freebsd-skq/sys/vm/vm_pageout.c
David Greenman 6d40c3d394 Added ability to detect sequential faults and DTRT. (swap_pager.c)
Added hook for pmap_prefault() and use symbolic constant for new third
argument to vm_page_alloc() (vm_fault.c, various)
Changed the way that upages and page tables are held. (vm_glue.c)
Fixed architectural flaw in allocating pages at interrupt time that was
introduced with the merged cache changes. (vm_page.c, various)
Adjusted some algorithms to acheive better paging performance and to
accomodate the fix for the architectural flaw mentioned above. (vm_pageout.c)
Fixed pbuf handling problem, changed policy on handling read-behind page.
(vnode_pager.c)

Submitted by:	John Dyson
1995-01-24 10:14:09 +00:00

960 lines
25 KiB
C

/*
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
* Copyright (c) 1994 John S. Dyson
* All rights reserved.
* Copyright (c) 1994 David Greenman
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)vm_pageout.c 7.4 (Berkeley) 5/7/91
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*
* $Id: vm_pageout.c,v 1.30 1995/01/10 07:32:49 davidg Exp $
*/
/*
* The proverbial page-out daemon.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <vm/vm.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/swap_pager.h>
extern vm_map_t kmem_map;
int vm_pages_needed; /* Event on which pageout daemon sleeps */
int vm_pagescanner; /* Event on which pagescanner sleeps */
int vm_pageout_pages_needed = 0;/* flag saying that the pageout daemon needs pages */
int vm_page_pagesfreed;
extern int npendingio;
int vm_pageout_proc_limit;
int vm_pageout_req_swapout;
int vm_daemon_needed;
extern int nswiodone;
extern int swap_pager_full;
extern int vm_swap_size;
extern int swap_pager_ready();
#define MAXREF 32767
#define MAXSCAN 512 /* maximum number of pages to scan in active queue */
#define ACT_DECLINE 1
#define ACT_ADVANCE 3
#define ACT_MAX 100
#define MAXISCAN 256
#define MINTOFREE 6
#define MINFREE 2
#define MAXLAUNDER (cnt.v_page_count > 1800 ? 32 : 16)
#define VM_PAGEOUT_PAGE_COUNT 8
int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
int vm_pageout_req_do_stats;
int vm_page_max_wired = 0; /* XXX max # of wired pages system-wide */
/*
* vm_pageout_clean:
* cleans a vm_page
*/
int
vm_pageout_clean(m, sync)
register vm_page_t m;
int sync;
{
/*
* Clean the page and remove it from the laundry.
*
* We set the busy bit to cause potential page faults on this page to
* block.
*
* And we set pageout-in-progress to keep the object from disappearing
* during pageout. This guarantees that the page won't move from the
* inactive queue. (However, any other page on the inactive queue may
* move!)
*/
register vm_object_t object;
register vm_pager_t pager;
int pageout_status[VM_PAGEOUT_PAGE_COUNT];
vm_page_t ms[VM_PAGEOUT_PAGE_COUNT];
int pageout_count;
int anyok = 0;
int i;
vm_offset_t offset = m->offset;
object = m->object;
if (!object) {
printf("pager: object missing\n");
return 0;
}
if (!object->pager && (object->flags & OBJ_INTERNAL) == 0) {
printf("pager: non internal obj without pager\n");
}
/*
* Try to collapse the object before making a pager for it. We must
* unlock the page queues first. We try to defer the creation of a
* pager until all shadows are not paging. This allows
* vm_object_collapse to work better and helps control swap space
* size. (J. Dyson 11 Nov 93)
*/
if (!object->pager &&
(cnt.v_free_count + cnt.v_cache_count) < cnt.v_pageout_free_min)
return 0;
if ((!sync && m->bmapped != 0 && m->hold_count != 0) ||
((m->busy != 0) || (m->flags & PG_BUSY)))
return 0;
if (!sync && object->shadow) {
vm_object_collapse(object);
}
pageout_count = 1;
ms[0] = m;
pager = object->pager;
if (pager) {
for (i = 1; i < vm_pageout_page_count; i++) {
vm_page_t mt;
ms[i] = mt = vm_page_lookup(object, offset + i * NBPG);
if (mt) {
vm_page_test_dirty(mt);
/*
* we can cluster ONLY if: ->> the page is NOT
* busy, and is NOT clean the page is not
* wired, busy, held, or mapped into a buffer.
* and one of the following: 1) The page is
* inactive, or a seldom used active page. 2)
* or we force the issue.
*/
if ((mt->dirty & mt->valid) != 0
&& (((mt->flags & (PG_BUSY | PG_INACTIVE)) == PG_INACTIVE)
|| sync == VM_PAGEOUT_FORCE)
&& (mt->wire_count == 0)
&& (mt->busy == 0)
&& (mt->hold_count == 0)
&& (mt->bmapped == 0))
pageout_count++;
else
break;
} else
break;
}
/*
* we allow reads during pageouts...
*/
for (i = 0; i < pageout_count; i++) {
ms[i]->flags |= PG_BUSY;
pmap_page_protect(VM_PAGE_TO_PHYS(ms[i]), VM_PROT_READ);
}
object->paging_in_progress += pageout_count;
} else {
m->flags |= PG_BUSY;
pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_READ);
object->paging_in_progress++;
pager = vm_pager_allocate(PG_DFLT, (caddr_t) 0,
object->size, VM_PROT_ALL, 0);
if (pager != NULL) {
vm_object_setpager(object, pager, 0, FALSE);
}
}
/*
* If there is no pager for the page, use the default pager. If
* there's no place to put the page at the moment, leave it in the
* laundry and hope that there will be paging space later.
*/
if ((pager && pager->pg_type == PG_SWAP) ||
(cnt.v_free_count + cnt.v_cache_count) >= cnt.v_pageout_free_min) {
if (pageout_count == 1) {
pageout_status[0] = pager ?
vm_pager_put(pager, m,
((sync || (object == kernel_object)) ? TRUE : FALSE)) :
VM_PAGER_FAIL;
} else {
if (!pager) {
for (i = 0; i < pageout_count; i++)
pageout_status[i] = VM_PAGER_FAIL;
} else {
vm_pager_put_pages(pager, ms, pageout_count,
((sync || (object == kernel_object)) ? TRUE : FALSE),
pageout_status);
}
}
} else {
for (i = 0; i < pageout_count; i++)
pageout_status[i] = VM_PAGER_FAIL;
}
for (i = 0; i < pageout_count; i++) {
switch (pageout_status[i]) {
case VM_PAGER_OK:
++anyok;
break;
case VM_PAGER_PEND:
++anyok;
break;
case VM_PAGER_BAD:
/*
* Page outside of range of object. Right now we
* essentially lose the changes by pretending it
* worked.
*/
pmap_clear_modify(VM_PAGE_TO_PHYS(ms[i]));
ms[i]->dirty = 0;
break;
case VM_PAGER_ERROR:
case VM_PAGER_FAIL:
/*
* If page couldn't be paged out, then reactivate the
* page so it doesn't clog the inactive list. (We
* will try paging out it again later).
*/
if (ms[i]->flags & PG_INACTIVE)
vm_page_activate(ms[i]);
break;
case VM_PAGER_AGAIN:
break;
}
/*
* If the operation is still going, leave the page busy to
* block all other accesses. Also, leave the paging in
* progress indicator set so that we don't attempt an object
* collapse.
*/
if (pageout_status[i] != VM_PAGER_PEND) {
PAGE_WAKEUP(ms[i]);
if (--object->paging_in_progress == 0)
wakeup((caddr_t) object);
if ((ms[i]->flags & PG_REFERENCED) ||
pmap_is_referenced(VM_PAGE_TO_PHYS(ms[i]))) {
pmap_clear_reference(VM_PAGE_TO_PHYS(ms[i]));
ms[i]->flags &= ~PG_REFERENCED;
if (ms[i]->flags & PG_INACTIVE)
vm_page_activate(ms[i]);
}
}
}
return anyok;
}
/*
* vm_pageout_object_deactivate_pages
*
* deactivate enough pages to satisfy the inactive target
* requirements or if vm_page_proc_limit is set, then
* deactivate all of the pages in the object and its
* shadows.
*
* The object and map must be locked.
*/
int
vm_pageout_object_deactivate_pages(map, object, count, map_remove_only)
vm_map_t map;
vm_object_t object;
int count;
int map_remove_only;
{
register vm_page_t p, next;
int rcount;
int dcount;
dcount = 0;
if (count == 0)
count = 1;
if (object->shadow) {
if (object->shadow->ref_count == 1)
dcount += vm_pageout_object_deactivate_pages(map, object->shadow, count / 2 + 1, map_remove_only);
else
vm_pageout_object_deactivate_pages(map, object->shadow, count, 1);
}
if (object->paging_in_progress || !vm_object_lock_try(object))
return dcount;
/*
* scan the objects entire memory queue
*/
rcount = object->resident_page_count;
p = object->memq.tqh_first;
while (p && (rcount-- > 0)) {
next = p->listq.tqe_next;
cnt.v_pdpages++;
vm_page_lock_queues();
if (p->wire_count != 0 ||
p->hold_count != 0 ||
p->bmapped != 0 ||
p->busy != 0 ||
!pmap_page_exists(vm_map_pmap(map), VM_PAGE_TO_PHYS(p))) {
p = next;
continue;
}
/*
* if a page is active, not wired and is in the processes
* pmap, then deactivate the page.
*/
if ((p->flags & (PG_ACTIVE | PG_BUSY)) == PG_ACTIVE) {
if (!pmap_is_referenced(VM_PAGE_TO_PHYS(p)) &&
(p->flags & PG_REFERENCED) == 0) {
p->act_count -= min(p->act_count, ACT_DECLINE);
/*
* if the page act_count is zero -- then we
* deactivate
*/
if (!p->act_count) {
if (!map_remove_only)
vm_page_deactivate(p);
pmap_page_protect(VM_PAGE_TO_PHYS(p),
VM_PROT_NONE);
/*
* else if on the next go-around we
* will deactivate the page we need to
* place the page on the end of the
* queue to age the other pages in
* memory.
*/
} else {
TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
TAILQ_REMOVE(&object->memq, p, listq);
TAILQ_INSERT_TAIL(&object->memq, p, listq);
}
/*
* see if we are done yet
*/
if (p->flags & PG_INACTIVE) {
--count;
++dcount;
if (count <= 0 &&
cnt.v_inactive_count > cnt.v_inactive_target) {
vm_page_unlock_queues();
vm_object_unlock(object);
return dcount;
}
}
} else {
/*
* Move the page to the bottom of the queue.
*/
pmap_clear_reference(VM_PAGE_TO_PHYS(p));
p->flags &= ~PG_REFERENCED;
if (p->act_count < ACT_MAX)
p->act_count += ACT_ADVANCE;
TAILQ_REMOVE(&vm_page_queue_active, p, pageq);
TAILQ_INSERT_TAIL(&vm_page_queue_active, p, pageq);
TAILQ_REMOVE(&object->memq, p, listq);
TAILQ_INSERT_TAIL(&object->memq, p, listq);
}
} else if ((p->flags & (PG_INACTIVE | PG_BUSY)) == PG_INACTIVE) {
pmap_page_protect(VM_PAGE_TO_PHYS(p),
VM_PROT_NONE);
}
vm_page_unlock_queues();
p = next;
}
vm_object_unlock(object);
return dcount;
}
/*
* deactivate some number of pages in a map, try to do it fairly, but
* that is really hard to do.
*/
void
vm_pageout_map_deactivate_pages(map, entry, count, freeer)
vm_map_t map;
vm_map_entry_t entry;
int *count;
int (*freeer) (vm_map_t, vm_object_t, int);
{
vm_map_t tmpm;
vm_map_entry_t tmpe;
vm_object_t obj;
if (*count <= 0)
return;
vm_map_reference(map);
if (!lock_try_read(&map->lock)) {
vm_map_deallocate(map);
return;
}
if (entry == 0) {
tmpe = map->header.next;
while (tmpe != &map->header && *count > 0) {
vm_pageout_map_deactivate_pages(map, tmpe, count, freeer, 0);
tmpe = tmpe->next;
};
} else if (entry->is_sub_map || entry->is_a_map) {
tmpm = entry->object.share_map;
tmpe = tmpm->header.next;
while (tmpe != &tmpm->header && *count > 0) {
vm_pageout_map_deactivate_pages(tmpm, tmpe, count, freeer, 0);
tmpe = tmpe->next;
};
} else if ((obj = entry->object.vm_object) != 0) {
*count -= (*freeer) (map, obj, *count);
}
lock_read_done(&map->lock);
vm_map_deallocate(map);
return;
}
void
vm_req_vmdaemon()
{
extern int ticks;
static int lastrun = 0;
if ((ticks > (lastrun + hz / 10)) || (ticks < lastrun)) {
wakeup((caddr_t) &vm_daemon_needed);
lastrun = ticks;
}
}
void
vm_pageout_inactive_stats(int maxiscan)
{
vm_page_t m;
int s;
if (maxiscan > cnt.v_inactive_count)
maxiscan = cnt.v_inactive_count;
m = vm_page_queue_inactive.tqh_first;
while (m && (maxiscan-- > 0)) {
vm_page_t next;
next = m->pageq.tqe_next;
if (((m->flags & PG_REFERENCED) == 0) &&
pmap_is_referenced(VM_PAGE_TO_PHYS(m))) {
m->flags |= PG_REFERENCED;
}
if (m->object->ref_count == 0) {
m->flags &= ~PG_REFERENCED;
pmap_clear_reference(VM_PAGE_TO_PHYS(m));
}
if (m->flags & PG_REFERENCED) {
m->flags &= ~PG_REFERENCED;
pmap_clear_reference(VM_PAGE_TO_PHYS(m));
vm_page_activate(m);
/*
* heuristic alert -- if a page is being re-activated,
* it probably will be used one more time...
*/
if (m->act_count < ACT_MAX)
m->act_count += ACT_ADVANCE;
}
m = next;
}
}
/*
* vm_pageout_scan does the dirty work for the pageout daemon.
*/
int
vm_pageout_scan()
{
vm_page_t m;
int page_shortage, maxscan, maxlaunder;
int pages_freed;
int desired_free;
vm_page_t next;
struct proc *p, *bigproc;
vm_offset_t size, bigsize;
vm_object_t object;
int force_wakeup = 0;
int cache_size, orig_cache_size;
int minscan;
int mintofree;
#ifdef LFS
lfs_reclaim_buffers();
#endif
/* calculate the total cached size */
if ((cnt.v_inactive_count + cnt.v_free_count + cnt.v_cache_count) <
(cnt.v_inactive_target + cnt.v_free_min)) {
vm_req_vmdaemon();
}
/*
* now swap processes out if we are in low memory conditions
*/
if ((cnt.v_free_count <= cnt.v_free_min) &&
!swap_pager_full && vm_swap_size && vm_pageout_req_swapout == 0) {
vm_pageout_req_swapout = 1;
vm_req_vmdaemon();
}
pages_freed = 0;
desired_free = cnt.v_free_target;
/*
* Start scanning the inactive queue for pages we can free. We keep
* scanning until we have enough free pages or we have scanned through
* the entire queue. If we encounter dirty pages, we start cleaning
* them.
*/
rescan0:
vm_pageout_inactive_stats(MAXISCAN);
maxlaunder = (cnt.v_inactive_target > MAXLAUNDER) ?
MAXLAUNDER : cnt.v_inactive_target;
rescan1:
maxscan = cnt.v_inactive_count;
mintofree = MINTOFREE;
m = vm_page_queue_inactive.tqh_first;
while (m &&
(maxscan-- > 0) &&
(((cnt.v_free_count + cnt.v_cache_count) < desired_free) ||
(--mintofree > 0))) {
vm_page_t next;
cnt.v_pdpages++;
next = m->pageq.tqe_next;
#if defined(VM_DIAGNOSE)
if ((m->flags & PG_INACTIVE) == 0) {
printf("vm_pageout_scan: page not inactive?\n");
break;
}
#endif
/*
* dont mess with busy pages
*/
if (m->hold_count || m->busy || (m->flags & PG_BUSY) ||
m->bmapped != 0) {
TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
m = next;
continue;
}
if (((m->flags & PG_REFERENCED) == 0) &&
pmap_is_referenced(VM_PAGE_TO_PHYS(m))) {
m->flags |= PG_REFERENCED;
}
if (m->object->ref_count == 0) {
m->flags &= ~PG_REFERENCED;
pmap_clear_reference(VM_PAGE_TO_PHYS(m));
}
if ((m->flags & PG_REFERENCED) != 0) {
m->flags &= ~PG_REFERENCED;
pmap_clear_reference(VM_PAGE_TO_PHYS(m));
vm_page_activate(m);
if (m->act_count < ACT_MAX)
m->act_count += ACT_ADVANCE;
m = next;
continue;
}
vm_page_test_dirty(m);
if ((m->dirty & m->valid) == 0) {
if (m->valid == 0) {
pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_NONE);
vm_page_free(m);
} else if (((cnt.v_free_count + cnt.v_cache_count) < desired_free) ||
(cnt.v_cache_count < cnt.v_cache_min)) {
vm_page_cache(m);
}
} else if (maxlaunder > 0) {
int written;
TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
object = m->object;
if (!vm_object_lock_try(object)) {
m = next;
continue;
}
/*
* If a page is dirty, then it is either being washed
* (but not yet cleaned) or it is still in the
* laundry. If it is still in the laundry, then we
* start the cleaning operation.
*/
written = vm_pageout_clean(m, 0);
vm_object_unlock(object);
if (!next) {
break;
}
maxlaunder -= written;
/*
* if the next page has been re-activated, start
* scanning again
*/
if ((next->flags & PG_INACTIVE) == 0) {
goto rescan1;
}
} else {
TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
}
m = next;
}
/*
* Compute the page shortage. If we are still very low on memory be
* sure that we will move a minimal amount of pages from active to
* inactive.
*/
page_shortage = cnt.v_inactive_target -
(cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
if (page_shortage <= 0) {
if (pages_freed == 0) {
if ((cnt.v_free_count + cnt.v_cache_count) < desired_free) {
page_shortage =
desired_free - (cnt.v_free_count + cnt.v_cache_count);
}
}
if( (page_shortage <= 0) && (cnt.v_free_count < cnt.v_free_min))
page_shortage = 1;
}
maxscan = cnt.v_active_count;
minscan = cnt.v_active_count;
if (minscan > MAXSCAN)
minscan = MAXSCAN;
m = vm_page_queue_active.tqh_first;
while (m && ((maxscan > 0 && (page_shortage > 0)) || minscan > 0)) {
if (maxscan)
--maxscan;
if (minscan)
--minscan;
cnt.v_pdpages++;
next = m->pageq.tqe_next;
/*
* Don't deactivate pages that are busy.
*/
if ((m->busy != 0) ||
(m->flags & PG_BUSY) ||
(m->hold_count != 0) ||
(m->bmapped != 0)) {
TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
m = next;
continue;
}
if (m->object->ref_count && ((m->flags & PG_REFERENCED) ||
pmap_is_referenced(VM_PAGE_TO_PHYS(m)))) {
int s;
pmap_clear_reference(VM_PAGE_TO_PHYS(m));
m->flags &= ~PG_REFERENCED;
if (m->act_count < ACT_MAX) {
m->act_count += ACT_ADVANCE;
}
TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
s = splhigh();
TAILQ_REMOVE(&m->object->memq, m, listq);
TAILQ_INSERT_TAIL(&m->object->memq, m, listq);
splx(s);
} else {
m->flags &= ~PG_REFERENCED;
pmap_clear_reference(VM_PAGE_TO_PHYS(m));
m->act_count -= min(m->act_count, ACT_DECLINE);
/*
* if the page act_count is zero -- then we deactivate
*/
if (!m->act_count && (page_shortage > 0)) {
if (m->object->ref_count == 0) {
vm_page_test_dirty(m);
--page_shortage;
if ((m->dirty & m->valid) == 0) {
m->act_count = 0;
vm_page_cache(m);
} else {
vm_page_deactivate(m);
}
} else {
vm_page_deactivate(m);
--page_shortage;
}
} else if (m->act_count) {
TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
}
}
m = next;
}
/*
* We try to maintain some *really* free pages, this allows interrupt
* code to be guaranteed space.
*/
while (cnt.v_free_count < cnt.v_free_min) {
m = vm_page_queue_cache.tqh_first;
if (!m)
break;
vm_page_free(m);
}
/*
* make sure that we have swap space -- if we are low on memory and
* swap -- then kill the biggest process.
*/
if ((vm_swap_size == 0 || swap_pager_full) &&
((cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min)) {
bigproc = NULL;
bigsize = 0;
for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
/*
* if this is a system process, skip it
*/
if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
((p->p_pid < 48) && (vm_swap_size != 0))) {
continue;
}
/*
* if the process is in a non-running type state,
* don't touch it.
*/
if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
continue;
}
/*
* get the process size
*/
size = p->p_vmspace->vm_pmap.pm_stats.resident_count;
/*
* if the this process is bigger than the biggest one
* remember it.
*/
if (size > bigsize) {
bigproc = p;
bigsize = size;
}
}
if (bigproc != NULL) {
printf("Process %lu killed by vm_pageout -- out of swap\n", (u_long) bigproc->p_pid);
psignal(bigproc, SIGKILL);
bigproc->p_estcpu = 0;
bigproc->p_nice = PRIO_MIN;
resetpriority(bigproc);
wakeup((caddr_t) &cnt.v_free_count);
}
}
vm_page_pagesfreed += pages_freed;
return force_wakeup;
}
/*
* vm_pageout is the high level pageout daemon.
*/
void
vm_pageout()
{
(void) spl0();
/*
* Initialize some paging parameters.
*/
if (cnt.v_page_count > 1024)
cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
else
cnt.v_free_min = 4;
/*
* free_reserved needs to include enough for the largest swap pager
* structures plus enough for any pv_entry structs when paging.
*/
cnt.v_pageout_free_min = 6 + cnt.v_page_count / 1024;
cnt.v_free_reserved = cnt.v_pageout_free_min + 2;
cnt.v_free_target = 3 * cnt.v_free_min + cnt.v_free_reserved;
cnt.v_inactive_target = cnt.v_free_count / 4;
if (cnt.v_inactive_target > 512)
cnt.v_inactive_target = 512;
cnt.v_free_min += cnt.v_free_reserved;
if (cnt.v_page_count > 1024) {
cnt.v_cache_max = (cnt.v_free_count - 1024) / 2;
cnt.v_cache_min = (cnt.v_free_count - 1024) / 20;
} else {
cnt.v_cache_min = 0;
cnt.v_cache_max = 0;
}
/* XXX does not really belong here */
if (vm_page_max_wired == 0)
vm_page_max_wired = cnt.v_free_count / 3;
(void) swap_pager_alloc(0, 0, 0, 0);
/*
* The pageout daemon is never done, so loop forever.
*/
while (TRUE) {
tsleep((caddr_t) &vm_pages_needed, PVM, "psleep", 0);
cnt.v_pdwakeups++;
vm_pager_sync();
vm_pageout_scan();
vm_pager_sync();
wakeup((caddr_t) &cnt.v_free_count);
wakeup((caddr_t) kmem_map);
}
}
void
vm_daemon()
{
int cache_size;
vm_object_t object;
struct proc *p;
while (TRUE) {
tsleep((caddr_t) &vm_daemon_needed, PUSER, "psleep", 0);
swapout_threads();
/*
* scan the processes for exceeding their rlimits or if
* process is swapped out -- deactivate pages
*/
for (p = (struct proc *) allproc; p != NULL; p = p->p_next) {
int overage;
quad_t limit;
vm_offset_t size;
/*
* if this is a system process or if we have already
* looked at this process, skip it.
*/
if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
continue;
}
/*
* if the process is in a non-running type state,
* don't touch it.
*/
if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
continue;
}
/*
* get a limit
*/
limit = qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
p->p_rlimit[RLIMIT_RSS].rlim_max);
/*
* let processes that are swapped out really be
* swapped out set the limit to nothing (will force a
* swap-out.)
*/
if ((p->p_flag & P_INMEM) == 0)
limit = 0; /* XXX */
size = p->p_vmspace->vm_pmap.pm_stats.resident_count * NBPG;
if (limit >= 0 && size >= limit) {
overage = (size - limit) / NBPG;
vm_pageout_map_deactivate_pages(&p->p_vmspace->vm_map,
(vm_map_entry_t) 0, &overage, vm_pageout_object_deactivate_pages);
}
}
}
/*
* we remove cached objects that have no RSS...
*/
restart:
vm_object_cache_lock();
object = vm_object_cached_list.tqh_first;
while (object) {
vm_object_cache_unlock();
/*
* if there are no resident pages -- get rid of the object
*/
if (object->resident_page_count == 0) {
if (object != vm_object_lookup(object->pager))
panic("vm_object_cache_trim: I'm sooo confused.");
pager_cache(object, FALSE);
goto restart;
}
object = object->cached_list.tqe_next;
vm_object_cache_lock();
}
vm_object_cache_unlock();
}