freebsd-skq/sys/pci/if_xl.c
marius 0063ea93ff - Revert the parts of the previous revision which reloaded the watchdog
timer in xl_txeof()/xl_txeof_90xB(); xl_poll_locked() unconditionally
  invokes xl_txeof()/xl_txeof_90xB(), effectively circumventing that
  the watchdog ever fires in the DEVICE_POLLING case as its timer is
  constantly reloaded.
- Remove the banal and pedantically outdated comment regarding setting
  xl_wdog_timer to 0 in xl_txeof().

Pointed out by:	bde
2006-12-08 03:18:16 +00:00

3395 lines
88 KiB
C

/*-
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* 3Com 3c90x Etherlink XL PCI NIC driver
*
* Supports the 3Com "boomerang", "cyclone" and "hurricane" PCI
* bus-master chips (3c90x cards and embedded controllers) including
* the following:
*
* 3Com 3c900-TPO 10Mbps/RJ-45
* 3Com 3c900-COMBO 10Mbps/RJ-45,AUI,BNC
* 3Com 3c905-TX 10/100Mbps/RJ-45
* 3Com 3c905-T4 10/100Mbps/RJ-45
* 3Com 3c900B-TPO 10Mbps/RJ-45
* 3Com 3c900B-COMBO 10Mbps/RJ-45,AUI,BNC
* 3Com 3c900B-TPC 10Mbps/RJ-45,BNC
* 3Com 3c900B-FL 10Mbps/Fiber-optic
* 3Com 3c905B-COMBO 10/100Mbps/RJ-45,AUI,BNC
* 3Com 3c905B-TX 10/100Mbps/RJ-45
* 3Com 3c905B-FL/FX 10/100Mbps/Fiber-optic
* 3Com 3c905C-TX 10/100Mbps/RJ-45 (Tornado ASIC)
* 3Com 3c980-TX 10/100Mbps server adapter (Hurricane ASIC)
* 3Com 3c980C-TX 10/100Mbps server adapter (Tornado ASIC)
* 3Com 3cSOHO100-TX 10/100Mbps/RJ-45 (Hurricane ASIC)
* 3Com 3c450-TX 10/100Mbps/RJ-45 (Tornado ASIC)
* 3Com 3c555 10/100Mbps/RJ-45 (MiniPCI, Laptop Hurricane)
* 3Com 3c556 10/100Mbps/RJ-45 (MiniPCI, Hurricane ASIC)
* 3Com 3c556B 10/100Mbps/RJ-45 (MiniPCI, Hurricane ASIC)
* 3Com 3c575TX 10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
* 3Com 3c575B 10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
* 3Com 3c575C 10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
* 3Com 3cxfem656 10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
* 3Com 3cxfem656b 10/100Mbps/RJ-45 (Cardbus, Hurricane ASIC)
* 3Com 3cxfem656c 10/100Mbps/RJ-45 (Cardbus, Tornado ASIC)
* Dell Optiplex GX1 on-board 3c918 10/100Mbps/RJ-45
* Dell on-board 3c920 10/100Mbps/RJ-45
* Dell Precision on-board 3c905B 10/100Mbps/RJ-45
* Dell Latitude laptop docking station embedded 3c905-TX
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The 3c90x series chips use a bus-master DMA interface for transfering
* packets to and from the controller chip. Some of the "vortex" cards
* (3c59x) also supported a bus master mode, however for those chips
* you could only DMA packets to/from a contiguous memory buffer. For
* transmission this would mean copying the contents of the queued mbuf
* chain into an mbuf cluster and then DMAing the cluster. This extra
* copy would sort of defeat the purpose of the bus master support for
* any packet that doesn't fit into a single mbuf.
*
* By contrast, the 3c90x cards support a fragment-based bus master
* mode where mbuf chains can be encapsulated using TX descriptors.
* This is similar to other PCI chips such as the Texas Instruments
* ThunderLAN and the Intel 82557/82558.
*
* The "vortex" driver (if_vx.c) happens to work for the "boomerang"
* bus master chips because they maintain the old PIO interface for
* backwards compatibility, but starting with the 3c905B and the
* "cyclone" chips, the compatibility interface has been dropped.
* Since using bus master DMA is a big win, we use this driver to
* support the PCI "boomerang" chips even though they work with the
* "vortex" driver in order to obtain better performance.
*
* This driver is in the /sys/pci directory because it only supports
* PCI-based NICs.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/taskqueue.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
MODULE_DEPEND(xl, pci, 1, 1, 1);
MODULE_DEPEND(xl, ether, 1, 1, 1);
MODULE_DEPEND(xl, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
#include <pci/if_xlreg.h>
/*
* TX Checksumming is disabled by default for two reasons:
* - TX Checksumming will occasionally produce corrupt packets
* - TX Checksumming seems to reduce performance
*
* Only 905B/C cards were reported to have this problem, it is possible
* that later chips _may_ be immune.
*/
#define XL905B_TXCSUM_BROKEN 1
#ifdef XL905B_TXCSUM_BROKEN
#define XL905B_CSUM_FEATURES 0
#else
#define XL905B_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
#endif
/*
* Various supported device vendors/types and their names.
*/
static struct xl_type xl_devs[] = {
{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10BT,
"3Com 3c900-TPO Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10BT_COMBO,
"3Com 3c900-COMBO Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_BOOMERANG_10_100BT,
"3Com 3c905-TX Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_BOOMERANG_100BT4,
"3Com 3c905-T4 Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_KRAKATOA_10BT,
"3Com 3c900B-TPO Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_KRAKATOA_10BT_COMBO,
"3Com 3c900B-COMBO Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_KRAKATOA_10BT_TPC,
"3Com 3c900B-TPC Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10FL,
"3Com 3c900B-FL Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_HURRICANE_10_100BT,
"3Com 3c905B-TX Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100BT4,
"3Com 3c905B-T4 Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100FX,
"3Com 3c905B-FX/SC Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_CYCLONE_10_100_COMBO,
"3Com 3c905B-COMBO Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_TORNADO_10_100BT,
"3Com 3c905C-TX Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_TORNADO_10_100BT_920B,
"3Com 3c920B-EMB Integrated Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_TORNADO_10_100BT_920B_WNM,
"3Com 3c920B-EMB-WNM Integrated Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_HURRICANE_10_100BT_SERV,
"3Com 3c980 Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_TORNADO_10_100BT_SERV,
"3Com 3c980C Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_HURRICANE_SOHO100TX,
"3Com 3cSOHO100-TX OfficeConnect" },
{ TC_VENDORID, TC_DEVICEID_TORNADO_HOMECONNECT,
"3Com 3c450-TX HomeConnect" },
{ TC_VENDORID, TC_DEVICEID_HURRICANE_555,
"3Com 3c555 Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_HURRICANE_556,
"3Com 3c556 Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_HURRICANE_556B,
"3Com 3c556B Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_HURRICANE_575A,
"3Com 3c575TX Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_HURRICANE_575B,
"3Com 3c575B Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_HURRICANE_575C,
"3Com 3c575C Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_HURRICANE_656,
"3Com 3c656 Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_HURRICANE_656B,
"3Com 3c656B Fast Etherlink XL" },
{ TC_VENDORID, TC_DEVICEID_TORNADO_656C,
"3Com 3c656C Fast Etherlink XL" },
{ 0, 0, NULL }
};
static int xl_probe(device_t);
static int xl_attach(device_t);
static int xl_detach(device_t);
static int xl_newbuf(struct xl_softc *, struct xl_chain_onefrag *);
static void xl_stats_update(void *);
static void xl_stats_update_locked(struct xl_softc *);
static int xl_encap(struct xl_softc *, struct xl_chain *, struct mbuf *);
static void xl_rxeof(struct xl_softc *);
static void xl_rxeof_task(void *, int);
static int xl_rx_resync(struct xl_softc *);
static void xl_txeof(struct xl_softc *);
static void xl_txeof_90xB(struct xl_softc *);
static void xl_txeoc(struct xl_softc *);
static void xl_intr(void *);
static void xl_start(struct ifnet *);
static void xl_start_locked(struct ifnet *);
static void xl_start_90xB_locked(struct ifnet *);
static int xl_ioctl(struct ifnet *, u_long, caddr_t);
static void xl_init(void *);
static void xl_init_locked(struct xl_softc *);
static void xl_stop(struct xl_softc *);
static int xl_watchdog(struct xl_softc *);
static void xl_shutdown(device_t);
static int xl_suspend(device_t);
static int xl_resume(device_t);
#ifdef DEVICE_POLLING
static void xl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
static void xl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count);
#endif
static int xl_ifmedia_upd(struct ifnet *);
static void xl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int xl_eeprom_wait(struct xl_softc *);
static int xl_read_eeprom(struct xl_softc *, caddr_t, int, int, int);
static void xl_mii_sync(struct xl_softc *);
static void xl_mii_send(struct xl_softc *, u_int32_t, int);
static int xl_mii_readreg(struct xl_softc *, struct xl_mii_frame *);
static int xl_mii_writereg(struct xl_softc *, struct xl_mii_frame *);
static void xl_setcfg(struct xl_softc *);
static void xl_setmode(struct xl_softc *, int);
static void xl_setmulti(struct xl_softc *);
static void xl_setmulti_hash(struct xl_softc *);
static void xl_reset(struct xl_softc *);
static int xl_list_rx_init(struct xl_softc *);
static int xl_list_tx_init(struct xl_softc *);
static int xl_list_tx_init_90xB(struct xl_softc *);
static void xl_wait(struct xl_softc *);
static void xl_mediacheck(struct xl_softc *);
static void xl_choose_media(struct xl_softc *sc, int *media);
static void xl_choose_xcvr(struct xl_softc *, int);
static void xl_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static void xl_dma_map_rxbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
static void xl_dma_map_txbuf(void *, bus_dma_segment_t *, int, bus_size_t, int);
#ifdef notdef
static void xl_testpacket(struct xl_softc *);
#endif
static int xl_miibus_readreg(device_t, int, int);
static int xl_miibus_writereg(device_t, int, int, int);
static void xl_miibus_statchg(device_t);
static void xl_miibus_mediainit(device_t);
static device_method_t xl_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, xl_probe),
DEVMETHOD(device_attach, xl_attach),
DEVMETHOD(device_detach, xl_detach),
DEVMETHOD(device_shutdown, xl_shutdown),
DEVMETHOD(device_suspend, xl_suspend),
DEVMETHOD(device_resume, xl_resume),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, xl_miibus_readreg),
DEVMETHOD(miibus_writereg, xl_miibus_writereg),
DEVMETHOD(miibus_statchg, xl_miibus_statchg),
DEVMETHOD(miibus_mediainit, xl_miibus_mediainit),
{ 0, 0 }
};
static driver_t xl_driver = {
"xl",
xl_methods,
sizeof(struct xl_softc)
};
static devclass_t xl_devclass;
DRIVER_MODULE(xl, cardbus, xl_driver, xl_devclass, 0, 0);
DRIVER_MODULE(xl, pci, xl_driver, xl_devclass, 0, 0);
DRIVER_MODULE(miibus, xl, miibus_driver, miibus_devclass, 0, 0);
static void
xl_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
u_int32_t *paddr;
paddr = arg;
*paddr = segs->ds_addr;
}
static void
xl_dma_map_rxbuf(void *arg, bus_dma_segment_t *segs, int nseg,
bus_size_t mapsize, int error)
{
u_int32_t *paddr;
if (error)
return;
KASSERT(nseg == 1, ("xl_dma_map_rxbuf: too many DMA segments"));
paddr = arg;
*paddr = segs->ds_addr;
}
static void
xl_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
bus_size_t mapsize, int error)
{
struct xl_list *l;
int i, total_len;
if (error)
return;
KASSERT(nseg <= XL_MAXFRAGS, ("too many DMA segments"));
total_len = 0;
l = arg;
for (i = 0; i < nseg; i++) {
KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
l->xl_frag[i].xl_addr = htole32(segs[i].ds_addr);
l->xl_frag[i].xl_len = htole32(segs[i].ds_len);
total_len += segs[i].ds_len;
}
l->xl_frag[nseg - 1].xl_len = htole32(segs[nseg - 1].ds_len |
XL_LAST_FRAG);
l->xl_status = htole32(total_len);
l->xl_next = 0;
}
/*
* Murphy's law says that it's possible the chip can wedge and
* the 'command in progress' bit may never clear. Hence, we wait
* only a finite amount of time to avoid getting caught in an
* infinite loop. Normally this delay routine would be a macro,
* but it isn't called during normal operation so we can afford
* to make it a function.
*/
static void
xl_wait(struct xl_softc *sc)
{
register int i;
for (i = 0; i < XL_TIMEOUT; i++) {
if ((CSR_READ_2(sc, XL_STATUS) & XL_STAT_CMDBUSY) == 0)
break;
}
if (i == XL_TIMEOUT)
device_printf(sc->xl_dev, "command never completed!\n");
}
/*
* MII access routines are provided for adapters with external
* PHYs (3c905-TX, 3c905-T4, 3c905B-T4) and those with built-in
* autoneg logic that's faked up to look like a PHY (3c905B-TX).
* Note: if you don't perform the MDIO operations just right,
* it's possible to end up with code that works correctly with
* some chips/CPUs/processor speeds/bus speeds/etc but not
* with others.
*/
#define MII_SET(x) \
CSR_WRITE_2(sc, XL_W4_PHY_MGMT, \
CSR_READ_2(sc, XL_W4_PHY_MGMT) | (x))
#define MII_CLR(x) \
CSR_WRITE_2(sc, XL_W4_PHY_MGMT, \
CSR_READ_2(sc, XL_W4_PHY_MGMT) & ~(x))
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void
xl_mii_sync(struct xl_softc *sc)
{
register int i;
XL_SEL_WIN(4);
MII_SET(XL_MII_DIR|XL_MII_DATA);
for (i = 0; i < 32; i++) {
MII_SET(XL_MII_CLK);
MII_SET(XL_MII_DATA);
MII_SET(XL_MII_DATA);
MII_CLR(XL_MII_CLK);
MII_SET(XL_MII_DATA);
MII_SET(XL_MII_DATA);
}
}
/*
* Clock a series of bits through the MII.
*/
static void
xl_mii_send(struct xl_softc *sc, u_int32_t bits, int cnt)
{
int i;
XL_SEL_WIN(4);
MII_CLR(XL_MII_CLK);
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
if (bits & i) {
MII_SET(XL_MII_DATA);
} else {
MII_CLR(XL_MII_DATA);
}
MII_CLR(XL_MII_CLK);
MII_SET(XL_MII_CLK);
}
}
/*
* Read an PHY register through the MII.
*/
static int
xl_mii_readreg(struct xl_softc *sc, struct xl_mii_frame *frame)
{
int i, ack;
/* Set up frame for RX. */
frame->mii_stdelim = XL_MII_STARTDELIM;
frame->mii_opcode = XL_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
/* Select register window 4. */
XL_SEL_WIN(4);
CSR_WRITE_2(sc, XL_W4_PHY_MGMT, 0);
/* Turn on data xmit. */
MII_SET(XL_MII_DIR);
xl_mii_sync(sc);
/* Send command/address info. */
xl_mii_send(sc, frame->mii_stdelim, 2);
xl_mii_send(sc, frame->mii_opcode, 2);
xl_mii_send(sc, frame->mii_phyaddr, 5);
xl_mii_send(sc, frame->mii_regaddr, 5);
/* Idle bit */
MII_CLR((XL_MII_CLK|XL_MII_DATA));
MII_SET(XL_MII_CLK);
/* Turn off xmit. */
MII_CLR(XL_MII_DIR);
/* Check for ack */
MII_CLR(XL_MII_CLK);
ack = CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA;
MII_SET(XL_MII_CLK);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for (i = 0; i < 16; i++) {
MII_CLR(XL_MII_CLK);
MII_SET(XL_MII_CLK);
}
goto fail;
}
for (i = 0x8000; i; i >>= 1) {
MII_CLR(XL_MII_CLK);
if (!ack) {
if (CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA)
frame->mii_data |= i;
}
MII_SET(XL_MII_CLK);
}
fail:
MII_CLR(XL_MII_CLK);
MII_SET(XL_MII_CLK);
return (ack ? 1 : 0);
}
/*
* Write to a PHY register through the MII.
*/
static int
xl_mii_writereg(struct xl_softc *sc, struct xl_mii_frame *frame)
{
/* Set up frame for TX. */
frame->mii_stdelim = XL_MII_STARTDELIM;
frame->mii_opcode = XL_MII_WRITEOP;
frame->mii_turnaround = XL_MII_TURNAROUND;
/* Select the window 4. */
XL_SEL_WIN(4);
/* Turn on data output. */
MII_SET(XL_MII_DIR);
xl_mii_sync(sc);
xl_mii_send(sc, frame->mii_stdelim, 2);
xl_mii_send(sc, frame->mii_opcode, 2);
xl_mii_send(sc, frame->mii_phyaddr, 5);
xl_mii_send(sc, frame->mii_regaddr, 5);
xl_mii_send(sc, frame->mii_turnaround, 2);
xl_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
MII_SET(XL_MII_CLK);
MII_CLR(XL_MII_CLK);
/* Turn off xmit. */
MII_CLR(XL_MII_DIR);
return (0);
}
static int
xl_miibus_readreg(device_t dev, int phy, int reg)
{
struct xl_softc *sc;
struct xl_mii_frame frame;
sc = device_get_softc(dev);
/*
* Pretend that PHYs are only available at MII address 24.
* This is to guard against problems with certain 3Com ASIC
* revisions that incorrectly map the internal transceiver
* control registers at all MII addresses. This can cause
* the miibus code to attach the same PHY several times over.
*/
if ((sc->xl_flags & XL_FLAG_PHYOK) == 0 && phy != 24)
return (0);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
xl_mii_readreg(sc, &frame);
return (frame.mii_data);
}
static int
xl_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct xl_softc *sc;
struct xl_mii_frame frame;
sc = device_get_softc(dev);
if ((sc->xl_flags & XL_FLAG_PHYOK) == 0 && phy != 24)
return (0);
bzero((char *)&frame, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
xl_mii_writereg(sc, &frame);
return (0);
}
static void
xl_miibus_statchg(device_t dev)
{
struct xl_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
mii = device_get_softc(sc->xl_miibus);
xl_setcfg(sc);
/* Set ASIC's duplex mode to match the PHY. */
XL_SEL_WIN(3);
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX);
else
CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
(CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX));
}
/*
* Special support for the 3c905B-COMBO. This card has 10/100 support
* plus BNC and AUI ports. This means we will have both an miibus attached
* plus some non-MII media settings. In order to allow this, we have to
* add the extra media to the miibus's ifmedia struct, but we can't do
* that during xl_attach() because the miibus hasn't been attached yet.
* So instead, we wait until the miibus probe/attach is done, at which
* point we will get a callback telling is that it's safe to add our
* extra media.
*/
static void
xl_miibus_mediainit(device_t dev)
{
struct xl_softc *sc;
struct mii_data *mii;
struct ifmedia *ifm;
sc = device_get_softc(dev);
mii = device_get_softc(sc->xl_miibus);
ifm = &mii->mii_media;
if (sc->xl_media & (XL_MEDIAOPT_AUI | XL_MEDIAOPT_10FL)) {
/*
* Check for a 10baseFL board in disguise.
*/
if (sc->xl_type == XL_TYPE_905B &&
sc->xl_media == XL_MEDIAOPT_10FL) {
if (bootverbose)
device_printf(sc->xl_dev, "found 10baseFL\n");
ifmedia_add(ifm, IFM_ETHER | IFM_10_FL, 0, NULL);
ifmedia_add(ifm, IFM_ETHER | IFM_10_FL|IFM_HDX, 0,
NULL);
if (sc->xl_caps & XL_CAPS_FULL_DUPLEX)
ifmedia_add(ifm,
IFM_ETHER | IFM_10_FL | IFM_FDX, 0, NULL);
} else {
if (bootverbose)
device_printf(sc->xl_dev, "found AUI\n");
ifmedia_add(ifm, IFM_ETHER | IFM_10_5, 0, NULL);
}
}
if (sc->xl_media & XL_MEDIAOPT_BNC) {
if (bootverbose)
device_printf(sc->xl_dev, "found BNC\n");
ifmedia_add(ifm, IFM_ETHER | IFM_10_2, 0, NULL);
}
}
/*
* The EEPROM is slow: give it time to come ready after issuing
* it a command.
*/
static int
xl_eeprom_wait(struct xl_softc *sc)
{
int i;
for (i = 0; i < 100; i++) {
if (CSR_READ_2(sc, XL_W0_EE_CMD) & XL_EE_BUSY)
DELAY(162);
else
break;
}
if (i == 100) {
device_printf(sc->xl_dev, "eeprom failed to come ready\n");
return (1);
}
return (0);
}
/*
* Read a sequence of words from the EEPROM. Note that ethernet address
* data is stored in the EEPROM in network byte order.
*/
static int
xl_read_eeprom(struct xl_softc *sc, caddr_t dest, int off, int cnt, int swap)
{
int err = 0, i;
u_int16_t word = 0, *ptr;
#define EEPROM_5BIT_OFFSET(A) ((((A) << 2) & 0x7F00) | ((A) & 0x003F))
#define EEPROM_8BIT_OFFSET(A) ((A) & 0x003F)
/*
* XXX: WARNING! DANGER!
* It's easy to accidentally overwrite the rom content!
* Note: the 3c575 uses 8bit EEPROM offsets.
*/
XL_SEL_WIN(0);
if (xl_eeprom_wait(sc))
return (1);
if (sc->xl_flags & XL_FLAG_EEPROM_OFFSET_30)
off += 0x30;
for (i = 0; i < cnt; i++) {
if (sc->xl_flags & XL_FLAG_8BITROM)
CSR_WRITE_2(sc, XL_W0_EE_CMD,
XL_EE_8BIT_READ | EEPROM_8BIT_OFFSET(off + i));
else
CSR_WRITE_2(sc, XL_W0_EE_CMD,
XL_EE_READ | EEPROM_5BIT_OFFSET(off + i));
err = xl_eeprom_wait(sc);
if (err)
break;
word = CSR_READ_2(sc, XL_W0_EE_DATA);
ptr = (u_int16_t *)(dest + (i * 2));
if (swap)
*ptr = ntohs(word);
else
*ptr = word;
}
return (err ? 1 : 0);
}
/*
* NICs older than the 3c905B have only one multicast option, which
* is to enable reception of all multicast frames.
*/
static void
xl_setmulti(struct xl_softc *sc)
{
struct ifnet *ifp = sc->xl_ifp;
struct ifmultiaddr *ifma;
u_int8_t rxfilt;
int mcnt = 0;
XL_LOCK_ASSERT(sc);
XL_SEL_WIN(5);
rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
if (ifp->if_flags & IFF_ALLMULTI) {
rxfilt |= XL_RXFILTER_ALLMULTI;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
return;
}
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
mcnt++;
IF_ADDR_UNLOCK(ifp);
if (mcnt)
rxfilt |= XL_RXFILTER_ALLMULTI;
else
rxfilt &= ~XL_RXFILTER_ALLMULTI;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
}
/*
* 3c905B adapters have a hash filter that we can program.
*/
static void
xl_setmulti_hash(struct xl_softc *sc)
{
struct ifnet *ifp = sc->xl_ifp;
int h = 0, i;
struct ifmultiaddr *ifma;
u_int8_t rxfilt;
int mcnt = 0;
XL_LOCK_ASSERT(sc);
XL_SEL_WIN(5);
rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
if (ifp->if_flags & IFF_ALLMULTI) {
rxfilt |= XL_RXFILTER_ALLMULTI;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
return;
} else
rxfilt &= ~XL_RXFILTER_ALLMULTI;
/* first, zot all the existing hash bits */
for (i = 0; i < XL_HASHFILT_SIZE; i++)
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_HASH|i);
/* now program new ones */
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
/*
* Note: the 3c905B currently only supports a 64-bit hash
* table, which means we really only need 6 bits, but the
* manual indicates that future chip revisions will have a
* 256-bit hash table, hence the routine is set up to
* calculate 8 bits of position info in case we need it some
* day.
* Note II, The Sequel: _CURRENT_ versions of the 3c905B have
* a 256 bit hash table. This means we have to use all 8 bits
* regardless. On older cards, the upper 2 bits will be
* ignored. Grrrr....
*/
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) & 0xFF;
CSR_WRITE_2(sc, XL_COMMAND,
h | XL_CMD_RX_SET_HASH | XL_HASH_SET);
mcnt++;
}
IF_ADDR_UNLOCK(ifp);
if (mcnt)
rxfilt |= XL_RXFILTER_MULTIHASH;
else
rxfilt &= ~XL_RXFILTER_MULTIHASH;
CSR_WRITE_2(sc, XL_COMMAND, rxfilt | XL_CMD_RX_SET_FILT);
}
#ifdef notdef
static void
xl_testpacket(struct xl_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp = sc->xl_ifp;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return;
bcopy(IF_LLADDR(sc->xl_ifp),
mtod(m, struct ether_header *)->ether_dhost, ETHER_ADDR_LEN);
bcopy(IF_LLADDR(sc->xl_ifp),
mtod(m, struct ether_header *)->ether_shost, ETHER_ADDR_LEN);
mtod(m, struct ether_header *)->ether_type = htons(3);
mtod(m, unsigned char *)[14] = 0;
mtod(m, unsigned char *)[15] = 0;
mtod(m, unsigned char *)[16] = 0xE3;
m->m_len = m->m_pkthdr.len = sizeof(struct ether_header) + 3;
IFQ_ENQUEUE(&ifp->if_snd, m);
xl_start(ifp);
}
#endif
static void
xl_setcfg(struct xl_softc *sc)
{
u_int32_t icfg;
/*XL_LOCK_ASSERT(sc);*/
XL_SEL_WIN(3);
icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG);
icfg &= ~XL_ICFG_CONNECTOR_MASK;
if (sc->xl_media & XL_MEDIAOPT_MII ||
sc->xl_media & XL_MEDIAOPT_BT4)
icfg |= (XL_XCVR_MII << XL_ICFG_CONNECTOR_BITS);
if (sc->xl_media & XL_MEDIAOPT_BTX)
icfg |= (XL_XCVR_AUTO << XL_ICFG_CONNECTOR_BITS);
CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
}
static void
xl_setmode(struct xl_softc *sc, int media)
{
u_int32_t icfg;
u_int16_t mediastat;
char *pmsg = "", *dmsg = "";
XL_LOCK_ASSERT(sc);
XL_SEL_WIN(4);
mediastat = CSR_READ_2(sc, XL_W4_MEDIA_STATUS);
XL_SEL_WIN(3);
icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG);
if (sc->xl_media & XL_MEDIAOPT_BT) {
if (IFM_SUBTYPE(media) == IFM_10_T) {
pmsg = "10baseT transceiver";
sc->xl_xcvr = XL_XCVR_10BT;
icfg &= ~XL_ICFG_CONNECTOR_MASK;
icfg |= (XL_XCVR_10BT << XL_ICFG_CONNECTOR_BITS);
mediastat |= XL_MEDIASTAT_LINKBEAT |
XL_MEDIASTAT_JABGUARD;
mediastat &= ~XL_MEDIASTAT_SQEENB;
}
}
if (sc->xl_media & XL_MEDIAOPT_BFX) {
if (IFM_SUBTYPE(media) == IFM_100_FX) {
pmsg = "100baseFX port";
sc->xl_xcvr = XL_XCVR_100BFX;
icfg &= ~XL_ICFG_CONNECTOR_MASK;
icfg |= (XL_XCVR_100BFX << XL_ICFG_CONNECTOR_BITS);
mediastat |= XL_MEDIASTAT_LINKBEAT;
mediastat &= ~XL_MEDIASTAT_SQEENB;
}
}
if (sc->xl_media & (XL_MEDIAOPT_AUI|XL_MEDIAOPT_10FL)) {
if (IFM_SUBTYPE(media) == IFM_10_5) {
pmsg = "AUI port";
sc->xl_xcvr = XL_XCVR_AUI;
icfg &= ~XL_ICFG_CONNECTOR_MASK;
icfg |= (XL_XCVR_AUI << XL_ICFG_CONNECTOR_BITS);
mediastat &= ~(XL_MEDIASTAT_LINKBEAT |
XL_MEDIASTAT_JABGUARD);
mediastat |= ~XL_MEDIASTAT_SQEENB;
}
if (IFM_SUBTYPE(media) == IFM_10_FL) {
pmsg = "10baseFL transceiver";
sc->xl_xcvr = XL_XCVR_AUI;
icfg &= ~XL_ICFG_CONNECTOR_MASK;
icfg |= (XL_XCVR_AUI << XL_ICFG_CONNECTOR_BITS);
mediastat &= ~(XL_MEDIASTAT_LINKBEAT |
XL_MEDIASTAT_JABGUARD);
mediastat |= ~XL_MEDIASTAT_SQEENB;
}
}
if (sc->xl_media & XL_MEDIAOPT_BNC) {
if (IFM_SUBTYPE(media) == IFM_10_2) {
pmsg = "AUI port";
sc->xl_xcvr = XL_XCVR_COAX;
icfg &= ~XL_ICFG_CONNECTOR_MASK;
icfg |= (XL_XCVR_COAX << XL_ICFG_CONNECTOR_BITS);
mediastat &= ~(XL_MEDIASTAT_LINKBEAT |
XL_MEDIASTAT_JABGUARD | XL_MEDIASTAT_SQEENB);
}
}
if ((media & IFM_GMASK) == IFM_FDX ||
IFM_SUBTYPE(media) == IFM_100_FX) {
dmsg = "full";
XL_SEL_WIN(3);
CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX);
} else {
dmsg = "half";
XL_SEL_WIN(3);
CSR_WRITE_1(sc, XL_W3_MAC_CTRL,
(CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX));
}
if (IFM_SUBTYPE(media) == IFM_10_2)
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START);
else
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg);
XL_SEL_WIN(4);
CSR_WRITE_2(sc, XL_W4_MEDIA_STATUS, mediastat);
DELAY(800);
XL_SEL_WIN(7);
device_printf(sc->xl_dev, "selecting %s, %s duplex\n", pmsg, dmsg);
}
static void
xl_reset(struct xl_softc *sc)
{
register int i;
XL_LOCK_ASSERT(sc);
XL_SEL_WIN(0);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RESET |
((sc->xl_flags & XL_FLAG_WEIRDRESET) ?
XL_RESETOPT_DISADVFD:0));
/*
* If we're using memory mapped register mode, pause briefly
* after issuing the reset command before trying to access any
* other registers. With my 3c575C cardbus card, failing to do
* this results in the system locking up while trying to poll
* the command busy bit in the status register.
*/
if (sc->xl_flags & XL_FLAG_USE_MMIO)
DELAY(100000);
for (i = 0; i < XL_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_2(sc, XL_STATUS) & XL_STAT_CMDBUSY))
break;
}
if (i == XL_TIMEOUT)
device_printf(sc->xl_dev, "reset didn't complete\n");
/* Reset TX and RX. */
/* Note: the RX reset takes an absurd amount of time
* on newer versions of the Tornado chips such as those
* on the 3c905CX and newer 3c908C cards. We wait an
* extra amount of time so that xl_wait() doesn't complain
* and annoy the users.
*/
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
DELAY(100000);
xl_wait(sc);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
xl_wait(sc);
if (sc->xl_flags & XL_FLAG_INVERT_LED_PWR ||
sc->xl_flags & XL_FLAG_INVERT_MII_PWR) {
XL_SEL_WIN(2);
CSR_WRITE_2(sc, XL_W2_RESET_OPTIONS,
CSR_READ_2(sc, XL_W2_RESET_OPTIONS) |
((sc->xl_flags & XL_FLAG_INVERT_LED_PWR) ?
XL_RESETOPT_INVERT_LED : 0) |
((sc->xl_flags & XL_FLAG_INVERT_MII_PWR) ?
XL_RESETOPT_INVERT_MII : 0));
}
/* Wait a little while for the chip to get its brains in order. */
DELAY(100000);
}
/*
* Probe for a 3Com Etherlink XL chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
xl_probe(device_t dev)
{
struct xl_type *t;
t = xl_devs;
while (t->xl_name != NULL) {
if ((pci_get_vendor(dev) == t->xl_vid) &&
(pci_get_device(dev) == t->xl_did)) {
device_set_desc(dev, t->xl_name);
return (BUS_PROBE_DEFAULT);
}
t++;
}
return (ENXIO);
}
/*
* This routine is a kludge to work around possible hardware faults
* or manufacturing defects that can cause the media options register
* (or reset options register, as it's called for the first generation
* 3c90x adapters) to return an incorrect result. I have encountered
* one Dell Latitude laptop docking station with an integrated 3c905-TX
* which doesn't have any of the 'mediaopt' bits set. This screws up
* the attach routine pretty badly because it doesn't know what media
* to look for. If we find ourselves in this predicament, this routine
* will try to guess the media options values and warn the user of a
* possible manufacturing defect with his adapter/system/whatever.
*/
static void
xl_mediacheck(struct xl_softc *sc)
{
/*
* If some of the media options bits are set, assume they are
* correct. If not, try to figure it out down below.
* XXX I should check for 10baseFL, but I don't have an adapter
* to test with.
*/
if (sc->xl_media & (XL_MEDIAOPT_MASK & ~XL_MEDIAOPT_VCO)) {
/*
* Check the XCVR value. If it's not in the normal range
* of values, we need to fake it up here.
*/
if (sc->xl_xcvr <= XL_XCVR_AUTO)
return;
else {
device_printf(sc->xl_dev,
"bogus xcvr value in EEPROM (%x)\n", sc->xl_xcvr);
device_printf(sc->xl_dev,
"choosing new default based on card type\n");
}
} else {
if (sc->xl_type == XL_TYPE_905B &&
sc->xl_media & XL_MEDIAOPT_10FL)
return;
device_printf(sc->xl_dev,
"WARNING: no media options bits set in the media options register!!\n");
device_printf(sc->xl_dev,
"this could be a manufacturing defect in your adapter or system\n");
device_printf(sc->xl_dev,
"attempting to guess media type; you should probably consult your vendor\n");
}
xl_choose_xcvr(sc, 1);
}
static void
xl_choose_xcvr(struct xl_softc *sc, int verbose)
{
u_int16_t devid;
/*
* Read the device ID from the EEPROM.
* This is what's loaded into the PCI device ID register, so it has
* to be correct otherwise we wouldn't have gotten this far.
*/
xl_read_eeprom(sc, (caddr_t)&devid, XL_EE_PRODID, 1, 0);
switch (devid) {
case TC_DEVICEID_BOOMERANG_10BT: /* 3c900-TPO */
case TC_DEVICEID_KRAKATOA_10BT: /* 3c900B-TPO */
sc->xl_media = XL_MEDIAOPT_BT;
sc->xl_xcvr = XL_XCVR_10BT;
if (verbose)
device_printf(sc->xl_dev,
"guessing 10BaseT transceiver\n");
break;
case TC_DEVICEID_BOOMERANG_10BT_COMBO: /* 3c900-COMBO */
case TC_DEVICEID_KRAKATOA_10BT_COMBO: /* 3c900B-COMBO */
sc->xl_media = XL_MEDIAOPT_BT|XL_MEDIAOPT_BNC|XL_MEDIAOPT_AUI;
sc->xl_xcvr = XL_XCVR_10BT;
if (verbose)
device_printf(sc->xl_dev,
"guessing COMBO (AUI/BNC/TP)\n");
break;
case TC_DEVICEID_KRAKATOA_10BT_TPC: /* 3c900B-TPC */
sc->xl_media = XL_MEDIAOPT_BT|XL_MEDIAOPT_BNC;
sc->xl_xcvr = XL_XCVR_10BT;
if (verbose)
device_printf(sc->xl_dev, "guessing TPC (BNC/TP)\n");
break;
case TC_DEVICEID_CYCLONE_10FL: /* 3c900B-FL */
sc->xl_media = XL_MEDIAOPT_10FL;
sc->xl_xcvr = XL_XCVR_AUI;
if (verbose)
device_printf(sc->xl_dev, "guessing 10baseFL\n");
break;
case TC_DEVICEID_BOOMERANG_10_100BT: /* 3c905-TX */
case TC_DEVICEID_HURRICANE_555: /* 3c555 */
case TC_DEVICEID_HURRICANE_556: /* 3c556 */
case TC_DEVICEID_HURRICANE_556B: /* 3c556B */
case TC_DEVICEID_HURRICANE_575A: /* 3c575TX */
case TC_DEVICEID_HURRICANE_575B: /* 3c575B */
case TC_DEVICEID_HURRICANE_575C: /* 3c575C */
case TC_DEVICEID_HURRICANE_656: /* 3c656 */
case TC_DEVICEID_HURRICANE_656B: /* 3c656B */
case TC_DEVICEID_TORNADO_656C: /* 3c656C */
case TC_DEVICEID_TORNADO_10_100BT_920B: /* 3c920B-EMB */
case TC_DEVICEID_TORNADO_10_100BT_920B_WNM: /* 3c920B-EMB-WNM */
sc->xl_media = XL_MEDIAOPT_MII;
sc->xl_xcvr = XL_XCVR_MII;
if (verbose)
device_printf(sc->xl_dev, "guessing MII\n");
break;
case TC_DEVICEID_BOOMERANG_100BT4: /* 3c905-T4 */
case TC_DEVICEID_CYCLONE_10_100BT4: /* 3c905B-T4 */
sc->xl_media = XL_MEDIAOPT_BT4;
sc->xl_xcvr = XL_XCVR_MII;
if (verbose)
device_printf(sc->xl_dev, "guessing 100baseT4/MII\n");
break;
case TC_DEVICEID_HURRICANE_10_100BT: /* 3c905B-TX */
case TC_DEVICEID_HURRICANE_10_100BT_SERV:/*3c980-TX */
case TC_DEVICEID_TORNADO_10_100BT_SERV: /* 3c980C-TX */
case TC_DEVICEID_HURRICANE_SOHO100TX: /* 3cSOHO100-TX */
case TC_DEVICEID_TORNADO_10_100BT: /* 3c905C-TX */
case TC_DEVICEID_TORNADO_HOMECONNECT: /* 3c450-TX */
sc->xl_media = XL_MEDIAOPT_BTX;
sc->xl_xcvr = XL_XCVR_AUTO;
if (verbose)
device_printf(sc->xl_dev, "guessing 10/100 internal\n");
break;
case TC_DEVICEID_CYCLONE_10_100_COMBO: /* 3c905B-COMBO */
sc->xl_media = XL_MEDIAOPT_BTX|XL_MEDIAOPT_BNC|XL_MEDIAOPT_AUI;
sc->xl_xcvr = XL_XCVR_AUTO;
if (verbose)
device_printf(sc->xl_dev,
"guessing 10/100 plus BNC/AUI\n");
break;
default:
device_printf(sc->xl_dev,
"unknown device ID: %x -- defaulting to 10baseT\n", devid);
sc->xl_media = XL_MEDIAOPT_BT;
break;
}
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
xl_attach(device_t dev)
{
u_char eaddr[ETHER_ADDR_LEN];
u_int16_t xcvr[2];
struct xl_softc *sc;
struct ifnet *ifp;
int media;
int unit, error = 0, rid, res;
uint16_t did;
sc = device_get_softc(dev);
sc->xl_dev = dev;
unit = device_get_unit(dev);
mtx_init(&sc->xl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
ifmedia_init(&sc->ifmedia, 0, xl_ifmedia_upd, xl_ifmedia_sts);
did = pci_get_device(dev);
sc->xl_flags = 0;
if (did == TC_DEVICEID_HURRICANE_555)
sc->xl_flags |= XL_FLAG_EEPROM_OFFSET_30 | XL_FLAG_PHYOK;
if (did == TC_DEVICEID_HURRICANE_556 ||
did == TC_DEVICEID_HURRICANE_556B)
sc->xl_flags |= XL_FLAG_FUNCREG | XL_FLAG_PHYOK |
XL_FLAG_EEPROM_OFFSET_30 | XL_FLAG_WEIRDRESET |
XL_FLAG_INVERT_LED_PWR | XL_FLAG_INVERT_MII_PWR;
if (did == TC_DEVICEID_HURRICANE_555 ||
did == TC_DEVICEID_HURRICANE_556)
sc->xl_flags |= XL_FLAG_8BITROM;
if (did == TC_DEVICEID_HURRICANE_556B)
sc->xl_flags |= XL_FLAG_NO_XCVR_PWR;
if (did == TC_DEVICEID_HURRICANE_575B ||
did == TC_DEVICEID_HURRICANE_575C ||
did == TC_DEVICEID_HURRICANE_656B ||
did == TC_DEVICEID_TORNADO_656C)
sc->xl_flags |= XL_FLAG_FUNCREG;
if (did == TC_DEVICEID_HURRICANE_575A ||
did == TC_DEVICEID_HURRICANE_575B ||
did == TC_DEVICEID_HURRICANE_575C ||
did == TC_DEVICEID_HURRICANE_656B ||
did == TC_DEVICEID_TORNADO_656C)
sc->xl_flags |= XL_FLAG_PHYOK | XL_FLAG_EEPROM_OFFSET_30 |
XL_FLAG_8BITROM;
if (did == TC_DEVICEID_HURRICANE_656)
sc->xl_flags |= XL_FLAG_FUNCREG | XL_FLAG_PHYOK;
if (did == TC_DEVICEID_HURRICANE_575B)
sc->xl_flags |= XL_FLAG_INVERT_LED_PWR;
if (did == TC_DEVICEID_HURRICANE_575C)
sc->xl_flags |= XL_FLAG_INVERT_MII_PWR;
if (did == TC_DEVICEID_TORNADO_656C)
sc->xl_flags |= XL_FLAG_INVERT_MII_PWR;
if (did == TC_DEVICEID_HURRICANE_656 ||
did == TC_DEVICEID_HURRICANE_656B)
sc->xl_flags |= XL_FLAG_INVERT_MII_PWR |
XL_FLAG_INVERT_LED_PWR;
if (did == TC_DEVICEID_TORNADO_10_100BT_920B ||
did == TC_DEVICEID_TORNADO_10_100BT_920B_WNM)
sc->xl_flags |= XL_FLAG_PHYOK;
switch (did) {
case TC_DEVICEID_BOOMERANG_10_100BT: /* 3c905-TX */
case TC_DEVICEID_HURRICANE_575A:
case TC_DEVICEID_HURRICANE_575B:
case TC_DEVICEID_HURRICANE_575C:
sc->xl_flags |= XL_FLAG_NO_MMIO;
break;
default:
break;
}
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
if ((sc->xl_flags & XL_FLAG_NO_MMIO) == 0) {
rid = XL_PCI_LOMEM;
res = SYS_RES_MEMORY;
sc->xl_res = bus_alloc_resource_any(dev, res, &rid, RF_ACTIVE);
}
if (sc->xl_res != NULL) {
sc->xl_flags |= XL_FLAG_USE_MMIO;
if (bootverbose)
device_printf(dev, "using memory mapped I/O\n");
} else {
rid = XL_PCI_LOIO;
res = SYS_RES_IOPORT;
sc->xl_res = bus_alloc_resource_any(dev, res, &rid, RF_ACTIVE);
if (sc->xl_res == NULL) {
device_printf(dev, "couldn't map ports/memory\n");
error = ENXIO;
goto fail;
}
if (bootverbose)
device_printf(dev, "using port I/O\n");
}
sc->xl_btag = rman_get_bustag(sc->xl_res);
sc->xl_bhandle = rman_get_bushandle(sc->xl_res);
if (sc->xl_flags & XL_FLAG_FUNCREG) {
rid = XL_PCI_FUNCMEM;
sc->xl_fres = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->xl_fres == NULL) {
device_printf(dev, "couldn't map funcreg memory\n");
error = ENXIO;
goto fail;
}
sc->xl_ftag = rman_get_bustag(sc->xl_fres);
sc->xl_fhandle = rman_get_bushandle(sc->xl_fres);
}
/* Allocate interrupt */
rid = 0;
sc->xl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->xl_irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
/* Initialize interface name. */
ifp = sc->xl_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
/* Reset the adapter. */
XL_LOCK(sc);
xl_reset(sc);
XL_UNLOCK(sc);
/*
* Get station address from the EEPROM.
*/
if (xl_read_eeprom(sc, (caddr_t)&eaddr, XL_EE_OEM_ADR0, 3, 1)) {
device_printf(dev, "failed to read station address\n");
error = ENXIO;
goto fail;
}
sc->xl_unit = unit;
callout_init_mtx(&sc->xl_stat_callout, &sc->xl_mtx, 0);
TASK_INIT(&sc->xl_task, 0, xl_rxeof_task, sc);
/*
* Now allocate a tag for the DMA descriptor lists and a chunk
* of DMA-able memory based on the tag. Also obtain the DMA
* addresses of the RX and TX ring, which we'll need later.
* All of our lists are allocated as a contiguous block
* of memory.
*/
error = bus_dma_tag_create(bus_get_dma_tag(dev), 8, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
XL_RX_LIST_SZ, 1, XL_RX_LIST_SZ, 0, NULL, NULL,
&sc->xl_ldata.xl_rx_tag);
if (error) {
device_printf(dev, "failed to allocate rx dma tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->xl_ldata.xl_rx_tag,
(void **)&sc->xl_ldata.xl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
&sc->xl_ldata.xl_rx_dmamap);
if (error) {
device_printf(dev, "no memory for rx list buffers!\n");
bus_dma_tag_destroy(sc->xl_ldata.xl_rx_tag);
sc->xl_ldata.xl_rx_tag = NULL;
goto fail;
}
error = bus_dmamap_load(sc->xl_ldata.xl_rx_tag,
sc->xl_ldata.xl_rx_dmamap, sc->xl_ldata.xl_rx_list,
XL_RX_LIST_SZ, xl_dma_map_addr,
&sc->xl_ldata.xl_rx_dmaaddr, BUS_DMA_NOWAIT);
if (error) {
device_printf(dev, "cannot get dma address of the rx ring!\n");
bus_dmamem_free(sc->xl_ldata.xl_rx_tag, sc->xl_ldata.xl_rx_list,
sc->xl_ldata.xl_rx_dmamap);
bus_dma_tag_destroy(sc->xl_ldata.xl_rx_tag);
sc->xl_ldata.xl_rx_tag = NULL;
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(dev), 8, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
XL_TX_LIST_SZ, 1, XL_TX_LIST_SZ, 0, NULL, NULL,
&sc->xl_ldata.xl_tx_tag);
if (error) {
device_printf(dev, "failed to allocate tx dma tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->xl_ldata.xl_tx_tag,
(void **)&sc->xl_ldata.xl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
&sc->xl_ldata.xl_tx_dmamap);
if (error) {
device_printf(dev, "no memory for list buffers!\n");
bus_dma_tag_destroy(sc->xl_ldata.xl_tx_tag);
sc->xl_ldata.xl_tx_tag = NULL;
goto fail;
}
error = bus_dmamap_load(sc->xl_ldata.xl_tx_tag,
sc->xl_ldata.xl_tx_dmamap, sc->xl_ldata.xl_tx_list,
XL_TX_LIST_SZ, xl_dma_map_addr,
&sc->xl_ldata.xl_tx_dmaaddr, BUS_DMA_NOWAIT);
if (error) {
device_printf(dev, "cannot get dma address of the tx ring!\n");
bus_dmamem_free(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_list,
sc->xl_ldata.xl_tx_dmamap);
bus_dma_tag_destroy(sc->xl_ldata.xl_tx_tag);
sc->xl_ldata.xl_tx_tag = NULL;
goto fail;
}
/*
* Allocate a DMA tag for the mapping of mbufs.
*/
error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES * XL_MAXFRAGS, XL_MAXFRAGS, MCLBYTES, 0, NULL,
NULL, &sc->xl_mtag);
if (error) {
device_printf(dev, "failed to allocate mbuf dma tag\n");
goto fail;
}
/* We need a spare DMA map for the RX ring. */
error = bus_dmamap_create(sc->xl_mtag, 0, &sc->xl_tmpmap);
if (error)
goto fail;
/*
* Figure out the card type. 3c905B adapters have the
* 'supportsNoTxLength' bit set in the capabilities
* word in the EEPROM.
* Note: my 3c575C cardbus card lies. It returns a value
* of 0x1578 for its capabilities word, which is somewhat
* nonsensical. Another way to distinguish a 3c90x chip
* from a 3c90xB/C chip is to check for the 'supportsLargePackets'
* bit. This will only be set for 3c90x boomerage chips.
*/
xl_read_eeprom(sc, (caddr_t)&sc->xl_caps, XL_EE_CAPS, 1, 0);
if (sc->xl_caps & XL_CAPS_NO_TXLENGTH ||
!(sc->xl_caps & XL_CAPS_LARGE_PKTS))
sc->xl_type = XL_TYPE_905B;
else
sc->xl_type = XL_TYPE_90X;
/* Set the TX start threshold for best performance. */
sc->xl_tx_thresh = XL_MIN_FRAMELEN;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = xl_ioctl;
ifp->if_capabilities = IFCAP_VLAN_MTU;
if (sc->xl_type == XL_TYPE_905B) {
ifp->if_hwassist = XL905B_CSUM_FEATURES;
#ifdef XL905B_TXCSUM_BROKEN
ifp->if_capabilities |= IFCAP_RXCSUM;
#else
ifp->if_capabilities |= IFCAP_HWCSUM;
#endif
}
ifp->if_capenable = ifp->if_capabilities;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
ifp->if_start = xl_start;
ifp->if_init = xl_init;
IFQ_SET_MAXLEN(&ifp->if_snd, XL_TX_LIST_CNT - 1);
ifp->if_snd.ifq_drv_maxlen = XL_TX_LIST_CNT - 1;
IFQ_SET_READY(&ifp->if_snd);
/*
* Now we have to see what sort of media we have.
* This includes probing for an MII interace and a
* possible PHY.
*/
XL_SEL_WIN(3);
sc->xl_media = CSR_READ_2(sc, XL_W3_MEDIA_OPT);
if (bootverbose)
device_printf(dev, "media options word: %x\n", sc->xl_media);
xl_read_eeprom(sc, (char *)&xcvr, XL_EE_ICFG_0, 2, 0);
sc->xl_xcvr = xcvr[0] | xcvr[1] << 16;
sc->xl_xcvr &= XL_ICFG_CONNECTOR_MASK;
sc->xl_xcvr >>= XL_ICFG_CONNECTOR_BITS;
xl_mediacheck(sc);
if (sc->xl_media & XL_MEDIAOPT_MII ||
sc->xl_media & XL_MEDIAOPT_BTX ||
sc->xl_media & XL_MEDIAOPT_BT4) {
if (bootverbose)
device_printf(dev, "found MII/AUTO\n");
xl_setcfg(sc);
if (mii_phy_probe(dev, &sc->xl_miibus,
xl_ifmedia_upd, xl_ifmedia_sts)) {
device_printf(dev, "no PHY found!\n");
error = ENXIO;
goto fail;
}
goto done;
}
/*
* Sanity check. If the user has selected "auto" and this isn't
* a 10/100 card of some kind, we need to force the transceiver
* type to something sane.
*/
if (sc->xl_xcvr == XL_XCVR_AUTO)
xl_choose_xcvr(sc, bootverbose);
/*
* Do ifmedia setup.
*/
if (sc->xl_media & XL_MEDIAOPT_BT) {
if (bootverbose)
device_printf(dev, "found 10baseT\n");
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
if (sc->xl_caps & XL_CAPS_FULL_DUPLEX)
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
}
if (sc->xl_media & (XL_MEDIAOPT_AUI|XL_MEDIAOPT_10FL)) {
/*
* Check for a 10baseFL board in disguise.
*/
if (sc->xl_type == XL_TYPE_905B &&
sc->xl_media == XL_MEDIAOPT_10FL) {
if (bootverbose)
device_printf(dev, "found 10baseFL\n");
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL, 0, NULL);
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_FL|IFM_HDX,
0, NULL);
if (sc->xl_caps & XL_CAPS_FULL_DUPLEX)
ifmedia_add(&sc->ifmedia,
IFM_ETHER|IFM_10_FL|IFM_FDX, 0, NULL);
} else {
if (bootverbose)
device_printf(dev, "found AUI\n");
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL);
}
}
if (sc->xl_media & XL_MEDIAOPT_BNC) {
if (bootverbose)
device_printf(dev, "found BNC\n");
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_2, 0, NULL);
}
if (sc->xl_media & XL_MEDIAOPT_BFX) {
if (bootverbose)
device_printf(dev, "found 100baseFX\n");
ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL);
}
media = IFM_ETHER|IFM_100_TX|IFM_FDX;
xl_choose_media(sc, &media);
if (sc->xl_miibus == NULL)
ifmedia_set(&sc->ifmedia, media);
done:
if (sc->xl_flags & XL_FLAG_NO_XCVR_PWR) {
XL_SEL_WIN(0);
CSR_WRITE_2(sc, XL_W0_MFG_ID, XL_NO_XCVR_PWR_MAGICBITS);
}
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
error = bus_setup_intr(dev, sc->xl_irq, INTR_TYPE_NET | INTR_MPSAFE,
xl_intr, sc, &sc->xl_intrhand);
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
goto fail;
}
fail:
if (error)
xl_detach(dev);
return (error);
}
/*
* Choose a default media.
* XXX This is a leaf function only called by xl_attach() and
* acquires/releases the non-recursible driver mutex to
* satisfy lock assertions.
*/
static void
xl_choose_media(struct xl_softc *sc, int *media)
{
XL_LOCK(sc);
switch (sc->xl_xcvr) {
case XL_XCVR_10BT:
*media = IFM_ETHER|IFM_10_T;
xl_setmode(sc, *media);
break;
case XL_XCVR_AUI:
if (sc->xl_type == XL_TYPE_905B &&
sc->xl_media == XL_MEDIAOPT_10FL) {
*media = IFM_ETHER|IFM_10_FL;
xl_setmode(sc, *media);
} else {
*media = IFM_ETHER|IFM_10_5;
xl_setmode(sc, *media);
}
break;
case XL_XCVR_COAX:
*media = IFM_ETHER|IFM_10_2;
xl_setmode(sc, *media);
break;
case XL_XCVR_AUTO:
case XL_XCVR_100BTX:
case XL_XCVR_MII:
/* Chosen by miibus */
break;
case XL_XCVR_100BFX:
*media = IFM_ETHER|IFM_100_FX;
break;
default:
device_printf(sc->xl_dev, "unknown XCVR type: %d\n",
sc->xl_xcvr);
/*
* This will probably be wrong, but it prevents
* the ifmedia code from panicking.
*/
*media = IFM_ETHER|IFM_10_T;
break;
}
XL_UNLOCK(sc);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
xl_detach(device_t dev)
{
struct xl_softc *sc;
struct ifnet *ifp;
int rid, res;
sc = device_get_softc(dev);
ifp = sc->xl_ifp;
KASSERT(mtx_initialized(&sc->xl_mtx), ("xl mutex not initialized"));
#ifdef DEVICE_POLLING
if (ifp && ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
if (sc->xl_flags & XL_FLAG_USE_MMIO) {
rid = XL_PCI_LOMEM;
res = SYS_RES_MEMORY;
} else {
rid = XL_PCI_LOIO;
res = SYS_RES_IOPORT;
}
/* These should only be active if attach succeeded */
if (device_is_attached(dev)) {
XL_LOCK(sc);
xl_reset(sc);
xl_stop(sc);
XL_UNLOCK(sc);
taskqueue_drain(taskqueue_swi, &sc->xl_task);
callout_drain(&sc->xl_stat_callout);
ether_ifdetach(ifp);
}
if (sc->xl_miibus)
device_delete_child(dev, sc->xl_miibus);
bus_generic_detach(dev);
ifmedia_removeall(&sc->ifmedia);
if (sc->xl_intrhand)
bus_teardown_intr(dev, sc->xl_irq, sc->xl_intrhand);
if (sc->xl_irq)
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->xl_irq);
if (sc->xl_fres != NULL)
bus_release_resource(dev, SYS_RES_MEMORY,
XL_PCI_FUNCMEM, sc->xl_fres);
if (sc->xl_res)
bus_release_resource(dev, res, rid, sc->xl_res);
if (ifp)
if_free(ifp);
if (sc->xl_mtag) {
bus_dmamap_destroy(sc->xl_mtag, sc->xl_tmpmap);
bus_dma_tag_destroy(sc->xl_mtag);
}
if (sc->xl_ldata.xl_rx_tag) {
bus_dmamap_unload(sc->xl_ldata.xl_rx_tag,
sc->xl_ldata.xl_rx_dmamap);
bus_dmamem_free(sc->xl_ldata.xl_rx_tag, sc->xl_ldata.xl_rx_list,
sc->xl_ldata.xl_rx_dmamap);
bus_dma_tag_destroy(sc->xl_ldata.xl_rx_tag);
}
if (sc->xl_ldata.xl_tx_tag) {
bus_dmamap_unload(sc->xl_ldata.xl_tx_tag,
sc->xl_ldata.xl_tx_dmamap);
bus_dmamem_free(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_list,
sc->xl_ldata.xl_tx_dmamap);
bus_dma_tag_destroy(sc->xl_ldata.xl_tx_tag);
}
mtx_destroy(&sc->xl_mtx);
return (0);
}
/*
* Initialize the transmit descriptors.
*/
static int
xl_list_tx_init(struct xl_softc *sc)
{
struct xl_chain_data *cd;
struct xl_list_data *ld;
int error, i;
XL_LOCK_ASSERT(sc);
cd = &sc->xl_cdata;
ld = &sc->xl_ldata;
for (i = 0; i < XL_TX_LIST_CNT; i++) {
cd->xl_tx_chain[i].xl_ptr = &ld->xl_tx_list[i];
error = bus_dmamap_create(sc->xl_mtag, 0,
&cd->xl_tx_chain[i].xl_map);
if (error)
return (error);
cd->xl_tx_chain[i].xl_phys = ld->xl_tx_dmaaddr +
i * sizeof(struct xl_list);
if (i == (XL_TX_LIST_CNT - 1))
cd->xl_tx_chain[i].xl_next = NULL;
else
cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[i + 1];
}
cd->xl_tx_free = &cd->xl_tx_chain[0];
cd->xl_tx_tail = cd->xl_tx_head = NULL;
bus_dmamap_sync(ld->xl_tx_tag, ld->xl_tx_dmamap, BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Initialize the transmit descriptors.
*/
static int
xl_list_tx_init_90xB(struct xl_softc *sc)
{
struct xl_chain_data *cd;
struct xl_list_data *ld;
int error, i;
XL_LOCK_ASSERT(sc);
cd = &sc->xl_cdata;
ld = &sc->xl_ldata;
for (i = 0; i < XL_TX_LIST_CNT; i++) {
cd->xl_tx_chain[i].xl_ptr = &ld->xl_tx_list[i];
error = bus_dmamap_create(sc->xl_mtag, 0,
&cd->xl_tx_chain[i].xl_map);
if (error)
return (error);
cd->xl_tx_chain[i].xl_phys = ld->xl_tx_dmaaddr +
i * sizeof(struct xl_list);
if (i == (XL_TX_LIST_CNT - 1))
cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[0];
else
cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[i + 1];
if (i == 0)
cd->xl_tx_chain[i].xl_prev =
&cd->xl_tx_chain[XL_TX_LIST_CNT - 1];
else
cd->xl_tx_chain[i].xl_prev =
&cd->xl_tx_chain[i - 1];
}
bzero(ld->xl_tx_list, XL_TX_LIST_SZ);
ld->xl_tx_list[0].xl_status = htole32(XL_TXSTAT_EMPTY);
cd->xl_tx_prod = 1;
cd->xl_tx_cons = 1;
cd->xl_tx_cnt = 0;
bus_dmamap_sync(ld->xl_tx_tag, ld->xl_tx_dmamap, BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Initialize the RX descriptors and allocate mbufs for them. Note that
* we arrange the descriptors in a closed ring, so that the last descriptor
* points back to the first.
*/
static int
xl_list_rx_init(struct xl_softc *sc)
{
struct xl_chain_data *cd;
struct xl_list_data *ld;
int error, i, next;
u_int32_t nextptr;
XL_LOCK_ASSERT(sc);
cd = &sc->xl_cdata;
ld = &sc->xl_ldata;
for (i = 0; i < XL_RX_LIST_CNT; i++) {
cd->xl_rx_chain[i].xl_ptr = &ld->xl_rx_list[i];
error = bus_dmamap_create(sc->xl_mtag, 0,
&cd->xl_rx_chain[i].xl_map);
if (error)
return (error);
error = xl_newbuf(sc, &cd->xl_rx_chain[i]);
if (error)
return (error);
if (i == (XL_RX_LIST_CNT - 1))
next = 0;
else
next = i + 1;
nextptr = ld->xl_rx_dmaaddr +
next * sizeof(struct xl_list_onefrag);
cd->xl_rx_chain[i].xl_next = &cd->xl_rx_chain[next];
ld->xl_rx_list[i].xl_next = htole32(nextptr);
}
bus_dmamap_sync(ld->xl_rx_tag, ld->xl_rx_dmamap, BUS_DMASYNC_PREWRITE);
cd->xl_rx_head = &cd->xl_rx_chain[0];
return (0);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
* If we fail to do so, we need to leave the old mbuf and
* the old DMA map untouched so that it can be reused.
*/
static int
xl_newbuf(struct xl_softc *sc, struct xl_chain_onefrag *c)
{
struct mbuf *m_new = NULL;
bus_dmamap_t map;
int error;
u_int32_t baddr;
XL_LOCK_ASSERT(sc);
m_new = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (m_new == NULL)
return (ENOBUFS);
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
/* Force longword alignment for packet payload. */
m_adj(m_new, ETHER_ALIGN);
error = bus_dmamap_load_mbuf(sc->xl_mtag, sc->xl_tmpmap, m_new,
xl_dma_map_rxbuf, &baddr, BUS_DMA_NOWAIT);
if (error) {
m_freem(m_new);
device_printf(sc->xl_dev, "can't map mbuf (error %d)\n",
error);
return (error);
}
bus_dmamap_unload(sc->xl_mtag, c->xl_map);
map = c->xl_map;
c->xl_map = sc->xl_tmpmap;
sc->xl_tmpmap = map;
c->xl_mbuf = m_new;
c->xl_ptr->xl_frag.xl_len = htole32(m_new->m_len | XL_LAST_FRAG);
c->xl_ptr->xl_status = 0;
c->xl_ptr->xl_frag.xl_addr = htole32(baddr);
bus_dmamap_sync(sc->xl_mtag, c->xl_map, BUS_DMASYNC_PREREAD);
return (0);
}
static int
xl_rx_resync(struct xl_softc *sc)
{
struct xl_chain_onefrag *pos;
int i;
XL_LOCK_ASSERT(sc);
pos = sc->xl_cdata.xl_rx_head;
for (i = 0; i < XL_RX_LIST_CNT; i++) {
if (pos->xl_ptr->xl_status)
break;
pos = pos->xl_next;
}
if (i == XL_RX_LIST_CNT)
return (0);
sc->xl_cdata.xl_rx_head = pos;
return (EAGAIN);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void
xl_rxeof(struct xl_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp = sc->xl_ifp;
struct xl_chain_onefrag *cur_rx;
int total_len = 0;
u_int32_t rxstat;
XL_LOCK_ASSERT(sc);
again:
bus_dmamap_sync(sc->xl_ldata.xl_rx_tag, sc->xl_ldata.xl_rx_dmamap,
BUS_DMASYNC_POSTREAD);
while ((rxstat = le32toh(sc->xl_cdata.xl_rx_head->xl_ptr->xl_status))) {
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
if (sc->rxcycles <= 0)
break;
sc->rxcycles--;
}
#endif
cur_rx = sc->xl_cdata.xl_rx_head;
sc->xl_cdata.xl_rx_head = cur_rx->xl_next;
total_len = rxstat & XL_RXSTAT_LENMASK;
/*
* Since we have told the chip to allow large frames,
* we need to trap giant frame errors in software. We allow
* a little more than the normal frame size to account for
* frames with VLAN tags.
*/
if (total_len > XL_MAX_FRAMELEN)
rxstat |= (XL_RXSTAT_UP_ERROR|XL_RXSTAT_OVERSIZE);
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & XL_RXSTAT_UP_ERROR) {
ifp->if_ierrors++;
cur_rx->xl_ptr->xl_status = 0;
bus_dmamap_sync(sc->xl_ldata.xl_rx_tag,
sc->xl_ldata.xl_rx_dmamap, BUS_DMASYNC_PREWRITE);
continue;
}
/*
* If the error bit was not set, the upload complete
* bit should be set which means we have a valid packet.
* If not, something truly strange has happened.
*/
if (!(rxstat & XL_RXSTAT_UP_CMPLT)) {
device_printf(sc->xl_dev,
"bad receive status -- packet dropped\n");
ifp->if_ierrors++;
cur_rx->xl_ptr->xl_status = 0;
bus_dmamap_sync(sc->xl_ldata.xl_rx_tag,
sc->xl_ldata.xl_rx_dmamap, BUS_DMASYNC_PREWRITE);
continue;
}
/* No errors; receive the packet. */
bus_dmamap_sync(sc->xl_mtag, cur_rx->xl_map,
BUS_DMASYNC_POSTREAD);
m = cur_rx->xl_mbuf;
/*
* Try to conjure up a new mbuf cluster. If that
* fails, it means we have an out of memory condition and
* should leave the buffer in place and continue. This will
* result in a lost packet, but there's little else we
* can do in this situation.
*/
if (xl_newbuf(sc, cur_rx)) {
ifp->if_ierrors++;
cur_rx->xl_ptr->xl_status = 0;
bus_dmamap_sync(sc->xl_ldata.xl_rx_tag,
sc->xl_ldata.xl_rx_dmamap, BUS_DMASYNC_PREWRITE);
continue;
}
bus_dmamap_sync(sc->xl_ldata.xl_rx_tag,
sc->xl_ldata.xl_rx_dmamap, BUS_DMASYNC_PREWRITE);
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
if (ifp->if_capenable & IFCAP_RXCSUM) {
/* Do IP checksum checking. */
if (rxstat & XL_RXSTAT_IPCKOK)
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
if (!(rxstat & XL_RXSTAT_IPCKERR))
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
if ((rxstat & XL_RXSTAT_TCPCOK &&
!(rxstat & XL_RXSTAT_TCPCKERR)) ||
(rxstat & XL_RXSTAT_UDPCKOK &&
!(rxstat & XL_RXSTAT_UDPCKERR))) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
XL_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
XL_LOCK(sc);
/*
* If we are running from the taskqueue, the interface
* might have been stopped while we were passing the last
* packet up the network stack.
*/
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
return;
}
/*
* Handle the 'end of channel' condition. When the upload
* engine hits the end of the RX ring, it will stall. This
* is our cue to flush the RX ring, reload the uplist pointer
* register and unstall the engine.
* XXX This is actually a little goofy. With the ThunderLAN
* chip, you get an interrupt when the receiver hits the end
* of the receive ring, which tells you exactly when you
* you need to reload the ring pointer. Here we have to
* fake it. I'm mad at myself for not being clever enough
* to avoid the use of a goto here.
*/
if (CSR_READ_4(sc, XL_UPLIST_PTR) == 0 ||
CSR_READ_4(sc, XL_UPLIST_STATUS) & XL_PKTSTAT_UP_STALLED) {
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL);
xl_wait(sc);
CSR_WRITE_4(sc, XL_UPLIST_PTR, sc->xl_ldata.xl_rx_dmaaddr);
sc->xl_cdata.xl_rx_head = &sc->xl_cdata.xl_rx_chain[0];
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL);
goto again;
}
}
/*
* Taskqueue wrapper for xl_rxeof().
*/
static void
xl_rxeof_task(void *arg, int pending)
{
struct xl_softc *sc = (struct xl_softc *)arg;
NET_LOCK_GIANT();
XL_LOCK(sc);
if (sc->xl_ifp->if_drv_flags & IFF_DRV_RUNNING)
xl_rxeof(sc);
XL_UNLOCK(sc);
NET_UNLOCK_GIANT();
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
xl_txeof(struct xl_softc *sc)
{
struct xl_chain *cur_tx;
struct ifnet *ifp = sc->xl_ifp;
XL_LOCK_ASSERT(sc);
/*
* Go through our tx list and free mbufs for those
* frames that have been uploaded. Note: the 3c905B
* sets a special bit in the status word to let us
* know that a frame has been downloaded, but the
* original 3c900/3c905 adapters don't do that.
* Consequently, we have to use a different test if
* xl_type != XL_TYPE_905B.
*/
while (sc->xl_cdata.xl_tx_head != NULL) {
cur_tx = sc->xl_cdata.xl_tx_head;
if (CSR_READ_4(sc, XL_DOWNLIST_PTR))
break;
sc->xl_cdata.xl_tx_head = cur_tx->xl_next;
bus_dmamap_sync(sc->xl_mtag, cur_tx->xl_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->xl_mtag, cur_tx->xl_map);
m_freem(cur_tx->xl_mbuf);
cur_tx->xl_mbuf = NULL;
ifp->if_opackets++;
cur_tx->xl_next = sc->xl_cdata.xl_tx_free;
sc->xl_cdata.xl_tx_free = cur_tx;
}
if (sc->xl_cdata.xl_tx_head == NULL) {
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->xl_wdog_timer = 0;
sc->xl_cdata.xl_tx_tail = NULL;
} else {
if (CSR_READ_4(sc, XL_DMACTL) & XL_DMACTL_DOWN_STALLED ||
!CSR_READ_4(sc, XL_DOWNLIST_PTR)) {
CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
sc->xl_cdata.xl_tx_head->xl_phys);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
}
}
}
static void
xl_txeof_90xB(struct xl_softc *sc)
{
struct xl_chain *cur_tx = NULL;
struct ifnet *ifp = sc->xl_ifp;
int idx;
XL_LOCK_ASSERT(sc);
bus_dmamap_sync(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_dmamap,
BUS_DMASYNC_POSTREAD);
idx = sc->xl_cdata.xl_tx_cons;
while (idx != sc->xl_cdata.xl_tx_prod) {
cur_tx = &sc->xl_cdata.xl_tx_chain[idx];
if (!(le32toh(cur_tx->xl_ptr->xl_status) &
XL_TXSTAT_DL_COMPLETE))
break;
if (cur_tx->xl_mbuf != NULL) {
bus_dmamap_sync(sc->xl_mtag, cur_tx->xl_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->xl_mtag, cur_tx->xl_map);
m_freem(cur_tx->xl_mbuf);
cur_tx->xl_mbuf = NULL;
}
ifp->if_opackets++;
sc->xl_cdata.xl_tx_cnt--;
XL_INC(idx, XL_TX_LIST_CNT);
}
if (sc->xl_cdata.xl_tx_cnt == 0)
sc->xl_wdog_timer = 0;
sc->xl_cdata.xl_tx_cons = idx;
if (cur_tx != NULL)
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
/*
* TX 'end of channel' interrupt handler. Actually, we should
* only get a 'TX complete' interrupt if there's a transmit error,
* so this is really TX error handler.
*/
static void
xl_txeoc(struct xl_softc *sc)
{
u_int8_t txstat;
XL_LOCK_ASSERT(sc);
while ((txstat = CSR_READ_1(sc, XL_TX_STATUS))) {
if (txstat & XL_TXSTATUS_UNDERRUN ||
txstat & XL_TXSTATUS_JABBER ||
txstat & XL_TXSTATUS_RECLAIM) {
device_printf(sc->xl_dev,
"transmission error: %x\n", txstat);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
xl_wait(sc);
if (sc->xl_type == XL_TYPE_905B) {
if (sc->xl_cdata.xl_tx_cnt) {
int i;
struct xl_chain *c;
i = sc->xl_cdata.xl_tx_cons;
c = &sc->xl_cdata.xl_tx_chain[i];
CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
c->xl_phys);
CSR_WRITE_1(sc, XL_DOWN_POLL, 64);
}
} else {
if (sc->xl_cdata.xl_tx_head != NULL)
CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
sc->xl_cdata.xl_tx_head->xl_phys);
}
/*
* Remember to set this for the
* first generation 3c90X chips.
*/
CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8);
if (txstat & XL_TXSTATUS_UNDERRUN &&
sc->xl_tx_thresh < XL_PACKET_SIZE) {
sc->xl_tx_thresh += XL_MIN_FRAMELEN;
device_printf(sc->xl_dev,
"tx underrun, increasing tx start threshold to %d bytes\n", sc->xl_tx_thresh);
}
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_TX_SET_START|sc->xl_tx_thresh);
if (sc->xl_type == XL_TYPE_905B) {
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4));
}
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
} else {
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
}
/*
* Write an arbitrary byte to the TX_STATUS register
* to clear this interrupt/error and advance to the next.
*/
CSR_WRITE_1(sc, XL_TX_STATUS, 0x01);
}
}
static void
xl_intr(void *arg)
{
struct xl_softc *sc = arg;
struct ifnet *ifp = sc->xl_ifp;
u_int16_t status;
XL_LOCK(sc);
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
XL_UNLOCK(sc);
return;
}
#endif
while ((status = CSR_READ_2(sc, XL_STATUS)) & XL_INTRS &&
status != 0xFFFF) {
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_INTR_ACK|(status & XL_INTRS));
if (status & XL_STAT_UP_COMPLETE) {
int curpkts;
curpkts = ifp->if_ipackets;
xl_rxeof(sc);
if (curpkts == ifp->if_ipackets) {
while (xl_rx_resync(sc))
xl_rxeof(sc);
}
}
if (status & XL_STAT_DOWN_COMPLETE) {
if (sc->xl_type == XL_TYPE_905B)
xl_txeof_90xB(sc);
else
xl_txeof(sc);
}
if (status & XL_STAT_TX_COMPLETE) {
ifp->if_oerrors++;
xl_txeoc(sc);
}
if (status & XL_STAT_ADFAIL) {
xl_reset(sc);
xl_init_locked(sc);
}
if (status & XL_STAT_STATSOFLOW) {
sc->xl_stats_no_timeout = 1;
xl_stats_update_locked(sc);
sc->xl_stats_no_timeout = 0;
}
}
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
if (sc->xl_type == XL_TYPE_905B)
xl_start_90xB_locked(ifp);
else
xl_start_locked(ifp);
}
XL_UNLOCK(sc);
}
#ifdef DEVICE_POLLING
static void
xl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct xl_softc *sc = ifp->if_softc;
XL_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
xl_poll_locked(ifp, cmd, count);
XL_UNLOCK(sc);
}
static void
xl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct xl_softc *sc = ifp->if_softc;
XL_LOCK_ASSERT(sc);
sc->rxcycles = count;
xl_rxeof(sc);
if (sc->xl_type == XL_TYPE_905B)
xl_txeof_90xB(sc);
else
xl_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
if (sc->xl_type == XL_TYPE_905B)
xl_start_90xB_locked(ifp);
else
xl_start_locked(ifp);
}
if (cmd == POLL_AND_CHECK_STATUS) {
u_int16_t status;
status = CSR_READ_2(sc, XL_STATUS);
if (status & XL_INTRS && status != 0xFFFF) {
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_INTR_ACK|(status & XL_INTRS));
if (status & XL_STAT_TX_COMPLETE) {
ifp->if_oerrors++;
xl_txeoc(sc);
}
if (status & XL_STAT_ADFAIL) {
xl_reset(sc);
xl_init_locked(sc);
}
if (status & XL_STAT_STATSOFLOW) {
sc->xl_stats_no_timeout = 1;
xl_stats_update_locked(sc);
sc->xl_stats_no_timeout = 0;
}
}
}
}
#endif /* DEVICE_POLLING */
/*
* XXX: This is an entry point for callout which needs to take the lock.
*/
static void
xl_stats_update(void *xsc)
{
struct xl_softc *sc = xsc;
XL_LOCK_ASSERT(sc);
if (xl_watchdog(sc) == EJUSTRETURN)
return;
xl_stats_update_locked(sc);
}
static void
xl_stats_update_locked(struct xl_softc *sc)
{
struct ifnet *ifp = sc->xl_ifp;
struct xl_stats xl_stats;
u_int8_t *p;
int i;
struct mii_data *mii = NULL;
XL_LOCK_ASSERT(sc);
bzero((char *)&xl_stats, sizeof(struct xl_stats));
if (sc->xl_miibus != NULL)
mii = device_get_softc(sc->xl_miibus);
p = (u_int8_t *)&xl_stats;
/* Read all the stats registers. */
XL_SEL_WIN(6);
for (i = 0; i < 16; i++)
*p++ = CSR_READ_1(sc, XL_W6_CARRIER_LOST + i);
ifp->if_ierrors += xl_stats.xl_rx_overrun;
ifp->if_collisions += xl_stats.xl_tx_multi_collision +
xl_stats.xl_tx_single_collision + xl_stats.xl_tx_late_collision;
/*
* Boomerang and cyclone chips have an extra stats counter
* in window 4 (BadSSD). We have to read this too in order
* to clear out all the stats registers and avoid a statsoflow
* interrupt.
*/
XL_SEL_WIN(4);
CSR_READ_1(sc, XL_W4_BADSSD);
if ((mii != NULL) && (!sc->xl_stats_no_timeout))
mii_tick(mii);
XL_SEL_WIN(7);
if (!sc->xl_stats_no_timeout)
callout_reset(&sc->xl_stat_callout, hz, xl_stats_update, sc);
}
/*
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
* pointers to the fragment pointers.
*/
static int
xl_encap(struct xl_softc *sc, struct xl_chain *c, struct mbuf *m_head)
{
int error;
u_int32_t status;
struct ifnet *ifp = sc->xl_ifp;
XL_LOCK_ASSERT(sc);
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
error = bus_dmamap_load_mbuf(sc->xl_mtag, c->xl_map, m_head,
xl_dma_map_txbuf, c->xl_ptr, BUS_DMA_NOWAIT);
if (error && error != EFBIG) {
m_freem(m_head);
if_printf(ifp, "can't map mbuf (error %d)\n", error);
return (1);
}
/*
* Handle special case: we used up all 63 fragments,
* but we have more mbufs left in the chain. Copy the
* data into an mbuf cluster. Note that we don't
* bother clearing the values in the other fragment
* pointers/counters; it wouldn't gain us anything,
* and would waste cycles.
*/
if (error) {
struct mbuf *m_new;
m_new = m_defrag(m_head, M_DONTWAIT);
if (m_new == NULL) {
m_freem(m_head);
return (1);
} else {
m_head = m_new;
}
error = bus_dmamap_load_mbuf(sc->xl_mtag, c->xl_map,
m_head, xl_dma_map_txbuf, c->xl_ptr, BUS_DMA_NOWAIT);
if (error) {
m_freem(m_head);
if_printf(ifp, "can't map mbuf (error %d)\n", error);
return (1);
}
}
if (sc->xl_type == XL_TYPE_905B) {
status = XL_TXSTAT_RND_DEFEAT;
#ifndef XL905B_TXCSUM_BROKEN
if (m_head->m_pkthdr.csum_flags) {
if (m_head->m_pkthdr.csum_flags & CSUM_IP)
status |= XL_TXSTAT_IPCKSUM;
if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
status |= XL_TXSTAT_TCPCKSUM;
if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
status |= XL_TXSTAT_UDPCKSUM;
}
#endif
c->xl_ptr->xl_status = htole32(status);
}
c->xl_mbuf = m_head;
bus_dmamap_sync(sc->xl_mtag, c->xl_map, BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void
xl_start(struct ifnet *ifp)
{
struct xl_softc *sc = ifp->if_softc;
XL_LOCK(sc);
if (sc->xl_type == XL_TYPE_905B)
xl_start_90xB_locked(ifp);
else
xl_start_locked(ifp);
XL_UNLOCK(sc);
}
static void
xl_start_locked(struct ifnet *ifp)
{
struct xl_softc *sc = ifp->if_softc;
struct mbuf *m_head = NULL;
struct xl_chain *prev = NULL, *cur_tx = NULL, *start_tx;
struct xl_chain *prev_tx;
u_int32_t status;
int error;
XL_LOCK_ASSERT(sc);
/*
* Check for an available queue slot. If there are none,
* punt.
*/
if (sc->xl_cdata.xl_tx_free == NULL) {
xl_txeoc(sc);
xl_txeof(sc);
if (sc->xl_cdata.xl_tx_free == NULL) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
return;
}
}
start_tx = sc->xl_cdata.xl_tx_free;
while (sc->xl_cdata.xl_tx_free != NULL) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/* Pick a descriptor off the free list. */
prev_tx = cur_tx;
cur_tx = sc->xl_cdata.xl_tx_free;
/* Pack the data into the descriptor. */
error = xl_encap(sc, cur_tx, m_head);
if (error) {
cur_tx = prev_tx;
continue;
}
sc->xl_cdata.xl_tx_free = cur_tx->xl_next;
cur_tx->xl_next = NULL;
/* Chain it together. */
if (prev != NULL) {
prev->xl_next = cur_tx;
prev->xl_ptr->xl_next = htole32(cur_tx->xl_phys);
}
prev = cur_tx;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, cur_tx->xl_mbuf);
}
/*
* If there are no packets queued, bail.
*/
if (cur_tx == NULL)
return;
/*
* Place the request for the upload interrupt
* in the last descriptor in the chain. This way, if
* we're chaining several packets at once, we'll only
* get an interupt once for the whole chain rather than
* once for each packet.
*/
cur_tx->xl_ptr->xl_status = htole32(le32toh(cur_tx->xl_ptr->xl_status) |
XL_TXSTAT_DL_INTR);
bus_dmamap_sync(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_dmamap,
BUS_DMASYNC_PREWRITE);
/*
* Queue the packets. If the TX channel is clear, update
* the downlist pointer register.
*/
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_STALL);
xl_wait(sc);
if (sc->xl_cdata.xl_tx_head != NULL) {
sc->xl_cdata.xl_tx_tail->xl_next = start_tx;
sc->xl_cdata.xl_tx_tail->xl_ptr->xl_next =
htole32(start_tx->xl_phys);
status = sc->xl_cdata.xl_tx_tail->xl_ptr->xl_status;
sc->xl_cdata.xl_tx_tail->xl_ptr->xl_status =
htole32(le32toh(status) & ~XL_TXSTAT_DL_INTR);
sc->xl_cdata.xl_tx_tail = cur_tx;
} else {
sc->xl_cdata.xl_tx_head = start_tx;
sc->xl_cdata.xl_tx_tail = cur_tx;
}
if (!CSR_READ_4(sc, XL_DOWNLIST_PTR))
CSR_WRITE_4(sc, XL_DOWNLIST_PTR, start_tx->xl_phys);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
XL_SEL_WIN(7);
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->xl_wdog_timer = 5;
/*
* XXX Under certain conditions, usually on slower machines
* where interrupts may be dropped, it's possible for the
* adapter to chew up all the buffers in the receive ring
* and stall, without us being able to do anything about it.
* To guard against this, we need to make a pass over the
* RX queue to make sure there aren't any packets pending.
* Doing it here means we can flush the receive ring at the
* same time the chip is DMAing the transmit descriptors we
* just gave it.
*
* 3Com goes to some lengths to emphasize the Parallel Tasking (tm)
* nature of their chips in all their marketing literature;
* we may as well take advantage of it. :)
*/
taskqueue_enqueue(taskqueue_swi, &sc->xl_task);
}
static void
xl_start_90xB_locked(struct ifnet *ifp)
{
struct xl_softc *sc = ifp->if_softc;
struct mbuf *m_head = NULL;
struct xl_chain *prev = NULL, *cur_tx = NULL, *start_tx;
struct xl_chain *prev_tx;
int error, idx;
XL_LOCK_ASSERT(sc);
if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
return;
idx = sc->xl_cdata.xl_tx_prod;
start_tx = &sc->xl_cdata.xl_tx_chain[idx];
while (sc->xl_cdata.xl_tx_chain[idx].xl_mbuf == NULL) {
if ((XL_TX_LIST_CNT - sc->xl_cdata.xl_tx_cnt) < 3) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
prev_tx = cur_tx;
cur_tx = &sc->xl_cdata.xl_tx_chain[idx];
/* Pack the data into the descriptor. */
error = xl_encap(sc, cur_tx, m_head);
if (error) {
cur_tx = prev_tx;
continue;
}
/* Chain it together. */
if (prev != NULL)
prev->xl_ptr->xl_next = htole32(cur_tx->xl_phys);
prev = cur_tx;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
BPF_MTAP(ifp, cur_tx->xl_mbuf);
XL_INC(idx, XL_TX_LIST_CNT);
sc->xl_cdata.xl_tx_cnt++;
}
/*
* If there are no packets queued, bail.
*/
if (cur_tx == NULL)
return;
/*
* Place the request for the upload interrupt
* in the last descriptor in the chain. This way, if
* we're chaining several packets at once, we'll only
* get an interupt once for the whole chain rather than
* once for each packet.
*/
cur_tx->xl_ptr->xl_status = htole32(le32toh(cur_tx->xl_ptr->xl_status) |
XL_TXSTAT_DL_INTR);
bus_dmamap_sync(sc->xl_ldata.xl_tx_tag, sc->xl_ldata.xl_tx_dmamap,
BUS_DMASYNC_PREWRITE);
/* Start transmission */
sc->xl_cdata.xl_tx_prod = idx;
start_tx->xl_prev->xl_ptr->xl_next = htole32(start_tx->xl_phys);
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->xl_wdog_timer = 5;
}
static void
xl_init(void *xsc)
{
struct xl_softc *sc = xsc;
XL_LOCK(sc);
xl_init_locked(sc);
XL_UNLOCK(sc);
}
static void
xl_init_locked(struct xl_softc *sc)
{
struct ifnet *ifp = sc->xl_ifp;
int error, i;
u_int16_t rxfilt = 0;
struct mii_data *mii = NULL;
XL_LOCK_ASSERT(sc);
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
xl_stop(sc);
if (sc->xl_miibus == NULL) {
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
xl_wait(sc);
}
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
xl_wait(sc);
DELAY(10000);
if (sc->xl_miibus != NULL)
mii = device_get_softc(sc->xl_miibus);
/* Init our MAC address */
XL_SEL_WIN(2);
for (i = 0; i < ETHER_ADDR_LEN; i++) {
CSR_WRITE_1(sc, XL_W2_STATION_ADDR_LO + i,
IF_LLADDR(sc->xl_ifp)[i]);
}
/* Clear the station mask. */
for (i = 0; i < 3; i++)
CSR_WRITE_2(sc, XL_W2_STATION_MASK_LO + (i * 2), 0);
#ifdef notdef
/* Reset TX and RX. */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
xl_wait(sc);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
xl_wait(sc);
#endif
/* Init circular RX list. */
error = xl_list_rx_init(sc);
if (error) {
device_printf(sc->xl_dev, "initialization of the rx ring failed (%d)\n",
error);
xl_stop(sc);
return;
}
/* Init TX descriptors. */
if (sc->xl_type == XL_TYPE_905B)
error = xl_list_tx_init_90xB(sc);
else
error = xl_list_tx_init(sc);
if (error) {
device_printf(sc->xl_dev, "initialization of the tx ring failed (%d)\n",
error);
xl_stop(sc);
return;
}
/*
* Set the TX freethresh value.
* Note that this has no effect on 3c905B "cyclone"
* cards but is required for 3c900/3c905 "boomerang"
* cards in order to enable the download engine.
*/
CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8);
/* Set the TX start threshold for best performance. */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_SET_START|sc->xl_tx_thresh);
/*
* If this is a 3c905B, also set the tx reclaim threshold.
* This helps cut down on the number of tx reclaim errors
* that could happen on a busy network. The chip multiplies
* the register value by 16 to obtain the actual threshold
* in bytes, so we divide by 16 when setting the value here.
* The existing threshold value can be examined by reading
* the register at offset 9 in window 5.
*/
if (sc->xl_type == XL_TYPE_905B) {
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4));
}
/* Set RX filter bits. */
XL_SEL_WIN(5);
rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
/* Set the individual bit to receive frames for this host only. */
rxfilt |= XL_RXFILTER_INDIVIDUAL;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
rxfilt |= XL_RXFILTER_ALLFRAMES;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
} else {
rxfilt &= ~XL_RXFILTER_ALLFRAMES;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
}
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
rxfilt |= XL_RXFILTER_BROADCAST;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
} else {
rxfilt &= ~XL_RXFILTER_BROADCAST;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt);
}
/*
* Program the multicast filter, if necessary.
*/
if (sc->xl_type == XL_TYPE_905B)
xl_setmulti_hash(sc);
else
xl_setmulti(sc);
/*
* Load the address of the RX list. We have to
* stall the upload engine before we can manipulate
* the uplist pointer register, then unstall it when
* we're finished. We also have to wait for the
* stall command to complete before proceeding.
* Note that we have to do this after any RX resets
* have completed since the uplist register is cleared
* by a reset.
*/
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL);
xl_wait(sc);
CSR_WRITE_4(sc, XL_UPLIST_PTR, sc->xl_ldata.xl_rx_dmaaddr);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL);
xl_wait(sc);
if (sc->xl_type == XL_TYPE_905B) {
/* Set polling interval */
CSR_WRITE_1(sc, XL_DOWN_POLL, 64);
/* Load the address of the TX list */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_STALL);
xl_wait(sc);
CSR_WRITE_4(sc, XL_DOWNLIST_PTR,
sc->xl_cdata.xl_tx_chain[0].xl_phys);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL);
xl_wait(sc);
}
/*
* If the coax transceiver is on, make sure to enable
* the DC-DC converter.
*/
XL_SEL_WIN(3);
if (sc->xl_xcvr == XL_XCVR_COAX)
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START);
else
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
/*
* increase packet size to allow reception of 802.1q or ISL packets.
* For the 3c90x chip, set the 'allow large packets' bit in the MAC
* control register. For 3c90xB/C chips, use the RX packet size
* register.
*/
if (sc->xl_type == XL_TYPE_905B)
CSR_WRITE_2(sc, XL_W3_MAXPKTSIZE, XL_PACKET_SIZE);
else {
u_int8_t macctl;
macctl = CSR_READ_1(sc, XL_W3_MAC_CTRL);
macctl |= XL_MACCTRL_ALLOW_LARGE_PACK;
CSR_WRITE_1(sc, XL_W3_MAC_CTRL, macctl);
}
/* Clear out the stats counters. */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE);
sc->xl_stats_no_timeout = 1;
xl_stats_update_locked(sc);
sc->xl_stats_no_timeout = 0;
XL_SEL_WIN(4);
CSR_WRITE_2(sc, XL_W4_NET_DIAG, XL_NETDIAG_UPPER_BYTES_ENABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_ENABLE);
/*
* Enable interrupts.
*/
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|0xFF);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STAT_ENB|XL_INTRS);
#ifdef DEVICE_POLLING
/* Disable interrupts if we are polling. */
if (ifp->if_capenable & IFCAP_POLLING)
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|0);
else
#endif
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|XL_INTRS);
if (sc->xl_flags & XL_FLAG_FUNCREG)
bus_space_write_4(sc->xl_ftag, sc->xl_fhandle, 4, 0x8000);
/* Set the RX early threshold */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_THRESH|(XL_PACKET_SIZE >>2));
CSR_WRITE_2(sc, XL_DMACTL, XL_DMACTL_UP_RX_EARLY);
/* Enable receiver and transmitter. */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE);
xl_wait(sc);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_ENABLE);
xl_wait(sc);
/* XXX Downcall to miibus. */
if (mii != NULL)
mii_mediachg(mii);
/* Select window 7 for normal operations. */
XL_SEL_WIN(7);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->xl_wdog_timer = 0;
callout_reset(&sc->xl_stat_callout, hz, xl_stats_update, sc);
}
/*
* Set media options.
*/
static int
xl_ifmedia_upd(struct ifnet *ifp)
{
struct xl_softc *sc = ifp->if_softc;
struct ifmedia *ifm = NULL;
struct mii_data *mii = NULL;
XL_LOCK(sc);
if (sc->xl_miibus != NULL)
mii = device_get_softc(sc->xl_miibus);
if (mii == NULL)
ifm = &sc->ifmedia;
else
ifm = &mii->mii_media;
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_100_FX:
case IFM_10_FL:
case IFM_10_2:
case IFM_10_5:
xl_setmode(sc, ifm->ifm_media);
return (0);
break;
default:
break;
}
if (sc->xl_media & XL_MEDIAOPT_MII ||
sc->xl_media & XL_MEDIAOPT_BTX ||
sc->xl_media & XL_MEDIAOPT_BT4) {
xl_init_locked(sc);
} else {
xl_setmode(sc, ifm->ifm_media);
}
XL_UNLOCK(sc);
return (0);
}
/*
* Report current media status.
*/
static void
xl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct xl_softc *sc = ifp->if_softc;
u_int32_t icfg;
u_int16_t status = 0;
struct mii_data *mii = NULL;
XL_LOCK(sc);
if (sc->xl_miibus != NULL)
mii = device_get_softc(sc->xl_miibus);
XL_SEL_WIN(4);
status = CSR_READ_2(sc, XL_W4_MEDIA_STATUS);
XL_SEL_WIN(3);
icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG) & XL_ICFG_CONNECTOR_MASK;
icfg >>= XL_ICFG_CONNECTOR_BITS;
ifmr->ifm_active = IFM_ETHER;
ifmr->ifm_status = IFM_AVALID;
if ((status & XL_MEDIASTAT_CARRIER) == 0)
ifmr->ifm_status |= IFM_ACTIVE;
switch (icfg) {
case XL_XCVR_10BT:
ifmr->ifm_active = IFM_ETHER|IFM_10_T;
if (CSR_READ_1(sc, XL_W3_MAC_CTRL) & XL_MACCTRL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
break;
case XL_XCVR_AUI:
if (sc->xl_type == XL_TYPE_905B &&
sc->xl_media == XL_MEDIAOPT_10FL) {
ifmr->ifm_active = IFM_ETHER|IFM_10_FL;
if (CSR_READ_1(sc, XL_W3_MAC_CTRL) & XL_MACCTRL_DUPLEX)
ifmr->ifm_active |= IFM_FDX;
else
ifmr->ifm_active |= IFM_HDX;
} else
ifmr->ifm_active = IFM_ETHER|IFM_10_5;
break;
case XL_XCVR_COAX:
ifmr->ifm_active = IFM_ETHER|IFM_10_2;
break;
/*
* XXX MII and BTX/AUTO should be separate cases.
*/
case XL_XCVR_100BTX:
case XL_XCVR_AUTO:
case XL_XCVR_MII:
if (mii != NULL) {
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
}
break;
case XL_XCVR_100BFX:
ifmr->ifm_active = IFM_ETHER|IFM_100_FX;
break;
default:
if_printf(ifp, "unknown XCVR type: %d\n", icfg);
break;
}
XL_UNLOCK(sc);
}
static int
xl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct xl_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0;
struct mii_data *mii = NULL;
u_int8_t rxfilt;
switch (command) {
case SIOCSIFFLAGS:
XL_LOCK(sc);
XL_SEL_WIN(5);
rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->xl_if_flags & IFF_PROMISC)) {
rxfilt |= XL_RXFILTER_ALLFRAMES;
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_RX_SET_FILT|rxfilt);
XL_SEL_WIN(7);
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->xl_if_flags & IFF_PROMISC) {
rxfilt &= ~XL_RXFILTER_ALLFRAMES;
CSR_WRITE_2(sc, XL_COMMAND,
XL_CMD_RX_SET_FILT|rxfilt);
XL_SEL_WIN(7);
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
xl_init_locked(sc);
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
xl_stop(sc);
}
sc->xl_if_flags = ifp->if_flags;
XL_UNLOCK(sc);
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* XXX Downcall from if_addmulti() possibly with locks held. */
XL_LOCK(sc);
if (sc->xl_type == XL_TYPE_905B)
xl_setmulti_hash(sc);
else
xl_setmulti(sc);
XL_UNLOCK(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
if (sc->xl_miibus != NULL)
mii = device_get_softc(sc->xl_miibus);
if (mii == NULL)
error = ifmedia_ioctl(ifp, ifr,
&sc->ifmedia, command);
else
error = ifmedia_ioctl(ifp, ifr,
&mii->mii_media, command);
break;
case SIOCSIFCAP:
#ifdef DEVICE_POLLING
if (ifr->ifr_reqcap & IFCAP_POLLING &&
!(ifp->if_capenable & IFCAP_POLLING)) {
error = ether_poll_register(xl_poll, ifp);
if (error)
return(error);
XL_LOCK(sc);
/* Disable interrupts */
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|0);
ifp->if_capenable |= IFCAP_POLLING;
XL_UNLOCK(sc);
return (error);
}
if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
ifp->if_capenable & IFCAP_POLLING) {
error = ether_poll_deregister(ifp);
/* Enable interrupts. */
XL_LOCK(sc);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|0xFF);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|XL_INTRS);
if (sc->xl_flags & XL_FLAG_FUNCREG)
bus_space_write_4(sc->xl_ftag, sc->xl_fhandle,
4, 0x8000);
ifp->if_capenable &= ~IFCAP_POLLING;
XL_UNLOCK(sc);
return (error);
}
#endif /* DEVICE_POLLING */
XL_LOCK(sc);
ifp->if_capenable = ifr->ifr_reqcap;
if (ifp->if_capenable & IFCAP_TXCSUM)
ifp->if_hwassist = XL905B_CSUM_FEATURES;
else
ifp->if_hwassist = 0;
XL_UNLOCK(sc);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static int
xl_watchdog(struct xl_softc *sc)
{
struct ifnet *ifp = sc->xl_ifp;
u_int16_t status = 0;
XL_LOCK_ASSERT(sc);
if (sc->xl_wdog_timer == 0 || --sc->xl_wdog_timer != 0)
return (0);
ifp->if_oerrors++;
XL_SEL_WIN(4);
status = CSR_READ_2(sc, XL_W4_MEDIA_STATUS);
device_printf(sc->xl_dev, "watchdog timeout\n");
if (status & XL_MEDIASTAT_CARRIER)
device_printf(sc->xl_dev,
"no carrier - transceiver cable problem?\n");
xl_txeoc(sc);
xl_txeof(sc);
xl_rxeof(sc);
xl_reset(sc);
xl_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
if (sc->xl_type == XL_TYPE_905B)
xl_start_90xB_locked(ifp);
else
xl_start_locked(ifp);
}
return (EJUSTRETURN);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
xl_stop(struct xl_softc *sc)
{
register int i;
struct ifnet *ifp = sc->xl_ifp;
XL_LOCK_ASSERT(sc);
sc->xl_wdog_timer = 0;
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISCARD);
xl_wait(sc);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_DISABLE);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP);
DELAY(800);
#ifdef foo
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET);
xl_wait(sc);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET);
xl_wait(sc);
#endif
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|XL_STAT_INTLATCH);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STAT_ENB|0);
CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|0);
if (sc->xl_flags & XL_FLAG_FUNCREG)
bus_space_write_4(sc->xl_ftag, sc->xl_fhandle, 4, 0x8000);
/* Stop the stats updater. */
callout_stop(&sc->xl_stat_callout);
/*
* Free data in the RX lists.
*/
for (i = 0; i < XL_RX_LIST_CNT; i++) {
if (sc->xl_cdata.xl_rx_chain[i].xl_mbuf != NULL) {
bus_dmamap_unload(sc->xl_mtag,
sc->xl_cdata.xl_rx_chain[i].xl_map);
bus_dmamap_destroy(sc->xl_mtag,
sc->xl_cdata.xl_rx_chain[i].xl_map);
m_freem(sc->xl_cdata.xl_rx_chain[i].xl_mbuf);
sc->xl_cdata.xl_rx_chain[i].xl_mbuf = NULL;
}
}
if (sc->xl_ldata.xl_rx_list != NULL)
bzero(sc->xl_ldata.xl_rx_list, XL_RX_LIST_SZ);
/*
* Free the TX list buffers.
*/
for (i = 0; i < XL_TX_LIST_CNT; i++) {
if (sc->xl_cdata.xl_tx_chain[i].xl_mbuf != NULL) {
bus_dmamap_unload(sc->xl_mtag,
sc->xl_cdata.xl_tx_chain[i].xl_map);
bus_dmamap_destroy(sc->xl_mtag,
sc->xl_cdata.xl_tx_chain[i].xl_map);
m_freem(sc->xl_cdata.xl_tx_chain[i].xl_mbuf);
sc->xl_cdata.xl_tx_chain[i].xl_mbuf = NULL;
}
}
if (sc->xl_ldata.xl_tx_list != NULL)
bzero(sc->xl_ldata.xl_tx_list, XL_TX_LIST_SZ);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
xl_shutdown(device_t dev)
{
struct xl_softc *sc;
sc = device_get_softc(dev);
XL_LOCK(sc);
xl_reset(sc);
xl_stop(sc);
XL_UNLOCK(sc);
}
static int
xl_suspend(device_t dev)
{
struct xl_softc *sc;
sc = device_get_softc(dev);
XL_LOCK(sc);
xl_stop(sc);
XL_UNLOCK(sc);
return (0);
}
static int
xl_resume(device_t dev)
{
struct xl_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
ifp = sc->xl_ifp;
XL_LOCK(sc);
xl_reset(sc);
if (ifp->if_flags & IFF_UP)
xl_init_locked(sc);
XL_UNLOCK(sc);
return (0);
}