9d5cba36c5
This includes support for pmap_enter(..., psind=1) as described in the commit log message for r321378. The changes are largely modelled after amd64. arm64 has more stringent requirements around superpage creation to avoid the possibility of TLB conflict aborts, and these requirements do not apply to RISC-V, which like amd64 permits simultaneous caching of 4KB and 2MB translations for a given page. RISC-V's PTE format includes only two software bits, and as these are already consumed we do not have an analogue for amd64's PG_PROMOTED. Instead, pmap_remove_l2() always invalidates the entire 2MB address range. pmap_ts_referenced() is modified to clear PTE_A, now that we support both hardware- and software-managed reference and dirty bits. Also fix pmap_fault_fixup() so that it does not set PTE_A or PTE_D on kernel mappings. Reviewed by: kib (earlier version) Discussed with: jhb Sponsored by: The FreeBSD Foundation Differential Revision: https://reviews.freebsd.org/D18863 Differential Revision: https://reviews.freebsd.org/D18864 Differential Revision: https://reviews.freebsd.org/D18865 Differential Revision: https://reviews.freebsd.org/D18866 Differential Revision: https://reviews.freebsd.org/D18867 Differential Revision: https://reviews.freebsd.org/D18868
241 lines
7.4 KiB
C
241 lines
7.4 KiB
C
/*-
|
|
* Copyright (c) 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
* Copyright (c) 1994 John S. Dyson
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* William Jolitz.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)vmparam.h 5.9 (Berkeley) 5/12/91
|
|
* from: FreeBSD: src/sys/i386/include/vmparam.h,v 1.33 2000/03/30
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#ifndef _MACHINE_VMPARAM_H_
|
|
#define _MACHINE_VMPARAM_H_
|
|
|
|
/*
|
|
* Virtual memory related constants, all in bytes
|
|
*/
|
|
#ifndef MAXTSIZ
|
|
#define MAXTSIZ (1*1024*1024*1024) /* max text size */
|
|
#endif
|
|
#ifndef DFLDSIZ
|
|
#define DFLDSIZ (128*1024*1024) /* initial data size limit */
|
|
#endif
|
|
#ifndef MAXDSIZ
|
|
#define MAXDSIZ (1*1024*1024*1024) /* max data size */
|
|
#endif
|
|
#ifndef DFLSSIZ
|
|
#define DFLSSIZ (128*1024*1024) /* initial stack size limit */
|
|
#endif
|
|
#ifndef MAXSSIZ
|
|
#define MAXSSIZ (1*1024*1024*1024) /* max stack size */
|
|
#endif
|
|
#ifndef SGROWSIZ
|
|
#define SGROWSIZ (128*1024) /* amount to grow stack */
|
|
#endif
|
|
|
|
/*
|
|
* The physical address space is sparsely populated.
|
|
*/
|
|
#define VM_PHYSSEG_SPARSE
|
|
|
|
/*
|
|
* The number of PHYSSEG entries.
|
|
*/
|
|
#define VM_PHYSSEG_MAX 64
|
|
|
|
/*
|
|
* Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool
|
|
* from which physical pages are allocated and VM_FREEPOOL_DIRECT is
|
|
* the pool from which physical pages for small UMA objects are
|
|
* allocated.
|
|
*/
|
|
#define VM_NFREEPOOL 2
|
|
#define VM_FREEPOOL_DEFAULT 0
|
|
#define VM_FREEPOOL_DIRECT 1
|
|
|
|
/*
|
|
* Create one free page list: VM_FREELIST_DEFAULT is for all physical
|
|
* pages.
|
|
*/
|
|
#define VM_NFREELIST 1
|
|
#define VM_FREELIST_DEFAULT 0
|
|
|
|
/*
|
|
* An allocation size of 16MB is supported in order to optimize the
|
|
* use of the direct map by UMA. Specifically, a cache line contains
|
|
* at most four TTEs, collectively mapping 16MB of physical memory.
|
|
* By reducing the number of distinct 16MB "pages" that are used by UMA,
|
|
* the physical memory allocator reduces the likelihood of both 4MB
|
|
* page TLB misses and cache misses caused by 4MB page TLB misses.
|
|
*/
|
|
#define VM_NFREEORDER 12
|
|
|
|
/*
|
|
* Enable superpage reservations: 1 level.
|
|
*/
|
|
#ifndef VM_NRESERVLEVEL
|
|
#define VM_NRESERVLEVEL 1
|
|
#endif
|
|
|
|
/*
|
|
* Level 0 reservations consist of 512 pages.
|
|
*/
|
|
#ifndef VM_LEVEL_0_ORDER
|
|
#define VM_LEVEL_0_ORDER 9
|
|
#endif
|
|
|
|
/**
|
|
* Address space layout.
|
|
*
|
|
* RISC-V implements multiple paging modes with different virtual address space
|
|
* sizes: SV32, SV39 and SV48. SV39 permits a virtual address space size of
|
|
* 512GB and uses a three-level page table. Since this is large enough for most
|
|
* purposes, we currently use SV39 for both userland and the kernel, avoiding
|
|
* the extra translation step required by SV48.
|
|
*
|
|
* The address space is split into two regions at each end of the 64-bit address
|
|
* space:
|
|
*
|
|
* 0x0000000000000000 - 0x0000003fffffffff 256GB user map
|
|
* 0x0000004000000000 - 0xffffffbfffffffff unmappable
|
|
* 0xffffffc000000000 - 0xffffffc7ffffffff 32GB kernel map
|
|
* 0xffffffc800000000 - 0xffffffcfffffffff 32GB unused
|
|
* 0xffffffd000000000 - 0xffffffefffffffff 128GB direct map
|
|
* 0xfffffff000000000 - 0xffffffffffffffff 64GB unused
|
|
*
|
|
* The kernel is loaded at the beginning of the kernel map.
|
|
*
|
|
* We define some interesting address constants:
|
|
*
|
|
* VM_MIN_ADDRESS and VM_MAX_ADDRESS define the start and end of the entire
|
|
* 64 bit address space, mostly just for convenience.
|
|
*
|
|
* VM_MIN_KERNEL_ADDRESS and VM_MAX_KERNEL_ADDRESS define the start and end of
|
|
* mappable kernel virtual address space.
|
|
*
|
|
* VM_MIN_USER_ADDRESS and VM_MAX_USER_ADDRESS define the start and end of the
|
|
* user address space.
|
|
*/
|
|
#define VM_MIN_ADDRESS (0x0000000000000000UL)
|
|
#define VM_MAX_ADDRESS (0xffffffffffffffffUL)
|
|
|
|
#define VM_MIN_KERNEL_ADDRESS (0xffffffc000000000UL)
|
|
#define VM_MAX_KERNEL_ADDRESS (0xffffffc800000000UL)
|
|
|
|
#define DMAP_MIN_ADDRESS (0xffffffd000000000UL)
|
|
#define DMAP_MAX_ADDRESS (0xfffffff000000000UL)
|
|
|
|
#define DMAP_MIN_PHYSADDR (dmap_phys_base)
|
|
#define DMAP_MAX_PHYSADDR (dmap_phys_max)
|
|
|
|
/* True if pa is in the dmap range */
|
|
#define PHYS_IN_DMAP(pa) ((pa) >= DMAP_MIN_PHYSADDR && \
|
|
(pa) < DMAP_MAX_PHYSADDR)
|
|
/* True if va is in the dmap range */
|
|
#define VIRT_IN_DMAP(va) ((va) >= DMAP_MIN_ADDRESS && \
|
|
(va) < (dmap_max_addr))
|
|
|
|
#define PMAP_HAS_DMAP 1
|
|
#define PHYS_TO_DMAP(pa) \
|
|
({ \
|
|
KASSERT(PHYS_IN_DMAP(pa), \
|
|
("%s: PA out of range, PA: 0x%lx", __func__, \
|
|
(vm_paddr_t)(pa))); \
|
|
((pa) - dmap_phys_base) + DMAP_MIN_ADDRESS; \
|
|
})
|
|
|
|
#define DMAP_TO_PHYS(va) \
|
|
({ \
|
|
KASSERT(VIRT_IN_DMAP(va), \
|
|
("%s: VA out of range, VA: 0x%lx", __func__, \
|
|
(vm_offset_t)(va))); \
|
|
((va) - DMAP_MIN_ADDRESS) + dmap_phys_base; \
|
|
})
|
|
|
|
#define VM_MIN_USER_ADDRESS (0x0000000000000000UL)
|
|
#define VM_MAX_USER_ADDRESS (0x0000004000000000UL)
|
|
|
|
#define VM_MINUSER_ADDRESS (VM_MIN_USER_ADDRESS)
|
|
#define VM_MAXUSER_ADDRESS (VM_MAX_USER_ADDRESS)
|
|
|
|
#define KERNBASE (VM_MIN_KERNEL_ADDRESS)
|
|
#define SHAREDPAGE (VM_MAXUSER_ADDRESS - PAGE_SIZE)
|
|
#define USRSTACK SHAREDPAGE
|
|
|
|
#define KERNENTRY (0)
|
|
|
|
/*
|
|
* How many physical pages per kmem arena virtual page.
|
|
*/
|
|
#ifndef VM_KMEM_SIZE_SCALE
|
|
#define VM_KMEM_SIZE_SCALE (3)
|
|
#endif
|
|
|
|
/*
|
|
* Optional floor (in bytes) on the size of the kmem arena.
|
|
*/
|
|
#ifndef VM_KMEM_SIZE_MIN
|
|
#define VM_KMEM_SIZE_MIN (16 * 1024 * 1024)
|
|
#endif
|
|
|
|
/*
|
|
* Optional ceiling (in bytes) on the size of the kmem arena: 60% of the
|
|
* kernel map.
|
|
*/
|
|
#ifndef VM_KMEM_SIZE_MAX
|
|
#define VM_KMEM_SIZE_MAX ((VM_MAX_KERNEL_ADDRESS - \
|
|
VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5)
|
|
#endif
|
|
|
|
/*
|
|
* Initial pagein size of beginning of executable file.
|
|
*/
|
|
#ifndef VM_INITIAL_PAGEIN
|
|
#define VM_INITIAL_PAGEIN 16
|
|
#endif
|
|
|
|
#define UMA_MD_SMALL_ALLOC
|
|
|
|
#ifndef LOCORE
|
|
extern vm_paddr_t dmap_phys_base;
|
|
extern vm_paddr_t dmap_phys_max;
|
|
extern vm_offset_t dmap_max_addr;
|
|
extern u_int tsb_kernel_ldd_phys;
|
|
extern vm_offset_t vm_max_kernel_address;
|
|
extern vm_offset_t init_pt_va;
|
|
#endif
|
|
|
|
#define ZERO_REGION_SIZE (64 * 1024) /* 64KB */
|
|
|
|
#define DEVMAP_MAX_VADDR VM_MAX_KERNEL_ADDRESS
|
|
|
|
#endif /* !_MACHINE_VMPARAM_H_ */
|