2bf9501287
On arm64 (and possible other architectures) we are unable to use static DPCPU data in kernel modules. This is because the compiler will generate PC-relative accesses, however the runtime-linker expects to be able to relocate these. In preparation to fix this create two macros depending on if the data is global or static. Reviewed by: bz, emaste, markj Sponsored by: ABT Systems Ltd Differential Revision: https://reviews.freebsd.org/D16140
990 lines
23 KiB
C
990 lines
23 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2010-2013 Alexander Motin <mav@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer,
|
|
* without modification, immediately at the beginning of the file.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Common routines to manage event timers hardware.
|
|
*/
|
|
|
|
#include "opt_device_polling.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/timeet.h>
|
|
#include <sys/timetc.h>
|
|
|
|
#include <machine/atomic.h>
|
|
#include <machine/clock.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/smp.h>
|
|
|
|
int cpu_disable_c2_sleep = 0; /* Timer dies in C2. */
|
|
int cpu_disable_c3_sleep = 0; /* Timer dies in C3. */
|
|
|
|
static void setuptimer(void);
|
|
static void loadtimer(sbintime_t now, int first);
|
|
static int doconfigtimer(void);
|
|
static void configtimer(int start);
|
|
static int round_freq(struct eventtimer *et, int freq);
|
|
|
|
static sbintime_t getnextcpuevent(int idle);
|
|
static sbintime_t getnextevent(void);
|
|
static int handleevents(sbintime_t now, int fake);
|
|
|
|
static struct mtx et_hw_mtx;
|
|
|
|
#define ET_HW_LOCK(state) \
|
|
{ \
|
|
if (timer->et_flags & ET_FLAGS_PERCPU) \
|
|
mtx_lock_spin(&(state)->et_hw_mtx); \
|
|
else \
|
|
mtx_lock_spin(&et_hw_mtx); \
|
|
}
|
|
|
|
#define ET_HW_UNLOCK(state) \
|
|
{ \
|
|
if (timer->et_flags & ET_FLAGS_PERCPU) \
|
|
mtx_unlock_spin(&(state)->et_hw_mtx); \
|
|
else \
|
|
mtx_unlock_spin(&et_hw_mtx); \
|
|
}
|
|
|
|
static struct eventtimer *timer = NULL;
|
|
static sbintime_t timerperiod; /* Timer period for periodic mode. */
|
|
static sbintime_t statperiod; /* statclock() events period. */
|
|
static sbintime_t profperiod; /* profclock() events period. */
|
|
static sbintime_t nexttick; /* Next global timer tick time. */
|
|
static u_int busy = 1; /* Reconfiguration is in progress. */
|
|
static int profiling; /* Profiling events enabled. */
|
|
|
|
static char timername[32]; /* Wanted timer. */
|
|
TUNABLE_STR("kern.eventtimer.timer", timername, sizeof(timername));
|
|
|
|
static int singlemul; /* Multiplier for periodic mode. */
|
|
SYSCTL_INT(_kern_eventtimer, OID_AUTO, singlemul, CTLFLAG_RWTUN, &singlemul,
|
|
0, "Multiplier for periodic mode");
|
|
|
|
static u_int idletick; /* Run periodic events when idle. */
|
|
SYSCTL_UINT(_kern_eventtimer, OID_AUTO, idletick, CTLFLAG_RWTUN, &idletick,
|
|
0, "Run periodic events when idle");
|
|
|
|
static int periodic; /* Periodic or one-shot mode. */
|
|
static int want_periodic; /* What mode to prefer. */
|
|
TUNABLE_INT("kern.eventtimer.periodic", &want_periodic);
|
|
|
|
struct pcpu_state {
|
|
struct mtx et_hw_mtx; /* Per-CPU timer mutex. */
|
|
u_int action; /* Reconfiguration requests. */
|
|
u_int handle; /* Immediate handle resuests. */
|
|
sbintime_t now; /* Last tick time. */
|
|
sbintime_t nextevent; /* Next scheduled event on this CPU. */
|
|
sbintime_t nexttick; /* Next timer tick time. */
|
|
sbintime_t nexthard; /* Next hardclock() event. */
|
|
sbintime_t nextstat; /* Next statclock() event. */
|
|
sbintime_t nextprof; /* Next profclock() event. */
|
|
sbintime_t nextcall; /* Next callout event. */
|
|
sbintime_t nextcallopt; /* Next optional callout event. */
|
|
int ipi; /* This CPU needs IPI. */
|
|
int idle; /* This CPU is in idle mode. */
|
|
};
|
|
|
|
DPCPU_DEFINE_STATIC(struct pcpu_state, timerstate);
|
|
DPCPU_DEFINE(sbintime_t, hardclocktime);
|
|
|
|
/*
|
|
* Timer broadcast IPI handler.
|
|
*/
|
|
int
|
|
hardclockintr(void)
|
|
{
|
|
sbintime_t now;
|
|
struct pcpu_state *state;
|
|
int done;
|
|
|
|
if (doconfigtimer() || busy)
|
|
return (FILTER_HANDLED);
|
|
state = DPCPU_PTR(timerstate);
|
|
now = state->now;
|
|
CTR3(KTR_SPARE2, "ipi at %d: now %d.%08x",
|
|
curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
|
|
done = handleevents(now, 0);
|
|
return (done ? FILTER_HANDLED : FILTER_STRAY);
|
|
}
|
|
|
|
/*
|
|
* Handle all events for specified time on this CPU
|
|
*/
|
|
static int
|
|
handleevents(sbintime_t now, int fake)
|
|
{
|
|
sbintime_t t, *hct;
|
|
struct trapframe *frame;
|
|
struct pcpu_state *state;
|
|
int usermode;
|
|
int done, runs;
|
|
|
|
CTR3(KTR_SPARE2, "handle at %d: now %d.%08x",
|
|
curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
|
|
done = 0;
|
|
if (fake) {
|
|
frame = NULL;
|
|
usermode = 0;
|
|
} else {
|
|
frame = curthread->td_intr_frame;
|
|
usermode = TRAPF_USERMODE(frame);
|
|
}
|
|
|
|
state = DPCPU_PTR(timerstate);
|
|
|
|
runs = 0;
|
|
while (now >= state->nexthard) {
|
|
state->nexthard += tick_sbt;
|
|
runs++;
|
|
}
|
|
if (runs) {
|
|
hct = DPCPU_PTR(hardclocktime);
|
|
*hct = state->nexthard - tick_sbt;
|
|
if (fake < 2) {
|
|
hardclock_cnt(runs, usermode);
|
|
done = 1;
|
|
}
|
|
}
|
|
runs = 0;
|
|
while (now >= state->nextstat) {
|
|
state->nextstat += statperiod;
|
|
runs++;
|
|
}
|
|
if (runs && fake < 2) {
|
|
statclock_cnt(runs, usermode);
|
|
done = 1;
|
|
}
|
|
if (profiling) {
|
|
runs = 0;
|
|
while (now >= state->nextprof) {
|
|
state->nextprof += profperiod;
|
|
runs++;
|
|
}
|
|
if (runs && !fake) {
|
|
profclock_cnt(runs, usermode, TRAPF_PC(frame));
|
|
done = 1;
|
|
}
|
|
} else
|
|
state->nextprof = state->nextstat;
|
|
if (now >= state->nextcallopt || now >= state->nextcall) {
|
|
state->nextcall = state->nextcallopt = SBT_MAX;
|
|
callout_process(now);
|
|
}
|
|
|
|
t = getnextcpuevent(0);
|
|
ET_HW_LOCK(state);
|
|
if (!busy) {
|
|
state->idle = 0;
|
|
state->nextevent = t;
|
|
loadtimer(now, (fake == 2) &&
|
|
(timer->et_flags & ET_FLAGS_PERCPU));
|
|
}
|
|
ET_HW_UNLOCK(state);
|
|
return (done);
|
|
}
|
|
|
|
/*
|
|
* Schedule binuptime of the next event on current CPU.
|
|
*/
|
|
static sbintime_t
|
|
getnextcpuevent(int idle)
|
|
{
|
|
sbintime_t event;
|
|
struct pcpu_state *state;
|
|
u_int hardfreq;
|
|
|
|
state = DPCPU_PTR(timerstate);
|
|
/* Handle hardclock() events, skipping some if CPU is idle. */
|
|
event = state->nexthard;
|
|
if (idle) {
|
|
hardfreq = (u_int)hz / 2;
|
|
if (tc_min_ticktock_freq > 2
|
|
#ifdef SMP
|
|
&& curcpu == CPU_FIRST()
|
|
#endif
|
|
)
|
|
hardfreq = hz / tc_min_ticktock_freq;
|
|
if (hardfreq > 1)
|
|
event += tick_sbt * (hardfreq - 1);
|
|
}
|
|
/* Handle callout events. */
|
|
if (event > state->nextcall)
|
|
event = state->nextcall;
|
|
if (!idle) { /* If CPU is active - handle other types of events. */
|
|
if (event > state->nextstat)
|
|
event = state->nextstat;
|
|
if (profiling && event > state->nextprof)
|
|
event = state->nextprof;
|
|
}
|
|
return (event);
|
|
}
|
|
|
|
/*
|
|
* Schedule binuptime of the next event on all CPUs.
|
|
*/
|
|
static sbintime_t
|
|
getnextevent(void)
|
|
{
|
|
struct pcpu_state *state;
|
|
sbintime_t event;
|
|
#ifdef SMP
|
|
int cpu;
|
|
#endif
|
|
#ifdef KTR
|
|
int c;
|
|
|
|
c = -1;
|
|
#endif
|
|
state = DPCPU_PTR(timerstate);
|
|
event = state->nextevent;
|
|
#ifdef SMP
|
|
if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
|
|
CPU_FOREACH(cpu) {
|
|
state = DPCPU_ID_PTR(cpu, timerstate);
|
|
if (event > state->nextevent) {
|
|
event = state->nextevent;
|
|
#ifdef KTR
|
|
c = cpu;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
CTR4(KTR_SPARE2, "next at %d: next %d.%08x by %d",
|
|
curcpu, (int)(event >> 32), (u_int)(event & 0xffffffff), c);
|
|
return (event);
|
|
}
|
|
|
|
/* Hardware timer callback function. */
|
|
static void
|
|
timercb(struct eventtimer *et, void *arg)
|
|
{
|
|
sbintime_t now;
|
|
sbintime_t *next;
|
|
struct pcpu_state *state;
|
|
#ifdef SMP
|
|
int cpu, bcast;
|
|
#endif
|
|
|
|
/* Do not touch anything if somebody reconfiguring timers. */
|
|
if (busy)
|
|
return;
|
|
/* Update present and next tick times. */
|
|
state = DPCPU_PTR(timerstate);
|
|
if (et->et_flags & ET_FLAGS_PERCPU) {
|
|
next = &state->nexttick;
|
|
} else
|
|
next = &nexttick;
|
|
now = sbinuptime();
|
|
if (periodic)
|
|
*next = now + timerperiod;
|
|
else
|
|
*next = -1; /* Next tick is not scheduled yet. */
|
|
state->now = now;
|
|
CTR3(KTR_SPARE2, "intr at %d: now %d.%08x",
|
|
curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
|
|
|
|
#ifdef SMP
|
|
#ifdef EARLY_AP_STARTUP
|
|
MPASS(mp_ncpus == 1 || smp_started);
|
|
#endif
|
|
/* Prepare broadcasting to other CPUs for non-per-CPU timers. */
|
|
bcast = 0;
|
|
#ifdef EARLY_AP_STARTUP
|
|
if ((et->et_flags & ET_FLAGS_PERCPU) == 0) {
|
|
#else
|
|
if ((et->et_flags & ET_FLAGS_PERCPU) == 0 && smp_started) {
|
|
#endif
|
|
CPU_FOREACH(cpu) {
|
|
state = DPCPU_ID_PTR(cpu, timerstate);
|
|
ET_HW_LOCK(state);
|
|
state->now = now;
|
|
if (now >= state->nextevent) {
|
|
state->nextevent += SBT_1S;
|
|
if (curcpu != cpu) {
|
|
state->ipi = 1;
|
|
bcast = 1;
|
|
}
|
|
}
|
|
ET_HW_UNLOCK(state);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Handle events for this time on this CPU. */
|
|
handleevents(now, 0);
|
|
|
|
#ifdef SMP
|
|
/* Broadcast interrupt to other CPUs for non-per-CPU timers. */
|
|
if (bcast) {
|
|
CPU_FOREACH(cpu) {
|
|
if (curcpu == cpu)
|
|
continue;
|
|
state = DPCPU_ID_PTR(cpu, timerstate);
|
|
if (state->ipi) {
|
|
state->ipi = 0;
|
|
ipi_cpu(cpu, IPI_HARDCLOCK);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Load new value into hardware timer.
|
|
*/
|
|
static void
|
|
loadtimer(sbintime_t now, int start)
|
|
{
|
|
struct pcpu_state *state;
|
|
sbintime_t new;
|
|
sbintime_t *next;
|
|
uint64_t tmp;
|
|
int eq;
|
|
|
|
if (timer->et_flags & ET_FLAGS_PERCPU) {
|
|
state = DPCPU_PTR(timerstate);
|
|
next = &state->nexttick;
|
|
} else
|
|
next = &nexttick;
|
|
if (periodic) {
|
|
if (start) {
|
|
/*
|
|
* Try to start all periodic timers aligned
|
|
* to period to make events synchronous.
|
|
*/
|
|
tmp = now % timerperiod;
|
|
new = timerperiod - tmp;
|
|
if (new < tmp) /* Left less then passed. */
|
|
new += timerperiod;
|
|
CTR5(KTR_SPARE2, "load p at %d: now %d.%08x first in %d.%08x",
|
|
curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff),
|
|
(int)(new >> 32), (u_int)(new & 0xffffffff));
|
|
*next = new + now;
|
|
et_start(timer, new, timerperiod);
|
|
}
|
|
} else {
|
|
new = getnextevent();
|
|
eq = (new == *next);
|
|
CTR4(KTR_SPARE2, "load at %d: next %d.%08x eq %d",
|
|
curcpu, (int)(new >> 32), (u_int)(new & 0xffffffff), eq);
|
|
if (!eq) {
|
|
*next = new;
|
|
et_start(timer, new - now, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Prepare event timer parameters after configuration changes.
|
|
*/
|
|
static void
|
|
setuptimer(void)
|
|
{
|
|
int freq;
|
|
|
|
if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
|
|
periodic = 0;
|
|
else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
|
|
periodic = 1;
|
|
singlemul = MIN(MAX(singlemul, 1), 20);
|
|
freq = hz * singlemul;
|
|
while (freq < (profiling ? profhz : stathz))
|
|
freq += hz;
|
|
freq = round_freq(timer, freq);
|
|
timerperiod = SBT_1S / freq;
|
|
}
|
|
|
|
/*
|
|
* Reconfigure specified per-CPU timer on other CPU. Called from IPI handler.
|
|
*/
|
|
static int
|
|
doconfigtimer(void)
|
|
{
|
|
sbintime_t now;
|
|
struct pcpu_state *state;
|
|
|
|
state = DPCPU_PTR(timerstate);
|
|
switch (atomic_load_acq_int(&state->action)) {
|
|
case 1:
|
|
now = sbinuptime();
|
|
ET_HW_LOCK(state);
|
|
loadtimer(now, 1);
|
|
ET_HW_UNLOCK(state);
|
|
state->handle = 0;
|
|
atomic_store_rel_int(&state->action, 0);
|
|
return (1);
|
|
case 2:
|
|
ET_HW_LOCK(state);
|
|
et_stop(timer);
|
|
ET_HW_UNLOCK(state);
|
|
state->handle = 0;
|
|
atomic_store_rel_int(&state->action, 0);
|
|
return (1);
|
|
}
|
|
if (atomic_readandclear_int(&state->handle) && !busy) {
|
|
now = sbinuptime();
|
|
handleevents(now, 0);
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Reconfigure specified timer.
|
|
* For per-CPU timers use IPI to make other CPUs to reconfigure.
|
|
*/
|
|
static void
|
|
configtimer(int start)
|
|
{
|
|
sbintime_t now, next;
|
|
struct pcpu_state *state;
|
|
int cpu;
|
|
|
|
if (start) {
|
|
setuptimer();
|
|
now = sbinuptime();
|
|
} else
|
|
now = 0;
|
|
critical_enter();
|
|
ET_HW_LOCK(DPCPU_PTR(timerstate));
|
|
if (start) {
|
|
/* Initialize time machine parameters. */
|
|
next = now + timerperiod;
|
|
if (periodic)
|
|
nexttick = next;
|
|
else
|
|
nexttick = -1;
|
|
#ifdef EARLY_AP_STARTUP
|
|
MPASS(mp_ncpus == 1 || smp_started);
|
|
#endif
|
|
CPU_FOREACH(cpu) {
|
|
state = DPCPU_ID_PTR(cpu, timerstate);
|
|
state->now = now;
|
|
#ifndef EARLY_AP_STARTUP
|
|
if (!smp_started && cpu != CPU_FIRST())
|
|
state->nextevent = SBT_MAX;
|
|
else
|
|
#endif
|
|
state->nextevent = next;
|
|
if (periodic)
|
|
state->nexttick = next;
|
|
else
|
|
state->nexttick = -1;
|
|
state->nexthard = next;
|
|
state->nextstat = next;
|
|
state->nextprof = next;
|
|
state->nextcall = next;
|
|
state->nextcallopt = next;
|
|
hardclock_sync(cpu);
|
|
}
|
|
busy = 0;
|
|
/* Start global timer or per-CPU timer of this CPU. */
|
|
loadtimer(now, 1);
|
|
} else {
|
|
busy = 1;
|
|
/* Stop global timer or per-CPU timer of this CPU. */
|
|
et_stop(timer);
|
|
}
|
|
ET_HW_UNLOCK(DPCPU_PTR(timerstate));
|
|
#ifdef SMP
|
|
#ifdef EARLY_AP_STARTUP
|
|
/* If timer is global we are done. */
|
|
if ((timer->et_flags & ET_FLAGS_PERCPU) == 0) {
|
|
#else
|
|
/* If timer is global or there is no other CPUs yet - we are done. */
|
|
if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || !smp_started) {
|
|
#endif
|
|
critical_exit();
|
|
return;
|
|
}
|
|
/* Set reconfigure flags for other CPUs. */
|
|
CPU_FOREACH(cpu) {
|
|
state = DPCPU_ID_PTR(cpu, timerstate);
|
|
atomic_store_rel_int(&state->action,
|
|
(cpu == curcpu) ? 0 : ( start ? 1 : 2));
|
|
}
|
|
/* Broadcast reconfigure IPI. */
|
|
ipi_all_but_self(IPI_HARDCLOCK);
|
|
/* Wait for reconfiguration completed. */
|
|
restart:
|
|
cpu_spinwait();
|
|
CPU_FOREACH(cpu) {
|
|
if (cpu == curcpu)
|
|
continue;
|
|
state = DPCPU_ID_PTR(cpu, timerstate);
|
|
if (atomic_load_acq_int(&state->action))
|
|
goto restart;
|
|
}
|
|
#endif
|
|
critical_exit();
|
|
}
|
|
|
|
/*
|
|
* Calculate nearest frequency supported by hardware timer.
|
|
*/
|
|
static int
|
|
round_freq(struct eventtimer *et, int freq)
|
|
{
|
|
uint64_t div;
|
|
|
|
if (et->et_frequency != 0) {
|
|
div = lmax((et->et_frequency + freq / 2) / freq, 1);
|
|
if (et->et_flags & ET_FLAGS_POW2DIV)
|
|
div = 1 << (flsl(div + div / 2) - 1);
|
|
freq = (et->et_frequency + div / 2) / div;
|
|
}
|
|
if (et->et_min_period > SBT_1S)
|
|
panic("Event timer \"%s\" doesn't support sub-second periods!",
|
|
et->et_name);
|
|
else if (et->et_min_period != 0)
|
|
freq = min(freq, SBT2FREQ(et->et_min_period));
|
|
if (et->et_max_period < SBT_1S && et->et_max_period != 0)
|
|
freq = max(freq, SBT2FREQ(et->et_max_period));
|
|
return (freq);
|
|
}
|
|
|
|
/*
|
|
* Configure and start event timers (BSP part).
|
|
*/
|
|
void
|
|
cpu_initclocks_bsp(void)
|
|
{
|
|
struct pcpu_state *state;
|
|
int base, div, cpu;
|
|
|
|
mtx_init(&et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
|
|
CPU_FOREACH(cpu) {
|
|
state = DPCPU_ID_PTR(cpu, timerstate);
|
|
mtx_init(&state->et_hw_mtx, "et_hw_mtx", NULL, MTX_SPIN);
|
|
state->nextcall = SBT_MAX;
|
|
state->nextcallopt = SBT_MAX;
|
|
}
|
|
periodic = want_periodic;
|
|
/* Grab requested timer or the best of present. */
|
|
if (timername[0])
|
|
timer = et_find(timername, 0, 0);
|
|
if (timer == NULL && periodic) {
|
|
timer = et_find(NULL,
|
|
ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
|
|
}
|
|
if (timer == NULL) {
|
|
timer = et_find(NULL,
|
|
ET_FLAGS_ONESHOT, ET_FLAGS_ONESHOT);
|
|
}
|
|
if (timer == NULL && !periodic) {
|
|
timer = et_find(NULL,
|
|
ET_FLAGS_PERIODIC, ET_FLAGS_PERIODIC);
|
|
}
|
|
if (timer == NULL)
|
|
panic("No usable event timer found!");
|
|
et_init(timer, timercb, NULL, NULL);
|
|
|
|
/* Adapt to timer capabilities. */
|
|
if (periodic && (timer->et_flags & ET_FLAGS_PERIODIC) == 0)
|
|
periodic = 0;
|
|
else if (!periodic && (timer->et_flags & ET_FLAGS_ONESHOT) == 0)
|
|
periodic = 1;
|
|
if (timer->et_flags & ET_FLAGS_C3STOP)
|
|
cpu_disable_c3_sleep++;
|
|
|
|
/*
|
|
* We honor the requested 'hz' value.
|
|
* We want to run stathz in the neighborhood of 128hz.
|
|
* We would like profhz to run as often as possible.
|
|
*/
|
|
if (singlemul <= 0 || singlemul > 20) {
|
|
if (hz >= 1500 || (hz % 128) == 0)
|
|
singlemul = 1;
|
|
else if (hz >= 750)
|
|
singlemul = 2;
|
|
else
|
|
singlemul = 4;
|
|
}
|
|
if (periodic) {
|
|
base = round_freq(timer, hz * singlemul);
|
|
singlemul = max((base + hz / 2) / hz, 1);
|
|
hz = (base + singlemul / 2) / singlemul;
|
|
if (base <= 128)
|
|
stathz = base;
|
|
else {
|
|
div = base / 128;
|
|
if (div >= singlemul && (div % singlemul) == 0)
|
|
div++;
|
|
stathz = base / div;
|
|
}
|
|
profhz = stathz;
|
|
while ((profhz + stathz) <= 128 * 64)
|
|
profhz += stathz;
|
|
profhz = round_freq(timer, profhz);
|
|
} else {
|
|
hz = round_freq(timer, hz);
|
|
stathz = round_freq(timer, 127);
|
|
profhz = round_freq(timer, stathz * 64);
|
|
}
|
|
tick = 1000000 / hz;
|
|
tick_sbt = SBT_1S / hz;
|
|
tick_bt = sbttobt(tick_sbt);
|
|
statperiod = SBT_1S / stathz;
|
|
profperiod = SBT_1S / profhz;
|
|
ET_LOCK();
|
|
configtimer(1);
|
|
ET_UNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Start per-CPU event timers on APs.
|
|
*/
|
|
void
|
|
cpu_initclocks_ap(void)
|
|
{
|
|
sbintime_t now;
|
|
struct pcpu_state *state;
|
|
struct thread *td;
|
|
|
|
state = DPCPU_PTR(timerstate);
|
|
now = sbinuptime();
|
|
ET_HW_LOCK(state);
|
|
state->now = now;
|
|
hardclock_sync(curcpu);
|
|
spinlock_enter();
|
|
ET_HW_UNLOCK(state);
|
|
td = curthread;
|
|
td->td_intr_nesting_level++;
|
|
handleevents(state->now, 2);
|
|
td->td_intr_nesting_level--;
|
|
spinlock_exit();
|
|
}
|
|
|
|
void
|
|
suspendclock(void)
|
|
{
|
|
ET_LOCK();
|
|
configtimer(0);
|
|
ET_UNLOCK();
|
|
}
|
|
|
|
void
|
|
resumeclock(void)
|
|
{
|
|
ET_LOCK();
|
|
configtimer(1);
|
|
ET_UNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Switch to profiling clock rates.
|
|
*/
|
|
void
|
|
cpu_startprofclock(void)
|
|
{
|
|
|
|
ET_LOCK();
|
|
if (profiling == 0) {
|
|
if (periodic) {
|
|
configtimer(0);
|
|
profiling = 1;
|
|
configtimer(1);
|
|
} else
|
|
profiling = 1;
|
|
} else
|
|
profiling++;
|
|
ET_UNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Switch to regular clock rates.
|
|
*/
|
|
void
|
|
cpu_stopprofclock(void)
|
|
{
|
|
|
|
ET_LOCK();
|
|
if (profiling == 1) {
|
|
if (periodic) {
|
|
configtimer(0);
|
|
profiling = 0;
|
|
configtimer(1);
|
|
} else
|
|
profiling = 0;
|
|
} else
|
|
profiling--;
|
|
ET_UNLOCK();
|
|
}
|
|
|
|
/*
|
|
* Switch to idle mode (all ticks handled).
|
|
*/
|
|
sbintime_t
|
|
cpu_idleclock(void)
|
|
{
|
|
sbintime_t now, t;
|
|
struct pcpu_state *state;
|
|
|
|
if (idletick || busy ||
|
|
(periodic && (timer->et_flags & ET_FLAGS_PERCPU))
|
|
#ifdef DEVICE_POLLING
|
|
|| curcpu == CPU_FIRST()
|
|
#endif
|
|
)
|
|
return (-1);
|
|
state = DPCPU_PTR(timerstate);
|
|
if (periodic)
|
|
now = state->now;
|
|
else
|
|
now = sbinuptime();
|
|
CTR3(KTR_SPARE2, "idle at %d: now %d.%08x",
|
|
curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
|
|
t = getnextcpuevent(1);
|
|
ET_HW_LOCK(state);
|
|
state->idle = 1;
|
|
state->nextevent = t;
|
|
if (!periodic)
|
|
loadtimer(now, 0);
|
|
ET_HW_UNLOCK(state);
|
|
return (MAX(t - now, 0));
|
|
}
|
|
|
|
/*
|
|
* Switch to active mode (skip empty ticks).
|
|
*/
|
|
void
|
|
cpu_activeclock(void)
|
|
{
|
|
sbintime_t now;
|
|
struct pcpu_state *state;
|
|
struct thread *td;
|
|
|
|
state = DPCPU_PTR(timerstate);
|
|
if (state->idle == 0 || busy)
|
|
return;
|
|
if (periodic)
|
|
now = state->now;
|
|
else
|
|
now = sbinuptime();
|
|
CTR3(KTR_SPARE2, "active at %d: now %d.%08x",
|
|
curcpu, (int)(now >> 32), (u_int)(now & 0xffffffff));
|
|
spinlock_enter();
|
|
td = curthread;
|
|
td->td_intr_nesting_level++;
|
|
handleevents(now, 1);
|
|
td->td_intr_nesting_level--;
|
|
spinlock_exit();
|
|
}
|
|
|
|
/*
|
|
* Change the frequency of the given timer. This changes et->et_frequency and
|
|
* if et is the active timer it reconfigures the timer on all CPUs. This is
|
|
* intended to be a private interface for the use of et_change_frequency() only.
|
|
*/
|
|
void
|
|
cpu_et_frequency(struct eventtimer *et, uint64_t newfreq)
|
|
{
|
|
|
|
ET_LOCK();
|
|
if (et == timer) {
|
|
configtimer(0);
|
|
et->et_frequency = newfreq;
|
|
configtimer(1);
|
|
} else
|
|
et->et_frequency = newfreq;
|
|
ET_UNLOCK();
|
|
}
|
|
|
|
void
|
|
cpu_new_callout(int cpu, sbintime_t bt, sbintime_t bt_opt)
|
|
{
|
|
struct pcpu_state *state;
|
|
|
|
/* Do not touch anything if somebody reconfiguring timers. */
|
|
if (busy)
|
|
return;
|
|
CTR6(KTR_SPARE2, "new co at %d: on %d at %d.%08x - %d.%08x",
|
|
curcpu, cpu, (int)(bt_opt >> 32), (u_int)(bt_opt & 0xffffffff),
|
|
(int)(bt >> 32), (u_int)(bt & 0xffffffff));
|
|
|
|
KASSERT(!CPU_ABSENT(cpu), ("Absent CPU %d", cpu));
|
|
state = DPCPU_ID_PTR(cpu, timerstate);
|
|
ET_HW_LOCK(state);
|
|
|
|
/*
|
|
* If there is callout time already set earlier -- do nothing.
|
|
* This check may appear redundant because we check already in
|
|
* callout_process() but this double check guarantees we're safe
|
|
* with respect to race conditions between interrupts execution
|
|
* and scheduling.
|
|
*/
|
|
state->nextcallopt = bt_opt;
|
|
if (bt >= state->nextcall)
|
|
goto done;
|
|
state->nextcall = bt;
|
|
/* If there is some other event set earlier -- do nothing. */
|
|
if (bt >= state->nextevent)
|
|
goto done;
|
|
state->nextevent = bt;
|
|
/* If timer is periodic -- there is nothing to reprogram. */
|
|
if (periodic)
|
|
goto done;
|
|
/* If timer is global or of the current CPU -- reprogram it. */
|
|
if ((timer->et_flags & ET_FLAGS_PERCPU) == 0 || cpu == curcpu) {
|
|
loadtimer(sbinuptime(), 0);
|
|
done:
|
|
ET_HW_UNLOCK(state);
|
|
return;
|
|
}
|
|
/* Otherwise make other CPU to reprogram it. */
|
|
state->handle = 1;
|
|
ET_HW_UNLOCK(state);
|
|
#ifdef SMP
|
|
ipi_cpu(cpu, IPI_HARDCLOCK);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Report or change the active event timers hardware.
|
|
*/
|
|
static int
|
|
sysctl_kern_eventtimer_timer(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
char buf[32];
|
|
struct eventtimer *et;
|
|
int error;
|
|
|
|
ET_LOCK();
|
|
et = timer;
|
|
snprintf(buf, sizeof(buf), "%s", et->et_name);
|
|
ET_UNLOCK();
|
|
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
|
|
ET_LOCK();
|
|
et = timer;
|
|
if (error != 0 || req->newptr == NULL ||
|
|
strcasecmp(buf, et->et_name) == 0) {
|
|
ET_UNLOCK();
|
|
return (error);
|
|
}
|
|
et = et_find(buf, 0, 0);
|
|
if (et == NULL) {
|
|
ET_UNLOCK();
|
|
return (ENOENT);
|
|
}
|
|
configtimer(0);
|
|
et_free(timer);
|
|
if (et->et_flags & ET_FLAGS_C3STOP)
|
|
cpu_disable_c3_sleep++;
|
|
if (timer->et_flags & ET_FLAGS_C3STOP)
|
|
cpu_disable_c3_sleep--;
|
|
periodic = want_periodic;
|
|
timer = et;
|
|
et_init(timer, timercb, NULL, NULL);
|
|
configtimer(1);
|
|
ET_UNLOCK();
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_kern_eventtimer, OID_AUTO, timer,
|
|
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
|
|
0, 0, sysctl_kern_eventtimer_timer, "A", "Chosen event timer");
|
|
|
|
/*
|
|
* Report or change the active event timer periodicity.
|
|
*/
|
|
static int
|
|
sysctl_kern_eventtimer_periodic(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int error, val;
|
|
|
|
val = periodic;
|
|
error = sysctl_handle_int(oidp, &val, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
ET_LOCK();
|
|
configtimer(0);
|
|
periodic = want_periodic = val;
|
|
configtimer(1);
|
|
ET_UNLOCK();
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_kern_eventtimer, OID_AUTO, periodic,
|
|
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE,
|
|
0, 0, sysctl_kern_eventtimer_periodic, "I", "Enable event timer periodic mode");
|
|
|
|
#include "opt_ddb.h"
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
|
|
DB_SHOW_COMMAND(clocksource, db_show_clocksource)
|
|
{
|
|
struct pcpu_state *st;
|
|
int c;
|
|
|
|
CPU_FOREACH(c) {
|
|
st = DPCPU_ID_PTR(c, timerstate);
|
|
db_printf(
|
|
"CPU %2d: action %d handle %d ipi %d idle %d\n"
|
|
" now %#jx nevent %#jx (%jd)\n"
|
|
" ntick %#jx (%jd) nhard %#jx (%jd)\n"
|
|
" nstat %#jx (%jd) nprof %#jx (%jd)\n"
|
|
" ncall %#jx (%jd) ncallopt %#jx (%jd)\n",
|
|
c, st->action, st->handle, st->ipi, st->idle,
|
|
(uintmax_t)st->now,
|
|
(uintmax_t)st->nextevent,
|
|
(uintmax_t)(st->nextevent - st->now) / tick_sbt,
|
|
(uintmax_t)st->nexttick,
|
|
(uintmax_t)(st->nexttick - st->now) / tick_sbt,
|
|
(uintmax_t)st->nexthard,
|
|
(uintmax_t)(st->nexthard - st->now) / tick_sbt,
|
|
(uintmax_t)st->nextstat,
|
|
(uintmax_t)(st->nextstat - st->now) / tick_sbt,
|
|
(uintmax_t)st->nextprof,
|
|
(uintmax_t)(st->nextprof - st->now) / tick_sbt,
|
|
(uintmax_t)st->nextcall,
|
|
(uintmax_t)(st->nextcall - st->now) / tick_sbt,
|
|
(uintmax_t)st->nextcallopt,
|
|
(uintmax_t)(st->nextcallopt - st->now) / tick_sbt);
|
|
}
|
|
}
|
|
|
|
#endif
|