3325 lines
84 KiB
C
3325 lines
84 KiB
C
/* $NetBSD: midway.c,v 1.30 1997/09/29 17:40:38 chuck Exp $ */
|
|
/* (sync'd to midway.c 1.68) */
|
|
|
|
/*
|
|
*
|
|
* Copyright (c) 1996 Charles D. Cranor and Washington University.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Charles D. Cranor and
|
|
* Washington University.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
*
|
|
* m i d w a y . c e n i 1 5 5 d r i v e r
|
|
*
|
|
* author: Chuck Cranor <chuck@ccrc.wustl.edu>
|
|
* started: spring, 1996 (written from scratch).
|
|
*
|
|
* notes from the author:
|
|
* Extra special thanks go to Werner Almesberger, EPFL LRC. Werner's
|
|
* ENI driver was especially useful in figuring out how this card works.
|
|
* I would also like to thank Werner for promptly answering email and being
|
|
* generally helpful.
|
|
*/
|
|
|
|
#define EN_DIAG
|
|
#define EN_DDBHOOK 1 /* compile in ddb functions */
|
|
|
|
/*
|
|
* Note on EN_ENIDMAFIX: the byte aligner on the ENI version of the card
|
|
* appears to be broken. it works just fine if there is no load... however
|
|
* when the card is loaded the data get corrupted. to see this, one only
|
|
* has to use "telnet" over ATM. do the following command in "telnet":
|
|
* cat /usr/share/misc/termcap
|
|
* "telnet" seems to generate lots of 1023 byte mbufs (which make great
|
|
* use of the byte aligner). watch "netstat -s" for checksum errors.
|
|
*
|
|
* I further tested this by adding a function that compared the transmit
|
|
* data on the card's SRAM with the data in the mbuf chain _after_ the
|
|
* "transmit DMA complete" interrupt. using the "telnet" test I got data
|
|
* mismatches where the byte-aligned data should have been. using ddb
|
|
* and en_dumpmem() I verified that the DTQs fed into the card were
|
|
* absolutely correct. thus, we are forced to concluded that the ENI
|
|
* hardware is buggy. note that the Adaptec version of the card works
|
|
* just fine with byte DMA.
|
|
*
|
|
* bottom line: we set EN_ENIDMAFIX to 1 to avoid byte DMAs on the ENI
|
|
* card.
|
|
*/
|
|
|
|
#if defined(DIAGNOSTIC) && !defined(EN_DIAG)
|
|
#define EN_DIAG /* link in with master DIAG option */
|
|
#endif
|
|
|
|
#define EN_COUNT(X) (X)++
|
|
|
|
#ifdef EN_DEBUG
|
|
|
|
#undef EN_DDBHOOK
|
|
#define EN_DDBHOOK 1
|
|
|
|
/*
|
|
* This macro removes almost all the EN_DEBUG conditionals in the code that make
|
|
* to code a good deal less readable.
|
|
*/
|
|
#define DBG(SC, FL, PRINT) do { \
|
|
if ((SC)->debug & DBG_##FL) { \
|
|
if_printf(&(SC)->ifatm.ifnet, "%s: "#FL": ", __func__); \
|
|
printf PRINT; \
|
|
printf("\n"); \
|
|
} \
|
|
} while (0)
|
|
|
|
enum {
|
|
DBG_INIT = 0x0001, /* debug attach/detach */
|
|
DBG_TX = 0x0002, /* debug transmitting */
|
|
DBG_SERV = 0x0004, /* debug service interrupts */
|
|
DBG_IOCTL = 0x0008, /* debug ioctls */
|
|
DBG_VC = 0x0010, /* debug VC handling */
|
|
DBG_INTR = 0x0020, /* debug interrupts */
|
|
DBG_DMA = 0x0040, /* debug DMA probing */
|
|
DBG_IPACKETS = 0x0080, /* print input packets */
|
|
DBG_REG = 0x0100, /* print all register access */
|
|
DBG_LOCK = 0x0200, /* debug locking */
|
|
};
|
|
|
|
#else /* EN_DEBUG */
|
|
|
|
#define DBG(SC, FL, PRINT) do { } while (0)
|
|
|
|
#endif /* EN_DEBUG */
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_natm.h"
|
|
#include "opt_ddb.h"
|
|
|
|
#ifdef DDB
|
|
#undef EN_DDBHOOK
|
|
#define EN_DDBHOOK 1
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/stdint.h>
|
|
#include <vm/uma.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_atm.h>
|
|
|
|
#if defined(INET) || defined(INET6)
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_atm.h>
|
|
#endif
|
|
|
|
#ifdef NATM
|
|
#include <netnatm/natm.h>
|
|
#endif
|
|
|
|
#include <sys/bus.h>
|
|
#include <machine/bus.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/module.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/malloc.h>
|
|
#include <machine/resource.h>
|
|
#include <dev/utopia/utopia.h>
|
|
#include <dev/en/midwayreg.h>
|
|
#include <dev/en/midwayvar.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
/*
|
|
* params
|
|
*/
|
|
#ifndef EN_TXHIWAT
|
|
#define EN_TXHIWAT (64 * 1024) /* max 64 KB waiting to be DMAd out */
|
|
#endif
|
|
|
|
#define RX_NONE 0xffff /* recv VC not in use */
|
|
|
|
#define ENOTHER_FREE 0x01 /* free rxslot */
|
|
#define ENOTHER_DRAIN 0x02 /* almost free (drain DRQ dma) */
|
|
#define ENOTHER_SWSL 0x08 /* in software service list */
|
|
|
|
SYSCTL_DECL(_hw_atm);
|
|
|
|
/*
|
|
* dma tables
|
|
*
|
|
* The plan is indexed by the number of words to transfer.
|
|
* The maximum index is 15 for 60 words.
|
|
*/
|
|
struct en_dmatab {
|
|
uint8_t bcode; /* code */
|
|
uint8_t divshift; /* byte divisor */
|
|
};
|
|
|
|
static const struct en_dmatab en_dmaplan[] = {
|
|
{ 0, 0 }, /* 0 */ { MIDDMA_WORD, 2}, /* 1 */
|
|
{ MIDDMA_2WORD, 3}, /* 2 */ { MIDDMA_WORD, 2}, /* 3 */
|
|
{ MIDDMA_4WORD, 4}, /* 4 */ { MIDDMA_WORD, 2}, /* 5 */
|
|
{ MIDDMA_2WORD, 3}, /* 6 */ { MIDDMA_WORD, 2}, /* 7 */
|
|
{ MIDDMA_8WORD, 5}, /* 8 */ { MIDDMA_WORD, 2}, /* 9 */
|
|
{ MIDDMA_2WORD, 3}, /* 10 */ { MIDDMA_WORD, 2}, /* 11 */
|
|
{ MIDDMA_4WORD, 4}, /* 12 */ { MIDDMA_WORD, 2}, /* 13 */
|
|
{ MIDDMA_2WORD, 3}, /* 14 */ { MIDDMA_WORD, 2}, /* 15 */
|
|
{ MIDDMA_16WORD,6}, /* 16 */
|
|
};
|
|
|
|
/*
|
|
* prototypes
|
|
*/
|
|
#ifdef EN_DDBHOOK
|
|
int en_dump(int unit, int level);
|
|
int en_dumpmem(int,int,int);
|
|
#endif
|
|
|
|
#define EN_LOCK(SC) do { \
|
|
DBG(SC, LOCK, ("ENLOCK %d\n", __LINE__)); \
|
|
mtx_lock(&sc->en_mtx); \
|
|
} while (0)
|
|
#define EN_UNLOCK(SC) do { \
|
|
DBG(SC, LOCK, ("ENUNLOCK %d\n", __LINE__)); \
|
|
mtx_unlock(&sc->en_mtx); \
|
|
} while (0)
|
|
#define EN_CHECKLOCK(sc) mtx_assert(&sc->en_mtx, MA_OWNED)
|
|
|
|
/*
|
|
* While a transmit mbuf is waiting to get transmit DMA resources we
|
|
* need to keep some information with it. We don't want to allocate
|
|
* additional memory for this so we stuff it into free fields in the
|
|
* mbuf packet header. Neither the checksum fields nor the rcvif field are used
|
|
* so use these.
|
|
*/
|
|
#define TX_AAL5 0x1 /* transmit AAL5 PDU */
|
|
#define TX_HAS_TBD 0x2 /* TBD did fit into mbuf */
|
|
#define TX_HAS_PAD 0x4 /* padding did fit into mbuf */
|
|
#define TX_HAS_PDU 0x8 /* PDU trailer did fit into mbuf */
|
|
|
|
#define MBUF_SET_TX(M, VCI, FLAGS, DATALEN, PAD, MAP) do { \
|
|
(M)->m_pkthdr.csum_data = (VCI) | ((FLAGS) << MID_VCI_BITS); \
|
|
(M)->m_pkthdr.csum_flags = ((DATALEN) & 0xffff) | \
|
|
((PAD & 0x3f) << 16); \
|
|
(M)->m_pkthdr.rcvif = (void *)(MAP); \
|
|
} while (0)
|
|
|
|
#define MBUF_GET_TX(M, VCI, FLAGS, DATALEN, PAD, MAP) do { \
|
|
(VCI) = (M)->m_pkthdr.csum_data & ((1 << MID_VCI_BITS) - 1); \
|
|
(FLAGS) = ((M)->m_pkthdr.csum_data >> MID_VCI_BITS) & 0xf; \
|
|
(DATALEN) = (M)->m_pkthdr.csum_flags & 0xffff; \
|
|
(PAD) = ((M)->m_pkthdr.csum_flags >> 16) & 0x3f; \
|
|
(MAP) = (void *)((M)->m_pkthdr.rcvif); \
|
|
} while (0)
|
|
|
|
|
|
#define EN_WRAPADD(START, STOP, CUR, VAL) do { \
|
|
(CUR) = (CUR) + (VAL); \
|
|
if ((CUR) >= (STOP)) \
|
|
(CUR) = (START) + ((CUR) - (STOP)); \
|
|
} while (0)
|
|
|
|
#define WORD_IDX(START, X) (((X) - (START)) / sizeof(uint32_t))
|
|
|
|
#define SETQ_END(SC, VAL) ((SC)->is_adaptec ? \
|
|
((VAL) | (MID_DMA_END >> 4)) : \
|
|
((VAL) | (MID_DMA_END)))
|
|
|
|
/*
|
|
* The dtq and drq members are set for each END entry in the corresponding
|
|
* card queue entry. It is used to find out, when a buffer has been
|
|
* finished DMAing and can be freed.
|
|
*
|
|
* We store sc->dtq and sc->drq data in the following format...
|
|
* the 0x80000 ensures we != 0
|
|
*/
|
|
#define EN_DQ_MK(SLOT, LEN) (((SLOT) << 20) | (LEN) | (0x80000))
|
|
#define EN_DQ_SLOT(X) ((X) >> 20)
|
|
#define EN_DQ_LEN(X) ((X) & 0x3ffff)
|
|
|
|
/***********************************************************************/
|
|
|
|
/*
|
|
* en_read{x}: read a word from the card. These are the only functions
|
|
* that read from the card.
|
|
*/
|
|
static __inline uint32_t
|
|
en_readx(struct en_softc *sc, uint32_t r)
|
|
{
|
|
uint32_t v;
|
|
|
|
#ifdef EN_DIAG
|
|
if (r > MID_MAXOFF || (r % 4))
|
|
panic("en_read out of range, r=0x%x", r);
|
|
#endif
|
|
v = bus_space_read_4(sc->en_memt, sc->en_base, r);
|
|
return (v);
|
|
}
|
|
|
|
static __inline uint32_t
|
|
en_read(struct en_softc *sc, uint32_t r)
|
|
{
|
|
uint32_t v;
|
|
|
|
#ifdef EN_DIAG
|
|
if (r > MID_MAXOFF || (r % 4))
|
|
panic("en_read out of range, r=0x%x", r);
|
|
#endif
|
|
v = bus_space_read_4(sc->en_memt, sc->en_base, r);
|
|
DBG(sc, REG, ("en_read(%#x) -> %08x", r, v));
|
|
return (v);
|
|
}
|
|
|
|
/*
|
|
* en_write: write a word to the card. This is the only function that
|
|
* writes to the card.
|
|
*/
|
|
static __inline void
|
|
en_write(struct en_softc *sc, uint32_t r, uint32_t v)
|
|
{
|
|
#ifdef EN_DIAG
|
|
if (r > MID_MAXOFF || (r % 4))
|
|
panic("en_write out of range, r=0x%x", r);
|
|
#endif
|
|
DBG(sc, REG, ("en_write(%#x) <- %08x", r, v));
|
|
bus_space_write_4(sc->en_memt, sc->en_base, r, v);
|
|
}
|
|
|
|
/*
|
|
* en_k2sz: convert KBytes to a size parameter (a log2)
|
|
*/
|
|
static __inline int
|
|
en_k2sz(int k)
|
|
{
|
|
switch(k) {
|
|
case 1: return (0);
|
|
case 2: return (1);
|
|
case 4: return (2);
|
|
case 8: return (3);
|
|
case 16: return (4);
|
|
case 32: return (5);
|
|
case 64: return (6);
|
|
case 128: return (7);
|
|
default:
|
|
panic("en_k2sz");
|
|
}
|
|
return (0);
|
|
}
|
|
#define en_log2(X) en_k2sz(X)
|
|
|
|
/*
|
|
* en_b2sz: convert a DMA burst code to its byte size
|
|
*/
|
|
static __inline int
|
|
en_b2sz(int b)
|
|
{
|
|
switch (b) {
|
|
case MIDDMA_WORD: return (1*4);
|
|
case MIDDMA_2WMAYBE:
|
|
case MIDDMA_2WORD: return (2*4);
|
|
case MIDDMA_4WMAYBE:
|
|
case MIDDMA_4WORD: return (4*4);
|
|
case MIDDMA_8WMAYBE:
|
|
case MIDDMA_8WORD: return (8*4);
|
|
case MIDDMA_16WMAYBE:
|
|
case MIDDMA_16WORD: return (16*4);
|
|
default:
|
|
panic("en_b2sz");
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* en_sz2b: convert a burst size (bytes) to DMA burst code
|
|
*/
|
|
static __inline int
|
|
en_sz2b(int sz)
|
|
{
|
|
switch (sz) {
|
|
case 1*4: return (MIDDMA_WORD);
|
|
case 2*4: return (MIDDMA_2WORD);
|
|
case 4*4: return (MIDDMA_4WORD);
|
|
case 8*4: return (MIDDMA_8WORD);
|
|
case 16*4: return (MIDDMA_16WORD);
|
|
default:
|
|
panic("en_sz2b");
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
#ifdef EN_DEBUG
|
|
/*
|
|
* Dump a packet
|
|
*/
|
|
static void
|
|
en_dump_packet(struct en_softc *sc, struct mbuf *m)
|
|
{
|
|
int plen = m->m_pkthdr.len;
|
|
u_int pos = 0;
|
|
u_int totlen = 0;
|
|
int len;
|
|
u_char *ptr;
|
|
|
|
if_printf(&sc->ifatm.ifnet, "packet len=%d", plen);
|
|
while (m != NULL) {
|
|
totlen += m->m_len;
|
|
ptr = mtod(m, u_char *);
|
|
for (len = 0; len < m->m_len; len++, pos++, ptr++) {
|
|
if (pos % 16 == 8)
|
|
printf(" ");
|
|
if (pos % 16 == 0)
|
|
printf("\n");
|
|
printf(" %02x", *ptr);
|
|
}
|
|
m = m->m_next;
|
|
}
|
|
printf("\n");
|
|
if (totlen != plen);
|
|
printf("sum of m_len=%u\n", totlen);
|
|
}
|
|
#endif
|
|
|
|
/*********************************************************************/
|
|
/*
|
|
* DMA maps
|
|
*/
|
|
|
|
/*
|
|
* Map constructor for a MAP.
|
|
*
|
|
* This is called each time when a map is allocated
|
|
* from the pool and about to be returned to the user. Here we actually
|
|
* allocate the map if there isn't one. The problem is that we may fail
|
|
* to allocate the DMA map yet have no means to signal this error. Therefor
|
|
* when allocating a map, the call must check that there is a map. An
|
|
* additional problem is, that i386 maps will be NULL, yet are ok and must
|
|
* be freed so let's use a flag to signal allocation.
|
|
*
|
|
* Caveat: we have no way to know that we are called from an interrupt context
|
|
* here. We rely on the fact, that bus_dmamap_create uses M_NOWAIT in all
|
|
* its allocations.
|
|
*
|
|
* LOCK: any, not needed
|
|
*/
|
|
static void
|
|
en_map_ctor(void *mem, int size, void *arg)
|
|
{
|
|
struct en_softc *sc = arg;
|
|
struct en_map *map = mem;
|
|
int err;
|
|
|
|
if (map->sc == NULL)
|
|
map->sc = sc;
|
|
|
|
if (!(map->flags & ENMAP_ALLOC)) {
|
|
err = bus_dmamap_create(sc->txtag, 0, &map->map);
|
|
if (err != 0)
|
|
if_printf(&sc->ifatm.ifnet,
|
|
"cannot create DMA map %d\n", err);
|
|
else
|
|
map->flags |= ENMAP_ALLOC;
|
|
}
|
|
map->flags &= ~ENMAP_LOADED;
|
|
}
|
|
|
|
/*
|
|
* Map destructor.
|
|
*
|
|
* Called when a map is disposed into the zone. If the map is loaded, unload
|
|
* it.
|
|
*
|
|
* LOCK: any, not needed
|
|
*/
|
|
static void
|
|
en_map_dtor(void *mem, int size, void *arg)
|
|
{
|
|
struct en_map *map = mem;
|
|
|
|
if (map->flags & ENMAP_LOADED) {
|
|
bus_dmamap_unload(map->sc->txtag, map->map);
|
|
map->flags &= ~ENMAP_LOADED;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map finializer.
|
|
*
|
|
* This is called each time a map is returned from the zone to the system.
|
|
* Get rid of the dmamap here.
|
|
*
|
|
* LOCK: any, not needed
|
|
*/
|
|
static void
|
|
en_map_fini(void *mem, int size)
|
|
{
|
|
struct en_map *map = mem;
|
|
|
|
if (map->flags & ENMAP_ALLOC)
|
|
bus_dmamap_destroy(map->sc->txtag, map->map);
|
|
}
|
|
|
|
/*********************************************************************/
|
|
/*
|
|
* Transmission
|
|
*/
|
|
|
|
/*
|
|
* Argument structure to load a transmit DMA map
|
|
*/
|
|
struct txarg {
|
|
struct en_softc *sc;
|
|
struct mbuf *m;
|
|
u_int vci;
|
|
u_int chan; /* transmit channel */
|
|
u_int datalen; /* length of user data */
|
|
u_int flags;
|
|
u_int wait; /* return: out of resources */
|
|
};
|
|
|
|
/*
|
|
* TX DMA map loader helper. This function is the callback when the map
|
|
* is loaded. It should fill the DMA segment descriptors into the hardware.
|
|
*
|
|
* LOCK: locked, needed
|
|
*/
|
|
static void
|
|
en_txdma_load(void *uarg, bus_dma_segment_t *segs, int nseg, bus_size_t mapsize,
|
|
int error)
|
|
{
|
|
struct txarg *tx = uarg;
|
|
struct en_softc *sc = tx->sc;
|
|
struct en_txslot *slot = &sc->txslot[tx->chan];
|
|
uint32_t cur; /* on-card buffer position (bytes offset) */
|
|
uint32_t dtq; /* on-card queue position (byte offset) */
|
|
uint32_t last_dtq; /* last DTQ we have written */
|
|
uint32_t tmp;
|
|
u_int free; /* free queue entries on card */
|
|
u_int needalign, cnt;
|
|
bus_size_t rest; /* remaining bytes in current segment */
|
|
bus_addr_t addr;
|
|
bus_dma_segment_t *s;
|
|
uint32_t count, bcode;
|
|
int i;
|
|
|
|
if (error != 0)
|
|
return;
|
|
|
|
cur = slot->cur;
|
|
dtq = sc->dtq_us;
|
|
free = sc->dtq_free;
|
|
|
|
last_dtq = 0; /* make gcc happy */
|
|
|
|
/*
|
|
* Local macro to add an entry to the transmit DMA area. If there
|
|
* are no entries left, return. Save the byte offset of the entry
|
|
* in last_dtq for later use.
|
|
*/
|
|
#define PUT_DTQ_ENTRY(ENI, BCODE, COUNT, ADDR) \
|
|
if (free == 0) { \
|
|
EN_COUNT(sc->stats.txdtqout); \
|
|
tx->wait = 1; \
|
|
return; \
|
|
} \
|
|
last_dtq = dtq; \
|
|
en_write(sc, dtq + 0, (ENI || !sc->is_adaptec) ? \
|
|
MID_MK_TXQ_ENI(COUNT, tx->chan, 0, BCODE) : \
|
|
MID_MK_TXQ_ADP(COUNT, tx->chan, 0, BCODE)); \
|
|
en_write(sc, dtq + 4, ADDR); \
|
|
\
|
|
EN_WRAPADD(MID_DTQOFF, MID_DTQEND, dtq, 8); \
|
|
free--;
|
|
|
|
/*
|
|
* Local macro to generate a DMA entry to DMA cnt bytes. Updates
|
|
* the current buffer byte offset accordingly.
|
|
*/
|
|
#define DO_DTQ(TYPE) do { \
|
|
rest -= cnt; \
|
|
EN_WRAPADD(slot->start, slot->stop, cur, cnt); \
|
|
DBG(sc, TX, ("tx%d: "TYPE" %u bytes, %ju left, cur %#x", \
|
|
tx->chan, cnt, (uintmax_t)rest, cur)); \
|
|
\
|
|
PUT_DTQ_ENTRY(1, bcode, count, addr); \
|
|
\
|
|
addr += cnt; \
|
|
} while (0)
|
|
|
|
if (!(tx->flags & TX_HAS_TBD)) {
|
|
/*
|
|
* Prepend the TBD - it did not fit into the first mbuf
|
|
*/
|
|
tmp = MID_TBD_MK1((tx->flags & TX_AAL5) ?
|
|
MID_TBD_AAL5 : MID_TBD_NOAAL5,
|
|
sc->txspeed[tx->vci],
|
|
tx->m->m_pkthdr.len / MID_ATMDATASZ);
|
|
en_write(sc, cur, tmp);
|
|
EN_WRAPADD(slot->start, slot->stop, cur, 4);
|
|
|
|
tmp = MID_TBD_MK2(tx->vci, 0, 0);
|
|
en_write(sc, cur, tmp);
|
|
EN_WRAPADD(slot->start, slot->stop, cur, 4);
|
|
|
|
/* update DMA address */
|
|
PUT_DTQ_ENTRY(0, MIDDMA_JK, WORD_IDX(slot->start, cur), 0);
|
|
}
|
|
|
|
for (i = 0, s = segs; i < nseg; i++, s++) {
|
|
rest = s->ds_len;
|
|
addr = s->ds_addr;
|
|
|
|
if (sc->is_adaptec) {
|
|
/* adaptec card - simple */
|
|
|
|
/* advance the on-card buffer pointer */
|
|
EN_WRAPADD(slot->start, slot->stop, cur, rest);
|
|
DBG(sc, TX, ("tx%d: adp %ju bytes %#jx (cur now 0x%x)",
|
|
tx->chan, (uintmax_t)rest, (uintmax_t)addr, cur));
|
|
|
|
PUT_DTQ_ENTRY(0, 0, rest, addr);
|
|
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* do we need to do a DMA op to align to the maximum
|
|
* burst? Note, that we are alway 32-bit aligned.
|
|
*/
|
|
if (sc->alburst &&
|
|
(needalign = (addr & sc->bestburstmask)) != 0) {
|
|
/* compute number of bytes, words and code */
|
|
cnt = sc->bestburstlen - needalign;
|
|
if (cnt > rest)
|
|
cnt = rest;
|
|
count = cnt / sizeof(uint32_t);
|
|
if (sc->noalbursts) {
|
|
bcode = MIDDMA_WORD;
|
|
} else {
|
|
bcode = en_dmaplan[count].bcode;
|
|
count = cnt >> en_dmaplan[count].divshift;
|
|
}
|
|
DO_DTQ("al_dma");
|
|
}
|
|
|
|
/* do we need to do a max-sized burst? */
|
|
if (rest >= sc->bestburstlen) {
|
|
count = rest >> sc->bestburstshift;
|
|
cnt = count << sc->bestburstshift;
|
|
bcode = sc->bestburstcode;
|
|
DO_DTQ("best_dma");
|
|
}
|
|
|
|
/* do we need to do a cleanup burst? */
|
|
if (rest != 0) {
|
|
cnt = rest;
|
|
count = rest / sizeof(uint32_t);
|
|
if (sc->noalbursts) {
|
|
bcode = MIDDMA_WORD;
|
|
} else {
|
|
bcode = en_dmaplan[count].bcode;
|
|
count = cnt >> en_dmaplan[count].divshift;
|
|
}
|
|
DO_DTQ("clean_dma");
|
|
}
|
|
}
|
|
|
|
KASSERT (tx->flags & TX_HAS_PAD, ("PDU not padded"));
|
|
|
|
if ((tx->flags & TX_AAL5) && !(tx->flags & TX_HAS_PDU)) {
|
|
/*
|
|
* Append the AAL5 PDU trailer
|
|
*/
|
|
tmp = MID_PDU_MK1(0, 0, tx->datalen);
|
|
en_write(sc, cur, tmp);
|
|
EN_WRAPADD(slot->start, slot->stop, cur, 4);
|
|
|
|
en_write(sc, cur, 0);
|
|
EN_WRAPADD(slot->start, slot->stop, cur, 4);
|
|
|
|
/* update DMA address */
|
|
PUT_DTQ_ENTRY(0, MIDDMA_JK, WORD_IDX(slot->start, cur), 0);
|
|
}
|
|
|
|
/* record the end for the interrupt routine */
|
|
sc->dtq[MID_DTQ_A2REG(last_dtq)] =
|
|
EN_DQ_MK(tx->chan, tx->m->m_pkthdr.len);
|
|
|
|
/* set the end flag in the last descriptor */
|
|
en_write(sc, last_dtq + 0, SETQ_END(sc, en_read(sc, last_dtq + 0)));
|
|
|
|
#undef PUT_DTQ_ENTRY
|
|
#undef DO_DTQ
|
|
|
|
/* commit */
|
|
slot->cur = cur;
|
|
sc->dtq_free = free;
|
|
sc->dtq_us = dtq;
|
|
|
|
/* tell card */
|
|
en_write(sc, MID_DMA_WRTX, MID_DTQ_A2REG(sc->dtq_us));
|
|
}
|
|
|
|
/*
|
|
* en_txdma: start transmit DMA on the given channel, if possible
|
|
*
|
|
* This is called from two places: when we got new packets from the upper
|
|
* layer or when we found that buffer space has freed up during interrupt
|
|
* processing.
|
|
*
|
|
* LOCK: locked, needed
|
|
*/
|
|
static void
|
|
en_txdma(struct en_softc *sc, struct en_txslot *slot)
|
|
{
|
|
struct en_map *map;
|
|
struct mbuf *lastm;
|
|
struct txarg tx;
|
|
u_int pad;
|
|
int error;
|
|
|
|
DBG(sc, TX, ("tx%td: starting ...", slot - sc->txslot));
|
|
again:
|
|
bzero(&tx, sizeof(tx));
|
|
tx.chan = slot - sc->txslot;
|
|
tx.sc = sc;
|
|
|
|
/*
|
|
* get an mbuf waiting for DMA
|
|
*/
|
|
_IF_DEQUEUE(&slot->q, tx.m);
|
|
if (tx.m == NULL) {
|
|
DBG(sc, TX, ("tx%td: ...done!", slot - sc->txslot));
|
|
return;
|
|
}
|
|
MBUF_GET_TX(tx.m, tx.vci, tx.flags, tx.datalen, pad, map);
|
|
|
|
/*
|
|
* note: don't use the entire buffer space. if WRTX becomes equal
|
|
* to RDTX, the transmitter stops assuming the buffer is empty! --kjc
|
|
*/
|
|
if (tx.m->m_pkthdr.len >= slot->bfree) {
|
|
EN_COUNT(sc->stats.txoutspace);
|
|
DBG(sc, TX, ("tx%td: out of transmit space", slot - sc->txslot));
|
|
goto waitres;
|
|
}
|
|
|
|
lastm = NULL;
|
|
if (!(tx.flags & TX_HAS_PAD)) {
|
|
if (pad != 0) {
|
|
/* Append the padding buffer */
|
|
(void)m_length(tx.m, &lastm);
|
|
lastm->m_next = sc->padbuf;
|
|
sc->padbuf->m_len = pad;
|
|
}
|
|
tx.flags |= TX_HAS_PAD;
|
|
}
|
|
|
|
/*
|
|
* Try to load that map
|
|
*/
|
|
error = bus_dmamap_load_mbuf(sc->txtag, map->map, tx.m,
|
|
en_txdma_load, &tx, 0);
|
|
|
|
if (lastm != NULL)
|
|
lastm->m_next = NULL;
|
|
|
|
if (error != 0) {
|
|
if_printf(&sc->ifatm.ifnet, "loading TX map failed %d\n",
|
|
error);
|
|
goto dequeue_drop;
|
|
}
|
|
map->flags |= ENMAP_LOADED;
|
|
if (tx.wait) {
|
|
/* probably not enough space */
|
|
bus_dmamap_unload(map->sc->txtag, map->map);
|
|
map->flags &= ~ENMAP_LOADED;
|
|
|
|
sc->need_dtqs = 1;
|
|
DBG(sc, TX, ("tx%td: out of transmit DTQs", slot - sc->txslot));
|
|
goto waitres;
|
|
}
|
|
|
|
EN_COUNT(sc->stats.launch);
|
|
sc->ifatm.ifnet.if_opackets++;
|
|
|
|
#ifdef ENABLE_BPF
|
|
if (sc->ifatm.ifnet.if_bpf != NULL) {
|
|
/*
|
|
* adjust the top of the mbuf to skip the TBD if present
|
|
* before passing the packet to bpf.
|
|
* Also remove padding and the PDU trailer. Assume both of
|
|
* them to be in the same mbuf. pktlen, m_len and m_data
|
|
* are not needed anymore so we can change them.
|
|
*/
|
|
if (tx.flags & TX_HAS_TBD) {
|
|
tx.m->m_data += MID_TBD_SIZE;
|
|
tx.m->m_len -= MID_TBD_SIZE;
|
|
}
|
|
tx.m->m_pkthdr.len = m_length(tx.m, &lastm);
|
|
if (tx.m->m_pkthdr.len > tx.datalen) {
|
|
lastm->m_len -= tx.m->m_pkthdr.len - tx.datalen;
|
|
tx.m->m_pkthdr.len = tx.datalen;
|
|
}
|
|
|
|
BPF_MTAP(&sc->ifatm.ifnet, tx.m);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* do some housekeeping and get the next packet
|
|
*/
|
|
slot->bfree -= tx.m->m_pkthdr.len;
|
|
_IF_ENQUEUE(&slot->indma, tx.m);
|
|
|
|
goto again;
|
|
|
|
/*
|
|
* error handling. This is jumped to when we just want to drop
|
|
* the packet. Must be unlocked here.
|
|
*/
|
|
dequeue_drop:
|
|
if (map != NULL)
|
|
uma_zfree(sc->map_zone, map);
|
|
|
|
slot->mbsize -= tx.m->m_pkthdr.len;
|
|
|
|
m_freem(tx.m);
|
|
|
|
goto again;
|
|
|
|
waitres:
|
|
_IF_PREPEND(&slot->q, tx.m);
|
|
}
|
|
|
|
/*
|
|
* Create a copy of a single mbuf. It can have either internal or
|
|
* external data, it may have a packet header. External data is really
|
|
* copied, so the new buffer is writeable.
|
|
*
|
|
* LOCK: any, not needed
|
|
*/
|
|
static struct mbuf *
|
|
copy_mbuf(struct mbuf *m)
|
|
{
|
|
struct mbuf *new;
|
|
|
|
MGET(new, M_TRYWAIT, MT_DATA);
|
|
if (new == NULL)
|
|
return (NULL);
|
|
|
|
if (m->m_flags & M_PKTHDR) {
|
|
M_MOVE_PKTHDR(new, m);
|
|
if (m->m_len > MHLEN) {
|
|
MCLGET(new, M_TRYWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_free(new);
|
|
return (NULL);
|
|
}
|
|
}
|
|
} else {
|
|
if (m->m_len > MLEN) {
|
|
MCLGET(new, M_TRYWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_free(new);
|
|
return (NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
bcopy(m->m_data, new->m_data, m->m_len);
|
|
new->m_len = m->m_len;
|
|
new->m_flags &= ~M_RDONLY;
|
|
|
|
return (new);
|
|
}
|
|
|
|
/*
|
|
* This function is called when we have an ENI adapter. It fixes the
|
|
* mbuf chain, so that all addresses and lengths are 4 byte aligned.
|
|
* The overall length is already padded to multiple of cells plus the
|
|
* TBD so this must always succeed. The routine can fail, when it
|
|
* needs to copy an mbuf (this may happen if an mbuf is readonly).
|
|
*
|
|
* We assume here, that aligning the virtual addresses to 4 bytes also
|
|
* aligns the physical addresses.
|
|
*
|
|
* LOCK: locked, needed
|
|
*/
|
|
static struct mbuf *
|
|
en_fix_mchain(struct en_softc *sc, struct mbuf *m0, u_int *pad)
|
|
{
|
|
struct mbuf **prev = &m0;
|
|
struct mbuf *m = m0;
|
|
struct mbuf *new;
|
|
u_char *d;
|
|
int off;
|
|
|
|
while (m != NULL) {
|
|
d = mtod(m, u_char *);
|
|
if ((off = (uintptr_t)d % sizeof(uint32_t)) != 0) {
|
|
EN_COUNT(sc->stats.mfixaddr);
|
|
if (M_WRITABLE(m)) {
|
|
bcopy(d, d - off, m->m_len);
|
|
m->m_data -= off;
|
|
} else {
|
|
if ((new = copy_mbuf(m)) == NULL) {
|
|
EN_COUNT(sc->stats.mfixfail);
|
|
m_freem(m0);
|
|
return (NULL);
|
|
}
|
|
new->m_next = m_free(m);
|
|
*prev = m = new;
|
|
}
|
|
}
|
|
|
|
if ((off = m->m_len % sizeof(uint32_t)) != 0) {
|
|
EN_COUNT(sc->stats.mfixlen);
|
|
if (!M_WRITABLE(m)) {
|
|
if ((new = copy_mbuf(m)) == NULL) {
|
|
EN_COUNT(sc->stats.mfixfail);
|
|
m_freem(m0);
|
|
return (NULL);
|
|
}
|
|
new->m_next = m_free(m);
|
|
*prev = m = new;
|
|
}
|
|
d = mtod(m, u_char *) + m->m_len;
|
|
off = 4 - off;
|
|
while (off) {
|
|
while (m->m_next && m->m_next->m_len == 0)
|
|
m->m_next = m_free(m->m_next);
|
|
|
|
if (m->m_next == NULL) {
|
|
*d++ = 0;
|
|
KASSERT(*pad > 0, ("no padding space"));
|
|
(*pad)--;
|
|
} else {
|
|
*d++ = *mtod(m->m_next, u_char *);
|
|
m->m_next->m_len--;
|
|
m->m_next->m_data++;
|
|
}
|
|
m->m_len++;
|
|
off--;
|
|
}
|
|
}
|
|
|
|
prev = &m->m_next;
|
|
m = m->m_next;
|
|
}
|
|
|
|
return (m0);
|
|
}
|
|
|
|
/*
|
|
* en_start: start transmitting the next packet that needs to go out
|
|
* if there is one. We take off all packets from the interface's queue and
|
|
* put them into the channels queue.
|
|
*
|
|
* Here we also prepend the transmit packet descriptor and append the padding
|
|
* and (for aal5) the PDU trailer. This is different from the original driver:
|
|
* we assume, that allocating one or two additional mbufs is actually cheaper
|
|
* than all this algorithmic fiddling we would need otherwise.
|
|
*
|
|
* While the packet is on the channels wait queue we use the csum_* fields
|
|
* in the packet header to hold the original datalen, the AAL5 flag and the
|
|
* VCI. The packet length field in the header holds the needed buffer space.
|
|
* This may actually be more than the length of the current mbuf chain (when
|
|
* one or more of TBD, padding and PDU do not fit).
|
|
*
|
|
* LOCK: unlocked, needed
|
|
*/
|
|
static void
|
|
en_start(struct ifnet *ifp)
|
|
{
|
|
struct en_softc *sc = (struct en_softc *)ifp->if_softc;
|
|
struct mbuf *m, *lastm;
|
|
struct atm_pseudohdr *ap;
|
|
u_int pad; /* 0-bytes to pad at PDU end */
|
|
u_int datalen; /* length of user data */
|
|
u_int vci; /* the VCI we are transmitting on */
|
|
u_int chan; /* the transmit channel */
|
|
u_int flags;
|
|
uint32_t tbd[2];
|
|
uint32_t pdu[2];
|
|
struct en_map *map;
|
|
|
|
while (1) {
|
|
IF_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == NULL)
|
|
return;
|
|
|
|
flags = 0;
|
|
|
|
ap = mtod(m, struct atm_pseudohdr *);
|
|
vci = ATM_PH_VCI(ap);
|
|
if (ATM_PH_FLAGS(ap) & ATM_PH_AAL5)
|
|
flags |= TX_AAL5;
|
|
|
|
if (ATM_PH_VPI(ap) != 0 || vci >= MID_N_VC) {
|
|
DBG(sc, TX, ("output vpi=%u, vci=%u -- drop",
|
|
ATM_PH_VPI(ap), vci));
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
m_adj(m, sizeof(struct atm_pseudohdr));
|
|
|
|
/*
|
|
* (re-)calculate size of packet (in bytes)
|
|
*/
|
|
m->m_pkthdr.len = datalen = m_length(m, &lastm);
|
|
|
|
/*
|
|
* computing how much padding we need on the end of the mbuf,
|
|
* then see if we can put the TBD at the front of the mbuf
|
|
* where the link header goes (well behaved protocols will
|
|
* reserve room for us). Last, check if room for PDU tail.
|
|
*/
|
|
if (flags & TX_AAL5)
|
|
m->m_pkthdr.len += MID_PDU_SIZE;
|
|
m->m_pkthdr.len = roundup(m->m_pkthdr.len, MID_ATMDATASZ);
|
|
pad = m->m_pkthdr.len - datalen;
|
|
if (flags & TX_AAL5)
|
|
pad -= MID_PDU_SIZE;
|
|
m->m_pkthdr.len += MID_TBD_SIZE;
|
|
|
|
DBG(sc, TX, ("txvci%d: buflen=%u datalen=%u lead=%d trail=%d",
|
|
vci, m->m_pkthdr.len, datalen, (int)M_LEADINGSPACE(m),
|
|
(int)M_TRAILINGSPACE(lastm)));
|
|
|
|
/*
|
|
* Allocate a map. We do this here rather then in en_txdma,
|
|
* because en_txdma is also called from the interrupt handler
|
|
* and we are going to have a locking problem then. We must
|
|
* use NOWAIT here, because the ip_output path holds various
|
|
* locks.
|
|
*/
|
|
map = uma_zalloc_arg(sc->map_zone, sc, M_NOWAIT);
|
|
if (map == NULL || !(map->flags & ENMAP_ALLOC)) {
|
|
/* drop that packet */
|
|
EN_COUNT(sc->stats.txnomap);
|
|
if (map != NULL)
|
|
uma_zfree(sc->map_zone, map);
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* From here on we need access to sc
|
|
*/
|
|
EN_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0) {
|
|
EN_UNLOCK(sc);
|
|
uma_zfree(sc->map_zone, map);
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Look, whether we can prepend the TBD (8 byte)
|
|
*/
|
|
if (M_WRITABLE(m) && M_LEADINGSPACE(m) >= MID_TBD_SIZE) {
|
|
tbd[0] = htobe32(MID_TBD_MK1((flags & TX_AAL5) ?
|
|
MID_TBD_AAL5 : MID_TBD_NOAAL5,
|
|
sc->txspeed[vci],
|
|
m->m_pkthdr.len / MID_ATMDATASZ));
|
|
tbd[1] = htobe32(MID_TBD_MK2(vci, 0, 0));
|
|
|
|
m->m_data -= MID_TBD_SIZE;
|
|
bcopy(tbd, m->m_data, MID_TBD_SIZE);
|
|
m->m_len += MID_TBD_SIZE;
|
|
flags |= TX_HAS_TBD;
|
|
}
|
|
|
|
/*
|
|
* Check whether the padding fits (must be writeable -
|
|
* we pad with zero).
|
|
*/
|
|
if (M_WRITABLE(lastm) && M_TRAILINGSPACE(lastm) >= pad) {
|
|
bzero(lastm->m_data + lastm->m_len, pad);
|
|
lastm->m_len += pad;
|
|
flags |= TX_HAS_PAD;
|
|
|
|
if ((flags & TX_AAL5) &&
|
|
M_TRAILINGSPACE(lastm) > MID_PDU_SIZE) {
|
|
pdu[0] = htobe32(MID_PDU_MK1(0, 0, datalen));
|
|
pdu[1] = 0;
|
|
bcopy(pdu, lastm->m_data + lastm->m_len,
|
|
MID_PDU_SIZE);
|
|
lastm->m_len += MID_PDU_SIZE;
|
|
flags |= TX_HAS_PDU;
|
|
}
|
|
}
|
|
|
|
if (!sc->is_adaptec &&
|
|
(m = en_fix_mchain(sc, m, &pad)) == NULL) {
|
|
EN_UNLOCK(sc);
|
|
uma_zfree(sc->map_zone, map);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* get assigned channel (will be zero unless
|
|
* txspeed[atm_vci] is set)
|
|
*/
|
|
chan = sc->txvc2slot[vci];
|
|
|
|
if (m->m_pkthdr.len > EN_TXSZ * 1024) {
|
|
DBG(sc, TX, ("tx%d: packet larger than xmit buffer "
|
|
"(%d > %d)\n", chan, m->m_pkthdr.len,
|
|
EN_TXSZ * 1024));
|
|
EN_UNLOCK(sc);
|
|
m_freem(m);
|
|
uma_zfree(sc->map_zone, map);
|
|
continue;
|
|
}
|
|
|
|
if (sc->txslot[chan].mbsize > EN_TXHIWAT) {
|
|
EN_COUNT(sc->stats.txmbovr);
|
|
DBG(sc, TX, ("tx%d: buffer space shortage", chan));
|
|
EN_UNLOCK(sc);
|
|
m_freem(m);
|
|
uma_zfree(sc->map_zone, map);
|
|
continue;
|
|
}
|
|
|
|
/* commit */
|
|
sc->txslot[chan].mbsize += m->m_pkthdr.len;
|
|
|
|
DBG(sc, TX, ("tx%d: VCI=%d, speed=0x%x, buflen=%d, mbsize=%d",
|
|
chan, vci, sc->txspeed[vci], m->m_pkthdr.len,
|
|
sc->txslot[chan].mbsize));
|
|
|
|
MBUF_SET_TX(m, vci, flags, datalen, pad, map);
|
|
|
|
_IF_ENQUEUE(&sc->txslot[chan].q, m);
|
|
|
|
en_txdma(sc, &sc->txslot[chan]);
|
|
|
|
EN_UNLOCK(sc);
|
|
}
|
|
}
|
|
|
|
/*********************************************************************/
|
|
/*
|
|
* VCs
|
|
*/
|
|
|
|
/*
|
|
* en_loadvc: load a vc tab entry from a slot
|
|
*
|
|
* LOCK: locked, needed
|
|
*/
|
|
static void
|
|
en_loadvc(struct en_softc *sc, int vc)
|
|
{
|
|
int slot;
|
|
uint32_t reg = en_read(sc, MID_VC(vc));
|
|
|
|
reg = MIDV_SETMODE(reg, MIDV_TRASH);
|
|
en_write(sc, MID_VC(vc), reg);
|
|
DELAY(27);
|
|
|
|
if ((slot = sc->rxvc2slot[vc]) == RX_NONE)
|
|
return;
|
|
|
|
/* no need to set CRC */
|
|
|
|
/* read pointer = 0, desc. start = 0 */
|
|
en_write(sc, MID_DST_RP(vc), 0);
|
|
/* write pointer = 0 */
|
|
en_write(sc, MID_WP_ST_CNT(vc), 0);
|
|
/* set mode, size, loc */
|
|
en_write(sc, MID_VC(vc), sc->rxslot[slot].mode);
|
|
|
|
sc->rxslot[slot].cur = sc->rxslot[slot].start;
|
|
|
|
DBG(sc, VC, ("rx%d: assigned to VCI %d", slot, vc));
|
|
}
|
|
|
|
/*
|
|
* en_rxctl: turn on and off VCs for recv.
|
|
*
|
|
* LOCK: unlocked, needed
|
|
*/
|
|
static int
|
|
en_rxctl(struct en_softc *sc, struct atm_pseudoioctl *pi, int on)
|
|
{
|
|
u_int vci, flags, slot;
|
|
uint32_t oldmode, newmode;
|
|
|
|
vci = ATM_PH_VCI(&pi->aph);
|
|
flags = ATM_PH_FLAGS(&pi->aph);
|
|
|
|
DBG(sc, IOCTL, ("%s vpi=%d, vci=%d, flags=%#x",
|
|
(on) ? "enable" : "disable", ATM_PH_VPI(&pi->aph), vci, flags));
|
|
|
|
if (ATM_PH_VPI(&pi->aph) || vci >= MID_N_VC)
|
|
return (EINVAL);
|
|
|
|
EN_LOCK(sc);
|
|
|
|
if (on) {
|
|
/*
|
|
* turn on VCI!
|
|
*/
|
|
if (sc->rxvc2slot[vci] != RX_NONE)
|
|
return (EINVAL);
|
|
for (slot = 0; slot < sc->en_nrx; slot++)
|
|
if (sc->rxslot[slot].oth_flags & ENOTHER_FREE)
|
|
break;
|
|
if (slot == sc->en_nrx) {
|
|
EN_UNLOCK(sc);
|
|
return (ENOSPC);
|
|
}
|
|
|
|
sc->rxvc2slot[vci] = slot;
|
|
sc->rxslot[slot].rxhand = NULL;
|
|
oldmode = sc->rxslot[slot].mode;
|
|
newmode = (flags & ATM_PH_AAL5) ? MIDV_AAL5 : MIDV_NOAAL;
|
|
sc->rxslot[slot].mode = MIDV_SETMODE(oldmode, newmode);
|
|
sc->rxslot[slot].atm_vci = vci;
|
|
sc->rxslot[slot].atm_flags = flags;
|
|
sc->rxslot[slot].oth_flags = 0;
|
|
sc->rxslot[slot].rxhand = pi->rxhand;
|
|
|
|
if (_IF_QLEN(&sc->rxslot[slot].indma) != 0 ||
|
|
_IF_QLEN(&sc->rxslot[slot].q) != 0)
|
|
panic("en_rxctl: left over mbufs on enable");
|
|
sc->txspeed[vci] = 0; /* full speed to start */
|
|
sc->txvc2slot[vci] = 0; /* init value */
|
|
sc->txslot[0].nref++; /* bump reference count */
|
|
en_loadvc(sc, vci); /* does debug printf for us */
|
|
|
|
EN_UNLOCK(sc);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* turn off VCI
|
|
*/
|
|
if (sc->rxvc2slot[vci] == RX_NONE) {
|
|
EN_UNLOCK(sc);
|
|
return (EINVAL);
|
|
}
|
|
slot = sc->rxvc2slot[vci];
|
|
if ((sc->rxslot[slot].oth_flags & (ENOTHER_FREE|ENOTHER_DRAIN)) != 0) {
|
|
EN_UNLOCK(sc);
|
|
return (EINVAL);
|
|
}
|
|
|
|
oldmode = en_read(sc, MID_VC(vci));
|
|
newmode = MIDV_SETMODE(oldmode, MIDV_TRASH) & ~MIDV_INSERVICE;
|
|
en_write(sc, MID_VC(vci), (newmode | (oldmode & MIDV_INSERVICE)));
|
|
|
|
/* halt in tracks, be careful to preserve inservice bit */
|
|
DELAY(27);
|
|
sc->rxslot[slot].rxhand = NULL;
|
|
sc->rxslot[slot].mode = newmode;
|
|
|
|
sc->txslot[sc->txvc2slot[vci]].nref--;
|
|
sc->txspeed[vci] = 0;
|
|
sc->txvc2slot[vci] = 0;
|
|
|
|
/* if stuff is still going on we are going to have to drain it out */
|
|
if (_IF_QLEN(&sc->rxslot[slot].indma) != 0 ||
|
|
_IF_QLEN(&sc->rxslot[slot].q) != 0 ||
|
|
(sc->rxslot[slot].oth_flags & ENOTHER_SWSL) != 0) {
|
|
sc->rxslot[slot].oth_flags |= ENOTHER_DRAIN;
|
|
} else {
|
|
sc->rxslot[slot].oth_flags = ENOTHER_FREE;
|
|
sc->rxslot[slot].atm_vci = RX_NONE;
|
|
sc->rxvc2slot[vci] = RX_NONE;
|
|
}
|
|
EN_UNLOCK(sc);
|
|
|
|
DBG(sc, IOCTL, ("rx%d: VCI %d is now %s", slot, vci,
|
|
(sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) ? "draining" : "free"));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************/
|
|
/*
|
|
* starting/stopping the card
|
|
*/
|
|
|
|
/*
|
|
* en_reset_ul: reset the board, throw away work in progress.
|
|
* must en_init to recover.
|
|
*
|
|
* LOCK: locked, needed
|
|
*/
|
|
static void
|
|
en_reset_ul(struct en_softc *sc)
|
|
{
|
|
struct en_map *map;
|
|
struct mbuf *m;
|
|
int lcv, slot;
|
|
|
|
if_printf(&sc->ifatm.ifnet, "reset\n");
|
|
|
|
if (sc->en_busreset)
|
|
sc->en_busreset(sc);
|
|
en_write(sc, MID_RESID, 0x0); /* reset hardware */
|
|
|
|
/*
|
|
* recv: dump any mbufs we are dma'ing into, if DRAINing, then a reset
|
|
* will free us!
|
|
*/
|
|
for (lcv = 0 ; lcv < MID_N_VC ; lcv++) {
|
|
if (sc->rxvc2slot[lcv] == RX_NONE)
|
|
continue;
|
|
slot = sc->rxvc2slot[lcv];
|
|
|
|
for (;;) {
|
|
_IF_DEQUEUE(&sc->rxslot[slot].indma, m);
|
|
if (m == NULL)
|
|
break;
|
|
map = (void *)m->m_pkthdr.rcvif;
|
|
uma_zfree(sc->map_zone, map);
|
|
m_freem(m);
|
|
}
|
|
for (;;) {
|
|
_IF_DEQUEUE(&sc->rxslot[slot].q, m);
|
|
if (m == NULL)
|
|
break;
|
|
m_freem(m);
|
|
}
|
|
sc->rxslot[slot].oth_flags &= ~ENOTHER_SWSL;
|
|
if (sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) {
|
|
sc->rxslot[slot].oth_flags = ENOTHER_FREE;
|
|
sc->rxvc2slot[lcv] = RX_NONE;
|
|
DBG(sc, INIT, ("rx%d: VCI %d is now free", slot, lcv));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* xmit: dump everything
|
|
*/
|
|
for (lcv = 0 ; lcv < EN_NTX ; lcv++) {
|
|
for (;;) {
|
|
_IF_DEQUEUE(&sc->txslot[lcv].indma, m);
|
|
if (m == NULL)
|
|
break;
|
|
map = (void *)m->m_pkthdr.rcvif;
|
|
uma_zfree(sc->map_zone, map);
|
|
m_freem(m);
|
|
}
|
|
for (;;) {
|
|
_IF_DEQUEUE(&sc->txslot[lcv].q, m);
|
|
if (m == NULL)
|
|
break;
|
|
map = (void *)m->m_pkthdr.rcvif;
|
|
uma_zfree(sc->map_zone, map);
|
|
m_freem(m);
|
|
}
|
|
sc->txslot[lcv].mbsize = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* en_reset: reset the board, throw away work in progress.
|
|
* must en_init to recover.
|
|
*
|
|
* LOCK: unlocked, needed
|
|
*
|
|
* Use en_reset_ul if you alreay have the lock
|
|
*/
|
|
void
|
|
en_reset(struct en_softc *sc)
|
|
{
|
|
EN_LOCK(sc);
|
|
en_reset_ul(sc);
|
|
EN_UNLOCK(sc);
|
|
}
|
|
|
|
|
|
/*
|
|
* en_init: init board and sync the card with the data in the softc.
|
|
*
|
|
* LOCK: locked, needed
|
|
*/
|
|
static void
|
|
en_init(struct en_softc *sc)
|
|
{
|
|
int vc, slot;
|
|
uint32_t loc;
|
|
|
|
if ((sc->ifatm.ifnet.if_flags & IFF_UP) == 0) {
|
|
DBG(sc, INIT, ("going down"));
|
|
en_reset(sc); /* to be safe */
|
|
sc->ifatm.ifnet.if_flags &= ~IFF_RUNNING; /* disable */
|
|
return;
|
|
}
|
|
|
|
DBG(sc, INIT, ("going up"));
|
|
sc->ifatm.ifnet.if_flags |= IFF_RUNNING; /* enable */
|
|
|
|
if (sc->en_busreset)
|
|
sc->en_busreset(sc);
|
|
en_write(sc, MID_RESID, 0x0); /* reset */
|
|
|
|
/*
|
|
* init obmem data structures: vc tab, dma q's, slist.
|
|
*
|
|
* note that we set drq_free/dtq_free to one less than the total number
|
|
* of DTQ/DRQs present. we do this because the card uses the condition
|
|
* (drq_chip == drq_us) to mean "list is empty"... but if you allow the
|
|
* circular list to be completely full then (drq_chip == drq_us) [i.e.
|
|
* the drq_us pointer will wrap all the way around]. by restricting
|
|
* the number of active requests to (N - 1) we prevent the list from
|
|
* becoming completely full. note that the card will sometimes give
|
|
* us an interrupt for a DTQ/DRQ we have already processes... this helps
|
|
* keep that interrupt from messing us up.
|
|
*/
|
|
|
|
for (vc = 0; vc < MID_N_VC; vc++)
|
|
en_loadvc(sc, vc);
|
|
|
|
bzero(&sc->drq, sizeof(sc->drq));
|
|
sc->drq_free = MID_DRQ_N - 1;
|
|
sc->drq_chip = MID_DRQ_REG2A(en_read(sc, MID_DMA_RDRX));
|
|
en_write(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip));
|
|
sc->drq_us = sc->drq_chip;
|
|
|
|
bzero(&sc->dtq, sizeof(sc->dtq));
|
|
sc->dtq_free = MID_DTQ_N - 1;
|
|
sc->dtq_chip = MID_DTQ_REG2A(en_read(sc, MID_DMA_RDTX));
|
|
en_write(sc, MID_DMA_WRTX, MID_DRQ_A2REG(sc->dtq_chip));
|
|
sc->dtq_us = sc->dtq_chip;
|
|
|
|
sc->hwslistp = MID_SL_REG2A(en_read(sc, MID_SERV_WRITE));
|
|
sc->swsl_size = sc->swsl_head = sc->swsl_tail = 0;
|
|
|
|
DBG(sc, INIT, ("drq free/chip: %d/0x%x, dtq free/chip: %d/0x%x, "
|
|
"hwslist: 0x%x", sc->drq_free, sc->drq_chip, sc->dtq_free,
|
|
sc->dtq_chip, sc->hwslistp));
|
|
|
|
for (slot = 0 ; slot < EN_NTX ; slot++) {
|
|
sc->txslot[slot].bfree = EN_TXSZ * 1024;
|
|
en_write(sc, MIDX_READPTR(slot), 0);
|
|
en_write(sc, MIDX_DESCSTART(slot), 0);
|
|
loc = sc->txslot[slot].cur = sc->txslot[slot].start;
|
|
loc = loc - MID_RAMOFF;
|
|
/* mask, cvt to words */
|
|
loc = (loc & ~((EN_TXSZ * 1024) - 1)) >> 2;
|
|
/* top 11 bits */
|
|
loc = loc >> MIDV_LOCTOPSHFT;
|
|
en_write(sc, MIDX_PLACE(slot), MIDX_MKPLACE(en_k2sz(EN_TXSZ),
|
|
loc));
|
|
DBG(sc, INIT, ("tx%d: place 0x%x", slot,
|
|
(u_int)en_read(sc, MIDX_PLACE(slot))));
|
|
}
|
|
|
|
/*
|
|
* enable!
|
|
*/
|
|
en_write(sc, MID_INTENA, MID_INT_TX | MID_INT_DMA_OVR | MID_INT_IDENT |
|
|
MID_INT_LERR | MID_INT_DMA_ERR | MID_INT_DMA_RX | MID_INT_DMA_TX |
|
|
MID_INT_SERVICE | MID_INT_SUNI | MID_INT_STATS);
|
|
en_write(sc, MID_MAST_CSR, MID_SETIPL(sc->ipl) | MID_MCSR_ENDMA |
|
|
MID_MCSR_ENTX | MID_MCSR_ENRX);
|
|
}
|
|
|
|
/*********************************************************************/
|
|
/*
|
|
* Ioctls
|
|
*/
|
|
/*
|
|
* Return a table of all currently open VCCs.
|
|
*/
|
|
static struct atmio_vcctable *
|
|
en_get_vccs(struct en_softc *sc, int flags)
|
|
{
|
|
struct atmio_vcctable *vccs;
|
|
struct atmio_vcc *v;
|
|
u_int vci, alloc, slot;
|
|
|
|
alloc = 10;
|
|
vccs = NULL;
|
|
do {
|
|
vccs = reallocf(vccs,
|
|
sizeof(*vccs) + alloc * sizeof(vccs->vccs[0]),
|
|
M_TEMP, flags);
|
|
if (vccs == NULL)
|
|
return (NULL);
|
|
|
|
vccs->count = 0;
|
|
v = vccs->vccs;
|
|
EN_LOCK(sc);
|
|
for (vci = 0; vci < MID_N_VC; vci++) {
|
|
if ((slot = sc->rxvc2slot[vci]) == RX_NONE ||
|
|
(sc->rxslot[slot].oth_flags &
|
|
(ENOTHER_FREE | ENOTHER_DRAIN)) != 0)
|
|
continue;
|
|
|
|
if (vccs->count++ == alloc) {
|
|
alloc *= 2;
|
|
break;
|
|
}
|
|
bzero(v, sizeof(*v));
|
|
v->flags = ATMIO_FLAG_PVC | sc->rxslot[slot].atm_flags;
|
|
v->vpi = 0;
|
|
v->vci = vci;
|
|
if (sc->rxslot[slot].atm_flags & ATM_PH_AAL5)
|
|
v->aal = ATMIO_AAL_5;
|
|
else
|
|
v->aal = ATMIO_AAL_0;
|
|
v->traffic = ATMIO_TRAFFIC_UBR;
|
|
v->tparam.pcr = sc->ifatm.mib.pcr;
|
|
v++;
|
|
}
|
|
EN_UNLOCK(sc);
|
|
} while (vci < MID_N_VC);
|
|
|
|
return (vccs);
|
|
}
|
|
|
|
/*
|
|
* en_ioctl: handle ioctl requests
|
|
*
|
|
* NOTE: if you add an ioctl to set txspeed, you should choose a new
|
|
* TX channel/slot. Choose the one with the lowest sc->txslot[slot].nref
|
|
* value, subtract one from sc->txslot[0].nref, add one to the
|
|
* sc->txslot[slot].nref, set sc->txvc2slot[vci] = slot, and then set
|
|
* txspeed[vci].
|
|
*
|
|
* LOCK: unlocked, needed
|
|
*/
|
|
static int
|
|
en_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct en_softc *sc = (struct en_softc *)ifp->if_softc;
|
|
struct ifaddr *ifa = (struct ifaddr *)data;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
struct atm_pseudoioctl *api = (struct atm_pseudoioctl *)data;
|
|
struct atmio_vcctable *vtab;
|
|
int error = 0;
|
|
|
|
switch (cmd) {
|
|
|
|
case SIOCATMENA: /* enable circuit for recv */
|
|
error = en_rxctl(sc, api, 1);
|
|
break;
|
|
|
|
case SIOCATMDIS: /* disable circuit for recv */
|
|
error = en_rxctl(sc, api, 0);
|
|
break;
|
|
|
|
case SIOCSIFADDR:
|
|
EN_LOCK(sc);
|
|
ifp->if_flags |= IFF_UP;
|
|
#if defined(INET) || defined(INET6)
|
|
if (ifa->ifa_addr->sa_family == AF_INET
|
|
|| ifa->ifa_addr->sa_family == AF_INET6) {
|
|
if (!(ifp->if_flags & IFF_RUNNING)) {
|
|
en_reset_ul(sc);
|
|
en_init(sc);
|
|
}
|
|
ifa->ifa_rtrequest = atm_rtrequest; /* ??? */
|
|
EN_UNLOCK(sc);
|
|
break;
|
|
}
|
|
#endif /* INET */
|
|
if (!(ifp->if_flags & IFF_RUNNING)) {
|
|
en_reset_ul(sc);
|
|
en_init(sc);
|
|
}
|
|
EN_UNLOCK(sc);
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
EN_LOCK(sc);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (!(ifp->if_flags & IFF_RUNNING))
|
|
en_init(sc);
|
|
} else {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
en_reset_ul(sc);
|
|
}
|
|
EN_UNLOCK(sc);
|
|
break;
|
|
|
|
case SIOCSIFMTU:
|
|
/*
|
|
* Set the interface MTU.
|
|
*/
|
|
if (ifr->ifr_mtu > ATMMTU) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
break;
|
|
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->media, cmd);
|
|
break;
|
|
|
|
case SIOCATMGETVCCS: /* internal netgraph use */
|
|
vtab = en_get_vccs(sc, M_NOWAIT);
|
|
if (vtab == NULL) {
|
|
error = ENOMEM;
|
|
break;
|
|
}
|
|
*(void **)data = vtab;
|
|
break;
|
|
|
|
case SIOCATMGVCCS: /* return vcc table */
|
|
vtab = en_get_vccs(sc, M_WAITOK);
|
|
if (vtab == NULL) {
|
|
error = ENOMEM;
|
|
break;
|
|
}
|
|
error = copyout(vtab, ifr->ifr_data, sizeof(*vtab) +
|
|
vtab->count * sizeof(vtab->vccs[0]));
|
|
free(vtab, M_DEVBUF);
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************/
|
|
/*
|
|
* Sysctl's
|
|
*/
|
|
|
|
/*
|
|
* Sysctl handler for internal statistics
|
|
*
|
|
* LOCK: unlocked, needed
|
|
*/
|
|
static int
|
|
en_sysctl_istats(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct en_softc *sc = arg1;
|
|
uint32_t *ret;
|
|
int error;
|
|
|
|
ret = malloc(sizeof(sc->stats), M_TEMP, M_WAITOK);
|
|
|
|
EN_LOCK(sc);
|
|
bcopy(&sc->stats, ret, sizeof(sc->stats));
|
|
EN_UNLOCK(sc);
|
|
|
|
error = SYSCTL_OUT(req, ret, sizeof(sc->stats));
|
|
free(ret, M_TEMP);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************/
|
|
/*
|
|
* Interrupts
|
|
*/
|
|
|
|
/*
|
|
* Transmit interrupt handler
|
|
*
|
|
* check for tx complete, if detected then this means that some space
|
|
* has come free on the card. we must account for it and arrange to
|
|
* kick the channel to life (in case it is stalled waiting on the card).
|
|
*
|
|
* LOCK: locked, needed
|
|
*/
|
|
static uint32_t
|
|
en_intr_tx(struct en_softc *sc, uint32_t reg)
|
|
{
|
|
uint32_t kick;
|
|
uint32_t mask;
|
|
uint32_t val;
|
|
int chan;
|
|
|
|
kick = 0; /* bitmask of channels to kick */
|
|
|
|
for (mask = 1, chan = 0; chan < EN_NTX; chan++, mask *= 2) {
|
|
if (!(reg & MID_TXCHAN(chan)))
|
|
continue;
|
|
|
|
kick = kick | mask;
|
|
|
|
/* current read pointer */
|
|
val = en_read(sc, MIDX_READPTR(chan));
|
|
/* as offset */
|
|
val = (val * sizeof(uint32_t)) + sc->txslot[chan].start;
|
|
if (val > sc->txslot[chan].cur)
|
|
sc->txslot[chan].bfree = val - sc->txslot[chan].cur;
|
|
else
|
|
sc->txslot[chan].bfree = (val + (EN_TXSZ * 1024)) -
|
|
sc->txslot[chan].cur;
|
|
DBG(sc, INTR, ("tx%d: transmit done. %d bytes now free in "
|
|
"buffer", chan, sc->txslot[chan].bfree));
|
|
}
|
|
return (kick);
|
|
}
|
|
|
|
/*
|
|
* TX DMA interrupt
|
|
*
|
|
* check for TX DMA complete, if detected then this means
|
|
* that some DTQs are now free. it also means some indma
|
|
* mbufs can be freed. if we needed DTQs, kick all channels.
|
|
*
|
|
* LOCK: locked, needed
|
|
*/
|
|
static uint32_t
|
|
en_intr_tx_dma(struct en_softc *sc)
|
|
{
|
|
uint32_t kick = 0;
|
|
uint32_t val;
|
|
uint32_t idx;
|
|
uint32_t slot;
|
|
uint32_t dtq;
|
|
struct en_map *map;
|
|
struct mbuf *m;
|
|
|
|
val = en_read(sc, MID_DMA_RDTX); /* chip's current location */
|
|
idx = MID_DTQ_A2REG(sc->dtq_chip); /* where we last saw chip */
|
|
|
|
if (sc->need_dtqs) {
|
|
kick = MID_NTX_CH - 1; /* assume power of 2, kick all! */
|
|
sc->need_dtqs = 0; /* recalculated in "kick" loop below */
|
|
DBG(sc, INTR, ("cleared need DTQ condition"));
|
|
}
|
|
|
|
while (idx != val) {
|
|
sc->dtq_free++;
|
|
if ((dtq = sc->dtq[idx]) != 0) {
|
|
/* don't forget to zero it out when done */
|
|
sc->dtq[idx] = 0;
|
|
slot = EN_DQ_SLOT(dtq);
|
|
|
|
_IF_DEQUEUE(&sc->txslot[slot].indma, m);
|
|
if (m == NULL)
|
|
panic("enintr: dtqsync");
|
|
map = (void *)m->m_pkthdr.rcvif;
|
|
uma_zfree(sc->map_zone, map);
|
|
m_freem(m);
|
|
|
|
sc->txslot[slot].mbsize -= EN_DQ_LEN(dtq);
|
|
DBG(sc, INTR, ("tx%d: free %d dma bytes, mbsize now "
|
|
"%d", slot, EN_DQ_LEN(dtq),
|
|
sc->txslot[slot].mbsize));
|
|
}
|
|
EN_WRAPADD(0, MID_DTQ_N, idx, 1);
|
|
}
|
|
sc->dtq_chip = MID_DTQ_REG2A(val); /* sync softc */
|
|
|
|
return (kick);
|
|
}
|
|
|
|
/*
|
|
* Service interrupt
|
|
*
|
|
* LOCK: locked, needed
|
|
*/
|
|
static int
|
|
en_intr_service(struct en_softc *sc)
|
|
{
|
|
uint32_t chip;
|
|
uint32_t slot;
|
|
uint32_t vci;
|
|
int need_softserv = 0;
|
|
|
|
chip = MID_SL_REG2A(en_read(sc, MID_SERV_WRITE));
|
|
|
|
while (sc->hwslistp != chip) {
|
|
/* fetch and remove it from hardware service list */
|
|
vci = en_read(sc, sc->hwslistp);
|
|
EN_WRAPADD(MID_SLOFF, MID_SLEND, sc->hwslistp, 4);
|
|
|
|
slot = sc->rxvc2slot[vci];
|
|
if (slot == RX_NONE) {
|
|
DBG(sc, INTR, ("unexpected rx interrupt on VCI %d",
|
|
vci));
|
|
en_write(sc, MID_VC(vci), MIDV_TRASH); /* rx off */
|
|
continue;
|
|
}
|
|
|
|
/* remove from hwsl */
|
|
en_write(sc, MID_VC(vci), sc->rxslot[slot].mode);
|
|
EN_COUNT(sc->stats.hwpull);
|
|
|
|
DBG(sc, INTR, ("pulled VCI %d off hwslist", vci));
|
|
|
|
/* add it to the software service list (if needed) */
|
|
if ((sc->rxslot[slot].oth_flags & ENOTHER_SWSL) == 0) {
|
|
EN_COUNT(sc->stats.swadd);
|
|
need_softserv = 1;
|
|
sc->rxslot[slot].oth_flags |= ENOTHER_SWSL;
|
|
sc->swslist[sc->swsl_tail] = slot;
|
|
EN_WRAPADD(0, MID_SL_N, sc->swsl_tail, 1);
|
|
sc->swsl_size++;
|
|
DBG(sc, INTR, ("added VCI %d to swslist", vci));
|
|
}
|
|
}
|
|
return (need_softserv);
|
|
}
|
|
|
|
/*
|
|
* check for RX DMA complete, and pass the data "upstairs"
|
|
*
|
|
* LOCK: locked, needed
|
|
*/
|
|
static int
|
|
en_intr_rx_dma(struct en_softc *sc)
|
|
{
|
|
uint32_t val;
|
|
uint32_t idx;
|
|
uint32_t drq;
|
|
uint32_t slot;
|
|
uint32_t vci;
|
|
struct atm_pseudohdr ah;
|
|
struct mbuf *m;
|
|
struct en_map *map;
|
|
|
|
val = en_read(sc, MID_DMA_RDRX); /* chip's current location */
|
|
idx = MID_DRQ_A2REG(sc->drq_chip); /* where we last saw chip */
|
|
|
|
while (idx != val) {
|
|
sc->drq_free++;
|
|
if ((drq = sc->drq[idx]) != 0) {
|
|
/* don't forget to zero it out when done */
|
|
sc->drq[idx] = 0;
|
|
slot = EN_DQ_SLOT(drq);
|
|
if (EN_DQ_LEN(drq) == 0) { /* "JK" trash DMA? */
|
|
m = NULL;
|
|
map = NULL;
|
|
} else {
|
|
_IF_DEQUEUE(&sc->rxslot[slot].indma, m);
|
|
if (m == NULL)
|
|
panic("enintr: drqsync: %s%d: lost mbuf"
|
|
" in slot %d!",
|
|
sc->ifatm.ifnet.if_name,
|
|
sc->ifatm.ifnet.if_unit, slot);
|
|
map = (void *)m->m_pkthdr.rcvif;
|
|
uma_zfree(sc->map_zone, map);
|
|
}
|
|
/* do something with this mbuf */
|
|
if (sc->rxslot[slot].oth_flags & ENOTHER_DRAIN) {
|
|
/* drain? */
|
|
if (m != NULL)
|
|
m_freem(m);
|
|
vci = sc->rxslot[slot].atm_vci;
|
|
if (!_IF_QLEN(&sc->rxslot[slot].indma) &&
|
|
!_IF_QLEN(&sc->rxslot[slot].q) &&
|
|
(en_read(sc, MID_VC(vci)) & MIDV_INSERVICE)
|
|
== 0 &&
|
|
(sc->rxslot[slot].oth_flags & ENOTHER_SWSL)
|
|
== 0) {
|
|
sc->rxslot[slot].oth_flags =
|
|
ENOTHER_FREE; /* done drain */
|
|
sc->rxslot[slot].atm_vci = RX_NONE;
|
|
sc->rxvc2slot[vci] = RX_NONE;
|
|
DBG(sc, INTR, ("rx%d: VCI %d now free",
|
|
slot, vci));
|
|
}
|
|
|
|
} else if (m != NULL) {
|
|
ATM_PH_FLAGS(&ah) = sc->rxslot[slot].atm_flags;
|
|
ATM_PH_VPI(&ah) = 0;
|
|
ATM_PH_SETVCI(&ah, sc->rxslot[slot].atm_vci);
|
|
DBG(sc, INTR, ("rx%d: rxvci%d: atm_input, "
|
|
"mbuf %p, len %d, hand %p", slot,
|
|
sc->rxslot[slot].atm_vci, m,
|
|
EN_DQ_LEN(drq), sc->rxslot[slot].rxhand));
|
|
|
|
m->m_pkthdr.rcvif = &sc->ifatm.ifnet;
|
|
sc->ifatm.ifnet.if_ipackets++;
|
|
#ifdef EN_DEBUG
|
|
if (sc->debug & DBG_IPACKETS)
|
|
en_dump_packet(sc, m);
|
|
#endif
|
|
#ifdef ENABLE_BPF
|
|
BPF_MTAP(&sc->ifatm.ifnet, m);
|
|
#endif
|
|
atm_input(&sc->ifatm.ifnet, &ah, m,
|
|
sc->rxslot[slot].rxhand);
|
|
}
|
|
}
|
|
EN_WRAPADD(0, MID_DRQ_N, idx, 1);
|
|
}
|
|
sc->drq_chip = MID_DRQ_REG2A(val); /* sync softc */
|
|
|
|
if (sc->need_drqs) {
|
|
/* true if we had a DRQ shortage */
|
|
sc->need_drqs = 0;
|
|
DBG(sc, INTR, ("cleared need DRQ condition"));
|
|
return (1);
|
|
} else
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* en_mget: get an mbuf chain that can hold totlen bytes and return it
|
|
* (for recv). For the actual allocation totlen is rounded up to a multiple
|
|
* of 4. We also ensure, that each mbuf has a multiple of 4 bytes.
|
|
*
|
|
* After this call the sum of all the m_len's in the chain will be totlen.
|
|
* This is called at interrupt time, so we can't wait here.
|
|
*
|
|
* LOCK: any, not needed
|
|
*/
|
|
static struct mbuf *
|
|
en_mget(struct en_softc *sc, u_int pktlen)
|
|
{
|
|
struct mbuf *m, *tmp;
|
|
u_int totlen, pad;
|
|
|
|
totlen = roundup(pktlen, sizeof(uint32_t));
|
|
pad = totlen - pktlen;
|
|
|
|
/*
|
|
* First get an mbuf with header. Keep space for a couple of
|
|
* words at the begin.
|
|
*/
|
|
/* called from interrupt context */
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (NULL);
|
|
|
|
m->m_pkthdr.rcvif = NULL;
|
|
m->m_pkthdr.len = pktlen;
|
|
m->m_len = EN_RX1BUF;
|
|
MH_ALIGN(m, EN_RX1BUF);
|
|
if (m->m_len >= totlen) {
|
|
m->m_len = totlen;
|
|
|
|
} else {
|
|
totlen -= m->m_len;
|
|
|
|
/* called from interrupt context */
|
|
tmp = m_getm(m, totlen, M_DONTWAIT, MT_DATA);
|
|
if (tmp == NULL) {
|
|
m_free(m);
|
|
return (NULL);
|
|
}
|
|
tmp = m->m_next;
|
|
/* m_getm could do this for us */
|
|
while (tmp != NULL) {
|
|
tmp->m_len = min(MCLBYTES, totlen);
|
|
totlen -= tmp->m_len;
|
|
tmp = tmp->m_next;
|
|
}
|
|
}
|
|
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Argument for RX DMAMAP loader.
|
|
*/
|
|
struct rxarg {
|
|
struct en_softc *sc;
|
|
struct mbuf *m;
|
|
u_int pre_skip; /* number of bytes to skip at begin */
|
|
u_int post_skip; /* number of bytes to skip at end */
|
|
struct en_rxslot *slot; /* slot we are receiving on */
|
|
int wait; /* wait for DRQ entries */
|
|
};
|
|
|
|
/*
|
|
* Copy the segment table to the buffer for later use. And compute the
|
|
* number of dma queue entries we need.
|
|
*
|
|
* LOCK: locked, needed
|
|
*/
|
|
static void
|
|
en_rxdma_load(void *uarg, bus_dma_segment_t *segs, int nseg,
|
|
bus_size_t mapsize, int error)
|
|
{
|
|
struct rxarg *rx = uarg;
|
|
struct en_softc *sc = rx->sc;
|
|
struct en_rxslot *slot = rx->slot;
|
|
u_int free; /* number of free DRQ entries */
|
|
uint32_t cur; /* current buffer offset */
|
|
uint32_t drq; /* DRQ entry pointer */
|
|
uint32_t last_drq; /* where we have written last */
|
|
u_int needalign, cnt, count, bcode;
|
|
bus_addr_t addr;
|
|
bus_size_t rest;
|
|
int i;
|
|
|
|
if (error != 0)
|
|
return;
|
|
if (nseg > EN_MAX_DMASEG)
|
|
panic("too many DMA segments");
|
|
|
|
rx->wait = 0;
|
|
|
|
free = sc->drq_free;
|
|
drq = sc->drq_us;
|
|
cur = slot->cur;
|
|
|
|
last_drq = 0;
|
|
|
|
/*
|
|
* Local macro to add an entry to the receive DMA area. If there
|
|
* are no entries left, return. Save the byte offset of the entry
|
|
* in last_drq for later use.
|
|
*/
|
|
#define PUT_DRQ_ENTRY(ENI, BCODE, COUNT, ADDR) \
|
|
if (free == 0) { \
|
|
EN_COUNT(sc->stats.rxdrqout); \
|
|
rx->wait = 1; \
|
|
return; \
|
|
} \
|
|
last_drq = drq; \
|
|
en_write(sc, drq + 0, (ENI || !sc->is_adaptec) ? \
|
|
MID_MK_RXQ_ENI(COUNT, slot->atm_vci, 0, BCODE) : \
|
|
MID_MK_RXQ_ADP(COUNT, slot->atm_vci, 0, BCODE)); \
|
|
en_write(sc, drq + 4, ADDR); \
|
|
\
|
|
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, drq, 8); \
|
|
free--;
|
|
|
|
/*
|
|
* Local macro to generate a DMA entry to DMA cnt bytes. Updates
|
|
* the current buffer byte offset accordingly.
|
|
*/
|
|
#define DO_DRQ(TYPE) do { \
|
|
rest -= cnt; \
|
|
EN_WRAPADD(slot->start, slot->stop, cur, cnt); \
|
|
DBG(sc, SERV, ("rx%td: "TYPE" %u bytes, %ju left, cur %#x", \
|
|
slot - sc->rxslot, cnt, (uintmax_t)rest, cur)); \
|
|
\
|
|
PUT_DRQ_ENTRY(1, bcode, count, addr); \
|
|
\
|
|
addr += cnt; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Skip the RBD at the beginning
|
|
*/
|
|
if (rx->pre_skip > 0) {
|
|
/* update DMA address */
|
|
EN_WRAPADD(slot->start, slot->stop, cur, rx->pre_skip);
|
|
|
|
PUT_DRQ_ENTRY(0, MIDDMA_JK, WORD_IDX(slot->start, cur), 0);
|
|
}
|
|
|
|
for (i = 0; i < nseg; i++, segs++) {
|
|
addr = segs->ds_addr;
|
|
rest = segs->ds_len;
|
|
|
|
if (sc->is_adaptec) {
|
|
/* adaptec card - simple */
|
|
|
|
/* advance the on-card buffer pointer */
|
|
EN_WRAPADD(slot->start, slot->stop, cur, rest);
|
|
DBG(sc, SERV, ("rx%td: adp %ju bytes %#jx "
|
|
"(cur now 0x%x)", slot - sc->rxslot,
|
|
(uintmax_t)rest, (uintmax_t)addr, cur));
|
|
|
|
PUT_DRQ_ENTRY(0, 0, rest, addr);
|
|
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* do we need to do a DMA op to align to the maximum
|
|
* burst? Note, that we are alway 32-bit aligned.
|
|
*/
|
|
if (sc->alburst &&
|
|
(needalign = (addr & sc->bestburstmask)) != 0) {
|
|
/* compute number of bytes, words and code */
|
|
cnt = sc->bestburstlen - needalign;
|
|
if (cnt > rest)
|
|
cnt = rest;
|
|
count = cnt / sizeof(uint32_t);
|
|
if (sc->noalbursts) {
|
|
bcode = MIDDMA_WORD;
|
|
} else {
|
|
bcode = en_dmaplan[count].bcode;
|
|
count = cnt >> en_dmaplan[count].divshift;
|
|
}
|
|
DO_DRQ("al_dma");
|
|
}
|
|
|
|
/* do we need to do a max-sized burst? */
|
|
if (rest >= sc->bestburstlen) {
|
|
count = rest >> sc->bestburstshift;
|
|
cnt = count << sc->bestburstshift;
|
|
bcode = sc->bestburstcode;
|
|
DO_DRQ("best_dma");
|
|
}
|
|
|
|
/* do we need to do a cleanup burst? */
|
|
if (rest != 0) {
|
|
cnt = rest;
|
|
count = rest / sizeof(uint32_t);
|
|
if (sc->noalbursts) {
|
|
bcode = MIDDMA_WORD;
|
|
} else {
|
|
bcode = en_dmaplan[count].bcode;
|
|
count = cnt >> en_dmaplan[count].divshift;
|
|
}
|
|
DO_DRQ("clean_dma");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Skip stuff at the end
|
|
*/
|
|
if (rx->post_skip > 0) {
|
|
/* update DMA address */
|
|
EN_WRAPADD(slot->start, slot->stop, cur, rx->post_skip);
|
|
|
|
PUT_DRQ_ENTRY(0, MIDDMA_JK, WORD_IDX(slot->start, cur), 0);
|
|
}
|
|
|
|
/* record the end for the interrupt routine */
|
|
sc->drq[MID_DRQ_A2REG(last_drq)] =
|
|
EN_DQ_MK(slot - sc->rxslot, rx->m->m_pkthdr.len);
|
|
|
|
/* set the end flag in the last descriptor */
|
|
en_write(sc, last_drq + 0, SETQ_END(sc, en_read(sc, last_drq + 0)));
|
|
|
|
#undef PUT_DRQ_ENTRY
|
|
#undef DO_DRQ
|
|
|
|
/* commit */
|
|
slot->cur = cur;
|
|
sc->drq_free = free;
|
|
sc->drq_us = drq;
|
|
|
|
/* signal to card */
|
|
en_write(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_us));
|
|
}
|
|
|
|
/*
|
|
* en_service: handle a service interrupt
|
|
*
|
|
* Q: why do we need a software service list?
|
|
*
|
|
* A: if we remove a VCI from the hardware list and we find that we are
|
|
* out of DRQs we must defer processing until some DRQs become free.
|
|
* so we must remember to look at this RX VCI/slot later, but we can't
|
|
* put it back on the hardware service list (since that isn't allowed).
|
|
* so we instead save it on the software service list. it would be nice
|
|
* if we could peek at the VCI on top of the hwservice list without removing
|
|
* it, however this leads to a race condition: if we peek at it and
|
|
* decide we are done with it new data could come in before we have a
|
|
* chance to remove it from the hwslist. by the time we get it out of
|
|
* the list the interrupt for the new data will be lost. oops!
|
|
*
|
|
* LOCK: locked, needed
|
|
*/
|
|
static void
|
|
en_service(struct en_softc *sc)
|
|
{
|
|
struct mbuf *m, *lastm;
|
|
struct en_map *map;
|
|
struct rxarg rx;
|
|
uint32_t cur;
|
|
uint32_t dstart; /* data start (as reported by card) */
|
|
uint32_t rbd; /* receive buffer descriptor */
|
|
uint32_t pdu; /* AAL5 trailer */
|
|
int mlen;
|
|
struct en_rxslot *slot;
|
|
int error;
|
|
|
|
rx.sc = sc;
|
|
|
|
next_vci:
|
|
if (sc->swsl_size == 0) {
|
|
DBG(sc, SERV, ("en_service done"));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* get slot to service
|
|
*/
|
|
rx.slot = slot = &sc->rxslot[sc->swslist[sc->swsl_head]];
|
|
|
|
KASSERT (sc->rxvc2slot[slot->atm_vci] == slot - sc->rxslot,
|
|
("en_service: rx slot/vci sync"));
|
|
|
|
/*
|
|
* determine our mode and if we've got any work to do
|
|
*/
|
|
DBG(sc, SERV, ("rx%td: service vci=%d start/stop/cur=0x%x 0x%x "
|
|
"0x%x", slot - sc->rxslot, slot->atm_vci,
|
|
slot->start, slot->stop, slot->cur));
|
|
|
|
same_vci:
|
|
cur = slot->cur;
|
|
|
|
dstart = MIDV_DSTART(en_read(sc, MID_DST_RP(slot->atm_vci)));
|
|
dstart = (dstart * sizeof(uint32_t)) + slot->start;
|
|
|
|
/* check to see if there is any data at all */
|
|
if (dstart == cur) {
|
|
EN_WRAPADD(0, MID_SL_N, sc->swsl_head, 1);
|
|
/* remove from swslist */
|
|
slot->oth_flags &= ~ENOTHER_SWSL;
|
|
sc->swsl_size--;
|
|
DBG(sc, SERV, ("rx%td: remove vci %d from swslist",
|
|
slot - sc->rxslot, slot->atm_vci));
|
|
goto next_vci;
|
|
}
|
|
|
|
/*
|
|
* figure out how many bytes we need
|
|
* [mlen = # bytes to go in mbufs]
|
|
*/
|
|
rbd = en_read(sc, cur);
|
|
if (MID_RBD_ID(rbd) != MID_RBD_STDID)
|
|
panic("en_service: id mismatch");
|
|
|
|
if (rbd & MID_RBD_T) {
|
|
mlen = 0; /* we've got trash */
|
|
rx.pre_skip = MID_RBD_SIZE;
|
|
rx.post_skip = 0;
|
|
EN_COUNT(sc->stats.ttrash);
|
|
DBG(sc, SERV, ("RX overflow lost %d cells!", MID_RBD_CNT(rbd)));
|
|
|
|
} else if (!(slot->atm_flags & ATM_PH_AAL5)) {
|
|
/* 1 cell (ick!) */
|
|
mlen = MID_CHDR_SIZE + MID_ATMDATASZ;
|
|
rx.pre_skip = MID_RBD_SIZE;
|
|
rx.post_skip = 0;
|
|
|
|
} else {
|
|
rx.pre_skip = MID_RBD_SIZE;
|
|
|
|
/* get PDU trailer in correct byte order */
|
|
pdu = cur + MID_RBD_CNT(rbd) * MID_ATMDATASZ +
|
|
MID_RBD_SIZE - MID_PDU_SIZE;
|
|
if (pdu >= slot->stop)
|
|
pdu -= EN_RXSZ * 1024;
|
|
pdu = en_read(sc, pdu);
|
|
|
|
if (MID_RBD_CNT(rbd) * MID_ATMDATASZ <
|
|
MID_PDU_LEN(pdu)) {
|
|
if_printf(&sc->ifatm.ifnet, "invalid AAL5 length\n");
|
|
rx.post_skip = MID_RBD_CNT(rbd) * MID_ATMDATASZ;
|
|
mlen = 0;
|
|
sc->ifatm.ifnet.if_ierrors++;
|
|
|
|
} else if (rbd & MID_RBD_CRCERR) {
|
|
if_printf(&sc->ifatm.ifnet, "CRC error\n");
|
|
rx.post_skip = MID_RBD_CNT(rbd) * MID_ATMDATASZ;
|
|
mlen = 0;
|
|
sc->ifatm.ifnet.if_ierrors++;
|
|
|
|
} else {
|
|
mlen = MID_PDU_LEN(pdu);
|
|
rx.post_skip = MID_RBD_CNT(rbd) * MID_ATMDATASZ - mlen;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* now allocate mbufs for mlen bytes of data, if out of mbufs, trash all
|
|
*
|
|
* notes:
|
|
* 1. it is possible that we've already allocated an mbuf for this pkt
|
|
* but ran out of DRQs, in which case we saved the allocated mbuf
|
|
* on "q".
|
|
* 2. if we save an buf in "q" we store the "cur" (pointer) in the
|
|
* buf as an identity (that we can check later).
|
|
* 3. after this block of code, if m is still NULL then we ran out of
|
|
* mbufs
|
|
*/
|
|
_IF_DEQUEUE(&slot->q, m);
|
|
if (m != NULL) {
|
|
if (m->m_pkthdr.csum_data != cur) {
|
|
/* wasn't ours */
|
|
DBG(sc, SERV, ("rx%td: q'ed buf %p not ours",
|
|
slot - sc->rxslot, m));
|
|
_IF_PREPEND(&slot->q, m);
|
|
m = NULL;
|
|
EN_COUNT(sc->stats.rxqnotus);
|
|
} else {
|
|
EN_COUNT(sc->stats.rxqus);
|
|
DBG(sc, SERV, ("rx%td: recovered q'ed buf %p",
|
|
slot - sc->rxslot, m));
|
|
}
|
|
}
|
|
if (mlen == 0 && m != NULL) {
|
|
/* should not happen */
|
|
m_freem(m);
|
|
m = NULL;
|
|
}
|
|
|
|
if (mlen != 0 && m == NULL) {
|
|
m = en_mget(sc, mlen);
|
|
if (m == NULL) {
|
|
rx.post_skip += mlen;
|
|
mlen = 0;
|
|
EN_COUNT(sc->stats.rxmbufout);
|
|
DBG(sc, SERV, ("rx%td: out of mbufs",
|
|
slot - sc->rxslot));
|
|
} else
|
|
rx.post_skip -= roundup(mlen, sizeof(uint32_t)) - mlen;
|
|
|
|
DBG(sc, SERV, ("rx%td: allocate buf %p, mlen=%d",
|
|
slot - sc->rxslot, m, mlen));
|
|
}
|
|
|
|
DBG(sc, SERV, ("rx%td: VCI %d, rbuf %p, mlen %d, skip %u/%u",
|
|
slot - sc->rxslot, slot->atm_vci, m, mlen, rx.pre_skip,
|
|
rx.post_skip));
|
|
|
|
if (m != NULL) {
|
|
/* M_NOWAIT - called from interrupt context */
|
|
map = uma_zalloc_arg(sc->map_zone, sc, M_NOWAIT);
|
|
if (map == NULL || !(map->flags & ENMAP_ALLOC)) {
|
|
rx.post_skip += mlen;
|
|
m_freem(m);
|
|
DBG(sc, SERV, ("rx%td: out of maps",
|
|
slot - sc->rxslot));
|
|
if (map->map != NULL)
|
|
uma_zfree(sc->map_zone, map);
|
|
goto skip;
|
|
}
|
|
rx.m = m;
|
|
error = bus_dmamap_load_mbuf(sc->txtag, map->map, m,
|
|
en_rxdma_load, &rx, 0);
|
|
|
|
if (error != 0) {
|
|
if_printf(&sc->ifatm.ifnet, "loading RX map failed "
|
|
"%d\n", error);
|
|
uma_zfree(sc->map_zone, map);
|
|
m_freem(m);
|
|
rx.post_skip += mlen;
|
|
goto skip;
|
|
|
|
}
|
|
map->flags |= ENMAP_LOADED;
|
|
|
|
if (rx.wait) {
|
|
/* out of DRQs - wait */
|
|
uma_zfree(sc->map_zone, map);
|
|
|
|
m->m_pkthdr.csum_data = cur;
|
|
_IF_ENQUEUE(&slot->q, m);
|
|
EN_COUNT(sc->stats.rxdrqout);
|
|
|
|
sc->need_drqs = 1; /* flag condition */
|
|
return;
|
|
|
|
}
|
|
(void)m_length(m, &lastm);
|
|
lastm->m_len -= roundup(mlen, sizeof(uint32_t)) - mlen;
|
|
|
|
m->m_pkthdr.rcvif = (void *)map;
|
|
_IF_ENQUEUE(&slot->indma, m);
|
|
|
|
/* get next packet in this slot */
|
|
goto same_vci;
|
|
}
|
|
skip:
|
|
/*
|
|
* Here we end if we should drop the packet from the receive buffer.
|
|
* The number of bytes to drop is in fill. We can do this with on
|
|
* JK entry. If we don't even have that one - wait.
|
|
*/
|
|
if (sc->drq_free == 0) {
|
|
sc->need_drqs = 1; /* flag condition */
|
|
return;
|
|
}
|
|
rx.post_skip += rx.pre_skip;
|
|
DBG(sc, SERV, ("rx%td: skipping %u", slot - sc->rxslot, rx.post_skip));
|
|
|
|
/* advance buffer address */
|
|
EN_WRAPADD(slot->start, slot->stop, cur, rx.post_skip);
|
|
|
|
/* write DRQ entry */
|
|
if (sc->is_adaptec)
|
|
en_write(sc, sc->drq_us,
|
|
MID_MK_RXQ_ADP(WORD_IDX(slot->start, cur),
|
|
slot->atm_vci, MID_DMA_END, MIDDMA_JK));
|
|
else
|
|
en_write(sc, sc->drq_us,
|
|
MID_MK_RXQ_ENI(WORD_IDX(slot->start, cur),
|
|
slot->atm_vci, MID_DMA_END, MIDDMA_JK));
|
|
en_write(sc, sc->drq_us + 4, 0);
|
|
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, sc->drq_us, 8);
|
|
sc->drq_free--;
|
|
|
|
/* signal to RX interrupt */
|
|
sc->drq[MID_DRQ_A2REG(sc->drq_us)] = EN_DQ_MK(slot - sc->rxslot, 0);
|
|
slot->cur = cur;
|
|
|
|
/* signal to card */
|
|
en_write(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_us));
|
|
|
|
goto same_vci;
|
|
}
|
|
|
|
/*
|
|
* interrupt handler
|
|
*
|
|
* LOCK: unlocked, needed
|
|
*/
|
|
void
|
|
en_intr(void *arg)
|
|
{
|
|
struct en_softc *sc = arg;
|
|
uint32_t reg, kick, mask;
|
|
int lcv, need_softserv;
|
|
|
|
EN_LOCK(sc);
|
|
|
|
reg = en_read(sc, MID_INTACK);
|
|
DBG(sc, INTR, ("interrupt=0x%b", reg, MID_INTBITS));
|
|
|
|
if ((reg & MID_INT_ANY) == 0) {
|
|
EN_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* unexpected errors that need a reset
|
|
*/
|
|
if ((reg & (MID_INT_IDENT | MID_INT_LERR | MID_INT_DMA_ERR)) != 0) {
|
|
if_printf(&sc->ifatm.ifnet, "unexpected interrupt=0x%b, "
|
|
"resetting\n", reg, MID_INTBITS);
|
|
#ifdef EN_DEBUG
|
|
#ifdef DDB
|
|
Debugger("en: unexpected error");
|
|
#endif /* DDB */
|
|
sc->ifatm.ifnet.if_flags &= ~IFF_RUNNING; /* FREEZE! */
|
|
#else
|
|
en_reset_ul(sc);
|
|
en_init(sc);
|
|
#endif
|
|
EN_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
if (reg & MID_INT_SUNI)
|
|
utopia_intr(&sc->utopia);
|
|
|
|
kick = 0;
|
|
if (reg & MID_INT_TX)
|
|
kick |= en_intr_tx(sc, reg);
|
|
|
|
if (reg & MID_INT_DMA_TX)
|
|
kick |= en_intr_tx_dma(sc);
|
|
|
|
/*
|
|
* kick xmit channels as needed.
|
|
*/
|
|
if (kick) {
|
|
DBG(sc, INTR, ("tx kick mask = 0x%x", kick));
|
|
for (mask = 1, lcv = 0 ; lcv < EN_NTX ; lcv++, mask = mask * 2)
|
|
if ((kick & mask) && _IF_QLEN(&sc->txslot[lcv].q) != 0)
|
|
en_txdma(sc, &sc->txslot[lcv]);
|
|
}
|
|
|
|
need_softserv = 0;
|
|
if (reg & MID_INT_DMA_RX)
|
|
need_softserv |= en_intr_rx_dma(sc);
|
|
|
|
if (reg & MID_INT_SERVICE)
|
|
need_softserv |= en_intr_service(sc);
|
|
|
|
if (need_softserv)
|
|
en_service(sc);
|
|
|
|
/*
|
|
* keep our stats
|
|
*/
|
|
if (reg & MID_INT_DMA_OVR) {
|
|
EN_COUNT(sc->stats.dmaovr);
|
|
DBG(sc, INTR, ("MID_INT_DMA_OVR"));
|
|
}
|
|
reg = en_read(sc, MID_STAT);
|
|
sc->stats.otrash += MID_OTRASH(reg);
|
|
sc->stats.vtrash += MID_VTRASH(reg);
|
|
|
|
EN_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Read at most n SUNI regs starting at reg into val
|
|
*/
|
|
static int
|
|
en_utopia_readregs(struct ifatm *ifatm, u_int reg, uint8_t *val, u_int *n)
|
|
{
|
|
struct en_softc *sc = ifatm->ifnet.if_softc;
|
|
u_int i;
|
|
|
|
EN_CHECKLOCK(sc);
|
|
if (reg >= MID_NSUNI)
|
|
return (EINVAL);
|
|
if (reg + *n > MID_NSUNI)
|
|
*n = MID_NSUNI - reg;
|
|
|
|
for (i = 0; i < *n; i++)
|
|
val[i] = en_read(sc, MID_SUNIOFF + 4 * (reg + i));
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* change the bits given by mask to them in val in register reg
|
|
*/
|
|
static int
|
|
en_utopia_writereg(struct ifatm *ifatm, u_int reg, u_int mask, u_int val)
|
|
{
|
|
struct en_softc *sc = ifatm->ifnet.if_softc;
|
|
uint32_t regval;
|
|
|
|
EN_CHECKLOCK(sc);
|
|
if (reg >= MID_NSUNI)
|
|
return (EINVAL);
|
|
regval = en_read(sc, MID_SUNIOFF + 4 * reg);
|
|
regval = (regval & ~mask) | (val & mask);
|
|
en_write(sc, MID_SUNIOFF + 4 * reg, regval);
|
|
return (0);
|
|
}
|
|
|
|
static const struct utopia_methods en_utopia_methods = {
|
|
en_utopia_readregs,
|
|
en_utopia_writereg
|
|
};
|
|
|
|
/*********************************************************************/
|
|
/*
|
|
* Probing the DMA brokeness of the card
|
|
*/
|
|
|
|
/*
|
|
* Physical address load helper function for DMA probe
|
|
*
|
|
* LOCK: unlocked, not needed
|
|
*/
|
|
static void
|
|
en_dmaprobe_load(void *uarg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
if (error == 0)
|
|
*(bus_addr_t *)uarg = segs[0].ds_addr;
|
|
}
|
|
|
|
/*
|
|
* en_dmaprobe: helper function for en_attach.
|
|
*
|
|
* see how the card handles DMA by running a few DMA tests. we need
|
|
* to figure out the largest number of bytes we can DMA in one burst
|
|
* ("bestburstlen"), and if the starting address for a burst needs to
|
|
* be aligned on any sort of boundary or not ("alburst").
|
|
*
|
|
* Things turn out more complex than that, because on my (harti) brand
|
|
* new motherboard (2.4GHz) we can do 64byte aligned DMAs, but everything
|
|
* we more than 4 bytes fails (with an RX DMA timeout) for physical
|
|
* addresses that end with 0xc. Therefor we search not only the largest
|
|
* burst that is supported (hopefully 64) but also check what is the largerst
|
|
* unaligned supported size. If that appears to be lesser than 4 words,
|
|
* set the noalbursts flag. That will be set only if also alburst is set.
|
|
*/
|
|
|
|
/*
|
|
* en_dmaprobe_doit: do actual testing for the DMA test.
|
|
* Cycle through all bursts sizes from 8 up to 64 and try whether it works.
|
|
* Return the largest one that works.
|
|
*
|
|
* LOCK: unlocked, not needed
|
|
*/
|
|
static int
|
|
en_dmaprobe_doit(struct en_softc *sc, uint8_t *sp, bus_addr_t psp)
|
|
{
|
|
uint8_t *dp = sp + MIDDMA_MAXBURST;
|
|
bus_addr_t pdp = psp + MIDDMA_MAXBURST;
|
|
int lcv, retval = 4, cnt;
|
|
uint32_t reg, bcode, midvloc;
|
|
|
|
if (sc->en_busreset)
|
|
sc->en_busreset(sc);
|
|
en_write(sc, MID_RESID, 0x0); /* reset card before touching RAM */
|
|
|
|
/*
|
|
* set up a 1k buffer at MID_BUFOFF
|
|
*/
|
|
midvloc = ((MID_BUFOFF - MID_RAMOFF) / sizeof(uint32_t))
|
|
>> MIDV_LOCTOPSHFT;
|
|
en_write(sc, MIDX_PLACE(0), MIDX_MKPLACE(en_k2sz(1), midvloc));
|
|
en_write(sc, MID_VC(0), (midvloc << MIDV_LOCSHIFT)
|
|
| (en_k2sz(1) << MIDV_SZSHIFT) | MIDV_TRASH);
|
|
en_write(sc, MID_DST_RP(0), 0);
|
|
en_write(sc, MID_WP_ST_CNT(0), 0);
|
|
|
|
/* set up sample data */
|
|
for (lcv = 0 ; lcv < MIDDMA_MAXBURST; lcv++)
|
|
sp[lcv] = lcv + 1;
|
|
|
|
/* enable DMA (only) */
|
|
en_write(sc, MID_MAST_CSR, MID_MCSR_ENDMA);
|
|
|
|
sc->drq_chip = MID_DRQ_REG2A(en_read(sc, MID_DMA_RDRX));
|
|
sc->dtq_chip = MID_DTQ_REG2A(en_read(sc, MID_DMA_RDTX));
|
|
|
|
/*
|
|
* try it now . . . DMA it out, then DMA it back in and compare
|
|
*
|
|
* note: in order to get the dma stuff to reverse directions it wants
|
|
* the "end" flag set! since we are not dma'ing valid data we may
|
|
* get an ident mismatch interrupt (which we will ignore).
|
|
*/
|
|
DBG(sc, DMA, ("test sp=%p/%#lx, dp=%p/%#lx",
|
|
sp, (u_long)psp, dp, (u_long)pdp));
|
|
for (lcv = 8 ; lcv <= MIDDMA_MAXBURST ; lcv = lcv * 2) {
|
|
DBG(sc, DMA, ("test lcv=%d", lcv));
|
|
|
|
/* zero SRAM and dest buffer */
|
|
bus_space_set_region_4(sc->en_memt, sc->en_base,
|
|
MID_BUFOFF, 0, 1024 / 4);
|
|
bzero(dp, MIDDMA_MAXBURST);
|
|
|
|
bcode = en_sz2b(lcv);
|
|
|
|
/* build lcv-byte-DMA x NBURSTS */
|
|
if (sc->is_adaptec)
|
|
en_write(sc, sc->dtq_chip,
|
|
MID_MK_TXQ_ADP(lcv, 0, MID_DMA_END, 0));
|
|
else
|
|
en_write(sc, sc->dtq_chip,
|
|
MID_MK_TXQ_ENI(1, 0, MID_DMA_END, bcode));
|
|
en_write(sc, sc->dtq_chip + 4, psp);
|
|
EN_WRAPADD(MID_DTQOFF, MID_DTQEND, sc->dtq_chip, 8);
|
|
en_write(sc, MID_DMA_WRTX, MID_DTQ_A2REG(sc->dtq_chip));
|
|
|
|
cnt = 1000;
|
|
while ((reg = en_readx(sc, MID_DMA_RDTX)) !=
|
|
MID_DTQ_A2REG(sc->dtq_chip)) {
|
|
DELAY(1);
|
|
if (--cnt == 0) {
|
|
DBG(sc, DMA, ("unexpected timeout in tx "
|
|
"DMA test\n alignment=0x%lx, burst size=%d"
|
|
", dma addr reg=%#x, rdtx=%#x, stat=%#x\n",
|
|
(u_long)sp & 63, lcv,
|
|
en_read(sc, MID_DMA_ADDR), reg,
|
|
en_read(sc, MID_INTSTAT)));
|
|
return (retval);
|
|
}
|
|
}
|
|
|
|
reg = en_read(sc, MID_INTACK);
|
|
if ((reg & MID_INT_DMA_TX) != MID_INT_DMA_TX) {
|
|
DBG(sc, DMA, ("unexpected status in tx DMA test: %#x\n",
|
|
reg));
|
|
return (retval);
|
|
}
|
|
/* re-enable DMA (only) */
|
|
en_write(sc, MID_MAST_CSR, MID_MCSR_ENDMA);
|
|
|
|
/* "return to sender..." address is known ... */
|
|
|
|
/* build lcv-byte-DMA x NBURSTS */
|
|
if (sc->is_adaptec)
|
|
en_write(sc, sc->drq_chip,
|
|
MID_MK_RXQ_ADP(lcv, 0, MID_DMA_END, 0));
|
|
else
|
|
en_write(sc, sc->drq_chip,
|
|
MID_MK_RXQ_ENI(1, 0, MID_DMA_END, bcode));
|
|
en_write(sc, sc->drq_chip + 4, pdp);
|
|
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, sc->drq_chip, 8);
|
|
en_write(sc, MID_DMA_WRRX, MID_DRQ_A2REG(sc->drq_chip));
|
|
cnt = 1000;
|
|
while ((reg = en_readx(sc, MID_DMA_RDRX)) !=
|
|
MID_DRQ_A2REG(sc->drq_chip)) {
|
|
DELAY(1);
|
|
cnt--;
|
|
if (--cnt == 0) {
|
|
DBG(sc, DMA, ("unexpected timeout in rx "
|
|
"DMA test, rdrx=%#x\n", reg));
|
|
return (retval);
|
|
}
|
|
}
|
|
reg = en_read(sc, MID_INTACK);
|
|
if ((reg & MID_INT_DMA_RX) != MID_INT_DMA_RX) {
|
|
DBG(sc, DMA, ("unexpected status in rx DMA "
|
|
"test: 0x%x\n", reg));
|
|
return (retval);
|
|
}
|
|
if (bcmp(sp, dp, lcv)) {
|
|
DBG(sc, DMA, ("DMA test failed! lcv=%d, sp=%p, "
|
|
"dp=%p", lcv, sp, dp));
|
|
return (retval);
|
|
}
|
|
|
|
retval = lcv;
|
|
}
|
|
return (retval); /* studly 64 byte DMA present! oh baby!! */
|
|
}
|
|
|
|
/*
|
|
* Find the best DMA parameters
|
|
*
|
|
* LOCK: unlocked, not needed
|
|
*/
|
|
static void
|
|
en_dmaprobe(struct en_softc *sc)
|
|
{
|
|
bus_dma_tag_t tag;
|
|
bus_dmamap_t map;
|
|
int err;
|
|
void *buffer;
|
|
int bestalgn, lcv, try, bestnoalgn;
|
|
bus_addr_t phys;
|
|
uint8_t *addr;
|
|
|
|
sc->alburst = 0;
|
|
sc->noalbursts = 0;
|
|
|
|
/*
|
|
* Allocate some DMA-able memory.
|
|
* We need 3 times the max burst size aligned to the max burst size.
|
|
*/
|
|
err = bus_dma_tag_create(NULL, MIDDMA_MAXBURST, 0,
|
|
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
3 * MIDDMA_MAXBURST, 1, 3 * MIDDMA_MAXBURST, 0, &tag);
|
|
if (err)
|
|
panic("%s: cannot create test DMA tag %d", __func__, err);
|
|
|
|
err = bus_dmamem_alloc(tag, &buffer, 0, &map);
|
|
if (err)
|
|
panic("%s: cannot allocate test DMA memory %d", __func__, err);
|
|
|
|
err = bus_dmamap_load(tag, map, buffer, 3 * MIDDMA_MAXBURST,
|
|
en_dmaprobe_load, &phys, 0);
|
|
if (err)
|
|
panic("%s: cannot load test DMA map %d", __func__, err);
|
|
addr = buffer;
|
|
DBG(sc, DMA, ("phys=%#lx addr=%p", (u_long)phys, addr));
|
|
|
|
/*
|
|
* Now get the best burst size of the aligned case.
|
|
*/
|
|
bestalgn = bestnoalgn = en_dmaprobe_doit(sc, addr, phys);
|
|
|
|
/*
|
|
* Now try unaligned.
|
|
*/
|
|
for (lcv = 4; lcv < MIDDMA_MAXBURST; lcv += 4) {
|
|
try = en_dmaprobe_doit(sc, addr + lcv, phys + lcv);
|
|
|
|
if (try < bestnoalgn)
|
|
bestnoalgn = try;
|
|
}
|
|
|
|
if (bestnoalgn < bestalgn) {
|
|
sc->alburst = 1;
|
|
if (bestnoalgn < 32)
|
|
sc->noalbursts = 1;
|
|
}
|
|
|
|
sc->bestburstlen = bestalgn;
|
|
sc->bestburstshift = en_log2(bestalgn);
|
|
sc->bestburstmask = sc->bestburstlen - 1; /* must be power of 2 */
|
|
sc->bestburstcode = en_sz2b(bestalgn);
|
|
|
|
/*
|
|
* Reset the chip before freeing the buffer. It may still be trying
|
|
* to DMA.
|
|
*/
|
|
if (sc->en_busreset)
|
|
sc->en_busreset(sc);
|
|
en_write(sc, MID_RESID, 0x0); /* reset card before touching RAM */
|
|
|
|
DELAY(10000); /* may still do DMA */
|
|
|
|
/*
|
|
* Free the DMA stuff
|
|
*/
|
|
bus_dmamap_unload(tag, map);
|
|
bus_dmamem_free(tag, buffer, map);
|
|
bus_dma_tag_destroy(tag);
|
|
}
|
|
|
|
/*********************************************************************/
|
|
/*
|
|
* Attach/detach.
|
|
*/
|
|
|
|
/*
|
|
* Attach to the card.
|
|
*
|
|
* LOCK: unlocked, not needed (but initialized)
|
|
*/
|
|
int
|
|
en_attach(struct en_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->ifatm.ifnet;
|
|
int sz;
|
|
uint32_t reg, lcv, check, ptr, sav, midvloc;
|
|
|
|
#ifdef EN_DEBUG
|
|
sc->debug = EN_DEBUG;
|
|
#endif
|
|
/*
|
|
* Probe card to determine memory size.
|
|
*
|
|
* The stupid ENI card always reports to PCI that it needs 4MB of
|
|
* space (2MB regs and 2MB RAM). If it has less than 2MB RAM the
|
|
* addresses wrap in the RAM address space (i.e. on a 512KB card
|
|
* addresses 0x3ffffc, 0x37fffc, and 0x2ffffc are aliases for
|
|
* 0x27fffc [note that RAM starts at offset 0x200000]).
|
|
*/
|
|
|
|
/* reset card before touching RAM */
|
|
if (sc->en_busreset)
|
|
sc->en_busreset(sc);
|
|
en_write(sc, MID_RESID, 0x0);
|
|
|
|
for (lcv = MID_PROBEOFF; lcv <= MID_MAXOFF ; lcv += MID_PROBSIZE) {
|
|
en_write(sc, lcv, lcv); /* data[address] = address */
|
|
for (check = MID_PROBEOFF; check < lcv ;check += MID_PROBSIZE) {
|
|
reg = en_read(sc, check);
|
|
if (reg != check)
|
|
/* found an alias! - quit */
|
|
goto done_probe;
|
|
}
|
|
}
|
|
done_probe:
|
|
lcv -= MID_PROBSIZE; /* take one step back */
|
|
sc->en_obmemsz = (lcv + 4) - MID_RAMOFF;
|
|
|
|
/*
|
|
* determine the largest DMA burst supported
|
|
*/
|
|
en_dmaprobe(sc);
|
|
|
|
/*
|
|
* "hello world"
|
|
*/
|
|
|
|
/* reset */
|
|
if (sc->en_busreset)
|
|
sc->en_busreset(sc);
|
|
en_write(sc, MID_RESID, 0x0); /* reset */
|
|
|
|
/* zero memory */
|
|
bus_space_set_region_4(sc->en_memt, sc->en_base,
|
|
MID_RAMOFF, 0, sc->en_obmemsz / 4);
|
|
|
|
reg = en_read(sc, MID_RESID);
|
|
|
|
if_printf(&sc->ifatm.ifnet, "ATM midway v%d, board IDs %d.%d, %s%s%s, "
|
|
"%ldKB on-board RAM\n", MID_VER(reg), MID_MID(reg), MID_DID(reg),
|
|
(MID_IS_SABRE(reg)) ? "sabre controller, " : "",
|
|
(MID_IS_SUNI(reg)) ? "SUNI" : "Utopia",
|
|
(!MID_IS_SUNI(reg) && MID_IS_UPIPE(reg)) ? " (pipelined)" : "",
|
|
(long)sc->en_obmemsz / 1024);
|
|
|
|
/*
|
|
* fill in common ATM interface stuff
|
|
*/
|
|
sc->ifatm.mib.hw_version = (MID_VER(reg) << 16) |
|
|
(MID_MID(reg) << 8) | MID_DID(reg);
|
|
if (MID_DID(reg) & 0x4)
|
|
sc->ifatm.mib.media = IFM_ATM_UTP_155;
|
|
else
|
|
sc->ifatm.mib.media = IFM_ATM_MM_155;
|
|
|
|
sc->ifatm.mib.pcr = ATM_RATE_155M;
|
|
sc->ifatm.mib.vpi_bits = 0;
|
|
sc->ifatm.mib.vci_bits = MID_VCI_BITS;
|
|
sc->ifatm.mib.max_vccs = MID_N_VC;
|
|
sc->ifatm.mib.max_vpcs = 0;
|
|
|
|
if (sc->is_adaptec) {
|
|
sc->ifatm.mib.device = ATM_DEVICE_ADP155P;
|
|
if (sc->bestburstlen == 64 && sc->alburst == 0)
|
|
if_printf(&sc->ifatm.ifnet,
|
|
"passed 64 byte DMA test\n");
|
|
else
|
|
if_printf(&sc->ifatm.ifnet, "FAILED DMA TEST: "
|
|
"burst=%d, alburst=%d\n", sc->bestburstlen,
|
|
sc->alburst);
|
|
} else {
|
|
sc->ifatm.mib.device = ATM_DEVICE_ENI155P;
|
|
if_printf(&sc->ifatm.ifnet, "maximum DMA burst length = %d "
|
|
"bytes%s\n", sc->bestburstlen, sc->alburst ?
|
|
sc->noalbursts ? " (no large bursts)" : " (must align)" :
|
|
"");
|
|
}
|
|
|
|
/*
|
|
* link into network subsystem and prepare card
|
|
*/
|
|
sc->ifatm.ifnet.if_softc = sc;
|
|
ifp->if_flags = IFF_SIMPLEX;
|
|
ifp->if_ioctl = en_ioctl;
|
|
ifp->if_start = en_start;
|
|
|
|
mtx_init(&sc->en_mtx, device_get_nameunit(sc->dev),
|
|
MTX_NETWORK_LOCK, MTX_DEF);
|
|
|
|
/*
|
|
* Make the sysctl tree
|
|
*/
|
|
sysctl_ctx_init(&sc->sysctl_ctx);
|
|
|
|
if ((sc->sysctl_tree = SYSCTL_ADD_NODE(&sc->sysctl_ctx,
|
|
SYSCTL_STATIC_CHILDREN(_hw_atm), OID_AUTO,
|
|
device_get_nameunit(sc->dev), CTLFLAG_RD, 0, "")) == NULL)
|
|
goto fail;
|
|
|
|
if (SYSCTL_ADD_PROC(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
|
|
OID_AUTO, "istats", CTLFLAG_RD, sc, 0, en_sysctl_istats,
|
|
"S", "internal statistics") == NULL)
|
|
goto fail;
|
|
|
|
#ifdef EN_DEBUG
|
|
if (SYSCTL_ADD_UINT(&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
|
|
OID_AUTO, "debug", CTLFLAG_RW , &sc->debug, 0, "") == NULL)
|
|
goto fail;
|
|
#endif
|
|
|
|
sc->ifatm.phy = &sc->utopia;
|
|
utopia_attach(&sc->utopia, &sc->ifatm, &sc->media, &sc->en_mtx,
|
|
&sc->sysctl_ctx, SYSCTL_CHILDREN(sc->sysctl_tree),
|
|
&en_utopia_methods);
|
|
utopia_init_media(&sc->utopia);
|
|
|
|
MGET(sc->padbuf, M_TRYWAIT, MT_DATA);
|
|
if (sc->padbuf == NULL)
|
|
goto fail;
|
|
bzero(sc->padbuf->m_data, MLEN);
|
|
|
|
if (bus_dma_tag_create(NULL, 1, 0,
|
|
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
EN_TXSZ * 1024, EN_MAX_DMASEG, EN_TXSZ * 1024, 0, &sc->txtag))
|
|
goto fail;
|
|
|
|
sc->map_zone = uma_zcreate("en dma maps", sizeof(struct en_map),
|
|
en_map_ctor, en_map_dtor, NULL, en_map_fini, UMA_ALIGN_PTR,
|
|
UMA_ZONE_ZINIT);
|
|
if (sc->map_zone == NULL)
|
|
goto fail;
|
|
uma_zone_set_max(sc->map_zone, EN_MAX_MAPS);
|
|
|
|
/*
|
|
* init softc
|
|
*/
|
|
for (lcv = 0 ; lcv < MID_N_VC ; lcv++) {
|
|
sc->rxvc2slot[lcv] = RX_NONE;
|
|
sc->txspeed[lcv] = 0; /* full */
|
|
sc->txvc2slot[lcv] = 0; /* full speed == slot 0 */
|
|
}
|
|
|
|
sz = sc->en_obmemsz - (MID_BUFOFF - MID_RAMOFF);
|
|
ptr = sav = MID_BUFOFF;
|
|
ptr = roundup(ptr, EN_TXSZ * 1024); /* align */
|
|
sz = sz - (ptr - sav);
|
|
if (EN_TXSZ*1024 * EN_NTX > sz) {
|
|
if_printf(&sc->ifatm.ifnet, "EN_NTX/EN_TXSZ too big\n");
|
|
goto fail;
|
|
}
|
|
for (lcv = 0 ;lcv < EN_NTX ;lcv++) {
|
|
sc->txslot[lcv].mbsize = 0;
|
|
sc->txslot[lcv].start = ptr;
|
|
ptr += (EN_TXSZ * 1024);
|
|
sz -= (EN_TXSZ * 1024);
|
|
sc->txslot[lcv].stop = ptr;
|
|
sc->txslot[lcv].nref = 0;
|
|
DBG(sc, INIT, ("tx%d: start 0x%x, stop 0x%x", lcv,
|
|
sc->txslot[lcv].start, sc->txslot[lcv].stop));
|
|
}
|
|
|
|
sav = ptr;
|
|
ptr = roundup(ptr, EN_RXSZ * 1024); /* align */
|
|
sz = sz - (ptr - sav);
|
|
sc->en_nrx = sz / (EN_RXSZ * 1024);
|
|
if (sc->en_nrx <= 0) {
|
|
if_printf(&sc->ifatm.ifnet, "EN_NTX/EN_TXSZ/EN_RXSZ too big\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* ensure that there is always one VC slot on the service list free
|
|
* so that we can tell the difference between a full and empty list.
|
|
*/
|
|
if (sc->en_nrx >= MID_N_VC)
|
|
sc->en_nrx = MID_N_VC - 1;
|
|
|
|
for (lcv = 0 ; lcv < sc->en_nrx ; lcv++) {
|
|
sc->rxslot[lcv].rxhand = NULL;
|
|
sc->rxslot[lcv].oth_flags = ENOTHER_FREE;
|
|
midvloc = sc->rxslot[lcv].start = ptr;
|
|
ptr += (EN_RXSZ * 1024);
|
|
sz -= (EN_RXSZ * 1024);
|
|
sc->rxslot[lcv].stop = ptr;
|
|
midvloc = midvloc - MID_RAMOFF;
|
|
/* mask, cvt to words */
|
|
midvloc = (midvloc & ~((EN_RXSZ*1024) - 1)) >> 2;
|
|
/* we only want the top 11 bits */
|
|
midvloc = midvloc >> MIDV_LOCTOPSHFT;
|
|
midvloc = (midvloc & MIDV_LOCMASK) << MIDV_LOCSHIFT;
|
|
sc->rxslot[lcv].mode = midvloc |
|
|
(en_k2sz(EN_RXSZ) << MIDV_SZSHIFT) | MIDV_TRASH;
|
|
|
|
DBG(sc, INIT, ("rx%d: start 0x%x, stop 0x%x, mode 0x%x", lcv,
|
|
sc->rxslot[lcv].start, sc->rxslot[lcv].stop,
|
|
sc->rxslot[lcv].mode));
|
|
}
|
|
|
|
if_printf(&sc->ifatm.ifnet, "%d %dKB receive buffers, %d %dKB transmit "
|
|
"buffers\n", sc->en_nrx, EN_RXSZ, EN_NTX, EN_TXSZ);
|
|
if_printf(&sc->ifatm.ifnet, "end station identifier (mac address) "
|
|
"%6D\n", sc->ifatm.mib.esi, ":");
|
|
|
|
/*
|
|
* Start SUNI stuff. This will call our readregs/writeregs
|
|
* functions and these assume the lock to be held so we must get it
|
|
* here.
|
|
*/
|
|
EN_LOCK(sc);
|
|
utopia_start(&sc->utopia);
|
|
utopia_reset(&sc->utopia);
|
|
EN_UNLOCK(sc);
|
|
|
|
/*
|
|
* final commit
|
|
*/
|
|
atm_ifattach(ifp);
|
|
|
|
#ifdef ENABLE_BPF
|
|
bpfattach(ifp, DLT_ATM_RFC1483, sizeof(struct atmllc));
|
|
#endif
|
|
|
|
return (0);
|
|
|
|
fail:
|
|
en_destroy(sc);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Free all internal resources. No access to bus resources here.
|
|
* No locking required here (interrupt is already disabled).
|
|
*
|
|
* LOCK: unlocked, needed (but destroyed)
|
|
*/
|
|
void
|
|
en_destroy(struct en_softc *sc)
|
|
{
|
|
|
|
if (sc->utopia.state & UTP_ST_ATTACHED) {
|
|
/* these assume the lock to be held */
|
|
EN_LOCK(sc);
|
|
utopia_stop(&sc->utopia);
|
|
utopia_detach(&sc->utopia);
|
|
EN_UNLOCK(sc);
|
|
}
|
|
|
|
if (sc->padbuf != NULL)
|
|
m_free(sc->padbuf);
|
|
|
|
/*
|
|
* Destroy the map zone before the tag (the fini function will
|
|
* destroy the DMA maps using the tag)
|
|
*/
|
|
if (sc->map_zone != NULL)
|
|
uma_zdestroy(sc->map_zone);
|
|
|
|
if (sc->txtag != NULL)
|
|
bus_dma_tag_destroy(sc->txtag);
|
|
|
|
(void)sysctl_ctx_free(&sc->sysctl_ctx);
|
|
|
|
mtx_destroy(&sc->en_mtx);
|
|
}
|
|
|
|
/*********************************************************************/
|
|
/*
|
|
* Debugging support
|
|
*/
|
|
|
|
#ifdef EN_DDBHOOK
|
|
/*
|
|
* functions we can call from ddb
|
|
*/
|
|
|
|
/*
|
|
* en_dump: dump the state
|
|
*/
|
|
#define END_SWSL 0x00000040 /* swsl state */
|
|
#define END_DRQ 0x00000020 /* drq state */
|
|
#define END_DTQ 0x00000010 /* dtq state */
|
|
#define END_RX 0x00000008 /* rx state */
|
|
#define END_TX 0x00000004 /* tx state */
|
|
#define END_MREGS 0x00000002 /* registers */
|
|
#define END_STATS 0x00000001 /* dump stats */
|
|
|
|
#define END_BITS "\20\7SWSL\6DRQ\5DTQ\4RX\3TX\2MREGS\1STATS"
|
|
|
|
static void
|
|
en_dump_stats(const struct en_stats *s)
|
|
{
|
|
printf("en_stats:\n");
|
|
printf("\t%d/%d mfix (%d failed)\n", s->mfixaddr, s->mfixlen,
|
|
s->mfixfail);
|
|
printf("\t%d rx dma overflow interrupts\n", s->dmaovr);
|
|
printf("\t%d times out of TX space and stalled\n", s->txoutspace);
|
|
printf("\t%d times out of DTQs\n", s->txdtqout);
|
|
printf("\t%d times launched a packet\n", s->launch);
|
|
printf("\t%d times pulled the hw service list\n", s->hwpull);
|
|
printf("\t%d times pushed a vci on the sw service list\n", s->swadd);
|
|
printf("\t%d times RX pulled an mbuf from Q that wasn't ours\n",
|
|
s->rxqnotus);
|
|
printf("\t%d times RX pulled a good mbuf from Q\n", s->rxqus);
|
|
printf("\t%d times ran out of DRQs\n", s->rxdrqout);
|
|
printf("\t%d transmit packets dropped due to mbsize\n", s->txmbovr);
|
|
printf("\t%d cells trashed due to turned off rxvc\n", s->vtrash);
|
|
printf("\t%d cells trashed due to totally full buffer\n", s->otrash);
|
|
printf("\t%d cells trashed due almost full buffer\n", s->ttrash);
|
|
printf("\t%d rx mbuf allocation failures\n", s->rxmbufout);
|
|
printf("\t%d times out of tx maps\n", s->txnomap);
|
|
#ifdef NATM
|
|
#ifdef NATM_STAT
|
|
printf("\tnatmintr so_rcv: ok/drop cnt: %d/%d, ok/drop bytes: %d/%d\n",
|
|
natm_sookcnt, natm_sodropcnt, natm_sookbytes, natm_sodropbytes);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
en_dump_mregs(struct en_softc *sc)
|
|
{
|
|
u_int cnt;
|
|
|
|
printf("mregs:\n");
|
|
printf("resid = 0x%x\n", en_read(sc, MID_RESID));
|
|
printf("interrupt status = 0x%b\n",
|
|
(int)en_read(sc, MID_INTSTAT), MID_INTBITS);
|
|
printf("interrupt enable = 0x%b\n",
|
|
(int)en_read(sc, MID_INTENA), MID_INTBITS);
|
|
printf("mcsr = 0x%b\n", (int)en_read(sc, MID_MAST_CSR), MID_MCSRBITS);
|
|
printf("serv_write = [chip=%u] [us=%u]\n", en_read(sc, MID_SERV_WRITE),
|
|
MID_SL_A2REG(sc->hwslistp));
|
|
printf("dma addr = 0x%x\n", en_read(sc, MID_DMA_ADDR));
|
|
printf("DRQ: chip[rd=0x%x,wr=0x%x], sc[chip=0x%x,us=0x%x]\n",
|
|
MID_DRQ_REG2A(en_read(sc, MID_DMA_RDRX)),
|
|
MID_DRQ_REG2A(en_read(sc, MID_DMA_WRRX)), sc->drq_chip, sc->drq_us);
|
|
printf("DTQ: chip[rd=0x%x,wr=0x%x], sc[chip=0x%x,us=0x%x]\n",
|
|
MID_DTQ_REG2A(en_read(sc, MID_DMA_RDTX)),
|
|
MID_DTQ_REG2A(en_read(sc, MID_DMA_WRTX)), sc->dtq_chip, sc->dtq_us);
|
|
|
|
printf(" unusal txspeeds:");
|
|
for (cnt = 0 ; cnt < MID_N_VC ; cnt++)
|
|
if (sc->txspeed[cnt])
|
|
printf(" vci%d=0x%x", cnt, sc->txspeed[cnt]);
|
|
printf("\n");
|
|
|
|
printf(" rxvc slot mappings:");
|
|
for (cnt = 0 ; cnt < MID_N_VC ; cnt++)
|
|
if (sc->rxvc2slot[cnt] != RX_NONE)
|
|
printf(" %d->%d", cnt, sc->rxvc2slot[cnt]);
|
|
printf("\n");
|
|
}
|
|
|
|
static void
|
|
en_dump_tx(struct en_softc *sc)
|
|
{
|
|
u_int slot;
|
|
|
|
printf("tx:\n");
|
|
for (slot = 0 ; slot < EN_NTX; slot++) {
|
|
printf("tx%d: start/stop/cur=0x%x/0x%x/0x%x [%d] ", slot,
|
|
sc->txslot[slot].start, sc->txslot[slot].stop,
|
|
sc->txslot[slot].cur,
|
|
(sc->txslot[slot].cur - sc->txslot[slot].start) / 4);
|
|
printf("mbsize=%d, bfree=%d\n", sc->txslot[slot].mbsize,
|
|
sc->txslot[slot].bfree);
|
|
printf("txhw: base_address=0x%x, size=%u, read=%u, "
|
|
"descstart=%u\n",
|
|
(u_int)MIDX_BASE(en_read(sc, MIDX_PLACE(slot))),
|
|
MIDX_SZ(en_read(sc, MIDX_PLACE(slot))),
|
|
en_read(sc, MIDX_READPTR(slot)),
|
|
en_read(sc, MIDX_DESCSTART(slot)));
|
|
}
|
|
}
|
|
|
|
static void
|
|
en_dump_rx(struct en_softc *sc)
|
|
{
|
|
u_int slot;
|
|
|
|
printf(" recv slots:\n");
|
|
for (slot = 0 ; slot < sc->en_nrx; slot++) {
|
|
printf("rx%d: vci=%d: start/stop/cur=0x%x/0x%x/0x%x ",
|
|
slot, sc->rxslot[slot].atm_vci,
|
|
sc->rxslot[slot].start, sc->rxslot[slot].stop,
|
|
sc->rxslot[slot].cur);
|
|
printf("mode=0x%x, atm_flags=0x%x, oth_flags=0x%x\n",
|
|
sc->rxslot[slot].mode, sc->rxslot[slot].atm_flags,
|
|
sc->rxslot[slot].oth_flags);
|
|
printf("RXHW: mode=0x%x, DST_RP=0x%x, WP_ST_CNT=0x%x\n",
|
|
en_read(sc, MID_VC(sc->rxslot[slot].atm_vci)),
|
|
en_read(sc, MID_DST_RP(sc->rxslot[slot].atm_vci)),
|
|
en_read(sc,
|
|
MID_WP_ST_CNT(sc->rxslot[slot].atm_vci)));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is only correct for non-adaptec adapters
|
|
*/
|
|
static void
|
|
en_dump_dtqs(struct en_softc *sc)
|
|
{
|
|
uint32_t ptr, reg;
|
|
|
|
printf(" dtq [need_dtqs=%d,dtq_free=%d]:\n", sc->need_dtqs,
|
|
sc->dtq_free);
|
|
ptr = sc->dtq_chip;
|
|
while (ptr != sc->dtq_us) {
|
|
reg = en_read(sc, ptr);
|
|
printf("\t0x%x=[%#x cnt=%d, chan=%d, end=%d, type=%d @ 0x%x]\n",
|
|
sc->dtq[MID_DTQ_A2REG(ptr)], reg, MID_DMA_CNT(reg),
|
|
MID_DMA_TXCHAN(reg), (reg & MID_DMA_END) != 0,
|
|
MID_DMA_TYPE(reg), en_read(sc, ptr + 4));
|
|
EN_WRAPADD(MID_DTQOFF, MID_DTQEND, ptr, 8);
|
|
}
|
|
}
|
|
|
|
static void
|
|
en_dump_drqs(struct en_softc *sc)
|
|
{
|
|
uint32_t ptr, reg;
|
|
|
|
printf(" drq [need_drqs=%d,drq_free=%d]:\n", sc->need_drqs,
|
|
sc->drq_free);
|
|
ptr = sc->drq_chip;
|
|
while (ptr != sc->drq_us) {
|
|
reg = en_read(sc, ptr);
|
|
printf("\t0x%x=[cnt=%d, chan=%d, end=%d, type=%d @ 0x%x]\n",
|
|
sc->drq[MID_DRQ_A2REG(ptr)], MID_DMA_CNT(reg),
|
|
MID_DMA_RXVCI(reg), (reg & MID_DMA_END) != 0,
|
|
MID_DMA_TYPE(reg), en_read(sc, ptr + 4));
|
|
EN_WRAPADD(MID_DRQOFF, MID_DRQEND, ptr, 8);
|
|
}
|
|
}
|
|
|
|
/* Do not staticize - meant for calling from DDB! */
|
|
int
|
|
en_dump(int unit, int level)
|
|
{
|
|
struct en_softc *sc;
|
|
int lcv, cnt;
|
|
devclass_t dc;
|
|
int maxunit;
|
|
|
|
dc = devclass_find("en");
|
|
if (dc == NULL) {
|
|
printf("%s: can't find devclass!\n", __func__);
|
|
return (0);
|
|
}
|
|
maxunit = devclass_get_maxunit(dc);
|
|
for (lcv = 0 ; lcv < maxunit ; lcv++) {
|
|
sc = devclass_get_softc(dc, lcv);
|
|
if (sc == NULL)
|
|
continue;
|
|
if (unit != -1 && unit != lcv)
|
|
continue;
|
|
|
|
if_printf(&sc->ifatm.ifnet, "dumping device at level 0x%b\n",
|
|
level, END_BITS);
|
|
|
|
if (sc->dtq_us == 0) {
|
|
printf("<hasn't been en_init'd yet>\n");
|
|
continue;
|
|
}
|
|
|
|
if (level & END_STATS)
|
|
en_dump_stats(&sc->stats);
|
|
if (level & END_MREGS)
|
|
en_dump_mregs(sc);
|
|
if (level & END_TX)
|
|
en_dump_tx(sc);
|
|
if (level & END_RX)
|
|
en_dump_rx(sc);
|
|
if (level & END_DTQ)
|
|
en_dump_dtqs(sc);
|
|
if (level & END_DRQ)
|
|
en_dump_drqs(sc);
|
|
|
|
if (level & END_SWSL) {
|
|
printf(" swslist [size=%d]: ", sc->swsl_size);
|
|
for (cnt = sc->swsl_head ; cnt != sc->swsl_tail ;
|
|
cnt = (cnt + 1) % MID_SL_N)
|
|
printf("0x%x ", sc->swslist[cnt]);
|
|
printf("\n");
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* en_dumpmem: dump the memory
|
|
*
|
|
* Do not staticize - meant for calling from DDB!
|
|
*/
|
|
int
|
|
en_dumpmem(int unit, int addr, int len)
|
|
{
|
|
struct en_softc *sc;
|
|
uint32_t reg;
|
|
devclass_t dc;
|
|
|
|
dc = devclass_find("en");
|
|
if (dc == NULL) {
|
|
printf("%s: can't find devclass\n", __func__);
|
|
return (0);
|
|
}
|
|
sc = devclass_get_softc(dc, unit);
|
|
if (sc == NULL) {
|
|
printf("%s: invalid unit number: %d\n", __func__, unit);
|
|
return (0);
|
|
}
|
|
|
|
addr = addr & ~3;
|
|
if (addr < MID_RAMOFF || addr + len * 4 > MID_MAXOFF || len <= 0) {
|
|
printf("invalid addr/len number: %d, %d\n", addr, len);
|
|
return (0);
|
|
}
|
|
printf("dumping %d words starting at offset 0x%x\n", len, addr);
|
|
while (len--) {
|
|
reg = en_read(sc, addr);
|
|
printf("mem[0x%x] = 0x%x\n", addr, reg);
|
|
addr += 4;
|
|
}
|
|
return (0);
|
|
}
|
|
#endif
|