freebsd-skq/sys/arm/arm/unwind.c
Andrew Turner 1b23f9b9c3 Allow the ARM unwinder to work through modules. This will be used to add
support for unwinding from dtrace.

Tested by:	gnn (with dtrace)
Sponsored by:	ABT Systems Ltd
2015-02-19 12:06:57 +00:00

421 lines
11 KiB
C

/*
* Copyright 2013-2014 Andrew Turner.
* Copyright 2013-2014 Ian Lepore.
* Copyright 2013-2014 Rui Paulo.
* Copyright 2013 Eitan Adler.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/linker.h>
#include <machine/stack.h>
#include "linker_if.h"
/*
* Definitions for the instruction interpreter.
*
* The ARM EABI specifies how to perform the frame unwinding in the
* Exception Handling ABI for the ARM Architecture document. To perform
* the unwind we need to know the initial frame pointer, stack pointer,
* link register and program counter. We then find the entry within the
* index table that points to the function the program counter is within.
* This gives us either a list of three instructions to process, a 31-bit
* relative offset to a table of instructions, or a value telling us
* we can't unwind any further.
*
* When we have the instructions to process we need to decode them
* following table 4 in section 9.3. This describes a collection of bit
* patterns to encode that steps to take to update the stack pointer and
* link register to the correct values at the start of the function.
*/
/* A special case when we are unable to unwind past this function */
#define EXIDX_CANTUNWIND 1
/*
* These are set in the linker script. Their addresses will be
* either the start or end of the exception table or index.
*/
extern int exidx_start, exidx_end;
/*
* Entry types.
* These are the only entry types that have been seen in the kernel.
*/
#define ENTRY_MASK 0xff000000
#define ENTRY_ARM_SU16 0x80000000
#define ENTRY_ARM_LU16 0x81000000
/* Instruction masks. */
#define INSN_VSP_MASK 0xc0
#define INSN_VSP_SIZE_MASK 0x3f
#define INSN_STD_MASK 0xf0
#define INSN_STD_DATA_MASK 0x0f
#define INSN_POP_TYPE_MASK 0x08
#define INSN_POP_COUNT_MASK 0x07
#define INSN_VSP_LARGE_INC_MASK 0xff
/* Instruction definitions */
#define INSN_VSP_INC 0x00
#define INSN_VSP_DEC 0x40
#define INSN_POP_MASKED 0x80
#define INSN_VSP_REG 0x90
#define INSN_POP_COUNT 0xa0
#define INSN_FINISH 0xb0
#define INSN_POP_REGS 0xb1
#define INSN_VSP_LARGE_INC 0xb2
/* An item in the exception index table */
struct unwind_idx {
uint32_t offset;
uint32_t insn;
};
/* Expand a 31-bit signed value to a 32-bit signed value */
static __inline int32_t
expand_prel31(uint32_t prel31)
{
return ((int32_t)(prel31 & 0x7fffffffu) << 1) / 2;
}
struct search_context {
uint32_t addr;
caddr_t exidx_start;
caddr_t exidx_end;
};
static int
module_search(linker_file_t lf, void *context)
{
struct search_context *sc = context;
linker_symval_t symval;
c_linker_sym_t sym;
if (lf->address <= (caddr_t)sc->addr &&
(lf->address + lf->size) >= (caddr_t)sc->addr) {
if ((LINKER_LOOKUP_SYMBOL(lf, "__exidx_start", &sym) == 0 ||
LINKER_LOOKUP_SYMBOL(lf, "exidx_start", &sym) == 0) &&
LINKER_SYMBOL_VALUES(lf, sym, &symval) == 0)
sc->exidx_start = symval.value;
if ((LINKER_LOOKUP_SYMBOL(lf, "__exidx_end", &sym) == 0 ||
LINKER_LOOKUP_SYMBOL(lf, "exidx_end", &sym) == 0) &&
LINKER_SYMBOL_VALUES(lf, sym, &symval) == 0)
sc->exidx_end = symval.value;
if (sc->exidx_start != NULL && sc->exidx_end != NULL)
return (1);
panic("Invalid module %s, no unwind tables\n", lf->filename);
}
return (0);
}
/*
* Perform a binary search of the index table to find the function
* with the largest address that doesn't exceed addr.
*/
static struct unwind_idx *
find_index(uint32_t addr, int search_modules)
{
struct search_context sc;
caddr_t idx_start, idx_end;
unsigned int min, mid, max;
struct unwind_idx *start;
struct unwind_idx *item;
int32_t prel31_addr;
uint32_t func_addr;
start = (struct unwind_idx *)&exidx_start;
idx_start = (caddr_t)&exidx_start;
idx_end = (caddr_t)&exidx_end;
/* This may acquire a lock */
if (search_modules) {
bzero(&sc, sizeof(sc));
sc.addr = addr;
if (linker_file_foreach(module_search, &sc) != 0 &&
sc.exidx_start != NULL && sc.exidx_end != NULL) {
start = (struct unwind_idx *)sc.exidx_start;
idx_start = sc.exidx_start;
idx_end = sc.exidx_end;
}
}
min = 0;
max = (idx_end - idx_start) / sizeof(struct unwind_idx);
while (min != max) {
mid = min + (max - min + 1) / 2;
item = &start[mid];
prel31_addr = expand_prel31(item->offset);
func_addr = (uint32_t)&item->offset + prel31_addr;
if (func_addr <= addr) {
min = mid;
} else {
max = mid - 1;
}
}
return &start[min];
}
/* Reads the next byte from the instruction list */
static uint8_t
unwind_exec_read_byte(struct unwind_state *state)
{
uint8_t insn;
/* Read the unwind instruction */
insn = (*state->insn) >> (state->byte * 8);
/* Update the location of the next instruction */
if (state->byte == 0) {
state->byte = 3;
state->insn++;
state->entries--;
} else
state->byte--;
return insn;
}
/* Executes the next instruction on the list */
static int
unwind_exec_insn(struct unwind_state *state)
{
unsigned int insn;
uint32_t *vsp = (uint32_t *)state->registers[SP];
int update_vsp = 0;
/* This should never happen */
if (state->entries == 0)
return 1;
/* Read the next instruction */
insn = unwind_exec_read_byte(state);
if ((insn & INSN_VSP_MASK) == INSN_VSP_INC) {
state->registers[SP] += ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
} else if ((insn & INSN_VSP_MASK) == INSN_VSP_DEC) {
state->registers[SP] -= ((insn & INSN_VSP_SIZE_MASK) << 2) + 4;
} else if ((insn & INSN_STD_MASK) == INSN_POP_MASKED) {
unsigned int mask, reg;
/* Load the mask */
mask = unwind_exec_read_byte(state);
mask |= (insn & INSN_STD_DATA_MASK) << 8;
/* We have a refuse to unwind instruction */
if (mask == 0)
return 1;
/* Update SP */
update_vsp = 1;
/* Load the registers */
for (reg = 4; mask && reg < 16; mask >>= 1, reg++) {
if (mask & 1) {
state->registers[reg] = *vsp++;
state->update_mask |= 1 << reg;
/* If we have updated SP kep its value */
if (reg == SP)
update_vsp = 0;
}
}
} else if ((insn & INSN_STD_MASK) == INSN_VSP_REG &&
((insn & INSN_STD_DATA_MASK) != 13) &&
((insn & INSN_STD_DATA_MASK) != 15)) {
/* sp = register */
state->registers[SP] =
state->registers[insn & INSN_STD_DATA_MASK];
} else if ((insn & INSN_STD_MASK) == INSN_POP_COUNT) {
unsigned int count, reg;
/* Read how many registers to load */
count = insn & INSN_POP_COUNT_MASK;
/* Update sp */
update_vsp = 1;
/* Pop the registers */
for (reg = 4; reg <= 4 + count; reg++) {
state->registers[reg] = *vsp++;
state->update_mask |= 1 << reg;
}
/* Check if we are in the pop r14 version */
if ((insn & INSN_POP_TYPE_MASK) != 0) {
state->registers[14] = *vsp++;
}
} else if (insn == INSN_FINISH) {
/* Stop processing */
state->entries = 0;
} else if (insn == INSN_POP_REGS) {
unsigned int mask, reg;
mask = unwind_exec_read_byte(state);
if (mask == 0 || (mask & 0xf0) != 0)
return 1;
/* Update SP */
update_vsp = 1;
/* Load the registers */
for (reg = 0; mask && reg < 4; mask >>= 1, reg++) {
if (mask & 1) {
state->registers[reg] = *vsp++;
state->update_mask |= 1 << reg;
}
}
} else if ((insn & INSN_VSP_LARGE_INC_MASK) == INSN_VSP_LARGE_INC) {
unsigned int uleb128;
/* Read the increment value */
uleb128 = unwind_exec_read_byte(state);
state->registers[SP] += 0x204 + (uleb128 << 2);
} else {
/* We hit a new instruction that needs to be implemented */
#if 0
db_printf("Unhandled instruction %.2x\n", insn);
#endif
return 1;
}
if (update_vsp) {
state->registers[SP] = (uint32_t)vsp;
}
#if 0
db_printf("fp = %08x, sp = %08x, lr = %08x, pc = %08x\n",
state->registers[FP], state->registers[SP], state->registers[LR],
state->registers[PC]);
#endif
return 0;
}
/* Performs the unwind of a function */
static int
unwind_tab(struct unwind_state *state)
{
uint32_t entry;
/* Set PC to a known value */
state->registers[PC] = 0;
/* Read the personality */
entry = *state->insn & ENTRY_MASK;
if (entry == ENTRY_ARM_SU16) {
state->byte = 2;
state->entries = 1;
} else if (entry == ENTRY_ARM_LU16) {
state->byte = 1;
state->entries = ((*state->insn >> 16) & 0xFF) + 1;
} else {
#if 0
db_printf("Unknown entry: %x\n", entry);
#endif
return 1;
}
while (state->entries > 0) {
if (unwind_exec_insn(state) != 0)
return 1;
}
/*
* The program counter was not updated, load it from the link register.
*/
if (state->registers[PC] == 0) {
state->registers[PC] = state->registers[LR];
/*
* If the program counter changed, flag it in the update mask.
*/
if (state->start_pc != state->registers[PC])
state->update_mask |= 1 << PC;
}
return 0;
}
int
unwind_stack_one(struct unwind_state *state, int can_lock)
{
struct unwind_idx *index;
int finished;
/* Reset the mask of updated registers */
state->update_mask = 0;
/* The pc value is correct and will be overwritten, save it */
state->start_pc = state->registers[PC];
/* Find the item to run */
index = find_index(state->start_pc, can_lock);
finished = 0;
if (index->insn != EXIDX_CANTUNWIND) {
if (index->insn & (1U << 31)) {
/* The data is within the instruction */
state->insn = &index->insn;
} else {
/* A prel31 offset to the unwind table */
state->insn = (uint32_t *)
((uintptr_t)&index->insn +
expand_prel31(index->insn));
}
/* Run the unwind function */
finished = unwind_tab(state);
}
/* This is the top of the stack, finish */
if (index->insn == EXIDX_CANTUNWIND)
finished = 1;
return (finished);
}