0f8b212a1e
The SRAT may contain multiple distinct entries that together describe a contiguous region of physical memory. In this case we were not coalescing the corresponding entries in the memory affinity table, which led to fragmented phys_avail[] entries. Since r338431 the vm_phys_segs[] entries derived from phys_avail[] will be coalesced, resulting in a situation where vm_phys_segs[] entries do not have a covering phys_avail[] entry. vm_page_startup() will not add such segments to the physical memory allocator, leaving them unused. Reported by: Don Morris <dgmorris@earthlink.net> Reviewed by: kib, vangyzen MFC after: 2 weeks Sponsored by: The FreeBSD Foundation Differential Revision: https://reviews.freebsd.org/D27620
713 lines
16 KiB
C
713 lines
16 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
|
|
*
|
|
* Copyright (c) 2010 Hudson River Trading LLC
|
|
* Written by: John H. Baldwin <jhb@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_vm.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_phys.h>
|
|
|
|
#include <contrib/dev/acpica/include/acpi.h>
|
|
#include <contrib/dev/acpica/include/aclocal.h>
|
|
#include <contrib/dev/acpica/include/actables.h>
|
|
|
|
#include <machine/md_var.h>
|
|
|
|
#include <dev/acpica/acpivar.h>
|
|
|
|
#if MAXMEMDOM > 1
|
|
static struct cpu_info {
|
|
int enabled:1;
|
|
int has_memory:1;
|
|
int domain;
|
|
int id;
|
|
} *cpus;
|
|
|
|
static int max_cpus;
|
|
static int last_cpu;
|
|
|
|
struct mem_affinity mem_info[VM_PHYSSEG_MAX + 1];
|
|
int num_mem;
|
|
|
|
static ACPI_TABLE_SRAT *srat;
|
|
static vm_paddr_t srat_physaddr;
|
|
|
|
static int domain_pxm[MAXMEMDOM];
|
|
static int ndomain;
|
|
static vm_paddr_t maxphyaddr;
|
|
|
|
static ACPI_TABLE_SLIT *slit;
|
|
static vm_paddr_t slit_physaddr;
|
|
static int vm_locality_table[MAXMEMDOM * MAXMEMDOM];
|
|
|
|
static void srat_walk_table(acpi_subtable_handler *handler, void *arg);
|
|
|
|
/*
|
|
* SLIT parsing.
|
|
*/
|
|
|
|
static void
|
|
slit_parse_table(ACPI_TABLE_SLIT *s)
|
|
{
|
|
int i, j;
|
|
int i_domain, j_domain;
|
|
int offset = 0;
|
|
uint8_t e;
|
|
|
|
/*
|
|
* This maps the SLIT data into the VM-domain centric view.
|
|
* There may be sparse entries in the PXM namespace, so
|
|
* remap them to a VM-domain ID and if it doesn't exist,
|
|
* skip it.
|
|
*
|
|
* It should result in a packed 2d array of VM-domain
|
|
* locality information entries.
|
|
*/
|
|
|
|
if (bootverbose)
|
|
printf("SLIT.Localities: %d\n", (int) s->LocalityCount);
|
|
for (i = 0; i < s->LocalityCount; i++) {
|
|
i_domain = acpi_map_pxm_to_vm_domainid(i);
|
|
if (i_domain < 0)
|
|
continue;
|
|
|
|
if (bootverbose)
|
|
printf("%d: ", i);
|
|
for (j = 0; j < s->LocalityCount; j++) {
|
|
j_domain = acpi_map_pxm_to_vm_domainid(j);
|
|
if (j_domain < 0)
|
|
continue;
|
|
e = s->Entry[i * s->LocalityCount + j];
|
|
if (bootverbose)
|
|
printf("%d ", (int) e);
|
|
/* 255 == "no locality information" */
|
|
if (e == 255)
|
|
vm_locality_table[offset] = -1;
|
|
else
|
|
vm_locality_table[offset] = e;
|
|
offset++;
|
|
}
|
|
if (bootverbose)
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Look for an ACPI System Locality Distance Information Table ("SLIT")
|
|
*/
|
|
static int
|
|
parse_slit(void)
|
|
{
|
|
|
|
if (resource_disabled("slit", 0)) {
|
|
return (-1);
|
|
}
|
|
|
|
slit_physaddr = acpi_find_table(ACPI_SIG_SLIT);
|
|
if (slit_physaddr == 0) {
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Make a pass over the table to populate the cpus[] and
|
|
* mem_info[] tables.
|
|
*/
|
|
slit = acpi_map_table(slit_physaddr, ACPI_SIG_SLIT);
|
|
slit_parse_table(slit);
|
|
acpi_unmap_table(slit);
|
|
slit = NULL;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* SRAT parsing.
|
|
*/
|
|
|
|
/*
|
|
* Returns true if a memory range overlaps with at least one range in
|
|
* phys_avail[].
|
|
*/
|
|
static int
|
|
overlaps_phys_avail(vm_paddr_t start, vm_paddr_t end)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; phys_avail[i] != 0 && phys_avail[i + 1] != 0; i += 2) {
|
|
if (phys_avail[i + 1] <= start)
|
|
continue;
|
|
if (phys_avail[i] < end)
|
|
return (1);
|
|
break;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* On x86 we can use the cpuid to index the cpus array, but on arm64
|
|
* we have an ACPI Processor UID with a larger range.
|
|
*
|
|
* Use this variable to indicate if the cpus can be stored by index.
|
|
*/
|
|
#ifdef __aarch64__
|
|
static const int cpus_use_indexing = 0;
|
|
#else
|
|
static const int cpus_use_indexing = 1;
|
|
#endif
|
|
|
|
/*
|
|
* Find CPU by processor ID (APIC ID on x86, Processor UID on arm64)
|
|
*/
|
|
static struct cpu_info *
|
|
cpu_find(int cpuid)
|
|
{
|
|
int i;
|
|
|
|
if (cpus_use_indexing) {
|
|
if (cpuid <= last_cpu && cpus[cpuid].enabled)
|
|
return (&cpus[cpuid]);
|
|
} else {
|
|
for (i = 0; i <= last_cpu; i++)
|
|
if (cpus[i].id == cpuid)
|
|
return (&cpus[i]);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Find CPU by pcpu pointer.
|
|
*/
|
|
static struct cpu_info *
|
|
cpu_get_info(struct pcpu *pc)
|
|
{
|
|
struct cpu_info *cpup;
|
|
int id;
|
|
|
|
#ifdef __aarch64__
|
|
id = pc->pc_acpi_id;
|
|
#else
|
|
id = pc->pc_apic_id;
|
|
#endif
|
|
cpup = cpu_find(id);
|
|
if (cpup == NULL)
|
|
panic("SRAT: CPU with ID %u is not known", id);
|
|
return (cpup);
|
|
}
|
|
|
|
/*
|
|
* Add proximity information for a new CPU.
|
|
*/
|
|
static struct cpu_info *
|
|
cpu_add(int cpuid, int domain)
|
|
{
|
|
struct cpu_info *cpup;
|
|
|
|
if (cpus_use_indexing) {
|
|
if (cpuid >= max_cpus)
|
|
return (NULL);
|
|
last_cpu = imax(last_cpu, cpuid);
|
|
cpup = &cpus[cpuid];
|
|
} else {
|
|
if (last_cpu >= max_cpus - 1)
|
|
return (NULL);
|
|
cpup = &cpus[++last_cpu];
|
|
}
|
|
cpup->domain = domain;
|
|
cpup->id = cpuid;
|
|
cpup->enabled = 1;
|
|
return (cpup);
|
|
}
|
|
|
|
static void
|
|
srat_parse_entry(ACPI_SUBTABLE_HEADER *entry, void *arg)
|
|
{
|
|
ACPI_SRAT_CPU_AFFINITY *cpu;
|
|
ACPI_SRAT_X2APIC_CPU_AFFINITY *x2apic;
|
|
ACPI_SRAT_MEM_AFFINITY *mem;
|
|
ACPI_SRAT_GICC_AFFINITY *gicc;
|
|
static struct cpu_info *cpup;
|
|
uint64_t base, length;
|
|
int domain, i, slot;
|
|
|
|
switch (entry->Type) {
|
|
case ACPI_SRAT_TYPE_CPU_AFFINITY:
|
|
cpu = (ACPI_SRAT_CPU_AFFINITY *)entry;
|
|
domain = cpu->ProximityDomainLo |
|
|
cpu->ProximityDomainHi[0] << 8 |
|
|
cpu->ProximityDomainHi[1] << 16 |
|
|
cpu->ProximityDomainHi[2] << 24;
|
|
if (bootverbose)
|
|
printf("SRAT: Found CPU APIC ID %u domain %d: %s\n",
|
|
cpu->ApicId, domain,
|
|
(cpu->Flags & ACPI_SRAT_CPU_ENABLED) ?
|
|
"enabled" : "disabled");
|
|
if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
|
|
break;
|
|
cpup = cpu_find(cpu->ApicId);
|
|
if (cpup != NULL) {
|
|
printf("SRAT: Duplicate local APIC ID %u\n",
|
|
cpu->ApicId);
|
|
*(int *)arg = ENXIO;
|
|
break;
|
|
}
|
|
cpup = cpu_add(cpu->ApicId, domain);
|
|
if (cpup == NULL)
|
|
printf("SRAT: Ignoring local APIC ID %u (too high)\n",
|
|
cpu->ApicId);
|
|
break;
|
|
case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY:
|
|
x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)entry;
|
|
if (bootverbose)
|
|
printf("SRAT: Found CPU APIC ID %u domain %d: %s\n",
|
|
x2apic->ApicId, x2apic->ProximityDomain,
|
|
(x2apic->Flags & ACPI_SRAT_CPU_ENABLED) ?
|
|
"enabled" : "disabled");
|
|
if (!(x2apic->Flags & ACPI_SRAT_CPU_ENABLED))
|
|
break;
|
|
KASSERT(cpu_find(x2apic->ApicId) == NULL,
|
|
("Duplicate local APIC ID %u", x2apic->ApicId));
|
|
cpup = cpu_add(x2apic->ApicId, x2apic->ProximityDomain);
|
|
if (cpup == NULL)
|
|
printf("SRAT: Ignoring local APIC ID %u (too high)\n",
|
|
x2apic->ApicId);
|
|
break;
|
|
case ACPI_SRAT_TYPE_GICC_AFFINITY:
|
|
gicc = (ACPI_SRAT_GICC_AFFINITY *)entry;
|
|
if (bootverbose)
|
|
printf("SRAT: Found CPU UID %u domain %d: %s\n",
|
|
gicc->AcpiProcessorUid, gicc->ProximityDomain,
|
|
(gicc->Flags & ACPI_SRAT_GICC_ENABLED) ?
|
|
"enabled" : "disabled");
|
|
if (!(gicc->Flags & ACPI_SRAT_GICC_ENABLED))
|
|
break;
|
|
KASSERT(cpu_find(gicc->AcpiProcessorUid) == NULL,
|
|
("Duplicate CPU UID %u", gicc->AcpiProcessorUid));
|
|
cpup = cpu_add(gicc->AcpiProcessorUid, gicc->ProximityDomain);
|
|
if (cpup == NULL)
|
|
printf("SRAT: Ignoring CPU UID %u (too high)\n",
|
|
gicc->AcpiProcessorUid);
|
|
break;
|
|
case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
|
|
mem = (ACPI_SRAT_MEM_AFFINITY *)entry;
|
|
base = mem->BaseAddress;
|
|
length = mem->Length;
|
|
domain = mem->ProximityDomain;
|
|
|
|
if (bootverbose)
|
|
printf(
|
|
"SRAT: Found memory domain %d addr 0x%jx len 0x%jx: %s\n",
|
|
domain, (uintmax_t)base, (uintmax_t)length,
|
|
(mem->Flags & ACPI_SRAT_MEM_ENABLED) ?
|
|
"enabled" : "disabled");
|
|
if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
|
|
break;
|
|
if (base >= maxphyaddr ||
|
|
!overlaps_phys_avail(base, base + length)) {
|
|
printf("SRAT: Ignoring memory at addr 0x%jx\n",
|
|
(uintmax_t)base);
|
|
break;
|
|
}
|
|
if (num_mem == VM_PHYSSEG_MAX) {
|
|
printf("SRAT: Too many memory regions\n");
|
|
*(int *)arg = ENXIO;
|
|
break;
|
|
}
|
|
slot = num_mem;
|
|
for (i = 0; i < num_mem; i++) {
|
|
if (mem_info[i].domain == domain) {
|
|
/* Try to extend an existing segment. */
|
|
if (base == mem_info[i].end) {
|
|
mem_info[i].end += length;
|
|
return;
|
|
}
|
|
if (base + length == mem_info[i].start) {
|
|
mem_info[i].start -= length;
|
|
return;
|
|
}
|
|
}
|
|
if (mem_info[i].end <= base)
|
|
continue;
|
|
if (mem_info[i].start < base + length) {
|
|
printf("SRAT: Overlapping memory entries\n");
|
|
*(int *)arg = ENXIO;
|
|
return;
|
|
}
|
|
slot = i;
|
|
}
|
|
for (i = num_mem; i > slot; i--)
|
|
mem_info[i] = mem_info[i - 1];
|
|
mem_info[slot].start = base;
|
|
mem_info[slot].end = base + length;
|
|
mem_info[slot].domain = domain;
|
|
num_mem++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Ensure each memory domain has at least one CPU and that each CPU
|
|
* has at least one memory domain.
|
|
*/
|
|
static int
|
|
check_domains(void)
|
|
{
|
|
int found, i, j;
|
|
|
|
for (i = 0; i < num_mem; i++) {
|
|
found = 0;
|
|
for (j = 0; j <= last_cpu; j++)
|
|
if (cpus[j].enabled &&
|
|
cpus[j].domain == mem_info[i].domain) {
|
|
cpus[j].has_memory = 1;
|
|
found++;
|
|
}
|
|
if (!found) {
|
|
printf("SRAT: No CPU found for memory domain %d\n",
|
|
mem_info[i].domain);
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
for (i = 0; i <= last_cpu; i++)
|
|
if (cpus[i].enabled && !cpus[i].has_memory) {
|
|
found = 0;
|
|
for (j = 0; j < num_mem && !found; j++) {
|
|
if (mem_info[j].domain == cpus[i].domain)
|
|
found = 1;
|
|
}
|
|
if (!found) {
|
|
if (bootverbose)
|
|
printf("SRAT: mem dom %d is empty\n",
|
|
cpus[i].domain);
|
|
mem_info[num_mem].start = 0;
|
|
mem_info[num_mem].end = 0;
|
|
mem_info[num_mem].domain = cpus[i].domain;
|
|
num_mem++;
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Check that the SRAT memory regions cover all of the regions in
|
|
* phys_avail[].
|
|
*/
|
|
static int
|
|
check_phys_avail(void)
|
|
{
|
|
vm_paddr_t address;
|
|
int i, j;
|
|
|
|
/* j is the current offset into phys_avail[]. */
|
|
address = phys_avail[0];
|
|
j = 0;
|
|
for (i = 0; i < num_mem; i++) {
|
|
/*
|
|
* Consume as many phys_avail[] entries as fit in this
|
|
* region.
|
|
*/
|
|
while (address >= mem_info[i].start &&
|
|
address <= mem_info[i].end) {
|
|
/*
|
|
* If we cover the rest of this phys_avail[] entry,
|
|
* advance to the next entry.
|
|
*/
|
|
if (phys_avail[j + 1] <= mem_info[i].end) {
|
|
j += 2;
|
|
if (phys_avail[j] == 0 &&
|
|
phys_avail[j + 1] == 0) {
|
|
return (0);
|
|
}
|
|
address = phys_avail[j];
|
|
} else
|
|
address = mem_info[i].end + 1;
|
|
}
|
|
}
|
|
printf("SRAT: No memory region found for 0x%jx - 0x%jx\n",
|
|
(uintmax_t)phys_avail[j], (uintmax_t)phys_avail[j + 1]);
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Renumber the memory domains to be compact and zero-based if not
|
|
* already. Returns an error if there are too many domains.
|
|
*/
|
|
static int
|
|
renumber_domains(void)
|
|
{
|
|
int i, j, slot;
|
|
|
|
/* Enumerate all the domains. */
|
|
ndomain = 0;
|
|
for (i = 0; i < num_mem; i++) {
|
|
/* See if this domain is already known. */
|
|
for (j = 0; j < ndomain; j++) {
|
|
if (domain_pxm[j] >= mem_info[i].domain)
|
|
break;
|
|
}
|
|
if (j < ndomain && domain_pxm[j] == mem_info[i].domain)
|
|
continue;
|
|
|
|
if (ndomain >= MAXMEMDOM) {
|
|
ndomain = 1;
|
|
printf("SRAT: Too many memory domains\n");
|
|
return (EFBIG);
|
|
}
|
|
|
|
/* Insert the new domain at slot 'j'. */
|
|
slot = j;
|
|
for (j = ndomain; j > slot; j--)
|
|
domain_pxm[j] = domain_pxm[j - 1];
|
|
domain_pxm[slot] = mem_info[i].domain;
|
|
ndomain++;
|
|
}
|
|
|
|
/* Renumber each domain to its index in the sorted 'domain_pxm' list. */
|
|
for (i = 0; i < ndomain; i++) {
|
|
/*
|
|
* If the domain is already the right value, no need
|
|
* to renumber.
|
|
*/
|
|
if (domain_pxm[i] == i)
|
|
continue;
|
|
|
|
/* Walk the cpu[] and mem_info[] arrays to renumber. */
|
|
for (j = 0; j < num_mem; j++)
|
|
if (mem_info[j].domain == domain_pxm[i])
|
|
mem_info[j].domain = i;
|
|
for (j = 0; j <= last_cpu; j++)
|
|
if (cpus[j].enabled && cpus[j].domain == domain_pxm[i])
|
|
cpus[j].domain = i;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Look for an ACPI System Resource Affinity Table ("SRAT"),
|
|
* allocate space for cpu information, and initialize globals.
|
|
*/
|
|
int
|
|
acpi_pxm_init(int ncpus, vm_paddr_t maxphys)
|
|
{
|
|
unsigned int idx, size;
|
|
vm_paddr_t addr;
|
|
|
|
if (resource_disabled("srat", 0))
|
|
return (-1);
|
|
|
|
max_cpus = ncpus;
|
|
last_cpu = -1;
|
|
maxphyaddr = maxphys;
|
|
srat_physaddr = acpi_find_table(ACPI_SIG_SRAT);
|
|
if (srat_physaddr == 0)
|
|
return (-1);
|
|
|
|
/*
|
|
* Allocate data structure:
|
|
*
|
|
* Find the last physical memory region and steal some memory from
|
|
* it. This is done because at this point in the boot process
|
|
* malloc is still not usable.
|
|
*/
|
|
for (idx = 0; phys_avail[idx + 1] != 0; idx += 2);
|
|
KASSERT(idx != 0, ("phys_avail is empty!"));
|
|
idx -= 2;
|
|
|
|
size = sizeof(*cpus) * max_cpus;
|
|
addr = trunc_page(phys_avail[idx + 1] - size);
|
|
KASSERT(addr >= phys_avail[idx],
|
|
("Not enough memory for SRAT table items"));
|
|
phys_avail[idx + 1] = addr - 1;
|
|
|
|
/*
|
|
* We cannot rely on PHYS_TO_DMAP because this code is also used in
|
|
* i386, so use pmap_mapbios to map the memory, this will end up using
|
|
* the default memory attribute (WB), and the DMAP when available.
|
|
*/
|
|
cpus = (struct cpu_info *)pmap_mapbios(addr, size);
|
|
bzero(cpus, size);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
parse_srat(void)
|
|
{
|
|
int error;
|
|
|
|
/*
|
|
* Make a pass over the table to populate the cpus[] and
|
|
* mem_info[] tables.
|
|
*/
|
|
srat = acpi_map_table(srat_physaddr, ACPI_SIG_SRAT);
|
|
error = 0;
|
|
srat_walk_table(srat_parse_entry, &error);
|
|
acpi_unmap_table(srat);
|
|
srat = NULL;
|
|
if (error || check_domains() != 0 || check_phys_avail() != 0 ||
|
|
renumber_domains() != 0) {
|
|
srat_physaddr = 0;
|
|
return (-1);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
init_mem_locality(void)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* For now, assume -1 == "no locality information for
|
|
* this pairing.
|
|
*/
|
|
for (i = 0; i < MAXMEMDOM * MAXMEMDOM; i++)
|
|
vm_locality_table[i] = -1;
|
|
}
|
|
|
|
/*
|
|
* Parse SRAT and SLIT to save proximity info. Don't do
|
|
* anything if SRAT is not available.
|
|
*/
|
|
void
|
|
acpi_pxm_parse_tables(void)
|
|
{
|
|
|
|
if (srat_physaddr == 0)
|
|
return;
|
|
if (parse_srat() < 0)
|
|
return;
|
|
init_mem_locality();
|
|
(void)parse_slit();
|
|
}
|
|
|
|
/*
|
|
* Use saved data from SRAT/SLIT to update memory locality.
|
|
*/
|
|
void
|
|
acpi_pxm_set_mem_locality(void)
|
|
{
|
|
|
|
if (srat_physaddr == 0)
|
|
return;
|
|
vm_phys_register_domains(ndomain, mem_info, vm_locality_table);
|
|
}
|
|
|
|
static void
|
|
srat_walk_table(acpi_subtable_handler *handler, void *arg)
|
|
{
|
|
|
|
acpi_walk_subtables(srat + 1, (char *)srat + srat->Header.Length,
|
|
handler, arg);
|
|
}
|
|
|
|
/*
|
|
* Set up per-CPU domain IDs from information saved in 'cpus' and tear down data
|
|
* structures allocated by acpi_pxm_init().
|
|
*/
|
|
void
|
|
acpi_pxm_set_cpu_locality(void)
|
|
{
|
|
struct cpu_info *cpu;
|
|
struct pcpu *pc;
|
|
u_int i;
|
|
|
|
if (srat_physaddr == 0)
|
|
return;
|
|
for (i = 0; i < MAXCPU; i++) {
|
|
if (CPU_ABSENT(i))
|
|
continue;
|
|
pc = pcpu_find(i);
|
|
KASSERT(pc != NULL, ("no pcpu data for CPU %u", i));
|
|
cpu = cpu_get_info(pc);
|
|
pc->pc_domain = vm_ndomains > 1 ? cpu->domain : 0;
|
|
CPU_SET(i, &cpuset_domain[pc->pc_domain]);
|
|
if (bootverbose)
|
|
printf("SRAT: CPU %u has memory domain %d\n", i,
|
|
pc->pc_domain);
|
|
}
|
|
/* XXXMJ the page is leaked. */
|
|
pmap_unmapbios((vm_offset_t)cpus, sizeof(*cpus) * max_cpus);
|
|
srat_physaddr = 0;
|
|
cpus = NULL;
|
|
}
|
|
|
|
int
|
|
acpi_pxm_get_cpu_locality(int apic_id)
|
|
{
|
|
struct cpu_info *cpu;
|
|
|
|
cpu = cpu_find(apic_id);
|
|
if (cpu == NULL)
|
|
panic("SRAT: CPU with ID %u is not known", apic_id);
|
|
return (cpu->domain);
|
|
}
|
|
|
|
/*
|
|
* Map a _PXM value to a VM domain ID.
|
|
*
|
|
* Returns the domain ID, or -1 if no domain ID was found.
|
|
*/
|
|
int
|
|
acpi_map_pxm_to_vm_domainid(int pxm)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ndomain; i++) {
|
|
if (domain_pxm[i] == pxm)
|
|
return (vm_ndomains > 1 ? i : 0);
|
|
}
|
|
|
|
return (-1);
|
|
}
|
|
|
|
#else /* MAXMEMDOM == 1 */
|
|
|
|
int
|
|
acpi_map_pxm_to_vm_domainid(int pxm)
|
|
{
|
|
|
|
return (-1);
|
|
}
|
|
|
|
#endif /* MAXMEMDOM > 1 */
|