif, anchor, overload_tbl are not copied over. */
rule->os_fingerprint = krule->os_fingerprint;
rule->rtableid = krule->rtableid;
bcopy(krule->timeout, rule->timeout, sizeof(krule->timeout));
rule->max_states = krule->max_states;
rule->max_src_nodes = krule->max_src_nodes;
rule->max_src_states = krule->max_src_states;
rule->max_src_conn = krule->max_src_conn;
rule->max_src_conn_rate.limit = krule->max_src_conn_rate.limit;
rule->max_src_conn_rate.seconds = krule->max_src_conn_rate.seconds;
rule->qid = krule->qid;
rule->pqid = krule->pqid;
rule->nr = krule->nr;
rule->prob = krule->prob;
rule->cuid = krule->cuid;
rule->cpid = krule->cpid;
rule->return_icmp = krule->return_icmp;
rule->return_icmp6 = krule->return_icmp6;
rule->max_mss = krule->max_mss;
rule->tag = krule->tag;
rule->match_tag = krule->match_tag;
rule->scrub_flags = krule->scrub_flags;
bcopy(&krule->uid, &rule->uid, sizeof(krule->uid));
bcopy(&krule->gid, &rule->gid, sizeof(krule->gid));
rule->rule_flag = krule->rule_flag;
rule->action = krule->action;
rule->direction = krule->direction;
rule->log = krule->log;
rule->logif = krule->logif;
rule->quick = krule->quick;
rule->ifnot = krule->ifnot;
rule->match_tag_not = krule->match_tag_not;
rule->natpass = krule->natpass;
rule->keep_state = krule->keep_state;
rule->af = krule->af;
rule->proto = krule->proto;
rule->type = krule->type;
rule->code = krule->code;
rule->flags = krule->flags;
rule->flagset = krule->flagset;
rule->min_ttl = krule->min_ttl;
rule->allow_opts = krule->allow_opts;
rule->rt = krule->rt;
rule->return_ttl = krule->return_ttl;
rule->tos = krule->tos;
rule->set_tos = krule->set_tos;
rule->anchor_relative = krule->anchor_relative;
rule->anchor_wildcard = krule->anchor_wildcard;
rule->flush = krule->flush;
rule->prio = krule->prio;
rule->set_prio[0] = krule->set_prio[0];
rule->set_prio[1] = krule->set_prio[1];
bcopy(&krule->divert, &rule->divert, sizeof(krule->divert));
rule->u_states_cur = counter_u64_fetch(krule->states_cur);
rule->u_states_tot = counter_u64_fetch(krule->states_tot);
rule->u_src_nodes = counter_u64_fetch(krule->src_nodes);
}
static int
pf_check_rule_addr(const struct pf_rule_addr *addr)
{
switch (addr->addr.type) {
case PF_ADDR_ADDRMASK:
case PF_ADDR_NOROUTE:
case PF_ADDR_DYNIFTL:
case PF_ADDR_TABLE:
case PF_ADDR_URPFFAILED:
case PF_ADDR_RANGE:
break;
default:
return (EINVAL);
}
if (addr->addr.p.dyn != NULL) {
return (EINVAL);
}
return (0);
}
static int
pf_nvaddr_to_addr(const nvlist_t *nvl, struct pf_addr *paddr)
{
return (pf_nvbinary(nvl, "addr", paddr, sizeof(*paddr)));
}
static nvlist_t *
pf_addr_to_nvaddr(const struct pf_addr *paddr)
{
nvlist_t *nvl;
nvl = nvlist_create(0);
if (nvl == NULL)
return (NULL);
nvlist_add_binary(nvl, "addr", paddr, sizeof(*paddr));
return (nvl);
}
static int
pf_nvmape_to_mape(const nvlist_t *nvl, struct pf_mape_portset *mape)
{
int error = 0;
bzero(mape, sizeof(*mape));
PFNV_CHK(pf_nvuint8(nvl, "offset", &mape->offset));
PFNV_CHK(pf_nvuint8(nvl, "psidlen", &mape->psidlen));
PFNV_CHK(pf_nvuint16(nvl, "psid", &mape->psid));
errout:
return (error);
}
static nvlist_t *
pf_mape_to_nvmape(const struct pf_mape_portset *mape)
{
nvlist_t *nvl;
nvl = nvlist_create(0);
if (nvl == NULL)
return (NULL);
nvlist_add_number(nvl, "offset", mape->offset);
nvlist_add_number(nvl, "psidlen", mape->psidlen);
nvlist_add_number(nvl, "psid", mape->psid);
return (nvl);
}
static int
pf_nvpool_to_pool(const nvlist_t *nvl, struct pf_kpool *kpool)
{
int error = 0;
bzero(kpool, sizeof(*kpool));
PFNV_CHK(pf_nvbinary(nvl, "key", &kpool->key, sizeof(kpool->key)));
if (nvlist_exists_nvlist(nvl, "counter")) {
PFNV_CHK(pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "counter"),
&kpool->counter));
}
PFNV_CHK(pf_nvint(nvl, "tblidx", &kpool->tblidx));
PFNV_CHK(pf_nvuint16_array(nvl, "proxy_port", kpool->proxy_port, 2,
NULL));
PFNV_CHK(pf_nvuint8(nvl, "opts", &kpool->opts));
if (nvlist_exists_nvlist(nvl, "mape")) {
PFNV_CHK(pf_nvmape_to_mape(nvlist_get_nvlist(nvl, "mape"),
&kpool->mape));
}
errout:
return (error);
}
static nvlist_t *
pf_pool_to_nvpool(const struct pf_kpool *pool)
{
nvlist_t *nvl;
nvlist_t *tmp;
nvl = nvlist_create(0);
if (nvl == NULL)
return (NULL);
nvlist_add_binary(nvl, "key", &pool->key, sizeof(pool->key));
tmp = pf_addr_to_nvaddr(&pool->counter);
if (tmp == NULL)
goto error;
nvlist_add_nvlist(nvl, "counter", tmp);
nvlist_destroy(tmp);
nvlist_add_number(nvl, "tblidx", pool->tblidx);
pf_uint16_array_nv(nvl, "proxy_port", pool->proxy_port, 2);
nvlist_add_number(nvl, "opts", pool->opts);
tmp = pf_mape_to_nvmape(&pool->mape);
if (tmp == NULL)
goto error;
nvlist_add_nvlist(nvl, "mape", tmp);
nvlist_destroy(tmp);
return (nvl);
error:
nvlist_destroy(nvl);
return (NULL);
}
static int
pf_nvaddr_wrap_to_addr_wrap(const nvlist_t *nvl, struct pf_addr_wrap *addr)
{
int error = 0;
bzero(addr, sizeof(*addr));
PFNV_CHK(pf_nvuint8(nvl, "type", &addr->type));
PFNV_CHK(pf_nvuint8(nvl, "iflags", &addr->iflags));
if (addr->type == PF_ADDR_DYNIFTL)
PFNV_CHK(pf_nvstring(nvl, "ifname", addr->v.ifname,
sizeof(addr->v.ifname)));
if (addr->type == PF_ADDR_TABLE)
PFNV_CHK(pf_nvstring(nvl, "tblname", addr->v.tblname,
sizeof(addr->v.tblname)));
if (! nvlist_exists_nvlist(nvl, "addr"))
return (EINVAL);
PFNV_CHK(pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "addr"),
&addr->v.a.addr));
if (! nvlist_exists_nvlist(nvl, "mask"))
return (EINVAL);
PFNV_CHK(pf_nvaddr_to_addr(nvlist_get_nvlist(nvl, "mask"),
&addr->v.a.mask));
switch (addr->type) {
case PF_ADDR_DYNIFTL:
case PF_ADDR_TABLE:
case PF_ADDR_RANGE:
case PF_ADDR_ADDRMASK:
case PF_ADDR_NOROUTE:
case PF_ADDR_URPFFAILED:
break;
default:
return (EINVAL);
}
errout:
return (error);
}
static nvlist_t *
pf_addr_wrap_to_nvaddr_wrap(const struct pf_addr_wrap *addr)
{
nvlist_t *nvl;
nvlist_t *tmp;
nvl = nvlist_create(0);
if (nvl == NULL)
return (NULL);
nvlist_add_number(nvl, "type", addr->type);
nvlist_add_number(nvl, "iflags", addr->iflags);
if (addr->type == PF_ADDR_DYNIFTL)
nvlist_add_string(nvl, "ifname", addr->v.ifname);
if (addr->type == PF_ADDR_TABLE)
nvlist_add_string(nvl, "tblname", addr->v.tblname);
tmp = pf_addr_to_nvaddr(&addr->v.a.addr);
if (tmp == NULL)
goto error;
nvlist_add_nvlist(nvl, "addr", tmp);
nvlist_destroy(tmp);
tmp = pf_addr_to_nvaddr(&addr->v.a.mask);
if (tmp == NULL)
goto error;
nvlist_add_nvlist(nvl, "mask", tmp);
nvlist_destroy(tmp);
return (nvl);
error:
nvlist_destroy(nvl);
return (NULL);
}
static int
pf_validate_op(uint8_t op)
{
switch (op) {
case PF_OP_NONE:
case PF_OP_IRG:
case PF_OP_EQ:
case PF_OP_NE:
case PF_OP_LT:
case PF_OP_LE:
case PF_OP_GT:
case PF_OP_GE:
case PF_OP_XRG:
case PF_OP_RRG:
break;
default:
return (EINVAL);
}
return (0);
}
static int
pf_nvrule_addr_to_rule_addr(const nvlist_t *nvl, struct pf_rule_addr *addr)
{
int error = 0;
if (! nvlist_exists_nvlist(nvl, "addr"))
return (EINVAL);
PFNV_CHK(pf_nvaddr_wrap_to_addr_wrap(nvlist_get_nvlist(nvl, "addr"),
&addr->addr));
PFNV_CHK(pf_nvuint16_array(nvl, "port", addr->port, 2, NULL));
PFNV_CHK(pf_nvuint8(nvl, "neg", &addr->neg));
PFNV_CHK(pf_nvuint8(nvl, "port_op", &addr->port_op));
PFNV_CHK(pf_validate_op(addr->port_op));
errout:
return (error);
}
static nvlist_t *
pf_rule_addr_to_nvrule_addr(const struct pf_rule_addr *addr)
{
nvlist_t *nvl;
nvlist_t *tmp;
nvl = nvlist_create(0);
if (nvl == NULL)
return (NULL);
tmp = pf_addr_wrap_to_nvaddr_wrap(&addr->addr);
if (tmp == NULL)
goto error;
nvlist_add_nvlist(nvl, "addr", tmp);
nvlist_destroy(tmp);
pf_uint16_array_nv(nvl, "port", addr->port, 2);
nvlist_add_number(nvl, "neg", addr->neg);
nvlist_add_number(nvl, "port_op", addr->port_op);
return (nvl);
error:
nvlist_destroy(nvl);
return (NULL);
}
static int
pf_nvrule_uid_to_rule_uid(const nvlist_t *nvl, struct pf_rule_uid *uid)
{
int error = 0;
bzero(uid, sizeof(*uid));
PFNV_CHK(pf_nvuint32_array(nvl, "uid", uid->uid, 2, NULL));
PFNV_CHK(pf_nvuint8(nvl, "op", &uid->op));
PFNV_CHK(pf_validate_op(uid->op));
errout:
return (error);
}
static nvlist_t *
pf_rule_uid_to_nvrule_uid(const struct pf_rule_uid *uid)
{
nvlist_t *nvl;
nvl = nvlist_create(0);
if (nvl == NULL)
return (NULL);
pf_uint32_array_nv(nvl, "uid", uid->uid, 2);
nvlist_add_number(nvl, "op", uid->op);
return (nvl);
}
static int
pf_nvrule_gid_to_rule_gid(const nvlist_t *nvl, struct pf_rule_gid *gid)
{
/* Cheat a little. These stucts are the same, other than the name of
* the first field. */
return (pf_nvrule_uid_to_rule_uid(nvl, (struct pf_rule_uid *)gid));
}
static int
pf_nvrule_to_krule(const nvlist_t *nvl, struct pf_krule **prule)
{
struct pf_krule *rule;
int error = 0;
#define ERROUT(x) ERROUT_FUNCTION(errout, x)
rule = malloc(sizeof(*rule), M_PFRULE, M_WAITOK | M_ZERO);
PFNV_CHK(pf_nvuint32(nvl, "nr", &rule->nr));
if (! nvlist_exists_nvlist(nvl, "src"))
ERROUT(EINVAL);
error = pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "src"),
&rule->src);
if (error != 0)
ERROUT(error);
if (! nvlist_exists_nvlist(nvl, "dst"))
ERROUT(EINVAL);
PFNV_CHK(pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "dst"),
&rule->dst));
if (nvlist_exists_string(nvl, "label")) {
PFNV_CHK(pf_nvstring(nvl, "label", rule->label[0],
sizeof(rule->label[0])));
} else if (nvlist_exists_string_array(nvl, "labels")) {
const char *const *strs;
size_t items;
int ret;
strs = nvlist_get_string_array(nvl, "labels", &items);
if (items > PF_RULE_MAX_LABEL_COUNT)
ERROUT(E2BIG);
for (size_t i = 0; i < items; i++) {
ret = strlcpy(rule->label[i], strs[i],
sizeof(rule->label[0]));
if (ret >= sizeof(rule->label[0]))
ERROUT(E2BIG);
}
}
PFNV_CHK(pf_nvstring(nvl, "ifname", rule->ifname,
sizeof(rule->ifname)));
PFNV_CHK(pf_nvstring(nvl, "qname", rule->qname, sizeof(rule->qname)));
PFNV_CHK(pf_nvstring(nvl, "pqname", rule->pqname,
sizeof(rule->pqname)));
PFNV_CHK(pf_nvstring(nvl, "tagname", rule->tagname,
sizeof(rule->tagname)));
PFNV_CHK(pf_nvstring(nvl, "match_tagname", rule->match_tagname,
sizeof(rule->match_tagname)));
PFNV_CHK(pf_nvstring(nvl, "overload_tblname", rule->overload_tblname,
sizeof(rule->overload_tblname)));
if (! nvlist_exists_nvlist(nvl, "rpool"))
ERROUT(EINVAL);
PFNV_CHK(pf_nvpool_to_pool(nvlist_get_nvlist(nvl, "rpool"),
&rule->rpool));
PFNV_CHK(pf_nvuint32(nvl, "os_fingerprint", &rule->os_fingerprint));
PFNV_CHK(pf_nvint(nvl, "rtableid", &rule->rtableid));
PFNV_CHK(pf_nvuint32_array(nvl, "timeout", rule->timeout, PFTM_MAX, NULL));
PFNV_CHK(pf_nvuint32(nvl, "max_states", &rule->max_states));
PFNV_CHK(pf_nvuint32(nvl, "max_src_nodes", &rule->max_src_nodes));
PFNV_CHK(pf_nvuint32(nvl, "max_src_states", &rule->max_src_states));
PFNV_CHK(pf_nvuint32(nvl, "max_src_conn", &rule->max_src_conn));
PFNV_CHK(pf_nvuint32(nvl, "max_src_conn_rate.limit",
&rule->max_src_conn_rate.limit));
PFNV_CHK(pf_nvuint32(nvl, "max_src_conn_rate.seconds",
&rule->max_src_conn_rate.seconds));
PFNV_CHK(pf_nvuint32(nvl, "prob", &rule->prob));
PFNV_CHK(pf_nvuint32(nvl, "cuid", &rule->cuid));
PFNV_CHK(pf_nvuint32(nvl, "cpid", &rule->cpid));
PFNV_CHK(pf_nvuint16(nvl, "return_icmp", &rule->return_icmp));
PFNV_CHK(pf_nvuint16(nvl, "return_icmp6", &rule->return_icmp6));
PFNV_CHK(pf_nvuint16(nvl, "max_mss", &rule->max_mss));
PFNV_CHK(pf_nvuint16(nvl, "scrub_flags", &rule->scrub_flags));
if (! nvlist_exists_nvlist(nvl, "uid"))
ERROUT(EINVAL);
PFNV_CHK(pf_nvrule_uid_to_rule_uid(nvlist_get_nvlist(nvl, "uid"),
&rule->uid));
if (! nvlist_exists_nvlist(nvl, "gid"))
ERROUT(EINVAL);
PFNV_CHK(pf_nvrule_gid_to_rule_gid(nvlist_get_nvlist(nvl, "gid"),
&rule->gid));
PFNV_CHK(pf_nvuint32(nvl, "rule_flag", &rule->rule_flag));
PFNV_CHK(pf_nvuint8(nvl, "action", &rule->action));
PFNV_CHK(pf_nvuint8(nvl, "direction", &rule->direction));
PFNV_CHK(pf_nvuint8(nvl, "log", &rule->log));
PFNV_CHK(pf_nvuint8(nvl, "logif", &rule->logif));
PFNV_CHK(pf_nvuint8(nvl, "quick", &rule->quick));
PFNV_CHK(pf_nvuint8(nvl, "ifnot", &rule->ifnot));
PFNV_CHK(pf_nvuint8(nvl, "match_tag_not", &rule->match_tag_not));
PFNV_CHK(pf_nvuint8(nvl, "natpass", &rule->natpass));
PFNV_CHK(pf_nvuint8(nvl, "keep_state", &rule->keep_state));
PFNV_CHK(pf_nvuint8(nvl, "af", &rule->af));
PFNV_CHK(pf_nvuint8(nvl, "proto", &rule->proto));
PFNV_CHK(pf_nvuint8(nvl, "type", &rule->type));
PFNV_CHK(pf_nvuint8(nvl, "code", &rule->code));
PFNV_CHK(pf_nvuint8(nvl, "flags", &rule->flags));
PFNV_CHK(pf_nvuint8(nvl, "flagset", &rule->flagset));
PFNV_CHK(pf_nvuint8(nvl, "min_ttl", &rule->min_ttl));
PFNV_CHK(pf_nvuint8(nvl, "allow_opts", &rule->allow_opts));
PFNV_CHK(pf_nvuint8(nvl, "rt", &rule->rt));
PFNV_CHK(pf_nvuint8(nvl, "return_ttl", &rule->return_ttl));
PFNV_CHK(pf_nvuint8(nvl, "tos", &rule->tos));
PFNV_CHK(pf_nvuint8(nvl, "set_tos", &rule->set_tos));
PFNV_CHK(pf_nvuint8(nvl, "anchor_relative", &rule->anchor_relative));
PFNV_CHK(pf_nvuint8(nvl, "anchor_wildcard", &rule->anchor_wildcard));
PFNV_CHK(pf_nvuint8(nvl, "flush", &rule->flush));
PFNV_CHK(pf_nvuint8(nvl, "prio", &rule->prio));
PFNV_CHK(pf_nvuint8_array(nvl, "set_prio", &rule->prio, 2, NULL));
if (nvlist_exists_nvlist(nvl, "divert")) {
const nvlist_t *nvldivert = nvlist_get_nvlist(nvl, "divert");
if (! nvlist_exists_nvlist(nvldivert, "addr"))
ERROUT(EINVAL);
PFNV_CHK(pf_nvaddr_to_addr(nvlist_get_nvlist(nvldivert, "addr"),
&rule->divert.addr));
PFNV_CHK(pf_nvuint16(nvldivert, "port", &rule->divert.port));
}
/* Validation */
#ifndef INET
if (rule->af == AF_INET)
ERROUT(EAFNOSUPPORT);
#endif /* INET */
#ifndef INET6
if (rule->af == AF_INET6)
ERROUT(EAFNOSUPPORT);
#endif /* INET6 */
PFNV_CHK(pf_check_rule_addr(&rule->src));
PFNV_CHK(pf_check_rule_addr(&rule->dst));
*prule = rule;
return (0);
#undef ERROUT
errout:
pf_krule_free(rule);
*prule = NULL;
return (error);
}
static nvlist_t *
pf_divert_to_nvdivert(const struct pf_krule *rule)
{
nvlist_t *nvl;
nvlist_t *tmp;
nvl = nvlist_create(0);
if (nvl == NULL)
return (NULL);
tmp = pf_addr_to_nvaddr(&rule->divert.addr);
if (tmp == NULL)
goto error;
nvlist_add_nvlist(nvl, "addr", tmp);
nvlist_destroy(tmp);
nvlist_add_number(nvl, "port", rule->divert.port);
return (nvl);
error:
nvlist_destroy(nvl);
return (NULL);
}
static nvlist_t *
pf_krule_to_nvrule(const struct pf_krule *rule)
{
nvlist_t *nvl, *tmp;
nvl = nvlist_create(0);
if (nvl == NULL)
return (nvl);
nvlist_add_number(nvl, "nr", rule->nr);
tmp = pf_rule_addr_to_nvrule_addr(&rule->src);
if (tmp == NULL)
goto error;
nvlist_add_nvlist(nvl, "src", tmp);
nvlist_destroy(tmp);
tmp = pf_rule_addr_to_nvrule_addr(&rule->dst);
if (tmp == NULL)
goto error;
nvlist_add_nvlist(nvl, "dst", tmp);
nvlist_destroy(tmp);
for (int i = 0; i < PF_SKIP_COUNT; i++) {
nvlist_append_number_array(nvl, "skip",
rule->skip[i].ptr ? rule->skip[i].ptr->nr : -1);
}
for (int i = 0; i < PF_RULE_MAX_LABEL_COUNT; i++) {
nvlist_append_string_array(nvl, "labels", rule->label[i]);
}
nvlist_add_string(nvl, "label", rule->label[0]);
nvlist_add_string(nvl, "ifname", rule->ifname);
nvlist_add_string(nvl, "qname", rule->qname);
nvlist_add_string(nvl, "pqname", rule->pqname);
nvlist_add_string(nvl, "tagname", rule->tagname);
nvlist_add_string(nvl, "match_tagname", rule->match_tagname);
nvlist_add_string(nvl, "overload_tblname", rule->overload_tblname);
tmp = pf_pool_to_nvpool(&rule->rpool);
if (tmp == NULL)
goto error;
nvlist_add_nvlist(nvl, "rpool", tmp);
nvlist_destroy(tmp);
nvlist_add_number(nvl, "evaluations",
counter_u64_fetch(rule->evaluations));
for (int i = 0; i < 2; i++) {
nvlist_append_number_array(nvl, "packets",
counter_u64_fetch(rule->packets[i]));
nvlist_append_number_array(nvl, "bytes",
counter_u64_fetch(rule->bytes[i]));
}
nvlist_add_number(nvl, "os_fingerprint", rule->os_fingerprint);
nvlist_add_number(nvl, "rtableid", rule->rtableid);
pf_uint32_array_nv(nvl, "timeout", rule->timeout, PFTM_MAX);
nvlist_add_number(nvl, "max_states", rule->max_states);
nvlist_add_number(nvl, "max_src_nodes", rule->max_src_nodes);
nvlist_add_number(nvl, "max_src_states", rule->max_src_states);
nvlist_add_number(nvl, "max_src_conn", rule->max_src_conn);
nvlist_add_number(nvl, "max_src_conn_rate.limit",
rule->max_src_conn_rate.limit);
nvlist_add_number(nvl, "max_src_conn_rate.seconds",
rule->max_src_conn_rate.seconds);
nvlist_add_number(nvl, "qid", rule->qid);
nvlist_add_number(nvl, "pqid", rule->pqid);
nvlist_add_number(nvl, "prob", rule->prob);
nvlist_add_number(nvl, "cuid", rule->cuid);
nvlist_add_number(nvl, "cpid", rule->cpid);
nvlist_add_number(nvl, "states_cur",
counter_u64_fetch(rule->states_cur));
nvlist_add_number(nvl, "states_tot",
counter_u64_fetch(rule->states_tot));
nvlist_add_number(nvl, "src_nodes",
counter_u64_fetch(rule->src_nodes));
nvlist_add_number(nvl, "return_icmp", rule->return_icmp);
nvlist_add_number(nvl, "return_icmp6", rule->return_icmp6);
nvlist_add_number(nvl, "max_mss", rule->max_mss);
nvlist_add_number(nvl, "scrub_flags", rule->scrub_flags);
tmp = pf_rule_uid_to_nvrule_uid(&rule->uid);
if (tmp == NULL)
goto error;
nvlist_add_nvlist(nvl, "uid", tmp);
nvlist_destroy(tmp);
tmp = pf_rule_uid_to_nvrule_uid((const struct pf_rule_uid *)&rule->gid);
if (tmp == NULL)
goto error;
nvlist_add_nvlist(nvl, "gid", tmp);
nvlist_destroy(tmp);
nvlist_add_number(nvl, "rule_flag", rule->rule_flag);
nvlist_add_number(nvl, "action", rule->action);
nvlist_add_number(nvl, "direction", rule->direction);
nvlist_add_number(nvl, "log", rule->log);
nvlist_add_number(nvl, "logif", rule->logif);
nvlist_add_number(nvl, "quick", rule->quick);
nvlist_add_number(nvl, "ifnot", rule->ifnot);
nvlist_add_number(nvl, "match_tag_not", rule->match_tag_not);
nvlist_add_number(nvl, "natpass", rule->natpass);
nvlist_add_number(nvl, "keep_state", rule->keep_state);
nvlist_add_number(nvl, "af", rule->af);
nvlist_add_number(nvl, "proto", rule->proto);
nvlist_add_number(nvl, "type", rule->type);
nvlist_add_number(nvl, "code", rule->code);
nvlist_add_number(nvl, "flags", rule->flags);
nvlist_add_number(nvl, "flagset", rule->flagset);
nvlist_add_number(nvl, "min_ttl", rule->min_ttl);
nvlist_add_number(nvl, "allow_opts", rule->allow_opts);
nvlist_add_number(nvl, "rt", rule->rt);
nvlist_add_number(nvl, "return_ttl", rule->return_ttl);
nvlist_add_number(nvl, "tos", rule->tos);
nvlist_add_number(nvl, "set_tos", rule->set_tos);
nvlist_add_number(nvl, "anchor_relative", rule->anchor_relative);
nvlist_add_number(nvl, "anchor_wildcard", rule->anchor_wildcard);
nvlist_add_number(nvl, "flush", rule->flush);
nvlist_add_number(nvl, "prio", rule->prio);
pf_uint8_array_nv(nvl, "set_prio", &rule->prio, 2);
tmp = pf_divert_to_nvdivert(rule);
if (tmp == NULL)
goto error;
nvlist_add_nvlist(nvl, "divert", tmp);
nvlist_destroy(tmp);
return (nvl);
error:
nvlist_destroy(nvl);
return (NULL);
}
static int
pf_rule_to_krule(const struct pf_rule *rule, struct pf_krule *krule)
{
int ret;
#ifndef INET
if (rule->af == AF_INET) {
return (EAFNOSUPPORT);
}
#endif /* INET */
#ifndef INET6
if (rule->af == AF_INET6) {
return (EAFNOSUPPORT);
}
#endif /* INET6 */
ret = pf_check_rule_addr(&rule->src);
if (ret != 0)
return (ret);
ret = pf_check_rule_addr(&rule->dst);
if (ret != 0)
return (ret);
bzero(krule, sizeof(*krule));
bcopy(&rule->src, &krule->src, sizeof(rule->src));
bcopy(&rule->dst, &krule->dst, sizeof(rule->dst));
strlcpy(krule->label[0], rule->label, sizeof(rule->label));
strlcpy(krule->ifname, rule->ifname, sizeof(rule->ifname));
strlcpy(krule->qname, rule->qname, sizeof(rule->qname));
strlcpy(krule->pqname, rule->pqname, sizeof(rule->pqname));
strlcpy(krule->tagname, rule->tagname, sizeof(rule->tagname));
strlcpy(krule->match_tagname, rule->match_tagname,
sizeof(rule->match_tagname));
strlcpy(krule->overload_tblname, rule->overload_tblname,
sizeof(rule->overload_tblname));
ret = pf_pool_to_kpool(&rule->rpool, &krule->rpool);
if (ret != 0)
return (ret);
/* Don't allow userspace to set evaulations, packets or bytes. */
/* kif, anchor, overload_tbl are not copied over. */
krule->os_fingerprint = rule->os_fingerprint;
krule->rtableid = rule->rtableid;
bcopy(rule->timeout, krule->timeout, sizeof(krule->timeout));
krule->max_states = rule->max_states;
krule->max_src_nodes = rule->max_src_nodes;
krule->max_src_states = rule->max_src_states;
krule->max_src_conn = rule->max_src_conn;
krule->max_src_conn_rate.limit = rule->max_src_conn_rate.limit;
krule->max_src_conn_rate.seconds = rule->max_src_conn_rate.seconds;
krule->qid = rule->qid;
krule->pqid = rule->pqid;
krule->nr = rule->nr;
krule->prob = rule->prob;
krule->cuid = rule->cuid;
krule->cpid = rule->cpid;
krule->return_icmp = rule->return_icmp;
krule->return_icmp6 = rule->return_icmp6;
krule->max_mss = rule->max_mss;
krule->tag = rule->tag;
krule->match_tag = rule->match_tag;
krule->scrub_flags = rule->scrub_flags;
bcopy(&rule->uid, &krule->uid, sizeof(krule->uid));
bcopy(&rule->gid, &krule->gid, sizeof(krule->gid));
krule->rule_flag = rule->rule_flag;
krule->action = rule->action;
krule->direction = rule->direction;
krule->log = rule->log;
krule->logif = rule->logif;
krule->quick = rule->quick;
krule->ifnot = rule->ifnot;
krule->match_tag_not = rule->match_tag_not;
krule->natpass = rule->natpass;
krule->keep_state = rule->keep_state;
krule->af = rule->af;
krule->proto = rule->proto;
krule->type = rule->type;
krule->code = rule->code;
krule->flags = rule->flags;
krule->flagset = rule->flagset;
krule->min_ttl = rule->min_ttl;
krule->allow_opts = rule->allow_opts;
krule->rt = rule->rt;
krule->return_ttl = rule->return_ttl;
krule->tos = rule->tos;
krule->set_tos = rule->set_tos;
krule->anchor_relative = rule->anchor_relative;
krule->anchor_wildcard = rule->anchor_wildcard;
krule->flush = rule->flush;
krule->prio = rule->prio;
krule->set_prio[0] = rule->set_prio[0];
krule->set_prio[1] = rule->set_prio[1];
bcopy(&rule->divert, &krule->divert, sizeof(krule->divert));
return (0);
}
static int
pf_state_kill_to_kstate_kill(const struct pfioc_state_kill *psk,
struct pf_kstate_kill *kill)
{
bzero(kill, sizeof(*kill));
bcopy(&psk->psk_pfcmp, &kill->psk_pfcmp, sizeof(kill->psk_pfcmp));
kill->psk_af = psk->psk_af;
kill->psk_proto = psk->psk_proto;
bcopy(&psk->psk_src, &kill->psk_src, sizeof(kill->psk_src));
bcopy(&psk->psk_dst, &kill->psk_dst, sizeof(kill->psk_dst));
strlcpy(kill->psk_ifname, psk->psk_ifname, sizeof(kill->psk_ifname));
strlcpy(kill->psk_label, psk->psk_label, sizeof(kill->psk_label));
return (0);
}
static int
pf_nvstate_cmp_to_state_cmp(const nvlist_t *nvl, struct pf_state_cmp *cmp)
{
int error = 0;
bzero(cmp, sizeof(*cmp));
PFNV_CHK(pf_nvuint64(nvl, "id", &cmp->id));
PFNV_CHK(pf_nvuint32(nvl, "creatorid", &cmp->creatorid));
PFNV_CHK(pf_nvuint8(nvl, "direction", &cmp->direction));
errout:
return (error);
}
static int
pf_nvstate_kill_to_kstate_kill(const nvlist_t *nvl,
struct pf_kstate_kill *kill)
{
int error = 0;
bzero(kill, sizeof(*kill));
if (! nvlist_exists_nvlist(nvl, "cmp"))
return (EINVAL);
PFNV_CHK(pf_nvstate_cmp_to_state_cmp(nvlist_get_nvlist(nvl, "cmp"),
&kill->psk_pfcmp));
PFNV_CHK(pf_nvuint8(nvl, "af", &kill->psk_af));
PFNV_CHK(pf_nvint(nvl, "proto", &kill->psk_proto));
if (! nvlist_exists_nvlist(nvl, "src"))
return (EINVAL);
PFNV_CHK(pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "src"),
&kill->psk_src));
if (! nvlist_exists_nvlist(nvl, "dst"))
return (EINVAL);
PFNV_CHK(pf_nvrule_addr_to_rule_addr(nvlist_get_nvlist(nvl, "dst"),
&kill->psk_dst));
if (nvlist_exists_nvlist(nvl, "rt_addr")) {
PFNV_CHK(pf_nvrule_addr_to_rule_addr(
nvlist_get_nvlist(nvl, "rt_addr"), &kill->psk_rt_addr));
}
PFNV_CHK(pf_nvstring(nvl, "ifname", kill->psk_ifname,
sizeof(kill->psk_ifname)));
PFNV_CHK(pf_nvstring(nvl, "label", kill->psk_label,
sizeof(kill->psk_label)));
if (nvlist_exists_bool(nvl, "kill_match"))
kill->psk_kill_match = nvlist_get_bool(nvl, "kill_match");
errout:
return (error);
}
static nvlist_t *
pf_state_key_to_nvstate_key(const struct pf_state_key *key)
{
nvlist_t *nvl, *tmp;
nvl = nvlist_create(0);
if (nvl == NULL)
return (NULL);
for (int i = 0; i < 2; i++) {
tmp = pf_addr_to_nvaddr(&key->addr[i]);
if (tmp == NULL)
goto errout;
nvlist_append_nvlist_array(nvl, "addr", tmp);
nvlist_append_number_array(nvl, "port", key->port[i]);
}
nvlist_add_number(nvl, "af", key->af);
nvlist_add_number(nvl, "proto", key->proto);
return (nvl);
errout:
nvlist_destroy(nvl);
return (NULL);
}
static nvlist_t *
pf_state_scrub_to_nvstate_scrub(const struct pf_state_scrub *scrub)
{
nvlist_t *nvl;
nvl = nvlist_create(0);
if (nvl == NULL)
return (NULL);
nvlist_add_bool(nvl, "timestamp", scrub->pfss_flags & PFSS_TIMESTAMP);
nvlist_add_number(nvl, "ttl", scrub->pfss_ttl);
nvlist_add_number(nvl, "ts_mod", scrub->pfss_ts_mod);
return (nvl);
}
static nvlist_t *
pf_state_peer_to_nvstate_peer(const struct pf_state_peer *peer)
{
nvlist_t *nvl, *tmp;
nvl = nvlist_create(0);
if (nvl == NULL)
return (NULL);
if (peer->scrub) {
tmp = pf_state_scrub_to_nvstate_scrub(peer->scrub);
if (tmp == NULL)
goto errout;
nvlist_add_nvlist(nvl, "scrub", tmp);
nvlist_destroy(tmp);
}
nvlist_add_number(nvl, "seqlo", peer->seqlo);
nvlist_add_number(nvl, "seqhi", peer->seqhi);
nvlist_add_number(nvl, "seqdiff", peer->seqdiff);
nvlist_add_number(nvl, "max_win", peer->max_win);
nvlist_add_number(nvl, "mss", peer->mss);
nvlist_add_number(nvl, "state", peer->state);
nvlist_add_number(nvl, "wscale", peer->wscale);
return (nvl);
errout:
nvlist_destroy(nvl);
return (NULL);
}
static nvlist_t *
pf_state_to_nvstate(const struct pf_state *s)
{
nvlist_t *nvl, *tmp;
uint32_t expire, flags = 0;
nvl = nvlist_create(0);
if (nvl == NULL)
return (NULL);
nvlist_add_number(nvl, "id", s->id);
nvlist_add_string(nvl, "ifname", s->kif->pfik_name);
nvlist_add_string(nvl, "orig_ifname", s->orig_kif->pfik_name);
tmp = pf_state_key_to_nvstate_key(s->key[PF_SK_STACK]);
if (tmp == NULL)
goto errout;
nvlist_add_nvlist(nvl, "stack_key", tmp);
nvlist_destroy(tmp);
tmp = pf_state_key_to_nvstate_key(s->key[PF_SK_WIRE]);
if (tmp == NULL)
goto errout;
nvlist_add_nvlist(nvl, "wire_key", tmp);
nvlist_destroy(tmp);
tmp = pf_state_peer_to_nvstate_peer(&s->src);
if (tmp == NULL)
goto errout;
nvlist_add_nvlist(nvl, "src", tmp);
nvlist_destroy(tmp);
tmp = pf_state_peer_to_nvstate_peer(&s->dst);
if (tmp == NULL)
goto errout;
nvlist_add_nvlist(nvl, "dst", tmp);
nvlist_destroy(tmp);
tmp = pf_addr_to_nvaddr(&s->rt_addr);
if (tmp == NULL)
goto errout;
nvlist_add_nvlist(nvl, "rt_addr", tmp);
nvlist_destroy(tmp);
nvlist_add_number(nvl, "rule", s->rule.ptr ? s->rule.ptr->nr : -1);
nvlist_add_number(nvl, "anchor",
s->anchor.ptr ? s->anchor.ptr->nr : -1);
nvlist_add_number(nvl, "nat_rule",
s->nat_rule.ptr ? s->nat_rule.ptr->nr : -1);
nvlist_add_number(nvl, "creation", s->creation);
expire = pf_state_expires(s);
if (expire <= time_uptime)
expire = 0;
else
expire = expire - time_uptime;
nvlist_add_number(nvl, "expire", expire);
for (int i = 0; i < 2; i++) {
nvlist_append_number_array(nvl, "packets",
counter_u64_fetch(s->packets[i]));
nvlist_append_number_array(nvl, "bytes",
counter_u64_fetch(s->bytes[i]));
}
nvlist_add_number(nvl, "creatorid", s->creatorid);
nvlist_add_number(nvl, "direction", s->direction);
nvlist_add_number(nvl, "log", s->log);
nvlist_add_number(nvl, "state_flags", s->state_flags);
nvlist_add_number(nvl, "timeout", s->timeout);
if (s->src_node)
flags |= PFSYNC_FLAG_SRCNODE;
if (s->nat_src_node)
flags |= PFSYNC_FLAG_NATSRCNODE;
nvlist_add_number(nvl, "sync_flags", flags);
return (nvl);
errout:
nvlist_destroy(nvl);
return (NULL);
}
static int
pf_ioctl_addrule(struct pf_krule *rule, uint32_t ticket,
uint32_t pool_ticket, const char *anchor, const char *anchor_call,
struct thread *td)
{
struct pf_kruleset *ruleset;
struct pf_krule *tail;
struct pf_kpooladdr *pa;
struct pfi_kkif *kif = NULL;
int rs_num;
int error = 0;
if ((rule->return_icmp >> 8) > ICMP_MAXTYPE) {
error = EINVAL;
goto errout_unlocked;
}
#define ERROUT(x) ERROUT_FUNCTION(errout, x)
if (rule->ifname[0])
kif = pf_kkif_create(M_WAITOK);
rule->evaluations = counter_u64_alloc(M_WAITOK);
for (int i = 0; i < 2; i++) {
rule->packets[i] = counter_u64_alloc(M_WAITOK);
rule->bytes[i] = counter_u64_alloc(M_WAITOK);
}
rule->states_cur = counter_u64_alloc(M_WAITOK);
rule->states_tot = counter_u64_alloc(M_WAITOK);
rule->src_nodes = counter_u64_alloc(M_WAITOK);
rule->cuid = td->td_ucred->cr_ruid;
rule->cpid = td->td_proc ? td->td_proc->p_pid : 0;
TAILQ_INIT(&rule->rpool.list);
PF_RULES_WLOCK();
ruleset = pf_find_kruleset(anchor);
if (ruleset == NULL)
ERROUT(EINVAL);
rs_num = pf_get_ruleset_number(rule->action);
if (rs_num >= PF_RULESET_MAX)
ERROUT(EINVAL);
if (ticket != ruleset->rules[rs_num].inactive.ticket) {
DPFPRINTF(PF_DEBUG_MISC,
("ticket: %d != [%d]%d\n", ticket, rs_num,
ruleset->rules[rs_num].inactive.ticket));
ERROUT(EBUSY);
}
if (pool_ticket != V_ticket_pabuf) {
DPFPRINTF(PF_DEBUG_MISC,
("pool_ticket: %d != %d\n", pool_ticket,
V_ticket_pabuf));
ERROUT(EBUSY);
}
tail = TAILQ_LAST(ruleset->rules[rs_num].inactive.ptr,
pf_krulequeue);
if (tail)
rule->nr = tail->nr + 1;
else
rule->nr = 0;
if (rule->ifname[0]) {
rule->kif = pfi_kkif_attach(kif, rule->ifname);
kif = NULL;
pfi_kkif_ref(rule->kif);
} else
rule->kif = NULL;
if (rule->rtableid > 0 && rule->rtableid >= rt_numfibs)
error = EBUSY;
#ifdef ALTQ
/* set queue IDs */
if (rule->qname[0] != 0) {
if ((rule->qid = pf_qname2qid(rule->qname)) == 0)
error = EBUSY;
else if (rule->pqname[0] != 0) {
if ((rule->pqid =
pf_qname2qid(rule->pqname)) == 0)
error = EBUSY;
} else
rule->pqid = rule->qid;
}
#endif
if (rule->tagname[0])
if ((rule->tag = pf_tagname2tag(rule->tagname)) == 0)
error = EBUSY;
if (rule->match_tagname[0])
if ((rule->match_tag =
pf_tagname2tag(rule->match_tagname)) == 0)
error = EBUSY;
if (rule->rt && !rule->direction)
error = EINVAL;
if (!rule->log)
rule->logif = 0;
if (rule->logif >= PFLOGIFS_MAX)
error = EINVAL;
if (pf_addr_setup(ruleset, &rule->src.addr, rule->af))
error = ENOMEM;
if (pf_addr_setup(ruleset, &rule->dst.addr, rule->af))
error = ENOMEM;
if (pf_kanchor_setup(rule, ruleset, anchor_call))
error = EINVAL;
if (rule->scrub_flags & PFSTATE_SETPRIO &&
(rule->set_prio[0] > PF_PRIO_MAX ||
rule->set_prio[1] > PF_PRIO_MAX))
error = EINVAL;
TAILQ_FOREACH(pa, &V_pf_pabuf, entries)
if (pa->addr.type == PF_ADDR_TABLE) {
pa->addr.p.tbl = pfr_attach_table(ruleset,
pa->addr.v.tblname);
if (pa->addr.p.tbl == NULL)
error = ENOMEM;
}
rule->overload_tbl = NULL;
if (rule->overload_tblname[0]) {
if ((rule->overload_tbl = pfr_attach_table(ruleset,
rule->overload_tblname)) == NULL)
error = EINVAL;
else
rule->overload_tbl->pfrkt_flags |=
PFR_TFLAG_ACTIVE;
}
pf_mv_kpool(&V_pf_pabuf, &rule->rpool.list);
if (((((rule->action == PF_NAT) || (rule->action == PF_RDR) ||
(rule->action == PF_BINAT)) && rule->anchor == NULL) ||
(rule->rt > PF_NOPFROUTE)) &&
(TAILQ_FIRST(&rule->rpool.list) == NULL))
error = EINVAL;
if (error) {
pf_free_rule(rule);
rule = NULL;
ERROUT(error);
}
rule->rpool.cur = TAILQ_FIRST(&rule->rpool.list);
counter_u64_zero(rule->evaluations);
for (int i = 0; i < 2; i++) {
counter_u64_zero(rule->packets[i]);
counter_u64_zero(rule->bytes[i]);
}
TAILQ_INSERT_TAIL(ruleset->rules[rs_num].inactive.ptr,
rule, entries);
ruleset->rules[rs_num].inactive.rcount++;
PF_RULES_WUNLOCK();
return (0);
#undef ERROUT
errout:
PF_RULES_WUNLOCK();
errout_unlocked:
pf_kkif_free(kif);
pf_krule_free(rule);
return (error);
}
static bool
pf_label_match(const struct pf_krule *rule, const char *label)
{
int i = 0;
while (*rule->label[i]) {
if (strcmp(rule->label[i], label) == 0)
return (true);
i++;
}
return (false);
}
static unsigned int
pf_kill_matching_state(struct pf_state_key_cmp *key, int dir)
{
struct pf_state *match;
int more = 0;
unsigned int killed = 0;
/* Call with unlocked hashrow */
match = pf_find_state_all(key, dir, &more);
if (match && !more) {
pf_unlink_state(match, 0);
killed++;
}
return (killed);
}
static int
pf_killstates_row(struct pf_kstate_kill *psk, struct pf_idhash *ih)
{
struct pf_state *s;
struct pf_state_key *sk;
struct pf_addr *srcaddr, *dstaddr;
struct pf_state_key_cmp match_key;
int idx, killed = 0;
unsigned int dir;
u_int16_t srcport, dstport;
struct pfi_kkif *kif;
relock_DIOCKILLSTATES:
PF_HASHROW_LOCK(ih);
LIST_FOREACH(s, &ih->states, entry) {
/* For floating states look at the original kif. */
kif = s->kif == V_pfi_all ? s->orig_kif : s->kif;
sk = s->key[PF_SK_WIRE];
if (s->direction == PF_OUT) {
srcaddr = &sk->addr[1];
dstaddr = &sk->addr[0];
srcport = sk->port[1];
dstport = sk->port[0];
} else {
srcaddr = &sk->addr[0];
dstaddr = &sk->addr[1];
srcport = sk->port[0];
dstport = sk->port[1];
}
if (psk->psk_af && sk->af != psk->psk_af)
continue;
if (psk->psk_proto && psk->psk_proto != sk->proto)
continue;
if (! PF_MATCHA(psk->psk_src.neg, &psk->psk_src.addr.v.a.addr,
&psk->psk_src.addr.v.a.mask, srcaddr, sk->af))
continue;
if (! PF_MATCHA(psk->psk_dst.neg, &psk->psk_dst.addr.v.a.addr,
&psk->psk_dst.addr.v.a.mask, dstaddr, sk->af))
continue;
if (! PF_MATCHA(psk->psk_rt_addr.neg,
&psk->psk_rt_addr.addr.v.a.addr,
&psk->psk_rt_addr.addr.v.a.mask,
&s->rt_addr, sk->af))
continue;
if (psk->psk_src.port_op != 0 &&
! pf_match_port(psk->psk_src.port_op,
psk->psk_src.port[0], psk->psk_src.port[1], srcport))
continue;
if (psk->psk_dst.port_op != 0 &&
! pf_match_port(psk->psk_dst.port_op,
psk->psk_dst.port[0], psk->psk_dst.port[1], dstport))
continue;
if (psk->psk_label[0] &&
! pf_label_match(s->rule.ptr, psk->psk_label))
continue;
if (psk->psk_ifname[0] && strcmp(psk->psk_ifname,
kif->pfik_name))
continue;
if (psk->psk_kill_match) {
/* Create the key to find matching states, with lock
* held. */
bzero(&match_key, sizeof(match_key));
if (s->direction == PF_OUT) {
dir = PF_IN;
idx = PF_SK_STACK;
} else {
dir = PF_OUT;
idx = PF_SK_WIRE;
}
match_key.af = s->key[idx]->af;
match_key.proto = s->key[idx]->proto;
PF_ACPY(&match_key.addr[0],
&s->key[idx]->addr[1], match_key.af);
match_key.port[0] = s->key[idx]->port[1];
PF_ACPY(&match_key.addr[1],
&s->key[idx]->addr[0], match_key.af);
match_key.port[1] = s->key[idx]->port[0];
}
pf_unlink_state(s, PF_ENTER_LOCKED);
killed++;
if (psk->psk_kill_match)
killed += pf_kill_matching_state(&match_key, dir);
goto relock_DIOCKILLSTATES;
}
PF_HASHROW_UNLOCK(ih);
return (killed);
}
static int
pfioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flags, struct thread *td)
{
int error = 0;
PF_RULES_RLOCK_TRACKER;
#define ERROUT_IOCTL(target, x) \
do { \
error = (x); \
SDT_PROBE3(pf, ioctl, ioctl, error, cmd, error, __LINE__); \
goto target; \
} while (0)
/* XXX keep in sync with switch() below */
if (securelevel_gt(td->td_ucred, 2))
switch (cmd) {
case DIOCGETRULES:
case DIOCGETRULE:
case DIOCGETRULENV:
case DIOCGETADDRS:
case DIOCGETADDR:
case DIOCGETSTATE:
case DIOCGETSTATENV:
case DIOCSETSTATUSIF:
case DIOCGETSTATUS:
case DIOCCLRSTATUS:
case DIOCNATLOOK:
case DIOCSETDEBUG:
case DIOCGETSTATES:
case DIOCGETSTATESNV:
case DIOCGETTIMEOUT:
case DIOCCLRRULECTRS:
case DIOCGETLIMIT:
case DIOCGETALTQSV0:
case DIOCGETALTQSV1:
case DIOCGETALTQV0:
case DIOCGETALTQV1:
case DIOCGETQSTATSV0:
case DIOCGETQSTATSV1:
case DIOCGETRULESETS:
case DIOCGETRULESET:
case DIOCRGETTABLES:
case DIOCRGETTSTATS:
case DIOCRCLRTSTATS:
case DIOCRCLRADDRS:
case DIOCRADDADDRS:
case DIOCRDELADDRS:
case DIOCRSETADDRS:
case DIOCRGETADDRS:
case DIOCRGETASTATS:
case DIOCRCLRASTATS:
case DIOCRTSTADDRS:
case DIOCOSFPGET:
case DIOCGETSRCNODES:
case DIOCCLRSRCNODES:
case DIOCIGETIFACES:
case DIOCGIFSPEEDV0:
case DIOCGIFSPEEDV1:
case DIOCSETIFFLAG:
case DIOCCLRIFFLAG:
break;
case DIOCRCLRTABLES:
case DIOCRADDTABLES:
case DIOCRDELTABLES:
case DIOCRSETTFLAGS:
if (((struct pfioc_table *)addr)->pfrio_flags &
PFR_FLAG_DUMMY)
break; /* dummy operation ok */
return (EPERM);
default:
return (EPERM);
}
if (!(flags & FWRITE))
switch (cmd) {
case DIOCGETRULES:
case DIOCGETADDRS:
case DIOCGETADDR:
case DIOCGETSTATE:
case DIOCGETSTATENV:
case DIOCGETSTATUS:
case DIOCGETSTATES:
case DIOCGETSTATESNV:
case DIOCGETTIMEOUT:
case DIOCGETLIMIT:
case DIOCGETALTQSV0:
case DIOCGETALTQSV1:
case DIOCGETALTQV0:
case DIOCGETALTQV1:
case DIOCGETQSTATSV0:
case DIOCGETQSTATSV1:
case DIOCGETRULESETS:
case DIOCGETRULESET:
case DIOCNATLOOK:
case DIOCRGETTABLES:
case DIOCRGETTSTATS:
case DIOCRGETADDRS:
case DIOCRGETASTATS:
case DIOCRTSTADDRS:
case DIOCOSFPGET:
case DIOCGETSRCNODES:
case DIOCIGETIFACES:
case DIOCGIFSPEEDV1:
case DIOCGIFSPEEDV0:
case DIOCGETRULENV:
break;
case DIOCRCLRTABLES:
case DIOCRADDTABLES:
case DIOCRDELTABLES:
case DIOCRCLRTSTATS:
case DIOCRCLRADDRS:
case DIOCRADDADDRS:
case DIOCRDELADDRS:
case DIOCRSETADDRS:
case DIOCRSETTFLAGS:
if (((struct pfioc_table *)addr)->pfrio_flags &
PFR_FLAG_DUMMY) {
flags |= FWRITE; /* need write lock for dummy */
break; /* dummy operation ok */
}
return (EACCES);
case DIOCGETRULE:
if (((struct pfioc_rule *)addr)->action ==
PF_GET_CLR_CNTR)
return (EACCES);
break;
default:
return (EACCES);
}
CURVNET_SET(TD_TO_VNET(td));
switch (cmd) {
case DIOCSTART:
sx_xlock(&pf_ioctl_lock);
if (V_pf_status.running)
error = EEXIST;
else {
int cpu;
hook_pf();
V_pf_status.running = 1;
V_pf_status.since = time_second;
CPU_FOREACH(cpu)
V_pf_stateid[cpu] = time_second;
DPFPRINTF(PF_DEBUG_MISC, ("pf: started\n"));
}
break;
case DIOCSTOP:
sx_xlock(&pf_ioctl_lock);
if (!V_pf_status.running)
error = ENOENT;
else {
V_pf_status.running = 0;
dehook_pf();
V_pf_status.since = time_second;
DPFPRINTF(PF_DEBUG_MISC, ("pf: stopped\n"));
}
break;
case DIOCADDRULENV: {
struct pfioc_nv *nv = (struct pfioc_nv *)addr;
nvlist_t *nvl = NULL;
void *nvlpacked = NULL;
struct pf_krule *rule = NULL;
const char *anchor = "", *anchor_call = "";
uint32_t ticket = 0, pool_ticket = 0;
#define ERROUT(x) ERROUT_IOCTL(DIOCADDRULENV_error, x)
if (nv->len > pf_ioctl_maxcount)
ERROUT(ENOMEM);
nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK);
error = copyin(nv->data, nvlpacked, nv->len);
if (error)
ERROUT(error);
nvl = nvlist_unpack(nvlpacked, nv->len, 0);
if (nvl == NULL)
ERROUT(EBADMSG);
if (! nvlist_exists_number(nvl, "ticket"))
ERROUT(EINVAL);
ticket = nvlist_get_number(nvl, "ticket");
if (! nvlist_exists_number(nvl, "pool_ticket"))
ERROUT(EINVAL);
pool_ticket = nvlist_get_number(nvl, "pool_ticket");
if (! nvlist_exists_nvlist(nvl, "rule"))
ERROUT(EINVAL);
error = pf_nvrule_to_krule(nvlist_get_nvlist(nvl, "rule"),
&rule);
if (error)
ERROUT(error);
if (nvlist_exists_string(nvl, "anchor"))
anchor = nvlist_get_string(nvl, "anchor");
if (nvlist_exists_string(nvl, "anchor_call"))
anchor_call = nvlist_get_string(nvl, "anchor_call");
if ((error = nvlist_error(nvl)))
ERROUT(error);
/* Frees rule on error */
error = pf_ioctl_addrule(rule, ticket, pool_ticket, anchor,
anchor_call, td);
nvlist_destroy(nvl);
free(nvlpacked, M_TEMP);
break;
#undef ERROUT
DIOCADDRULENV_error:
pf_krule_free(rule);
nvlist_destroy(nvl);
free(nvlpacked, M_TEMP);
break;
}
case DIOCADDRULE: {
struct pfioc_rule *pr = (struct pfioc_rule *)addr;
struct pf_krule *rule;
rule = malloc(sizeof(*rule), M_PFRULE, M_WAITOK);
error = pf_rule_to_krule(&pr->rule, rule);
if (error != 0) {
free(rule, M_PFRULE);
break;
}
pr->anchor[sizeof(pr->anchor) - 1] = 0;
/* Frees rule on error */
error = pf_ioctl_addrule(rule, pr->ticket, pr->pool_ticket,
pr->anchor, pr->anchor_call, td);
break;
}
case DIOCGETRULES: {
struct pfioc_rule *pr = (struct pfioc_rule *)addr;
struct pf_kruleset *ruleset;
struct pf_krule *tail;
int rs_num;
PF_RULES_WLOCK();
pr->anchor[sizeof(pr->anchor) - 1] = 0;
ruleset = pf_find_kruleset(pr->anchor);
if (ruleset == NULL) {
PF_RULES_WUNLOCK();
error = EINVAL;
break;
}
rs_num = pf_get_ruleset_number(pr->rule.action);
if (rs_num >= PF_RULESET_MAX) {
PF_RULES_WUNLOCK();
error = EINVAL;
break;
}
tail = TAILQ_LAST(ruleset->rules[rs_num].active.ptr,
pf_krulequeue);
if (tail)
pr->nr = tail->nr + 1;
else
pr->nr = 0;
pr->ticket = ruleset->rules[rs_num].active.ticket;
PF_RULES_WUNLOCK();
break;
}
case DIOCGETRULE: {
struct pfioc_rule *pr = (struct pfioc_rule *)addr;
struct pf_kruleset *ruleset;
struct pf_krule *rule;
int rs_num;
PF_RULES_WLOCK();
pr->anchor[sizeof(pr->anchor) - 1] = 0;
ruleset = pf_find_kruleset(pr->anchor);
if (ruleset == NULL) {
PF_RULES_WUNLOCK();
error = EINVAL;
break;
}
rs_num = pf_get_ruleset_number(pr->rule.action);
if (rs_num >= PF_RULESET_MAX) {
PF_RULES_WUNLOCK();
error = EINVAL;
break;
}
if (pr->ticket != ruleset->rules[rs_num].active.ticket) {
PF_RULES_WUNLOCK();
error = EBUSY;
break;
}
rule = TAILQ_FIRST(ruleset->rules[rs_num].active.ptr);
while ((rule != NULL) && (rule->nr != pr->nr))
rule = TAILQ_NEXT(rule, entries);
if (rule == NULL) {
PF_RULES_WUNLOCK();
error = EBUSY;
break;
}
pf_krule_to_rule(rule, &pr->rule);
if (pf_kanchor_copyout(ruleset, rule, pr)) {
PF_RULES_WUNLOCK();
error = EBUSY;
break;
}
pf_addr_copyout(&pr->rule.src.addr);
pf_addr_copyout(&pr->rule.dst.addr);
if (pr->action == PF_GET_CLR_CNTR) {
counter_u64_zero(rule->evaluations);
for (int i = 0; i < 2; i++) {
counter_u64_zero(rule->packets[i]);
counter_u64_zero(rule->bytes[i]);
}
counter_u64_zero(rule->states_tot);
}
PF_RULES_WUNLOCK();
break;
}
case DIOCGETRULENV: {
struct pfioc_nv *nv = (struct pfioc_nv *)addr;
nvlist_t *nvrule = NULL;
nvlist_t *nvl = NULL;
struct pf_kruleset *ruleset;
struct pf_krule *rule;
void *nvlpacked = NULL;
int rs_num, nr;
bool clear_counter = false;
#define ERROUT(x) ERROUT_IOCTL(DIOCGETRULENV_error, x)
if (nv->len > pf_ioctl_maxcount)
ERROUT(ENOMEM);
/* Copy the request in */
nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK);
if (nvlpacked == NULL)
ERROUT(ENOMEM);
error = copyin(nv->data, nvlpacked, nv->len);
if (error)
ERROUT(error);
nvl = nvlist_unpack(nvlpacked, nv->len, 0);
if (nvl == NULL)
ERROUT(EBADMSG);
if (! nvlist_exists_string(nvl, "anchor"))
ERROUT(EBADMSG);
if (! nvlist_exists_number(nvl, "ruleset"))
ERROUT(EBADMSG);
if (! nvlist_exists_number(nvl, "ticket"))
ERROUT(EBADMSG);
if (! nvlist_exists_number(nvl, "nr"))
ERROUT(EBADMSG);
if (nvlist_exists_bool(nvl, "clear_counter"))
clear_counter = nvlist_get_bool(nvl, "clear_counter");
if (clear_counter && !(flags & FWRITE))
ERROUT(EACCES);
nr = nvlist_get_number(nvl, "nr");
PF_RULES_WLOCK();
ruleset = pf_find_kruleset(nvlist_get_string(nvl, "anchor"));
if (ruleset == NULL) {
PF_RULES_WUNLOCK();
ERROUT(ENOENT);
}
rs_num = pf_get_ruleset_number(nvlist_get_number(nvl, "ruleset"));
if (rs_num >= PF_RULESET_MAX) {
PF_RULES_WUNLOCK();
ERROUT(EINVAL);
}
if (nvlist_get_number(nvl, "ticket") !=
ruleset->rules[rs_num].active.ticket) {
PF_RULES_WUNLOCK();
ERROUT(EBUSY);
}
if ((error = nvlist_error(nvl))) {
PF_RULES_WUNLOCK();
ERROUT(error);
}
rule = TAILQ_FIRST(ruleset->rules[rs_num].active.ptr);
while ((rule != NULL) && (rule->nr != nr))
rule = TAILQ_NEXT(rule, entries);
if (rule == NULL) {
PF_RULES_WUNLOCK();
ERROUT(EBUSY);
}
nvrule = pf_krule_to_nvrule(rule);
nvlist_destroy(nvl);
nvl = nvlist_create(0);
if (nvl == NULL) {
PF_RULES_WUNLOCK();
ERROUT(ENOMEM);
}
nvlist_add_number(nvl, "nr", nr);
nvlist_add_nvlist(nvl, "rule", nvrule);
nvlist_destroy(nvrule);
nvrule = NULL;
if (pf_kanchor_nvcopyout(ruleset, rule, nvl)) {
PF_RULES_WUNLOCK();
ERROUT(EBUSY);
}
free(nvlpacked, M_TEMP);
nvlpacked = nvlist_pack(nvl, &nv->len);
if (nvlpacked == NULL) {
PF_RULES_WUNLOCK();
ERROUT(ENOMEM);
}
if (nv->size == 0) {
PF_RULES_WUNLOCK();
ERROUT(0);
}
else if (nv->size < nv->len) {
PF_RULES_WUNLOCK();
ERROUT(ENOSPC);
}
error = copyout(nvlpacked, nv->data, nv->len);
if (clear_counter) {
counter_u64_zero(rule->evaluations);
for (int i = 0; i < 2; i++) {
counter_u64_zero(rule->packets[i]);
counter_u64_zero(rule->bytes[i]);
}
counter_u64_zero(rule->states_tot);
}
PF_RULES_WUNLOCK();
#undef ERROUT
DIOCGETRULENV_error:
free(nvlpacked, M_TEMP);
nvlist_destroy(nvrule);
nvlist_destroy(nvl);
break;
}
case DIOCCHANGERULE: {
struct pfioc_rule *pcr = (struct pfioc_rule *)addr;
struct pf_kruleset *ruleset;
struct pf_krule *oldrule = NULL, *newrule = NULL;
struct pfi_kkif *kif = NULL;
struct pf_kpooladdr *pa;
u_int32_t nr = 0;
int rs_num;
if (pcr->action < PF_CHANGE_ADD_HEAD ||
pcr->action > PF_CHANGE_GET_TICKET) {
error = EINVAL;
break;
}
if (pcr->rule.return_icmp >> 8 > ICMP_MAXTYPE) {
error = EINVAL;
break;
}
if (pcr->action != PF_CHANGE_REMOVE) {
newrule = malloc(sizeof(*newrule), M_PFRULE, M_WAITOK);
error = pf_rule_to_krule(&pcr->rule, newrule);
if (error != 0) {
free(newrule, M_PFRULE);
break;
}
if (newrule->ifname[0])
kif = pf_kkif_create(M_WAITOK);
newrule->evaluations = counter_u64_alloc(M_WAITOK);
for (int i = 0; i < 2; i++) {
newrule->packets[i] =
counter_u64_alloc(M_WAITOK);
newrule->bytes[i] =
counter_u64_alloc(M_WAITOK);
}
newrule->states_cur = counter_u64_alloc(M_WAITOK);
newrule->states_tot = counter_u64_alloc(M_WAITOK);
newrule->src_nodes = counter_u64_alloc(M_WAITOK);
newrule->cuid = td->td_ucred->cr_ruid;
newrule->cpid = td->td_proc ? td->td_proc->p_pid : 0;
TAILQ_INIT(&newrule->rpool.list);
}
#define ERROUT(x) { error = (x); goto DIOCCHANGERULE_error; }
PF_RULES_WLOCK();
if (!(pcr->action == PF_CHANGE_REMOVE ||
pcr->action == PF_CHANGE_GET_TICKET) &&
pcr->pool_ticket != V_ticket_pabuf)
ERROUT(EBUSY);
ruleset = pf_find_kruleset(pcr->anchor);
if (ruleset == NULL)
ERROUT(EINVAL);
rs_num = pf_get_ruleset_number(pcr->rule.action);
if (rs_num >= PF_RULESET_MAX)
ERROUT(EINVAL);
if (pcr->action == PF_CHANGE_GET_TICKET) {
pcr->ticket = ++ruleset->rules[rs_num].active.ticket;
ERROUT(0);
} else if (pcr->ticket !=
ruleset->rules[rs_num].active.ticket)
ERROUT(EINVAL);
if (pcr->action != PF_CHANGE_REMOVE) {
if (newrule->ifname[0]) {
newrule->kif = pfi_kkif_attach(kif,
newrule->ifname);
kif = NULL;
pfi_kkif_ref(newrule->kif);
} else
newrule->kif = NULL;
if (newrule->rtableid > 0 &&
newrule->rtableid >= rt_numfibs)
error = EBUSY;
#ifdef ALTQ
/* set queue IDs */
if (newrule->qname[0] != 0) {
if ((newrule->qid =
pf_qname2qid(newrule->qname)) == 0)
error = EBUSY;
else if (newrule->pqname[0] != 0) {
if ((newrule->pqid =
pf_qname2qid(newrule->pqname)) == 0)
error = EBUSY;
} else
newrule->pqid = newrule->qid;
}
#endif /* ALTQ */
if (newrule->tagname[0])
if ((newrule->tag =
pf_tagname2tag(newrule->tagname)) == 0)
error = EBUSY;
if (newrule->match_tagname[0])
if ((newrule->match_tag = pf_tagname2tag(
newrule->match_tagname)) == 0)
error = EBUSY;
if (newrule->rt && !newrule->direction)
error = EINVAL;
if (!newrule->log)
newrule->logif = 0;
if (newrule->logif >= PFLOGIFS_MAX)
error = EINVAL;
if (pf_addr_setup(ruleset, &newrule->src.addr, newrule->af))
error = ENOMEM;
if (pf_addr_setup(ruleset, &newrule->dst.addr, newrule->af))
error = ENOMEM;
if (pf_kanchor_setup(newrule, ruleset, pcr->anchor_call))
error = EINVAL;
TAILQ_FOREACH(pa, &V_pf_pabuf, entries)
if (pa->addr.type == PF_ADDR_TABLE) {
pa->addr.p.tbl =
pfr_attach_table(ruleset,
pa->addr.v.tblname);
if (pa->addr.p.tbl == NULL)
error = ENOMEM;
}
newrule->overload_tbl = NULL;
if (newrule->overload_tblname[0]) {
if ((newrule->overload_tbl = pfr_attach_table(
ruleset, newrule->overload_tblname)) ==
NULL)
error = EINVAL;
else
newrule->overload_tbl->pfrkt_flags |=
PFR_TFLAG_ACTIVE;
}
pf_mv_kpool(&V_pf_pabuf, &newrule->rpool.list);
if (((((newrule->action == PF_NAT) ||
(newrule->action == PF_RDR) ||
(newrule->action == PF_BINAT) ||
(newrule->rt > PF_NOPFROUTE)) &&
!newrule->anchor)) &&
(TAILQ_FIRST(&newrule->rpool.list) == NULL))
error = EINVAL;
if (error) {
pf_free_rule(newrule);
PF_RULES_WUNLOCK();
break;
}
newrule->rpool.cur = TAILQ_FIRST(&newrule->rpool.list);
}
pf_empty_kpool(&V_pf_pabuf);
if (pcr->action == PF_CHANGE_ADD_HEAD)
oldrule = TAILQ_FIRST(
ruleset->rules[rs_num].active.ptr);
else if (pcr->action == PF_CHANGE_ADD_TAIL)
oldrule = TAILQ_LAST(
ruleset->rules[rs_num].active.ptr, pf_krulequeue);
else {
oldrule = TAILQ_FIRST(
ruleset->rules[rs_num].active.ptr);
while ((oldrule != NULL) && (oldrule->nr != pcr->nr))
oldrule = TAILQ_NEXT(oldrule, entries);
if (oldrule == NULL) {
if (newrule != NULL)
pf_free_rule(newrule);
PF_RULES_WUNLOCK();
error = EINVAL;
break;
}
}
if (pcr->action == PF_CHANGE_REMOVE) {
pf_unlink_rule(ruleset->rules[rs_num].active.ptr,
oldrule);
ruleset->rules[rs_num].active.rcount--;
} else {
if (oldrule == NULL)
TAILQ_INSERT_TAIL(
ruleset->rules[rs_num].active.ptr,
newrule, entries);
else if (pcr->action == PF_CHANGE_ADD_HEAD ||
pcr->action == PF_CHANGE_ADD_BEFORE)
TAILQ_INSERT_BEFORE(oldrule, newrule, entries);
else
TAILQ_INSERT_AFTER(
ruleset->rules[rs_num].active.ptr,
oldrule, newrule, entries);
ruleset->rules[rs_num].active.rcount++;
}
nr = 0;
TAILQ_FOREACH(oldrule,
ruleset->rules[rs_num].active.ptr, entries)
oldrule->nr = nr++;
ruleset->rules[rs_num].active.ticket++;
pf_calc_skip_steps(ruleset->rules[rs_num].active.ptr);
pf_remove_if_empty_kruleset(ruleset);
PF_RULES_WUNLOCK();
break;
#undef ERROUT
DIOCCHANGERULE_error:
PF_RULES_WUNLOCK();
pf_krule_free(newrule);
pf_kkif_free(kif);
break;
}
case DIOCCLRSTATES: {
struct pfioc_state_kill *psk = (struct pfioc_state_kill *)addr;
struct pf_kstate_kill kill;
error = pf_state_kill_to_kstate_kill(psk, &kill);
if (error)
break;
psk->psk_killed = pf_clear_states(&kill);
break;
}
case DIOCCLRSTATESNV: {
error = pf_clearstates_nv((struct pfioc_nv *)addr);
break;
}
case DIOCKILLSTATES: {
struct pfioc_state_kill *psk = (struct pfioc_state_kill *)addr;
struct pf_kstate_kill kill;
error = pf_state_kill_to_kstate_kill(psk, &kill);
if (error)
break;
psk->psk_killed = 0;
error = pf_killstates(&kill, &psk->psk_killed);
break;
}
case DIOCKILLSTATESNV: {
error = pf_killstates_nv((struct pfioc_nv *)addr);
break;
}
case DIOCADDSTATE: {
struct pfioc_state *ps = (struct pfioc_state *)addr;
struct pfsync_state *sp = &ps->state;
if (sp->timeout >= PFTM_MAX) {
error = EINVAL;
break;
}
if (V_pfsync_state_import_ptr != NULL) {
PF_RULES_RLOCK();
error = V_pfsync_state_import_ptr(sp, PFSYNC_SI_IOCTL);
PF_RULES_RUNLOCK();
} else
error = EOPNOTSUPP;
break;
}
case DIOCGETSTATE: {
struct pfioc_state *ps = (struct pfioc_state *)addr;
struct pf_state *s;
s = pf_find_state_byid(ps->state.id, ps->state.creatorid);
if (s == NULL) {
error = ENOENT;
break;
}
pfsync_state_export(&ps->state, s);
PF_STATE_UNLOCK(s);
break;
}
case DIOCGETSTATENV: {
error = pf_getstate((struct pfioc_nv *)addr);
break;
}
case DIOCGETSTATES: {
struct pfioc_states *ps = (struct pfioc_states *)addr;
struct pf_state *s;
struct pfsync_state *pstore, *p;
int i, nr;
if (ps->ps_len <= 0) {
nr = uma_zone_get_cur(V_pf_state_z);
ps->ps_len = sizeof(struct pfsync_state) * nr;
break;
}
p = pstore = malloc(ps->ps_len, M_TEMP, M_WAITOK | M_ZERO);
nr = 0;
for (i = 0; i <= pf_hashmask; i++) {
struct pf_idhash *ih = &V_pf_idhash[i];
PF_HASHROW_LOCK(ih);
LIST_FOREACH(s, &ih->states, entry) {
if (s->timeout == PFTM_UNLINKED)
continue;
if ((nr+1) * sizeof(*p) > ps->ps_len) {
PF_HASHROW_UNLOCK(ih);
goto DIOCGETSTATES_full;
}
pfsync_state_export(p, s);
p++;
nr++;
}
PF_HASHROW_UNLOCK(ih);
}
DIOCGETSTATES_full:
error = copyout(pstore, ps->ps_states,
sizeof(struct pfsync_state) * nr);
if (error) {
free(pstore, M_TEMP);
break;
}
ps->ps_len = sizeof(struct pfsync_state) * nr;
free(pstore, M_TEMP);
break;
}
case DIOCGETSTATESNV: {
error = pf_getstates((struct pfioc_nv *)addr);
break;
}
case DIOCGETSTATUS: {
struct pf_status *s = (struct pf_status *)addr;
PF_RULES_RLOCK();
s->running = V_pf_status.running;
s->since = V_pf_status.since;
s->debug = V_pf_status.debug;
s->hostid = V_pf_status.hostid;
s->states = V_pf_status.states;
s->src_nodes = V_pf_status.src_nodes;
for (int i = 0; i < PFRES_MAX; i++)
s->counters[i] =
counter_u64_fetch(V_pf_status.counters[i]);
for (int i = 0; i < LCNT_MAX; i++)
s->lcounters[i] =
counter_u64_fetch(V_pf_status.lcounters[i]);
for (int i = 0; i < FCNT_MAX; i++)
s->fcounters[i] =
counter_u64_fetch(V_pf_status.fcounters[i]);
for (int i = 0; i < SCNT_MAX; i++)
s->scounters[i] =
counter_u64_fetch(V_pf_status.scounters[i]);
bcopy(V_pf_status.ifname, s->ifname, IFNAMSIZ);
bcopy(V_pf_status.pf_chksum, s->pf_chksum,
PF_MD5_DIGEST_LENGTH);
pfi_update_status(s->ifname, s);
PF_RULES_RUNLOCK();
break;
}
case DIOCSETSTATUSIF: {
struct pfioc_if *pi = (struct pfioc_if *)addr;
if (pi->ifname[0] == 0) {
bzero(V_pf_status.ifname, IFNAMSIZ);
break;
}
PF_RULES_WLOCK();
strlcpy(V_pf_status.ifname, pi->ifname, IFNAMSIZ);
PF_RULES_WUNLOCK();
break;
}
case DIOCCLRSTATUS: {
PF_RULES_WLOCK();
for (int i = 0; i < PFRES_MAX; i++)
counter_u64_zero(V_pf_status.counters[i]);
for (int i = 0; i < FCNT_MAX; i++)
counter_u64_zero(V_pf_status.fcounters[i]);
for (int i = 0; i < SCNT_MAX; i++)
counter_u64_zero(V_pf_status.scounters[i]);
for (int i = 0; i < LCNT_MAX; i++)
counter_u64_zero(V_pf_status.lcounters[i]);
V_pf_status.since = time_second;
if (*V_pf_status.ifname)
pfi_update_status(V_pf_status.ifname, NULL);
PF_RULES_WUNLOCK();
break;
}
case DIOCNATLOOK: {
struct pfioc_natlook *pnl = (struct pfioc_natlook *)addr;
struct pf_state_key *sk;
struct pf_state *state;
struct pf_state_key_cmp key;
int m = 0, direction = pnl->direction;
int sidx, didx;
/* NATLOOK src and dst are reversed, so reverse sidx/didx */
sidx = (direction == PF_IN) ? 1 : 0;
didx = (direction == PF_IN) ? 0 : 1;
if (!pnl->proto ||
PF_AZERO(&pnl->saddr, pnl->af) ||
PF_AZERO(&pnl->daddr, pnl->af) ||
((pnl->proto == IPPROTO_TCP ||
pnl->proto == IPPROTO_UDP) &&
(!pnl->dport || !pnl->sport)))
error = EINVAL;
else {
bzero(&key, sizeof(key));
key.af = pnl->af;
key.proto = pnl->proto;
PF_ACPY(&key.addr[sidx], &pnl->saddr, pnl->af);
key.port[sidx] = pnl->sport;
PF_ACPY(&key.addr[didx], &pnl->daddr, pnl->af);
key.port[didx] = pnl->dport;
state = pf_find_state_all(&key, direction, &m);
if (m > 1)
error = E2BIG; /* more than one state */
else if (state != NULL) {
/* XXXGL: not locked read */
sk = state->key[sidx];
PF_ACPY(&pnl->rsaddr, &sk->addr[sidx], sk->af);
pnl->rsport = sk->port[sidx];
PF_ACPY(&pnl->rdaddr, &sk->addr[didx], sk->af);
pnl->rdport = sk->port[didx];
} else
error = ENOENT;
}
break;
}
case DIOCSETTIMEOUT: {
struct pfioc_tm *pt = (struct pfioc_tm *)addr;
int old;
if (pt->timeout < 0 || pt->timeout >= PFTM_MAX ||
pt->seconds < 0) {
error = EINVAL;
break;
}
PF_RULES_WLOCK();
old = V_pf_default_rule.timeout[pt->timeout];
if (pt->timeout == PFTM_INTERVAL && pt->seconds == 0)
pt->seconds = 1;
V_pf_default_rule.timeout[pt->timeout] = pt->seconds;
if (pt->timeout == PFTM_INTERVAL && pt->seconds < old)
wakeup(pf_purge_thread);
pt->seconds = old;
PF_RULES_WUNLOCK();
break;
}
case DIOCGETTIMEOUT: {
struct pfioc_tm *pt = (struct pfioc_tm *)addr;
if (pt->timeout < 0 || pt->timeout >= PFTM_MAX) {
error = EINVAL;
break;
}
PF_RULES_RLOCK();
pt->seconds = V_pf_default_rule.timeout[pt->timeout];
PF_RULES_RUNLOCK();
break;
}
case DIOCGETLIMIT: {
struct pfioc_limit *pl = (struct pfioc_limit *)addr;
if (pl->index < 0 || pl->index >= PF_LIMIT_MAX) {
error = EINVAL;
break;
}
PF_RULES_RLOCK();
pl->limit = V_pf_limits[pl->index].limit;
PF_RULES_RUNLOCK();
break;
}
case DIOCSETLIMIT: {
struct pfioc_limit *pl = (struct pfioc_limit *)addr;
int old_limit;
PF_RULES_WLOCK();
if (pl->index < 0 || pl->index >= PF_LIMIT_MAX ||
V_pf_limits[pl->index].zone == NULL) {
PF_RULES_WUNLOCK();
error = EINVAL;
break;
}
uma_zone_set_max(V_pf_limits[pl->index].zone, pl->limit);
old_limit = V_pf_limits[pl->index].limit;
V_pf_limits[pl->index].limit = pl->limit;
pl->limit = old_limit;
PF_RULES_WUNLOCK();
break;
}
case DIOCSETDEBUG: {
u_int32_t *level = (u_int32_t *)addr;
PF_RULES_WLOCK();
V_pf_status.debug = *level;
PF_RULES_WUNLOCK();
break;
}
case DIOCCLRRULECTRS: {
/* obsoleted by DIOCGETRULE with action=PF_GET_CLR_CNTR */
struct pf_kruleset *ruleset = &pf_main_ruleset;
struct pf_krule *rule;
PF_RULES_WLOCK();
TAILQ_FOREACH(rule,
ruleset->rules[PF_RULESET_FILTER].active.ptr, entries) {
counter_u64_zero(rule->evaluations);
for (int i = 0; i < 2; i++) {
counter_u64_zero(rule->packets[i]);
counter_u64_zero(rule->bytes[i]);
}
}
PF_RULES_WUNLOCK();
break;
}
case DIOCGIFSPEEDV0:
case DIOCGIFSPEEDV1: {
struct pf_ifspeed_v1 *psp = (struct pf_ifspeed_v1 *)addr;
struct pf_ifspeed_v1 ps;
struct ifnet *ifp;
if (psp->ifname[0] != 0) {
/* Can we completely trust user-land? */
strlcpy(ps.ifname, psp->ifname, IFNAMSIZ);
ifp = ifunit(ps.ifname);
if (ifp != NULL) {
psp->baudrate32 =
(u_int32_t)uqmin(ifp->if_baudrate, UINT_MAX);
if (cmd == DIOCGIFSPEEDV1)
psp->baudrate = ifp->if_baudrate;
} else
error = EINVAL;
} else
error = EINVAL;
break;
}
#ifdef ALTQ
case DIOCSTARTALTQ: {
struct pf_altq *altq;
PF_RULES_WLOCK();
/* enable all altq interfaces on active list */
TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) {
if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) {
error = pf_enable_altq(altq);
if (error != 0)
break;
}
}
if (error == 0)
V_pf_altq_running = 1;
PF_RULES_WUNLOCK();
DPFPRINTF(PF_DEBUG_MISC, ("altq: started\n"));
break;
}
case DIOCSTOPALTQ: {
struct pf_altq *altq;
PF_RULES_WLOCK();
/* disable all altq interfaces on active list */
TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries) {
if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) == 0) {
error = pf_disable_altq(altq);
if (error != 0)
break;
}
}
if (error == 0)
V_pf_altq_running = 0;
PF_RULES_WUNLOCK();
DPFPRINTF(PF_DEBUG_MISC, ("altq: stopped\n"));
break;
}
case DIOCADDALTQV0:
case DIOCADDALTQV1: {
struct pfioc_altq_v1 *pa = (struct pfioc_altq_v1 *)addr;
struct pf_altq *altq, *a;
struct ifnet *ifp;
altq = malloc(sizeof(*altq), M_PFALTQ, M_WAITOK | M_ZERO);
error = pf_import_kaltq(pa, altq, IOCPARM_LEN(cmd));
if (error)
break;
altq->local_flags = 0;
PF_RULES_WLOCK();
if (pa->ticket != V_ticket_altqs_inactive) {
PF_RULES_WUNLOCK();
free(altq, M_PFALTQ);
error = EBUSY;
break;
}
/*
* if this is for a queue, find the discipline and
* copy the necessary fields
*/
if (altq->qname[0] != 0) {
if ((altq->qid = pf_qname2qid(altq->qname)) == 0) {
PF_RULES_WUNLOCK();
error = EBUSY;
free(altq, M_PFALTQ);
break;
}
altq->altq_disc = NULL;
TAILQ_FOREACH(a, V_pf_altq_ifs_inactive, entries) {
if (strncmp(a->ifname, altq->ifname,
IFNAMSIZ) == 0) {
altq->altq_disc = a->altq_disc;
break;
}
}
}
if ((ifp = ifunit(altq->ifname)) == NULL)
altq->local_flags |= PFALTQ_FLAG_IF_REMOVED;
else
error = altq_add(ifp, altq);
if (error) {
PF_RULES_WUNLOCK();
free(altq, M_PFALTQ);
break;
}
if (altq->qname[0] != 0)
TAILQ_INSERT_TAIL(V_pf_altqs_inactive, altq, entries);
else
TAILQ_INSERT_TAIL(V_pf_altq_ifs_inactive, altq, entries);
/* version error check done on import above */
pf_export_kaltq(altq, pa, IOCPARM_LEN(cmd));
PF_RULES_WUNLOCK();
break;
}
case DIOCGETALTQSV0:
case DIOCGETALTQSV1: {
struct pfioc_altq_v1 *pa = (struct pfioc_altq_v1 *)addr;
struct pf_altq *altq;
PF_RULES_RLOCK();
pa->nr = 0;
TAILQ_FOREACH(altq, V_pf_altq_ifs_active, entries)
pa->nr++;
TAILQ_FOREACH(altq, V_pf_altqs_active, entries)
pa->nr++;
pa->ticket = V_ticket_altqs_active;
PF_RULES_RUNLOCK();
break;
}
case DIOCGETALTQV0:
case DIOCGETALTQV1: {
struct pfioc_altq_v1 *pa = (struct pfioc_altq_v1 *)addr;
struct pf_altq *altq;
PF_RULES_RLOCK();
if (pa->ticket != V_ticket_altqs_active) {
PF_RULES_RUNLOCK();
error = EBUSY;
break;
}
altq = pf_altq_get_nth_active(pa->nr);
if (altq == NULL) {
PF_RULES_RUNLOCK();
error = EBUSY;
break;
}
pf_export_kaltq(altq, pa, IOCPARM_LEN(cmd));
PF_RULES_RUNLOCK();
break;
}
case DIOCCHANGEALTQV0:
case DIOCCHANGEALTQV1:
/* CHANGEALTQ not supported yet! */
error = ENODEV;
break;
case DIOCGETQSTATSV0:
case DIOCGETQSTATSV1: {
struct pfioc_qstats_v1 *pq = (struct pfioc_qstats_v1 *)addr;
struct pf_altq *altq;
int nbytes;
u_int32_t version;
PF_RULES_RLOCK();
if (pq->ticket != V_ticket_altqs_active) {
PF_RULES_RUNLOCK();
error = EBUSY;
break;
}
nbytes = pq->nbytes;
altq = pf_altq_get_nth_active(pq->nr);
if (altq == NULL) {
PF_RULES_RUNLOCK();
error = EBUSY;
break;
}
if ((altq->local_flags & PFALTQ_FLAG_IF_REMOVED) != 0) {
PF_RULES_RUNLOCK();
error = ENXIO;
break;
}
PF_RULES_RUNLOCK();
if (cmd == DIOCGETQSTATSV0)
version = 0; /* DIOCGETQSTATSV0 means stats struct v0 */
else
version = pq->version;
error = altq_getqstats(altq, pq->buf, &nbytes, version);
if (error == 0) {
pq->scheduler = altq->scheduler;
pq->nbytes = nbytes;
}
break;
}
#endif /* ALTQ */
case DIOCBEGINADDRS: {
struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr;
PF_RULES_WLOCK();
pf_empty_kpool(&V_pf_pabuf);
pp->ticket = ++V_ticket_pabuf;
PF_RULES_WUNLOCK();
break;
}
case DIOCADDADDR: {
struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr;
struct pf_kpooladdr *pa;
struct pfi_kkif *kif = NULL;
#ifndef INET
if (pp->af == AF_INET) {
error = EAFNOSUPPORT;
break;
}
#endif /* INET */
#ifndef INET6
if (pp->af == AF_INET6) {
error = EAFNOSUPPORT;
break;
}
#endif /* INET6 */
if (pp->addr.addr.type != PF_ADDR_ADDRMASK &&
pp->addr.addr.type != PF_ADDR_DYNIFTL &&
pp->addr.addr.type != PF_ADDR_TABLE) {
error = EINVAL;
break;
}
if (pp->addr.addr.p.dyn != NULL) {
error = EINVAL;
break;
}
pa = malloc(sizeof(*pa), M_PFRULE, M_WAITOK);
pf_pooladdr_to_kpooladdr(&pp->addr, pa);
if (pa->ifname[0])
kif = pf_kkif_create(M_WAITOK);
PF_RULES_WLOCK();
if (pp->ticket != V_ticket_pabuf) {
PF_RULES_WUNLOCK();
if (pa->ifname[0])
pf_kkif_free(kif);
free(pa, M_PFRULE);
error = EBUSY;
break;
}
if (pa->ifname[0]) {
pa->kif = pfi_kkif_attach(kif, pa->ifname);
kif = NULL;
pfi_kkif_ref(pa->kif);
} else
pa->kif = NULL;
if (pa->addr.type == PF_ADDR_DYNIFTL && ((error =
pfi_dynaddr_setup(&pa->addr, pp->af)) != 0)) {
if (pa->ifname[0])
pfi_kkif_unref(pa->kif);
PF_RULES_WUNLOCK();
free(pa, M_PFRULE);
break;
}
TAILQ_INSERT_TAIL(&V_pf_pabuf, pa, entries);
PF_RULES_WUNLOCK();
break;
}
case DIOCGETADDRS: {
struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr;
struct pf_kpool *pool;
struct pf_kpooladdr *pa;
PF_RULES_RLOCK();
pp->nr = 0;
pool = pf_get_kpool(pp->anchor, pp->ticket, pp->r_action,
pp->r_num, 0, 1, 0);
if (pool == NULL) {
PF_RULES_RUNLOCK();
error = EBUSY;
break;
}
TAILQ_FOREACH(pa, &pool->list, entries)
pp->nr++;
PF_RULES_RUNLOCK();
break;
}
case DIOCGETADDR: {
struct pfioc_pooladdr *pp = (struct pfioc_pooladdr *)addr;
struct pf_kpool *pool;
struct pf_kpooladdr *pa;
u_int32_t nr = 0;
PF_RULES_RLOCK();
pool = pf_get_kpool(pp->anchor, pp->ticket, pp->r_action,
pp->r_num, 0, 1, 1);
if (pool == NULL) {
PF_RULES_RUNLOCK();
error = EBUSY;
break;
}
pa = TAILQ_FIRST(&pool->list);
while ((pa != NULL) && (nr < pp->nr)) {
pa = TAILQ_NEXT(pa, entries);
nr++;
}
if (pa == NULL) {
PF_RULES_RUNLOCK();
error = EBUSY;
break;
}
pf_kpooladdr_to_pooladdr(pa, &pp->addr);
pf_addr_copyout(&pp->addr.addr);
PF_RULES_RUNLOCK();
break;
}
case DIOCCHANGEADDR: {
struct pfioc_pooladdr *pca = (struct pfioc_pooladdr *)addr;
struct pf_kpool *pool;
struct pf_kpooladdr *oldpa = NULL, *newpa = NULL;
struct pf_kruleset *ruleset;
struct pfi_kkif *kif = NULL;
if (pca->action < PF_CHANGE_ADD_HEAD ||
pca->action > PF_CHANGE_REMOVE) {
error = EINVAL;
break;
}
if (pca->addr.addr.type != PF_ADDR_ADDRMASK &&
pca->addr.addr.type != PF_ADDR_DYNIFTL &&
pca->addr.addr.type != PF_ADDR_TABLE) {
error = EINVAL;
break;
}
if (pca->addr.addr.p.dyn != NULL) {
error = EINVAL;
break;
}
if (pca->action != PF_CHANGE_REMOVE) {
#ifndef INET
if (pca->af == AF_INET) {
error = EAFNOSUPPORT;
break;
}
#endif /* INET */
#ifndef INET6
if (pca->af == AF_INET6) {
error = EAFNOSUPPORT;
break;
}
#endif /* INET6 */
newpa = malloc(sizeof(*newpa), M_PFRULE, M_WAITOK);
bcopy(&pca->addr, newpa, sizeof(struct pf_pooladdr));
if (newpa->ifname[0])
kif = pf_kkif_create(M_WAITOK);
newpa->kif = NULL;
}
#define ERROUT(x) ERROUT_IOCTL(DIOCCHANGEADDR_error, x)
PF_RULES_WLOCK();
ruleset = pf_find_kruleset(pca->anchor);
if (ruleset == NULL)
ERROUT(EBUSY);
pool = pf_get_kpool(pca->anchor, pca->ticket, pca->r_action,
pca->r_num, pca->r_last, 1, 1);
if (pool == NULL)
ERROUT(EBUSY);
if (pca->action != PF_CHANGE_REMOVE) {
if (newpa->ifname[0]) {
newpa->kif = pfi_kkif_attach(kif, newpa->ifname);
pfi_kkif_ref(newpa->kif);
kif = NULL;
}
switch (newpa->addr.type) {
case PF_ADDR_DYNIFTL:
error = pfi_dynaddr_setup(&newpa->addr,
pca->af);
break;
case PF_ADDR_TABLE:
newpa->addr.p.tbl = pfr_attach_table(ruleset,
newpa->addr.v.tblname);
if (newpa->addr.p.tbl == NULL)
error = ENOMEM;
break;
}
if (error)
goto DIOCCHANGEADDR_error;
}
switch (pca->action) {
case PF_CHANGE_ADD_HEAD:
oldpa = TAILQ_FIRST(&pool->list);
break;
case PF_CHANGE_ADD_TAIL:
oldpa = TAILQ_LAST(&pool->list, pf_kpalist);
break;
default:
oldpa = TAILQ_FIRST(&pool->list);
for (int i = 0; oldpa && i < pca->nr; i++)
oldpa = TAILQ_NEXT(oldpa, entries);
if (oldpa == NULL)
ERROUT(EINVAL);
}
if (pca->action == PF_CHANGE_REMOVE) {
TAILQ_REMOVE(&pool->list, oldpa, entries);
switch (oldpa->addr.type) {
case PF_ADDR_DYNIFTL:
pfi_dynaddr_remove(oldpa->addr.p.dyn);
break;
case PF_ADDR_TABLE:
pfr_detach_table(oldpa->addr.p.tbl);
break;
}
if (oldpa->kif)
pfi_kkif_unref(oldpa->kif);
free(oldpa, M_PFRULE);
} else {
if (oldpa == NULL)
TAILQ_INSERT_TAIL(&pool->list, newpa, entries);
else if (pca->action == PF_CHANGE_ADD_HEAD ||
pca->action == PF_CHANGE_ADD_BEFORE)
TAILQ_INSERT_BEFORE(oldpa, newpa, entries);
else
TAILQ_INSERT_AFTER(&pool->list, oldpa,
newpa, entries);
}
pool->cur = TAILQ_FIRST(&pool->list);
PF_ACPY(&pool->counter, &pool->cur->addr.v.a.addr, pca->af);
PF_RULES_WUNLOCK();
break;
#undef ERROUT
DIOCCHANGEADDR_error:
if (newpa != NULL) {
if (newpa->kif)
pfi_kkif_unref(newpa->kif);
free(newpa, M_PFRULE);
}
PF_RULES_WUNLOCK();
pf_kkif_free(kif);
break;
}
case DIOCGETRULESETS: {
struct pfioc_ruleset *pr = (struct pfioc_ruleset *)addr;
struct pf_kruleset *ruleset;
struct pf_kanchor *anchor;
PF_RULES_RLOCK();
pr->path[sizeof(pr->path) - 1] = 0;
if ((ruleset = pf_find_kruleset(pr->path)) == NULL) {
PF_RULES_RUNLOCK();
error = ENOENT;
break;
}
pr->nr = 0;
if (ruleset->anchor == NULL) {
/* XXX kludge for pf_main_ruleset */
RB_FOREACH(anchor, pf_kanchor_global, &V_pf_anchors)
if (anchor->parent == NULL)
pr->nr++;
} else {
RB_FOREACH(anchor, pf_kanchor_node,
&ruleset->anchor->children)
pr->nr++;
}
PF_RULES_RUNLOCK();
break;
}
case DIOCGETRULESET: {
struct pfioc_ruleset *pr = (struct pfioc_ruleset *)addr;
struct pf_kruleset *ruleset;
struct pf_kanchor *anchor;
u_int32_t nr = 0;
PF_RULES_RLOCK();
pr->path[sizeof(pr->path) - 1] = 0;
if ((ruleset = pf_find_kruleset(pr->path)) == NULL) {
PF_RULES_RUNLOCK();
error = ENOENT;
break;
}
pr->name[0] = 0;
if (ruleset->anchor == NULL) {
/* XXX kludge for pf_main_ruleset */
RB_FOREACH(anchor, pf_kanchor_global, &V_pf_anchors)
if (anchor->parent == NULL && nr++ == pr->nr) {
strlcpy(pr->name, anchor->name,
sizeof(pr->name));
break;
}
} else {
RB_FOREACH(anchor, pf_kanchor_node,
&ruleset->anchor->children)
if (nr++ == pr->nr) {
strlcpy(pr->name, anchor->name,
sizeof(pr->name));
break;
}
}
if (!pr->name[0])
error = EBUSY;
PF_RULES_RUNLOCK();
break;
}
case DIOCRCLRTABLES: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != 0) {
error = ENODEV;
break;
}
PF_RULES_WLOCK();
error = pfr_clr_tables(&io->pfrio_table, &io->pfrio_ndel,
io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_RULES_WUNLOCK();
break;
}
case DIOCRADDTABLES: {
struct pfioc_table *io = (struct pfioc_table *)addr;
struct pfr_table *pfrts;
size_t totlen;
if (io->pfrio_esize != sizeof(struct pfr_table)) {
error = ENODEV;
break;
}
if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount ||
WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_table))) {
error = ENOMEM;
break;
}
totlen = io->pfrio_size * sizeof(struct pfr_table);
pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table),
M_TEMP, M_WAITOK);
error = copyin(io->pfrio_buffer, pfrts, totlen);
if (error) {
free(pfrts, M_TEMP);
break;
}
PF_RULES_WLOCK();
error = pfr_add_tables(pfrts, io->pfrio_size,
&io->pfrio_nadd, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_RULES_WUNLOCK();
free(pfrts, M_TEMP);
break;
}
case DIOCRDELTABLES: {
struct pfioc_table *io = (struct pfioc_table *)addr;
struct pfr_table *pfrts;
size_t totlen;
if (io->pfrio_esize != sizeof(struct pfr_table)) {
error = ENODEV;
break;
}
if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount ||
WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_table))) {
error = ENOMEM;
break;
}
totlen = io->pfrio_size * sizeof(struct pfr_table);
pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table),
M_TEMP, M_WAITOK);
error = copyin(io->pfrio_buffer, pfrts, totlen);
if (error) {
free(pfrts, M_TEMP);
break;
}
PF_RULES_WLOCK();
error = pfr_del_tables(pfrts, io->pfrio_size,
&io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_RULES_WUNLOCK();
free(pfrts, M_TEMP);
break;
}
case DIOCRGETTABLES: {
struct pfioc_table *io = (struct pfioc_table *)addr;
struct pfr_table *pfrts;
size_t totlen;
int n;
if (io->pfrio_esize != sizeof(struct pfr_table)) {
error = ENODEV;
break;
}
PF_RULES_RLOCK();
n = pfr_table_count(&io->pfrio_table, io->pfrio_flags);
if (n < 0) {
PF_RULES_RUNLOCK();
error = EINVAL;
break;
}
io->pfrio_size = min(io->pfrio_size, n);
totlen = io->pfrio_size * sizeof(struct pfr_table);
pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table),
M_TEMP, M_NOWAIT);
if (pfrts == NULL) {
error = ENOMEM;
PF_RULES_RUNLOCK();
break;
}
error = pfr_get_tables(&io->pfrio_table, pfrts,
&io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_RULES_RUNLOCK();
if (error == 0)
error = copyout(pfrts, io->pfrio_buffer, totlen);
free(pfrts, M_TEMP);
break;
}
case DIOCRGETTSTATS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
struct pfr_tstats *pfrtstats;
size_t totlen;
int n;
if (io->pfrio_esize != sizeof(struct pfr_tstats)) {
error = ENODEV;
break;
}
PF_RULES_WLOCK();
n = pfr_table_count(&io->pfrio_table, io->pfrio_flags);
if (n < 0) {
PF_RULES_WUNLOCK();
error = EINVAL;
break;
}
io->pfrio_size = min(io->pfrio_size, n);
totlen = io->pfrio_size * sizeof(struct pfr_tstats);
pfrtstats = mallocarray(io->pfrio_size,
sizeof(struct pfr_tstats), M_TEMP, M_NOWAIT);
if (pfrtstats == NULL) {
error = ENOMEM;
PF_RULES_WUNLOCK();
break;
}
error = pfr_get_tstats(&io->pfrio_table, pfrtstats,
&io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_RULES_WUNLOCK();
if (error == 0)
error = copyout(pfrtstats, io->pfrio_buffer, totlen);
free(pfrtstats, M_TEMP);
break;
}
case DIOCRCLRTSTATS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
struct pfr_table *pfrts;
size_t totlen;
if (io->pfrio_esize != sizeof(struct pfr_table)) {
error = ENODEV;
break;
}
if (io->pfrio_size < 0 || io->pfrio_size > pf_ioctl_maxcount ||
WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_table))) {
/* We used to count tables and use the minimum required
* size, so we didn't fail on overly large requests.
* Keep doing so. */
io->pfrio_size = pf_ioctl_maxcount;
break;
}
totlen = io->pfrio_size * sizeof(struct pfr_table);
pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table),
M_TEMP, M_NOWAIT);
if (pfrts == NULL) {
error = ENOMEM;
break;
}
error = copyin(io->pfrio_buffer, pfrts, totlen);
if (error) {
free(pfrts, M_TEMP);
break;
}
PF_RULES_WLOCK();
error = pfr_clr_tstats(pfrts, io->pfrio_size,
&io->pfrio_nzero, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_RULES_WUNLOCK();
free(pfrts, M_TEMP);
break;
}
case DIOCRSETTFLAGS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
struct pfr_table *pfrts;
size_t totlen;
int n;
if (io->pfrio_esize != sizeof(struct pfr_table)) {
error = ENODEV;
break;
}
PF_RULES_RLOCK();
n = pfr_table_count(&io->pfrio_table, io->pfrio_flags);
if (n < 0) {
PF_RULES_RUNLOCK();
error = EINVAL;
break;
}
io->pfrio_size = min(io->pfrio_size, n);
PF_RULES_RUNLOCK();
totlen = io->pfrio_size * sizeof(struct pfr_table);
pfrts = mallocarray(io->pfrio_size, sizeof(struct pfr_table),
M_TEMP, M_WAITOK);
error = copyin(io->pfrio_buffer, pfrts, totlen);
if (error) {
free(pfrts, M_TEMP);
break;
}
PF_RULES_WLOCK();
error = pfr_set_tflags(pfrts, io->pfrio_size,
io->pfrio_setflag, io->pfrio_clrflag, &io->pfrio_nchange,
&io->pfrio_ndel, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_RULES_WUNLOCK();
free(pfrts, M_TEMP);
break;
}
case DIOCRCLRADDRS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
if (io->pfrio_esize != 0) {
error = ENODEV;
break;
}
PF_RULES_WLOCK();
error = pfr_clr_addrs(&io->pfrio_table, &io->pfrio_ndel,
io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_RULES_WUNLOCK();
break;
}
case DIOCRADDADDRS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
struct pfr_addr *pfras;
size_t totlen;
if (io->pfrio_esize != sizeof(struct pfr_addr)) {
error = ENODEV;
break;
}
if (io->pfrio_size < 0 ||
io->pfrio_size > pf_ioctl_maxcount ||
WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) {
error = EINVAL;
break;
}
totlen = io->pfrio_size * sizeof(struct pfr_addr);
pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr),
M_TEMP, M_NOWAIT);
if (! pfras) {
error = ENOMEM;
break;
}
error = copyin(io->pfrio_buffer, pfras, totlen);
if (error) {
free(pfras, M_TEMP);
break;
}
PF_RULES_WLOCK();
error = pfr_add_addrs(&io->pfrio_table, pfras,
io->pfrio_size, &io->pfrio_nadd, io->pfrio_flags |
PFR_FLAG_USERIOCTL);
PF_RULES_WUNLOCK();
if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK)
error = copyout(pfras, io->pfrio_buffer, totlen);
free(pfras, M_TEMP);
break;
}
case DIOCRDELADDRS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
struct pfr_addr *pfras;
size_t totlen;
if (io->pfrio_esize != sizeof(struct pfr_addr)) {
error = ENODEV;
break;
}
if (io->pfrio_size < 0 ||
io->pfrio_size > pf_ioctl_maxcount ||
WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) {
error = EINVAL;
break;
}
totlen = io->pfrio_size * sizeof(struct pfr_addr);
pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr),
M_TEMP, M_NOWAIT);
if (! pfras) {
error = ENOMEM;
break;
}
error = copyin(io->pfrio_buffer, pfras, totlen);
if (error) {
free(pfras, M_TEMP);
break;
}
PF_RULES_WLOCK();
error = pfr_del_addrs(&io->pfrio_table, pfras,
io->pfrio_size, &io->pfrio_ndel, io->pfrio_flags |
PFR_FLAG_USERIOCTL);
PF_RULES_WUNLOCK();
if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK)
error = copyout(pfras, io->pfrio_buffer, totlen);
free(pfras, M_TEMP);
break;
}
case DIOCRSETADDRS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
struct pfr_addr *pfras;
size_t totlen, count;
if (io->pfrio_esize != sizeof(struct pfr_addr)) {
error = ENODEV;
break;
}
if (io->pfrio_size < 0 || io->pfrio_size2 < 0) {
error = EINVAL;
break;
}
count = max(io->pfrio_size, io->pfrio_size2);
if (count > pf_ioctl_maxcount ||
WOULD_OVERFLOW(count, sizeof(struct pfr_addr))) {
error = EINVAL;
break;
}
totlen = count * sizeof(struct pfr_addr);
pfras = mallocarray(count, sizeof(struct pfr_addr), M_TEMP,
M_NOWAIT);
if (! pfras) {
error = ENOMEM;
break;
}
error = copyin(io->pfrio_buffer, pfras, totlen);
if (error) {
free(pfras, M_TEMP);
break;
}
PF_RULES_WLOCK();
error = pfr_set_addrs(&io->pfrio_table, pfras,
io->pfrio_size, &io->pfrio_size2, &io->pfrio_nadd,
&io->pfrio_ndel, &io->pfrio_nchange, io->pfrio_flags |
PFR_FLAG_USERIOCTL, 0);
PF_RULES_WUNLOCK();
if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK)
error = copyout(pfras, io->pfrio_buffer, totlen);
free(pfras, M_TEMP);
break;
}
case DIOCRGETADDRS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
struct pfr_addr *pfras;
size_t totlen;
if (io->pfrio_esize != sizeof(struct pfr_addr)) {
error = ENODEV;
break;
}
if (io->pfrio_size < 0 ||
io->pfrio_size > pf_ioctl_maxcount ||
WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) {
error = EINVAL;
break;
}
totlen = io->pfrio_size * sizeof(struct pfr_addr);
pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr),
M_TEMP, M_NOWAIT);
if (! pfras) {
error = ENOMEM;
break;
}
PF_RULES_RLOCK();
error = pfr_get_addrs(&io->pfrio_table, pfras,
&io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_RULES_RUNLOCK();
if (error == 0)
error = copyout(pfras, io->pfrio_buffer, totlen);
free(pfras, M_TEMP);
break;
}
case DIOCRGETASTATS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
struct pfr_astats *pfrastats;
size_t totlen;
if (io->pfrio_esize != sizeof(struct pfr_astats)) {
error = ENODEV;
break;
}
if (io->pfrio_size < 0 ||
io->pfrio_size > pf_ioctl_maxcount ||
WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_astats))) {
error = EINVAL;
break;
}
totlen = io->pfrio_size * sizeof(struct pfr_astats);
pfrastats = mallocarray(io->pfrio_size,
sizeof(struct pfr_astats), M_TEMP, M_NOWAIT);
if (! pfrastats) {
error = ENOMEM;
break;
}
PF_RULES_RLOCK();
error = pfr_get_astats(&io->pfrio_table, pfrastats,
&io->pfrio_size, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_RULES_RUNLOCK();
if (error == 0)
error = copyout(pfrastats, io->pfrio_buffer, totlen);
free(pfrastats, M_TEMP);
break;
}
case DIOCRCLRASTATS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
struct pfr_addr *pfras;
size_t totlen;
if (io->pfrio_esize != sizeof(struct pfr_addr)) {
error = ENODEV;
break;
}
if (io->pfrio_size < 0 ||
io->pfrio_size > pf_ioctl_maxcount ||
WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) {
error = EINVAL;
break;
}
totlen = io->pfrio_size * sizeof(struct pfr_addr);
pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr),
M_TEMP, M_NOWAIT);
if (! pfras) {
error = ENOMEM;
break;
}
error = copyin(io->pfrio_buffer, pfras, totlen);
if (error) {
free(pfras, M_TEMP);
break;
}
PF_RULES_WLOCK();
error = pfr_clr_astats(&io->pfrio_table, pfras,
io->pfrio_size, &io->pfrio_nzero, io->pfrio_flags |
PFR_FLAG_USERIOCTL);
PF_RULES_WUNLOCK();
if (error == 0 && io->pfrio_flags & PFR_FLAG_FEEDBACK)
error = copyout(pfras, io->pfrio_buffer, totlen);
free(pfras, M_TEMP);
break;
}
case DIOCRTSTADDRS: {
struct pfioc_table *io = (struct pfioc_table *)addr;
struct pfr_addr *pfras;
size_t totlen;
if (io->pfrio_esize != sizeof(struct pfr_addr)) {
error = ENODEV;
break;
}
if (io->pfrio_size < 0 ||
io->pfrio_size > pf_ioctl_maxcount ||
WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) {
error = EINVAL;
break;
}
totlen = io->pfrio_size * sizeof(struct pfr_addr);
pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr),
M_TEMP, M_NOWAIT);
if (! pfras) {
error = ENOMEM;
break;
}
error = copyin(io->pfrio_buffer, pfras, totlen);
if (error) {
free(pfras, M_TEMP);
break;
}
PF_RULES_RLOCK();
error = pfr_tst_addrs(&io->pfrio_table, pfras,
io->pfrio_size, &io->pfrio_nmatch, io->pfrio_flags |
PFR_FLAG_USERIOCTL);
PF_RULES_RUNLOCK();
if (error == 0)
error = copyout(pfras, io->pfrio_buffer, totlen);
free(pfras, M_TEMP);
break;
}
case DIOCRINADEFINE: {
struct pfioc_table *io = (struct pfioc_table *)addr;
struct pfr_addr *pfras;
size_t totlen;
if (io->pfrio_esize != sizeof(struct pfr_addr)) {
error = ENODEV;
break;
}
if (io->pfrio_size < 0 ||
io->pfrio_size > pf_ioctl_maxcount ||
WOULD_OVERFLOW(io->pfrio_size, sizeof(struct pfr_addr))) {
error = EINVAL;
break;
}
totlen = io->pfrio_size * sizeof(struct pfr_addr);
pfras = mallocarray(io->pfrio_size, sizeof(struct pfr_addr),
M_TEMP, M_NOWAIT);
if (! pfras) {
error = ENOMEM;
break;
}
error = copyin(io->pfrio_buffer, pfras, totlen);
if (error) {
free(pfras, M_TEMP);
break;
}
PF_RULES_WLOCK();
error = pfr_ina_define(&io->pfrio_table, pfras,
io->pfrio_size, &io->pfrio_nadd, &io->pfrio_naddr,
io->pfrio_ticket, io->pfrio_flags | PFR_FLAG_USERIOCTL);
PF_RULES_WUNLOCK();
free(pfras, M_TEMP);
break;
}
case DIOCOSFPADD: {
struct pf_osfp_ioctl *io = (struct pf_osfp_ioctl *)addr;
PF_RULES_WLOCK();
error = pf_osfp_add(io);
PF_RULES_WUNLOCK();
break;
}
case DIOCOSFPGET: {
struct pf_osfp_ioctl *io = (struct pf_osfp_ioctl *)addr;
PF_RULES_RLOCK();
error = pf_osfp_get(io);
PF_RULES_RUNLOCK();
break;
}
case DIOCXBEGIN: {
struct pfioc_trans *io = (struct pfioc_trans *)addr;
struct pfioc_trans_e *ioes, *ioe;
size_t totlen;
int i;
if (io->esize != sizeof(*ioe)) {
error = ENODEV;
break;
}
if (io->size < 0 ||
io->size > pf_ioctl_maxcount ||
WOULD_OVERFLOW(io->size, sizeof(struct pfioc_trans_e))) {
error = EINVAL;
break;
}
totlen = sizeof(struct pfioc_trans_e) * io->size;
ioes = mallocarray(io->size, sizeof(struct pfioc_trans_e),
M_TEMP, M_NOWAIT);
if (! ioes) {
error = ENOMEM;
break;
}
error = copyin(io->array, ioes, totlen);
if (error) {
free(ioes, M_TEMP);
break;
}
PF_RULES_WLOCK();
for (i = 0, ioe = ioes; i < io->size; i++, ioe++) {
switch (ioe->rs_num) {
#ifdef ALTQ
case PF_RULESET_ALTQ:
if (ioe->anchor[0]) {
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
error = EINVAL;
goto fail;
}
if ((error = pf_begin_altq(&ioe->ticket))) {
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
goto fail;
}
break;
#endif /* ALTQ */
case PF_RULESET_TABLE:
{
struct pfr_table table;
bzero(&table, sizeof(table));
strlcpy(table.pfrt_anchor, ioe->anchor,
sizeof(table.pfrt_anchor));
if ((error = pfr_ina_begin(&table,
&ioe->ticket, NULL, 0))) {
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
goto fail;
}
break;
}
default:
if ((error = pf_begin_rules(&ioe->ticket,
ioe->rs_num, ioe->anchor))) {
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
goto fail;
}
break;
}
}
PF_RULES_WUNLOCK();
error = copyout(ioes, io->array, totlen);
free(ioes, M_TEMP);
break;
}
case DIOCXROLLBACK: {
struct pfioc_trans *io = (struct pfioc_trans *)addr;
struct pfioc_trans_e *ioe, *ioes;
size_t totlen;
int i;
if (io->esize != sizeof(*ioe)) {
error = ENODEV;
break;
}
if (io->size < 0 ||
io->size > pf_ioctl_maxcount ||
WOULD_OVERFLOW(io->size, sizeof(struct pfioc_trans_e))) {
error = EINVAL;
break;
}
totlen = sizeof(struct pfioc_trans_e) * io->size;
ioes = mallocarray(io->size, sizeof(struct pfioc_trans_e),
M_TEMP, M_NOWAIT);
if (! ioes) {
error = ENOMEM;
break;
}
error = copyin(io->array, ioes, totlen);
if (error) {
free(ioes, M_TEMP);
break;
}
PF_RULES_WLOCK();
for (i = 0, ioe = ioes; i < io->size; i++, ioe++) {
switch (ioe->rs_num) {
#ifdef ALTQ
case PF_RULESET_ALTQ:
if (ioe->anchor[0]) {
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
error = EINVAL;
goto fail;
}
if ((error = pf_rollback_altq(ioe->ticket))) {
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
goto fail; /* really bad */
}
break;
#endif /* ALTQ */
case PF_RULESET_TABLE:
{
struct pfr_table table;
bzero(&table, sizeof(table));
strlcpy(table.pfrt_anchor, ioe->anchor,
sizeof(table.pfrt_anchor));
if ((error = pfr_ina_rollback(&table,
ioe->ticket, NULL, 0))) {
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
goto fail; /* really bad */
}
break;
}
default:
if ((error = pf_rollback_rules(ioe->ticket,
ioe->rs_num, ioe->anchor))) {
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
goto fail; /* really bad */
}
break;
}
}
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
break;
}
case DIOCXCOMMIT: {
struct pfioc_trans *io = (struct pfioc_trans *)addr;
struct pfioc_trans_e *ioe, *ioes;
struct pf_kruleset *rs;
size_t totlen;
int i;
if (io->esize != sizeof(*ioe)) {
error = ENODEV;
break;
}
if (io->size < 0 ||
io->size > pf_ioctl_maxcount ||
WOULD_OVERFLOW(io->size, sizeof(struct pfioc_trans_e))) {
error = EINVAL;
break;
}
totlen = sizeof(struct pfioc_trans_e) * io->size;
ioes = mallocarray(io->size, sizeof(struct pfioc_trans_e),
M_TEMP, M_NOWAIT);
if (ioes == NULL) {
error = ENOMEM;
break;
}
error = copyin(io->array, ioes, totlen);
if (error) {
free(ioes, M_TEMP);
break;
}
PF_RULES_WLOCK();
/* First makes sure everything will succeed. */
for (i = 0, ioe = ioes; i < io->size; i++, ioe++) {
switch (ioe->rs_num) {
#ifdef ALTQ
case PF_RULESET_ALTQ:
if (ioe->anchor[0]) {
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
error = EINVAL;
goto fail;
}
if (!V_altqs_inactive_open || ioe->ticket !=
V_ticket_altqs_inactive) {
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
error = EBUSY;
goto fail;
}
break;
#endif /* ALTQ */
case PF_RULESET_TABLE:
rs = pf_find_kruleset(ioe->anchor);
if (rs == NULL || !rs->topen || ioe->ticket !=
rs->tticket) {
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
error = EBUSY;
goto fail;
}
break;
default:
if (ioe->rs_num < 0 || ioe->rs_num >=
PF_RULESET_MAX) {
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
error = EINVAL;
goto fail;
}
rs = pf_find_kruleset(ioe->anchor);
if (rs == NULL ||
!rs->rules[ioe->rs_num].inactive.open ||
rs->rules[ioe->rs_num].inactive.ticket !=
ioe->ticket) {
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
error = EBUSY;
goto fail;
}
break;
}
}
/* Now do the commit - no errors should happen here. */
for (i = 0, ioe = ioes; i < io->size; i++, ioe++) {
switch (ioe->rs_num) {
#ifdef ALTQ
case PF_RULESET_ALTQ:
if ((error = pf_commit_altq(ioe->ticket))) {
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
goto fail; /* really bad */
}
break;
#endif /* ALTQ */
case PF_RULESET_TABLE:
{
struct pfr_table table;
bzero(&table, sizeof(table));
strlcpy(table.pfrt_anchor, ioe->anchor,
sizeof(table.pfrt_anchor));
if ((error = pfr_ina_commit(&table,
ioe->ticket, NULL, NULL, 0))) {
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
goto fail; /* really bad */
}
break;
}
default:
if ((error = pf_commit_rules(ioe->ticket,
ioe->rs_num, ioe->anchor))) {
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
goto fail; /* really bad */
}
break;
}
}
PF_RULES_WUNLOCK();
free(ioes, M_TEMP);
break;
}
case DIOCGETSRCNODES: {
struct pfioc_src_nodes *psn = (struct pfioc_src_nodes *)addr;
struct pf_srchash *sh;
struct pf_ksrc_node *n;
struct pf_src_node *p, *pstore;
uint32_t i, nr = 0;
for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask;
i++, sh++) {
PF_HASHROW_LOCK(sh);
LIST_FOREACH(n, &sh->nodes, entry)
nr++;
PF_HASHROW_UNLOCK(sh);
}
psn->psn_len = min(psn->psn_len,
sizeof(struct pf_src_node) * nr);
if (psn->psn_len == 0) {
psn->psn_len = sizeof(struct pf_src_node) * nr;
break;
}
nr = 0;
p = pstore = malloc(psn->psn_len, M_TEMP, M_WAITOK | M_ZERO);
for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask;
i++, sh++) {
PF_HASHROW_LOCK(sh);
LIST_FOREACH(n, &sh->nodes, entry) {
if ((nr + 1) * sizeof(*p) > (unsigned)psn->psn_len)
break;
pf_src_node_copy(n, p);
p++;
nr++;
}
PF_HASHROW_UNLOCK(sh);
}
error = copyout(pstore, psn->psn_src_nodes,
sizeof(struct pf_src_node) * nr);
if (error) {
free(pstore, M_TEMP);
break;
}
psn->psn_len = sizeof(struct pf_src_node) * nr;
free(pstore, M_TEMP);
break;
}
case DIOCCLRSRCNODES: {
pf_clear_srcnodes(NULL);
pf_purge_expired_src_nodes();
break;
}
case DIOCKILLSRCNODES:
pf_kill_srcnodes((struct pfioc_src_node_kill *)addr);
break;
case DIOCKEEPCOUNTERS:
error = pf_keepcounters((struct pfioc_nv *)addr);
break;
case DIOCSETHOSTID: {
u_int32_t *hostid = (u_int32_t *)addr;
PF_RULES_WLOCK();
if (*hostid == 0)
V_pf_status.hostid = arc4random();
else
V_pf_status.hostid = *hostid;
PF_RULES_WUNLOCK();
break;
}
case DIOCOSFPFLUSH:
PF_RULES_WLOCK();
pf_osfp_flush();
PF_RULES_WUNLOCK();
break;
case DIOCIGETIFACES: {
struct pfioc_iface *io = (struct pfioc_iface *)addr;
struct pfi_kif *ifstore;
size_t bufsiz;
if (io->pfiio_esize != sizeof(struct pfi_kif)) {
error = ENODEV;
break;
}
if (io->pfiio_size < 0 ||
io->pfiio_size > pf_ioctl_maxcount ||
WOULD_OVERFLOW(io->pfiio_size, sizeof(struct pfi_kif))) {
error = EINVAL;
break;
}
bufsiz = io->pfiio_size * sizeof(struct pfi_kif);
ifstore = mallocarray(io->pfiio_size, sizeof(struct pfi_kif),
M_TEMP, M_NOWAIT);
if (ifstore == NULL) {
error = ENOMEM;
break;
}
PF_RULES_RLOCK();
pfi_get_ifaces(io->pfiio_name, ifstore, &io->pfiio_size);
PF_RULES_RUNLOCK();
error = copyout(ifstore, io->pfiio_buffer, bufsiz);
free(ifstore, M_TEMP);
break;
}
case DIOCSETIFFLAG: {
struct pfioc_iface *io = (struct pfioc_iface *)addr;
PF_RULES_WLOCK();
error = pfi_set_flags(io->pfiio_name, io->pfiio_flags);
PF_RULES_WUNLOCK();
break;
}
case DIOCCLRIFFLAG: {
struct pfioc_iface *io = (struct pfioc_iface *)addr;
PF_RULES_WLOCK();
error = pfi_clear_flags(io->pfiio_name, io->pfiio_flags);
PF_RULES_WUNLOCK();
break;
}
default:
error = ENODEV;
break;
}
fail:
if (sx_xlocked(&pf_ioctl_lock))
sx_xunlock(&pf_ioctl_lock);
CURVNET_RESTORE();
#undef ERROUT_IOCTL
return (error);
}
void
pfsync_state_export(struct pfsync_state *sp, struct pf_state *st)
{
bzero(sp, sizeof(struct pfsync_state));
/* copy from state key */
sp->key[PF_SK_WIRE].addr[0] = st->key[PF_SK_WIRE]->addr[0];
sp->key[PF_SK_WIRE].addr[1] = st->key[PF_SK_WIRE]->addr[1];
sp->key[PF_SK_WIRE].port[0] = st->key[PF_SK_WIRE]->port[0];
sp->key[PF_SK_WIRE].port[1] = st->key[PF_SK_WIRE]->port[1];
sp->key[PF_SK_STACK].addr[0] = st->key[PF_SK_STACK]->addr[0];
sp->key[PF_SK_STACK].addr[1] = st->key[PF_SK_STACK]->addr[1];
sp->key[PF_SK_STACK].port[0] = st->key[PF_SK_STACK]->port[0];
sp->key[PF_SK_STACK].port[1] = st->key[PF_SK_STACK]->port[1];
sp->proto = st->key[PF_SK_WIRE]->proto;
sp->af = st->key[PF_SK_WIRE]->af;
/* copy from state */
strlcpy(sp->ifname, st->kif->pfik_name, sizeof(sp->ifname));
bcopy(&st->rt_addr, &sp->rt_addr, sizeof(sp->rt_addr));
sp->creation = htonl(time_uptime - st->creation);
sp->expire = pf_state_expires(st);
if (sp->expire <= time_uptime)
sp->expire = htonl(0);
else
sp->expire = htonl(sp->expire - time_uptime);
sp->direction = st->direction;
sp->log = st->log;
sp->timeout = st->timeout;
sp->state_flags = st->state_flags;
if (st->src_node)
sp->sync_flags |= PFSYNC_FLAG_SRCNODE;
if (st->nat_src_node)
sp->sync_flags |= PFSYNC_FLAG_NATSRCNODE;
sp->id = st->id;
sp->creatorid = st->creatorid;
pf_state_peer_hton(&st->src, &sp->src);
pf_state_peer_hton(&st->dst, &sp->dst);
if (st->rule.ptr == NULL)
sp->rule = htonl(-1);
else
sp->rule = htonl(st->rule.ptr->nr);
if (st->anchor.ptr == NULL)
sp->anchor = htonl(-1);
else
sp->anchor = htonl(st->anchor.ptr->nr);
if (st->nat_rule.ptr == NULL)
sp->nat_rule = htonl(-1);
else
sp->nat_rule = htonl(st->nat_rule.ptr->nr);
pf_state_counter_hton(counter_u64_fetch(st->packets[0]),
sp->packets[0]);
pf_state_counter_hton(counter_u64_fetch(st->packets[1]),
sp->packets[1]);
pf_state_counter_hton(counter_u64_fetch(st->bytes[0]), sp->bytes[0]);
pf_state_counter_hton(counter_u64_fetch(st->bytes[1]), sp->bytes[1]);
}
static void
pf_tbladdr_copyout(struct pf_addr_wrap *aw)
{
struct pfr_ktable *kt;
KASSERT(aw->type == PF_ADDR_TABLE, ("%s: type %u", __func__, aw->type));
kt = aw->p.tbl;
if (!(kt->pfrkt_flags & PFR_TFLAG_ACTIVE) && kt->pfrkt_root != NULL)
kt = kt->pfrkt_root;
aw->p.tbl = NULL;
aw->p.tblcnt = (kt->pfrkt_flags & PFR_TFLAG_ACTIVE) ?
kt->pfrkt_cnt : -1;
}
/*
* XXX - Check for version missmatch!!!
*/
static void
pf_clear_all_states(void)
{
struct pf_state *s;
u_int i;
for (i = 0; i <= pf_hashmask; i++) {
struct pf_idhash *ih = &V_pf_idhash[i];
relock:
PF_HASHROW_LOCK(ih);
LIST_FOREACH(s, &ih->states, entry) {
s->timeout = PFTM_PURGE;
/* Don't send out individual delete messages. */
s->state_flags |= PFSTATE_NOSYNC;
pf_unlink_state(s, PF_ENTER_LOCKED);
goto relock;
}
PF_HASHROW_UNLOCK(ih);
}
}
static int
pf_clear_tables(void)
{
struct pfioc_table io;
int error;
bzero(&io, sizeof(io));
error = pfr_clr_tables(&io.pfrio_table, &io.pfrio_ndel,
io.pfrio_flags);
return (error);
}
static void
pf_clear_srcnodes(struct pf_ksrc_node *n)
{
struct pf_state *s;
int i;
for (i = 0; i <= pf_hashmask; i++) {
struct pf_idhash *ih = &V_pf_idhash[i];
PF_HASHROW_LOCK(ih);
LIST_FOREACH(s, &ih->states, entry) {
if (n == NULL || n == s->src_node)
s->src_node = NULL;
if (n == NULL || n == s->nat_src_node)
s->nat_src_node = NULL;
}
PF_HASHROW_UNLOCK(ih);
}
if (n == NULL) {
struct pf_srchash *sh;
for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask;
i++, sh++) {
PF_HASHROW_LOCK(sh);
LIST_FOREACH(n, &sh->nodes, entry) {
n->expire = 1;
n->states = 0;
}
PF_HASHROW_UNLOCK(sh);
}
} else {
/* XXX: hash slot should already be locked here. */
n->expire = 1;
n->states = 0;
}
}
static void
pf_kill_srcnodes(struct pfioc_src_node_kill *psnk)
{
struct pf_ksrc_node_list kill;
LIST_INIT(&kill);
for (int i = 0; i <= pf_srchashmask; i++) {
struct pf_srchash *sh = &V_pf_srchash[i];
struct pf_ksrc_node *sn, *tmp;
PF_HASHROW_LOCK(sh);
LIST_FOREACH_SAFE(sn, &sh->nodes, entry, tmp)
if (PF_MATCHA(psnk->psnk_src.neg,
&psnk->psnk_src.addr.v.a.addr,
&psnk->psnk_src.addr.v.a.mask,
&sn->addr, sn->af) &&
PF_MATCHA(psnk->psnk_dst.neg,
&psnk->psnk_dst.addr.v.a.addr,
&psnk->psnk_dst.addr.v.a.mask,
&sn->raddr, sn->af)) {
pf_unlink_src_node(sn);
LIST_INSERT_HEAD(&kill, sn, entry);
sn->expire = 1;
}
PF_HASHROW_UNLOCK(sh);
}
for (int i = 0; i <= pf_hashmask; i++) {
struct pf_idhash *ih = &V_pf_idhash[i];
struct pf_state *s;
PF_HASHROW_LOCK(ih);
LIST_FOREACH(s, &ih->states, entry) {
if (s->src_node && s->src_node->expire == 1)
s->src_node = NULL;
if (s->nat_src_node && s->nat_src_node->expire == 1)
s->nat_src_node = NULL;
}
PF_HASHROW_UNLOCK(ih);
}
psnk->psnk_killed = pf_free_src_nodes(&kill);
}
static int
pf_keepcounters(struct pfioc_nv *nv)
{
nvlist_t *nvl = NULL;
void *nvlpacked = NULL;
int error = 0;
#define ERROUT(x) ERROUT_FUNCTION(on_error, x)
if (nv->len > pf_ioctl_maxcount)
ERROUT(ENOMEM);
nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK);
if (nvlpacked == NULL)
ERROUT(ENOMEM);
error = copyin(nv->data, nvlpacked, nv->len);
if (error)
ERROUT(error);
nvl = nvlist_unpack(nvlpacked, nv->len, 0);
if (nvl == NULL)
ERROUT(EBADMSG);
if (! nvlist_exists_bool(nvl, "keep_counters"))
ERROUT(EBADMSG);
V_pf_status.keep_counters = nvlist_get_bool(nvl, "keep_counters");
on_error:
nvlist_destroy(nvl);
free(nvlpacked, M_TEMP);
return (error);
}
static unsigned int
pf_clear_states(const struct pf_kstate_kill *kill)
{
struct pf_state_key_cmp match_key;
struct pf_state *s;
struct pfi_kkif *kif;
int idx;
unsigned int killed = 0, dir;
for (unsigned int i = 0; i <= pf_hashmask; i++) {
struct pf_idhash *ih = &V_pf_idhash[i];
relock_DIOCCLRSTATES:
PF_HASHROW_LOCK(ih);
LIST_FOREACH(s, &ih->states, entry) {
/* For floating states look at the original kif. */
kif = s->kif == V_pfi_all ? s->orig_kif : s->kif;
if (kill->psk_ifname[0] &&
strcmp(kill->psk_ifname,
kif->pfik_name))
continue;
if (kill->psk_kill_match) {
bzero(&match_key, sizeof(match_key));
if (s->direction == PF_OUT) {
dir = PF_IN;
idx = PF_SK_STACK;
} else {
dir = PF_OUT;
idx = PF_SK_WIRE;
}
match_key.af = s->key[idx]->af;
match_key.proto = s->key[idx]->proto;
PF_ACPY(&match_key.addr[0],
&s->key[idx]->addr[1], match_key.af);
match_key.port[0] = s->key[idx]->port[1];
PF_ACPY(&match_key.addr[1],
&s->key[idx]->addr[0], match_key.af);
match_key.port[1] = s->key[idx]->port[0];
}
/*
* Don't send out individual
* delete messages.
*/
s->state_flags |= PFSTATE_NOSYNC;
pf_unlink_state(s, PF_ENTER_LOCKED);
killed++;
if (kill->psk_kill_match)
killed += pf_kill_matching_state(&match_key,
dir);
goto relock_DIOCCLRSTATES;
}
PF_HASHROW_UNLOCK(ih);
}
if (V_pfsync_clear_states_ptr != NULL)
V_pfsync_clear_states_ptr(V_pf_status.hostid, kill->psk_ifname);
return (killed);
}
static int
pf_killstates(struct pf_kstate_kill *kill, unsigned int *killed)
{
struct pf_state *s;
if (kill->psk_pfcmp.id) {
if (kill->psk_pfcmp.creatorid == 0)
kill->psk_pfcmp.creatorid = V_pf_status.hostid;
if ((s = pf_find_state_byid(kill->psk_pfcmp.id,
kill->psk_pfcmp.creatorid))) {
pf_unlink_state(s, PF_ENTER_LOCKED);
*killed = 1;
}
return (0);
}
for (unsigned int i = 0; i <= pf_hashmask; i++)
*killed += pf_killstates_row(kill, &V_pf_idhash[i]);
return (0);
}
static int
pf_killstates_nv(struct pfioc_nv *nv)
{
struct pf_kstate_kill kill;
nvlist_t *nvl = NULL;
void *nvlpacked = NULL;
int error = 0;
unsigned int killed = 0;
#define ERROUT(x) ERROUT_FUNCTION(on_error, x)
if (nv->len > pf_ioctl_maxcount)
ERROUT(ENOMEM);
nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK);
if (nvlpacked == NULL)
ERROUT(ENOMEM);
error = copyin(nv->data, nvlpacked, nv->len);
if (error)
ERROUT(error);
nvl = nvlist_unpack(nvlpacked, nv->len, 0);
if (nvl == NULL)
ERROUT(EBADMSG);
error = pf_nvstate_kill_to_kstate_kill(nvl, &kill);
if (error)
ERROUT(error);
error = pf_killstates(&kill, &killed);
free(nvlpacked, M_TEMP);
nvlpacked = NULL;
nvlist_destroy(nvl);
nvl = nvlist_create(0);
if (nvl == NULL)
ERROUT(ENOMEM);
nvlist_add_number(nvl, "killed", killed);
nvlpacked = nvlist_pack(nvl, &nv->len);
if (nvlpacked == NULL)
ERROUT(ENOMEM);
if (nv->size == 0)
ERROUT(0);
else if (nv->size < nv->len)
ERROUT(ENOSPC);
error = copyout(nvlpacked, nv->data, nv->len);
on_error:
nvlist_destroy(nvl);
free(nvlpacked, M_TEMP);
return (error);
}
static int
pf_clearstates_nv(struct pfioc_nv *nv)
{
struct pf_kstate_kill kill;
nvlist_t *nvl = NULL;
void *nvlpacked = NULL;
int error = 0;
unsigned int killed;
#define ERROUT(x) ERROUT_FUNCTION(on_error, x)
if (nv->len > pf_ioctl_maxcount)
ERROUT(ENOMEM);
nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK);
if (nvlpacked == NULL)
ERROUT(ENOMEM);
error = copyin(nv->data, nvlpacked, nv->len);
if (error)
ERROUT(error);
nvl = nvlist_unpack(nvlpacked, nv->len, 0);
if (nvl == NULL)
ERROUT(EBADMSG);
error = pf_nvstate_kill_to_kstate_kill(nvl, &kill);
if (error)
ERROUT(error);
killed = pf_clear_states(&kill);
free(nvlpacked, M_TEMP);
nvlpacked = NULL;
nvlist_destroy(nvl);
nvl = nvlist_create(0);
if (nvl == NULL)
ERROUT(ENOMEM);
nvlist_add_number(nvl, "killed", killed);
nvlpacked = nvlist_pack(nvl, &nv->len);
if (nvlpacked == NULL)
ERROUT(ENOMEM);
if (nv->size == 0)
ERROUT(0);
else if (nv->size < nv->len)
ERROUT(ENOSPC);
error = copyout(nvlpacked, nv->data, nv->len);
#undef ERROUT
on_error:
nvlist_destroy(nvl);
free(nvlpacked, M_TEMP);
return (error);
}
static int
pf_getstate(struct pfioc_nv *nv)
{
nvlist_t *nvl = NULL, *nvls;
void *nvlpacked = NULL;
struct pf_state *s = NULL;
int error = 0;
uint64_t id, creatorid;
#define ERROUT(x) ERROUT_FUNCTION(errout, x)
if (nv->len > pf_ioctl_maxcount)
ERROUT(ENOMEM);
nvlpacked = malloc(nv->len, M_TEMP, M_WAITOK);
if (nvlpacked == NULL)
ERROUT(ENOMEM);
error = copyin(nv->data, nvlpacked, nv->len);
if (error)
ERROUT(error);
nvl = nvlist_unpack(nvlpacked, nv->len, 0);
if (nvl == NULL)
ERROUT(EBADMSG);
PFNV_CHK(pf_nvuint64(nvl, "id", &id));
PFNV_CHK(pf_nvuint64(nvl, "creatorid", &creatorid));
s = pf_find_state_byid(id, creatorid);
if (s == NULL)
ERROUT(ENOENT);
free(nvlpacked, M_TEMP);
nvlpacked = NULL;
nvlist_destroy(nvl);
nvl = nvlist_create(0);
if (nvl == NULL)
ERROUT(ENOMEM);
nvls = pf_state_to_nvstate(s);
if (nvls == NULL)
ERROUT(ENOMEM);
nvlist_add_nvlist(nvl, "state", nvls);
nvlist_destroy(nvls);
nvlpacked = nvlist_pack(nvl, &nv->len);
if (nvlpacked == NULL)
ERROUT(ENOMEM);
if (nv->size == 0)
ERROUT(0);
else if (nv->size < nv->len)
ERROUT(ENOSPC);
error = copyout(nvlpacked, nv->data, nv->len);
#undef ERROUT
errout:
if (s != NULL)
PF_STATE_UNLOCK(s);
free(nvlpacked, M_TEMP);
nvlist_destroy(nvl);
return (error);
}
static int
pf_getstates(struct pfioc_nv *nv)
{
nvlist_t *nvl = NULL, *nvls;
void *nvlpacked = NULL;
struct pf_state *s = NULL;
int error = 0;
uint64_t count = 0;
#define ERROUT(x) ERROUT_FUNCTION(errout, x)
nvl = nvlist_create(0);
if (nvl == NULL)
ERROUT(ENOMEM);
nvlist_add_number(nvl, "count", uma_zone_get_cur(V_pf_state_z));
for (int i = 0; i < pf_hashmask; i++) {
struct pf_idhash *ih = &V_pf_idhash[i];
PF_HASHROW_LOCK(ih);
LIST_FOREACH(s, &ih->states, entry) {
if (s->timeout == PFTM_UNLINKED)
continue;
nvls = pf_state_to_nvstate(s);
if (nvls == NULL) {
PF_HASHROW_UNLOCK(ih);
ERROUT(ENOMEM);
}
if ((nvlist_size(nvl) + nvlist_size(nvls)) > nv->size) {
/* We've run out of room for more states. */
nvlist_destroy(nvls);
PF_HASHROW_UNLOCK(ih);
goto DIOCGETSTATESNV_full;
}
nvlist_append_nvlist_array(nvl, "states", nvls);
count++;
}
PF_HASHROW_UNLOCK(ih);
}
/* We've managed to put them all the available space. Let's make sure
* 'count' matches our array (that's racy, because we don't hold a lock
* over all states, only over each row individually. */
(void)nvlist_take_number(nvl, "count");
nvlist_add_number(nvl, "count", count);
DIOCGETSTATESNV_full:
nvlpacked = nvlist_pack(nvl, &nv->len);
if (nvlpacked == NULL)
ERROUT(ENOMEM);
if (nv->size == 0)
ERROUT(0);
else if (nv->size < nv->len)
ERROUT(ENOSPC);
error = copyout(nvlpacked, nv->data, nv->len);
#undef ERROUT
errout:
free(nvlpacked, M_TEMP);
nvlist_destroy(nvl);
return (error);
}
/*
* XXX - Check for version missmatch!!!
*/
/*
* Duplicate pfctl -Fa operation to get rid of as much as we can.
*/
static int
shutdown_pf(void)
{
int error = 0;
u_int32_t t[5];
char nn = '\0';
do {
if ((error = pf_begin_rules(&t[0], PF_RULESET_SCRUB, &nn))
!= 0) {
DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: SCRUB\n"));
break;
}
if ((error = pf_begin_rules(&t[1], PF_RULESET_FILTER, &nn))
!= 0) {
DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: FILTER\n"));
break; /* XXX: rollback? */
}
if ((error = pf_begin_rules(&t[2], PF_RULESET_NAT, &nn))
!= 0) {
DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: NAT\n"));
break; /* XXX: rollback? */
}
if ((error = pf_begin_rules(&t[3], PF_RULESET_BINAT, &nn))
!= 0) {
DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: BINAT\n"));
break; /* XXX: rollback? */
}
if ((error = pf_begin_rules(&t[4], PF_RULESET_RDR, &nn))
!= 0) {
DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: RDR\n"));
break; /* XXX: rollback? */
}
/* XXX: these should always succeed here */
pf_commit_rules(t[0], PF_RULESET_SCRUB, &nn);
pf_commit_rules(t[1], PF_RULESET_FILTER, &nn);
pf_commit_rules(t[2], PF_RULESET_NAT, &nn);
pf_commit_rules(t[3], PF_RULESET_BINAT, &nn);
pf_commit_rules(t[4], PF_RULESET_RDR, &nn);
if ((error = pf_clear_tables()) != 0)
break;
#ifdef ALTQ
if ((error = pf_begin_altq(&t[0])) != 0) {
DPFPRINTF(PF_DEBUG_MISC, ("shutdown_pf: ALTQ\n"));
break;
}
pf_commit_altq(t[0]);
#endif
pf_clear_all_states();
pf_clear_srcnodes(NULL);
/* status does not use malloced mem so no need to cleanup */
/* fingerprints and interfaces have their own cleanup code */
} while(0);
return (error);
}
static pfil_return_t
pf_check_return(int chk, struct mbuf **m)
{
switch (chk) {
case PF_PASS:
if (*m == NULL)
return (PFIL_CONSUMED);
else
return (PFIL_PASS);
break;
default:
if (*m != NULL) {
m_freem(*m);
*m = NULL;
}
return (PFIL_DROPPED);
}
}
#ifdef INET
static pfil_return_t
pf_check_in(struct mbuf **m, struct ifnet *ifp, int flags,
void *ruleset __unused, struct inpcb *inp)
{
int chk;
chk = pf_test(PF_IN, flags, ifp, m, inp);
return (pf_check_return(chk, m));
}
static pfil_return_t
pf_check_out(struct mbuf **m, struct ifnet *ifp, int flags,
void *ruleset __unused, struct inpcb *inp)
{
int chk;
chk = pf_test(PF_OUT, flags, ifp, m, inp);
return (pf_check_return(chk, m));
}
#endif
#ifdef INET6
static pfil_return_t
pf_check6_in(struct mbuf **m, struct ifnet *ifp, int flags,
void *ruleset __unused, struct inpcb *inp)
{
int chk;
/*
* In case of loopback traffic IPv6 uses the real interface in
* order to support scoped addresses. In order to support stateful
* filtering we have change this to lo0 as it is the case in IPv4.
*/
CURVNET_SET(ifp->if_vnet);
chk = pf_test6(PF_IN, flags, (*m)->m_flags & M_LOOP ? V_loif : ifp, m, inp);
CURVNET_RESTORE();
return (pf_check_return(chk, m));
}
static pfil_return_t
pf_check6_out(struct mbuf **m, struct ifnet *ifp, int flags,
void *ruleset __unused, struct inpcb *inp)
{
int chk;
CURVNET_SET(ifp->if_vnet);
chk = pf_test6(PF_OUT, flags, ifp, m, inp);
CURVNET_RESTORE();
return (pf_check_return(chk, m));
}
#endif /* INET6 */
#ifdef INET
VNET_DEFINE_STATIC(pfil_hook_t, pf_ip4_in_hook);
VNET_DEFINE_STATIC(pfil_hook_t, pf_ip4_out_hook);
#define V_pf_ip4_in_hook VNET(pf_ip4_in_hook)
#define V_pf_ip4_out_hook VNET(pf_ip4_out_hook)
#endif
#ifdef INET6
VNET_DEFINE_STATIC(pfil_hook_t, pf_ip6_in_hook);
VNET_DEFINE_STATIC(pfil_hook_t, pf_ip6_out_hook);
#define V_pf_ip6_in_hook VNET(pf_ip6_in_hook)
#define V_pf_ip6_out_hook VNET(pf_ip6_out_hook)
#endif
static void
hook_pf(void)
{
struct pfil_hook_args pha;
struct pfil_link_args pla;
int ret;
if (V_pf_pfil_hooked)
return;
pha.pa_version = PFIL_VERSION;
pha.pa_modname = "pf";
pha.pa_ruleset = NULL;
pla.pa_version = PFIL_VERSION;
#ifdef INET
pha.pa_type = PFIL_TYPE_IP4;
pha.pa_func = pf_check_in;
pha.pa_flags = PFIL_IN;
pha.pa_rulname = "default-in";
V_pf_ip4_in_hook = pfil_add_hook(&pha);
pla.pa_flags = PFIL_IN | PFIL_HEADPTR | PFIL_HOOKPTR;
pla.pa_head = V_inet_pfil_head;
pla.pa_hook = V_pf_ip4_in_hook;
ret = pfil_link(&pla);
MPASS(ret == 0);
pha.pa_func = pf_check_out;
pha.pa_flags = PFIL_OUT;
pha.pa_rulname = "default-out";
V_pf_ip4_out_hook = pfil_add_hook(&pha);
pla.pa_flags = PFIL_OUT | PFIL_HEADPTR | PFIL_HOOKPTR;
pla.pa_head = V_inet_pfil_head;
pla.pa_hook = V_pf_ip4_out_hook;
ret = pfil_link(&pla);
MPASS(ret == 0);
#endif
#ifdef INET6
pha.pa_type = PFIL_TYPE_IP6;
pha.pa_func = pf_check6_in;
pha.pa_flags = PFIL_IN;
pha.pa_rulname = "default-in6";
V_pf_ip6_in_hook = pfil_add_hook(&pha);
pla.pa_flags = PFIL_IN | PFIL_HEADPTR | PFIL_HOOKPTR;
pla.pa_head = V_inet6_pfil_head;
pla.pa_hook = V_pf_ip6_in_hook;
ret = pfil_link(&pla);
MPASS(ret == 0);
pha.pa_func = pf_check6_out;
pha.pa_rulname = "default-out6";
pha.pa_flags = PFIL_OUT;
V_pf_ip6_out_hook = pfil_add_hook(&pha);
pla.pa_flags = PFIL_OUT | PFIL_HEADPTR | PFIL_HOOKPTR;
pla.pa_head = V_inet6_pfil_head;
pla.pa_hook = V_pf_ip6_out_hook;
ret = pfil_link(&pla);
MPASS(ret == 0);
#endif
V_pf_pfil_hooked = 1;
}
static void
dehook_pf(void)
{
if (V_pf_pfil_hooked == 0)
return;
#ifdef INET
pfil_remove_hook(V_pf_ip4_in_hook);
pfil_remove_hook(V_pf_ip4_out_hook);
#endif
#ifdef INET6
pfil_remove_hook(V_pf_ip6_in_hook);
pfil_remove_hook(V_pf_ip6_out_hook);
#endif
V_pf_pfil_hooked = 0;
}
static void
pf_load_vnet(void)
{
V_pf_tag_z = uma_zcreate("pf tags", sizeof(struct pf_tagname),
NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
pf_init_tagset(&V_pf_tags, &pf_rule_tag_hashsize,
PF_RULE_TAG_HASH_SIZE_DEFAULT);
#ifdef ALTQ
pf_init_tagset(&V_pf_qids, &pf_queue_tag_hashsize,
PF_QUEUE_TAG_HASH_SIZE_DEFAULT);
#endif
pfattach_vnet();
V_pf_vnet_active = 1;
}
static int
pf_load(void)
{
int error;
rm_init(&pf_rules_lock, "pf rulesets");
sx_init(&pf_ioctl_lock, "pf ioctl");
sx_init(&pf_end_lock, "pf end thread");
pf_mtag_initialize();
pf_dev = make_dev(&pf_cdevsw, 0, UID_ROOT, GID_WHEEL, 0600, PF_NAME);
if (pf_dev == NULL)
return (ENOMEM);
pf_end_threads = 0;
error = kproc_create(pf_purge_thread, NULL, &pf_purge_proc, 0, 0, "pf purge");
if (error != 0)
return (error);
pfi_initialize();
return (0);
}
static void
pf_unload_vnet(void)
{
int ret;
V_pf_vnet_active = 0;
V_pf_status.running = 0;
dehook_pf();
PF_RULES_WLOCK();
shutdown_pf();
PF_RULES_WUNLOCK();
ret = swi_remove(V_pf_swi_cookie);
MPASS(ret == 0);
ret = intr_event_destroy(V_pf_swi_ie);
MPASS(ret == 0);
pf_unload_vnet_purge();
pf_normalize_cleanup();
PF_RULES_WLOCK();
pfi_cleanup_vnet();
PF_RULES_WUNLOCK();
pfr_cleanup();
pf_osfp_flush();
pf_cleanup();
if (IS_DEFAULT_VNET(curvnet))
pf_mtag_cleanup();
pf_cleanup_tagset(&V_pf_tags);
#ifdef ALTQ
pf_cleanup_tagset(&V_pf_qids);
#endif
uma_zdestroy(V_pf_tag_z);
/* Free counters last as we updated them during shutdown. */
counter_u64_free(V_pf_default_rule.evaluations);
for (int i = 0; i < 2; i++) {
counter_u64_free(V_pf_default_rule.packets[i]);
counter_u64_free(V_pf_default_rule.bytes[i]);
}
counter_u64_free(V_pf_default_rule.states_cur);
counter_u64_free(V_pf_default_rule.states_tot);
counter_u64_free(V_pf_default_rule.src_nodes);
for (int i = 0; i < PFRES_MAX; i++)
counter_u64_free(V_pf_status.counters[i]);
for (int i = 0; i < LCNT_MAX; i++)
counter_u64_free(V_pf_status.lcounters[i]);
for (int i = 0; i < FCNT_MAX; i++)
counter_u64_free(V_pf_status.fcounters[i]);
for (int i = 0; i < SCNT_MAX; i++)
counter_u64_free(V_pf_status.scounters[i]);
}
static void
pf_unload(void)
{
sx_xlock(&pf_end_lock);
pf_end_threads = 1;
while (pf_end_threads < 2) {
wakeup_one(pf_purge_thread);
sx_sleep(pf_purge_proc, &pf_end_lock, 0, "pftmo", 0);
}
sx_xunlock(&pf_end_lock);
if (pf_dev != NULL)
destroy_dev(pf_dev);
pfi_cleanup();
rm_destroy(&pf_rules_lock);
sx_destroy(&pf_ioctl_lock);
sx_destroy(&pf_end_lock);
}
static void
vnet_pf_init(void *unused __unused)
{
pf_load_vnet();
}
VNET_SYSINIT(vnet_pf_init, SI_SUB_PROTO_FIREWALL, SI_ORDER_THIRD,
vnet_pf_init, NULL);
static void
vnet_pf_uninit(const void *unused __unused)
{
pf_unload_vnet();
}
SYSUNINIT(pf_unload, SI_SUB_PROTO_FIREWALL, SI_ORDER_SECOND, pf_unload, NULL);
VNET_SYSUNINIT(vnet_pf_uninit, SI_SUB_PROTO_FIREWALL, SI_ORDER_THIRD,
vnet_pf_uninit, NULL);
static int
pf_modevent(module_t mod, int type, void *data)
{
int error = 0;
switch(type) {
case MOD_LOAD:
error = pf_load();
break;
case MOD_UNLOAD:
/* Handled in SYSUNINIT(pf_unload) to ensure it's done after
* the vnet_pf_uninit()s */
break;
default:
error = EINVAL;
break;
}
return (error);
}
static moduledata_t pf_mod = {
"pf",
pf_modevent,
0
};
DECLARE_MODULE(pf, pf_mod, SI_SUB_PROTO_FIREWALL, SI_ORDER_SECOND);
MODULE_VERSION(pf, PF_MODVER);