freebsd-skq/sys/arm/xscale/i80321/i80321_timer.c
Olivier Houchard b93e48d2f9 Share the timer and watchdog drivers with the i81342. It's the same,
except it uses different registers.

Approved by:	re (blanket)
2007-07-27 14:52:04 +00:00

487 lines
10 KiB
C

/* $NetBSD: i80321_timer.c,v 1.7 2003/07/27 04:52:28 thorpej Exp $ */
/*-
* Copyright (c) 2001, 2002 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Timer/clock support for the Intel i80321 I/O processor.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/time.h>
#include <sys/bus.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/timetc.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/frame.h>
#include <machine/resource.h>
#include <machine/intr.h>
#include <arm/xscale/i80321/i80321reg.h>
#include <arm/xscale/i80321/i80321var.h>
#ifdef CPU_XSCALE_81342
#define ICU_INT_TIMER0 (8) /* XXX: Can't include i81342reg.h because
definitions overrides the ones from i80321reg.h
*/
#endif
#include <arm/xscale/xscalevar.h>
#include "opt_timer.h"
void (*i80321_hardclock_hook)(void) = NULL;
struct i80321_timer_softc {
device_t dev;
} timer_softc;
static unsigned i80321_timer_get_timecount(struct timecounter *tc);
static uint32_t counts_per_hz;
#if defined(XSCALE_DISABLE_CCNT) || defined(CPU_XSCALE_81342)
static uint32_t offset;
static uint32_t last = -1;
#endif
static int ticked = 0;
#ifndef COUNTS_PER_SEC
#define COUNTS_PER_SEC 200000000 /* 200MHz */
#endif
#define COUNTS_PER_USEC (COUNTS_PER_SEC / 1000000)
static struct timecounter i80321_timer_timecounter = {
i80321_timer_get_timecount, /* get_timecount */
NULL, /* no poll_pps */
~0u, /* counter_mask */
#if defined(XSCALE_DISABLE_CCNT) || defined(CPU_XSCALE_81342)
COUNTS_PER_SEC,
#else
COUNTS_PER_SEC * 3, /* frequency */
#endif
"i80321 timer", /* name */
1000 /* quality */
};
static int
i80321_timer_probe(device_t dev)
{
device_set_desc(dev, "i80321 timer");
return (0);
}
static int
i80321_timer_attach(device_t dev)
{
timer_softc.dev = dev;
return (0);
}
static device_method_t i80321_timer_methods[] = {
DEVMETHOD(device_probe, i80321_timer_probe),
DEVMETHOD(device_attach, i80321_timer_attach),
{0, 0},
};
static driver_t i80321_timer_driver = {
"itimer",
i80321_timer_methods,
sizeof(struct i80321_timer_softc),
};
static devclass_t i80321_timer_devclass;
DRIVER_MODULE(itimer, iq, i80321_timer_driver, i80321_timer_devclass, 0, 0);
int clockhandler(void *);
static __inline uint32_t
tmr1_read(void)
{
uint32_t rv;
#ifdef CPU_XSCALE_81342
__asm __volatile("mrc p6, 0, %0, c1, c9, 0"
#else
__asm __volatile("mrc p6, 0, %0, c1, c1, 0"
#endif
: "=r" (rv));
return (rv);
}
static __inline void
tmr1_write(uint32_t val)
{
#ifdef CPU_XSCALE_81342
__asm __volatile("mcr p6, 0, %0, c1, c9, 0"
#else
__asm __volatile("mcr p6, 0, %0, c1, c1, 0"
#endif
:
: "r" (val));
}
static __inline uint32_t
tcr1_read(void)
{
uint32_t rv;
#ifdef CPU_XSCALE_81342
__asm __volatile("mrc p6, 0, %0, c3, c9, 0"
#else
__asm __volatile("mrc p6, 0, %0, c3, c1, 0"
#endif
: "=r" (rv));
return (rv);
}
static __inline void
tcr1_write(uint32_t val)
{
#ifdef CPU_XSCALE_81342
__asm __volatile("mcr p6, 0, %0, c3, c9, 0"
#else
__asm __volatile("mcr p6, 0, %0, c3, c1, 0"
#endif
:
: "r" (val));
}
static __inline void
trr1_write(uint32_t val)
{
#ifdef CPU_XSCALE_81342
__asm __volatile("mcr p6, 0, %0, c5, c9, 0"
#else
__asm __volatile("mcr p6, 0, %0, c5, c1, 0"
#endif
:
: "r" (val));
}
static __inline uint32_t
tmr0_read(void)
{
uint32_t rv;
#ifdef CPU_XSCALE_81342
__asm __volatile("mrc p6, 0, %0, c0, c9, 0"
#else
__asm __volatile("mrc p6, 0, %0, c0, c1, 0"
#endif
: "=r" (rv));
return (rv);
}
static __inline void
tmr0_write(uint32_t val)
{
#ifdef CPU_XSCALE_81342
__asm __volatile("mcr p6, 0, %0, c0, c9, 0"
#else
__asm __volatile("mcr p6, 0, %0, c0, c1, 0"
#endif
:
: "r" (val));
}
static __inline uint32_t
tcr0_read(void)
{
uint32_t rv;
#ifdef CPU_XSCALE_81342
__asm __volatile("mrc p6, 0, %0, c2, c9, 0"
#else
__asm __volatile("mrc p6, 0, %0, c2, c1, 0"
#endif
: "=r" (rv));
return (rv);
}
static __inline void
tcr0_write(uint32_t val)
{
#ifdef CPU_XSCALE_81342
__asm __volatile("mcr p6, 0, %0, c2, c9, 0"
#else
__asm __volatile("mcr p6, 0, %0, c2, c1, 0"
#endif
:
: "r" (val));
}
static __inline void
trr0_write(uint32_t val)
{
#ifdef CPU_XSCALE_81342
__asm __volatile("mcr p6, 0, %0, c4, c9, 0"
#else
__asm __volatile("mcr p6, 0, %0, c4, c1, 0"
#endif
:
: "r" (val));
}
static __inline void
tisr_write(uint32_t val)
{
#ifdef CPU_XSCALE_81342
__asm __volatile("mcr p6, 0, %0, c6, c9, 0"
#else
__asm __volatile("mcr p6, 0, %0, c6, c1, 0"
#endif
:
: "r" (val));
}
static __inline uint32_t
tisr_read(void)
{
int ret;
#ifdef CPU_XSCALE_81342
__asm __volatile("mrc p6, 0, %0, c6, c9, 0" : "=r" (ret));
#else
__asm __volatile("mrc p6, 0, %0, c6, c1, 0" : "=r" (ret));
#endif
return (ret);
}
static unsigned
i80321_timer_get_timecount(struct timecounter *tc)
{
#if defined(XSCALE_DISABLE_CCNT) || defined(CPU_XSCALE_81342)
uint32_t cur = tcr0_read();
if (cur > last && last != -1) {
offset += counts_per_hz;
if (ticked > 0)
ticked--;
}
if (ticked) {
offset += ticked * counts_per_hz;
ticked = 0;
}
return (counts_per_hz - cur + offset);
#else
uint32_t ret;
__asm __volatile("mrc p14, 0, %0, c1, c0, 0\n"
: "=r" (ret));
return (ret);
#endif
}
/*
* i80321_calibrate_delay:
*
* Calibrate the delay loop.
*/
void
i80321_calibrate_delay(void)
{
/*
* Just use hz=100 for now -- we'll adjust it, if necessary,
* in cpu_initclocks().
*/
counts_per_hz = COUNTS_PER_SEC / 100;
tmr0_write(0); /* stop timer */
tisr_write(TISR_TMR0); /* clear interrupt */
trr0_write(counts_per_hz); /* reload value */
tcr0_write(counts_per_hz); /* current value */
tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
}
/*
* cpu_initclocks:
*
* Initialize the clock and get them going.
*/
void
cpu_initclocks(void)
{
u_int oldirqstate;
struct resource *irq;
int rid = 0;
void *ihl;
device_t dev = timer_softc.dev;
if (hz < 50 || COUNTS_PER_SEC % hz) {
printf("Cannot get %d Hz clock; using 100 Hz\n", hz);
hz = 100;
}
tick = 1000000 / hz; /* number of microseconds between interrupts */
/*
* We only have one timer available; stathz and profhz are
* always left as 0 (the upper-layer clock code deals with
* this situation).
*/
if (stathz != 0)
printf("Cannot get %d Hz statclock\n", stathz);
stathz = 0;
if (profhz != 0)
printf("Cannot get %d Hz profclock\n", profhz);
profhz = 0;
/* Report the clock frequency. */
oldirqstate = disable_interrupts(I32_bit);
irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
#ifdef CPU_XSCALE_81342
ICU_INT_TIMER0, ICU_INT_TIMER0,
#else
ICU_INT_TMR0, ICU_INT_TMR0,
#endif
1, RF_ACTIVE);
if (!irq)
panic("Unable to setup the clock irq handler.\n");
else
bus_setup_intr(dev, irq, INTR_TYPE_CLK, clockhandler, NULL,
NULL, &ihl);
tmr0_write(0); /* stop timer */
tisr_write(TISR_TMR0); /* clear interrupt */
counts_per_hz = COUNTS_PER_SEC / hz;
trr0_write(counts_per_hz); /* reload value */
tcr0_write(counts_per_hz); /* current value */
tmr0_write(TMRx_ENABLE|TMRx_RELOAD|TMRx_CSEL_CORE);
tc_init(&i80321_timer_timecounter);
restore_interrupts(oldirqstate);
rid = 0;
#if !defined(XSCALE_DISABLE_CCNT) && !defined(CPU_XSCALE_81342)
/* Enable the clock count register. */
__asm __volatile("mrc p14, 0, %0, c0, c0, 0\n" : "=r" (rid));
rid &= ~(1 << 3);
rid |= (1 << 2) | 1;
__asm __volatile("mcr p14, 0, %0, c0, c0, 0\n"
: : "r" (rid));
#endif
}
/*
* DELAY:
*
* Delay for at least N microseconds.
*/
void
DELAY(int n)
{
uint32_t cur, last, delta, usecs;
/*
* This works by polling the timer and counting the
* number of microseconds that go by.
*/
last = tcr0_read();
delta = usecs = 0;
while (n > usecs) {
cur = tcr0_read();
/* Check to see if the timer has wrapped around. */
if (last < cur)
delta += (last + (counts_per_hz - cur));
else
delta += (last - cur);
last = cur;
if (delta >= COUNTS_PER_USEC) {
usecs += delta / COUNTS_PER_USEC;
delta %= COUNTS_PER_USEC;
}
}
}
/*
* clockhandler:
*
* Handle the hardclock interrupt.
*/
int
clockhandler(void *arg)
{
struct trapframe *frame = arg;
ticked++;
tisr_write(TISR_TMR0);
hardclock(TRAPF_USERMODE(frame), TRAPF_PC(frame));
if (i80321_hardclock_hook != NULL)
(*i80321_hardclock_hook)();
return (FILTER_HANDLED);
}
void
cpu_startprofclock(void)
{
}
void
cpu_stopprofclock(void)
{
}