freebsd-skq/sys/boot/fdt/fdt_loader_cmd.c
ian 43dd7e1f06 Add a feature for automatically finding and loading a dtb file by name.
The name is taken from the u-boot env vars fdtfile or fdt_file.  If the
name isn't fully-qualified a search is done in module_path locations.

The search order for a usable dtb in fdt_setup_fdtp() is now

 - A dtb loaded with an explicit "load -t dtb" command.
 - A dtb already loaded into memory somehow[*] and pointed to by fdt_to_load.
 - A dtb in the memory pointed to by the u-boot env vars fdtaddr or fdt_addr.
 - A file named by the u-boot env vars fdtfile or fdt_file.
 - A static dtb compiled into the kernel.

* Presumably by some arch-specific command or code.
2014-02-22 22:18:20 +00:00

1698 lines
36 KiB
C

/*-
* Copyright (c) 2009-2010 The FreeBSD Foundation
* All rights reserved.
*
* This software was developed by Semihalf under sponsorship from
* the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <stand.h>
#include <fdt.h>
#include <libfdt.h>
#include <sys/param.h>
#include <sys/linker.h>
#include <machine/elf.h>
#include "bootstrap.h"
#include "glue.h"
#ifdef DEBUG
#define debugf(fmt, args...) do { printf("%s(): ", __func__); \
printf(fmt,##args); } while (0)
#else
#define debugf(fmt, args...)
#endif
#define FDT_CWD_LEN 256
#define FDT_MAX_DEPTH 6
#define FDT_PROP_SEP " = "
#define STR(number) #number
#define STRINGIFY(number) STR(number)
#define COPYOUT(s,d,l) archsw.arch_copyout(s, d, l)
#define COPYIN(s,d,l) archsw.arch_copyin(s, d, l)
#define FDT_STATIC_DTB_SYMBOL "fdt_static_dtb"
#define CMD_REQUIRES_BLOB 0x01
/* Location of FDT yet to be loaded. */
/* This may be in read-only memory, so can't be manipulated directly. */
static struct fdt_header *fdt_to_load = NULL;
/* Location of FDT on heap. */
/* This is the copy we actually manipulate. */
static struct fdt_header *fdtp = NULL;
/* Size of FDT blob */
static size_t fdtp_size = 0;
/* Location of FDT in kernel or module. */
/* This won't be set if FDT is loaded from disk or memory. */
/* If it is set, we'll update it when fdt_copy() gets called. */
static vm_offset_t fdtp_va = 0;
static int fdt_load_dtb(vm_offset_t va);
static int fdt_cmd_nyi(int argc, char *argv[]);
static int fdt_cmd_addr(int argc, char *argv[]);
static int fdt_cmd_mkprop(int argc, char *argv[]);
static int fdt_cmd_cd(int argc, char *argv[]);
static int fdt_cmd_hdr(int argc, char *argv[]);
static int fdt_cmd_ls(int argc, char *argv[]);
static int fdt_cmd_prop(int argc, char *argv[]);
static int fdt_cmd_pwd(int argc, char *argv[]);
static int fdt_cmd_rm(int argc, char *argv[]);
static int fdt_cmd_mknode(int argc, char *argv[]);
static int fdt_cmd_mres(int argc, char *argv[]);
typedef int cmdf_t(int, char *[]);
struct cmdtab {
char *name;
cmdf_t *handler;
int flags;
};
static const struct cmdtab commands[] = {
{ "addr", &fdt_cmd_addr, 0 },
{ "alias", &fdt_cmd_nyi, 0 },
{ "cd", &fdt_cmd_cd, CMD_REQUIRES_BLOB },
{ "header", &fdt_cmd_hdr, CMD_REQUIRES_BLOB },
{ "ls", &fdt_cmd_ls, CMD_REQUIRES_BLOB },
{ "mknode", &fdt_cmd_mknode, CMD_REQUIRES_BLOB },
{ "mkprop", &fdt_cmd_mkprop, CMD_REQUIRES_BLOB },
{ "mres", &fdt_cmd_mres, CMD_REQUIRES_BLOB },
{ "prop", &fdt_cmd_prop, CMD_REQUIRES_BLOB },
{ "pwd", &fdt_cmd_pwd, CMD_REQUIRES_BLOB },
{ "rm", &fdt_cmd_rm, CMD_REQUIRES_BLOB },
{ NULL, NULL }
};
static char cwd[FDT_CWD_LEN] = "/";
static vm_offset_t
fdt_find_static_dtb()
{
Elf_Ehdr *ehdr;
Elf_Shdr *shdr;
Elf_Sym sym;
vm_offset_t strtab, symtab, fdt_start;
uint64_t offs;
struct preloaded_file *kfp;
struct file_metadata *md;
char *strp;
int i, sym_count;
debugf("fdt_find_static_dtb()\n");
sym_count = symtab = strtab = 0;
strp = NULL;
offs = __elfN(relocation_offset);
kfp = file_findfile(NULL, NULL);
if (kfp == NULL)
return (0);
/* Locate the dynamic symbols and strtab. */
md = file_findmetadata(kfp, MODINFOMD_ELFHDR);
if (md == NULL)
return (0);
ehdr = (Elf_Ehdr *)md->md_data;
md = file_findmetadata(kfp, MODINFOMD_SHDR);
if (md == NULL)
return (0);
shdr = (Elf_Shdr *)md->md_data;
for (i = 0; i < ehdr->e_shnum; ++i) {
if (shdr[i].sh_type == SHT_DYNSYM && symtab == 0) {
symtab = shdr[i].sh_addr + offs;
sym_count = shdr[i].sh_size / sizeof(Elf_Sym);
} else if (shdr[i].sh_type == SHT_STRTAB && strtab == 0) {
strtab = shdr[i].sh_addr + offs;
}
}
/*
* The most efficent way to find a symbol would be to calculate a
* hash, find proper bucket and chain, and thus find a symbol.
* However, that would involve code duplication (e.g. for hash
* function). So we're using simpler and a bit slower way: we're
* iterating through symbols, searching for the one which name is
* 'equal' to 'fdt_static_dtb'. To speed up the process a little bit,
* we are eliminating symbols type of which is not STT_NOTYPE, or(and)
* those which binding attribute is not STB_GLOBAL.
*/
fdt_start = 0;
while (sym_count > 0 && fdt_start == 0) {
COPYOUT(symtab, &sym, sizeof(sym));
symtab += sizeof(sym);
--sym_count;
if (ELF_ST_BIND(sym.st_info) != STB_GLOBAL ||
ELF_ST_TYPE(sym.st_info) != STT_NOTYPE)
continue;
strp = strdupout(strtab + sym.st_name);
if (strcmp(strp, FDT_STATIC_DTB_SYMBOL) == 0)
fdt_start = (vm_offset_t)sym.st_value + offs;
free(strp);
}
return (fdt_start);
}
static int
fdt_load_dtb(vm_offset_t va)
{
struct fdt_header header;
int err;
debugf("fdt_load_dtb(0x%08jx)\n", (uintmax_t)va);
COPYOUT(va, &header, sizeof(header));
err = fdt_check_header(&header);
if (err < 0) {
if (err == -FDT_ERR_BADVERSION)
sprintf(command_errbuf,
"incompatible blob version: %d, should be: %d",
fdt_version(fdtp), FDT_LAST_SUPPORTED_VERSION);
else
sprintf(command_errbuf, "error validating blob: %s",
fdt_strerror(err));
return (1);
}
/*
* Release previous blob
*/
if (fdtp)
free(fdtp);
fdtp_size = fdt_totalsize(&header);
fdtp = malloc(fdtp_size);
if (fdtp == NULL) {
command_errmsg = "can't allocate memory for device tree copy";
return (1);
}
fdtp_va = va;
COPYOUT(va, fdtp, fdtp_size);
debugf("DTB blob found at 0x%jx, size: 0x%jx\n", (uintmax_t)va, (uintmax_t)fdtp_size);
return (0);
}
static int
fdt_load_dtb_addr(struct fdt_header *header)
{
int err;
debugf("fdt_load_dtb_addr(0x%p)\n", header);
fdtp_size = fdt_totalsize(header);
err = fdt_check_header(header);
if (err < 0) {
sprintf(command_errbuf, "error validating blob: %s",
fdt_strerror(err));
return (err);
}
free(fdtp);
if ((fdtp = malloc(fdtp_size)) == NULL) {
command_errmsg = "can't allocate memory for device tree copy";
return (1);
}
fdtp_va = 0; // Don't write this back into module or kernel.
bcopy(header, fdtp, fdtp_size);
return (0);
}
static int
fdt_load_dtb_file(const char * filename)
{
struct preloaded_file *bfp, *oldbfp;
int err;
debugf("fdt_load_dtb_file(%s)\n", filename);
oldbfp = file_findfile(NULL, "dtb");
/* Attempt to load and validate a new dtb from a file. */
if ((bfp = file_loadraw(filename, "dtb")) == NULL) {
sprintf(command_errbuf, "failed to load file '%s'", filename);
return (1);
}
if ((err = fdt_load_dtb(bfp->f_addr)) != 0) {
file_discard(bfp);
return (err);
}
/* A new dtb was validated, discard any previous file. */
if (oldbfp)
file_discard(oldbfp);
return (0);
}
static int
fdt_setup_fdtp()
{
struct preloaded_file *bfp;
struct fdt_header *hdr;
const char *s;
char *p;
vm_offset_t va;
debugf("fdt_setup_fdtp()\n");
/* If we already loaded a file, use it. */
if ((bfp = file_findfile(NULL, "dtb")) != NULL) {
if (fdt_load_dtb(bfp->f_addr) == 0) {
printf("Using DTB from loaded file '%s'.\n",
bfp->f_name);
return (0);
}
}
/* If we were given the address of a valid blob in memory, use it. */
if (fdt_to_load != NULL) {
if (fdt_load_dtb_addr(fdt_to_load) == 0) {
printf("Using DTB from memory address 0x%08X.\n",
(unsigned int)fdt_to_load);
return (0);
}
}
/*
* If the U-boot environment contains a variable giving the address of a
* valid blob in memory, use it. Board vendors use both fdtaddr and
* fdt_addr names.
*/
s = ub_env_get("fdtaddr");
if (s == NULL)
s = ub_env_get("fdt_addr");
if (s != NULL && *s != '\0') {
hdr = (struct fdt_header *)strtoul(s, &p, 16);
if (*p == '\0') {
if (fdt_load_dtb_addr(hdr) == 0) {
printf("Using DTB provided by U-Boot at "
"address 0x%p.\n", hdr);
return (0);
}
}
}
/*
* If the U-boot environment contains a variable giving the name of a
* file, use it if we can load and validate it.
*/
s = ub_env_get("fdtfile");
if (s == NULL)
s = ub_env_get("fdt_file");
if (s != NULL && *s != '\0') {
if (fdt_load_dtb_file(s) == 0) {
printf("Loaded DTB from file '%s'.\n", s);
return (0);
}
}
/* If there is a dtb compiled into the kernel, use it. */
if ((va = fdt_find_static_dtb()) != 0) {
if (fdt_load_dtb(va) == 0) {
printf("Using DTB compiled into kernel.\n");
return (0);
}
}
command_errmsg = "No device tree blob found!\n";
return (1);
}
#define fdt_strtovect(str, cellbuf, lim, cellsize) _fdt_strtovect((str), \
(cellbuf), (lim), (cellsize), 0);
/* Force using base 16 */
#define fdt_strtovectx(str, cellbuf, lim, cellsize) _fdt_strtovect((str), \
(cellbuf), (lim), (cellsize), 16);
static int
_fdt_strtovect(char *str, void *cellbuf, int lim, unsigned char cellsize,
uint8_t base)
{
char *buf = str;
char *end = str + strlen(str) - 2;
uint32_t *u32buf = NULL;
uint8_t *u8buf = NULL;
int cnt = 0;
if (cellsize == sizeof(uint32_t))
u32buf = (uint32_t *)cellbuf;
else
u8buf = (uint8_t *)cellbuf;
if (lim == 0)
return (0);
while (buf < end) {
/* Skip white whitespace(s)/separators */
while (!isxdigit(*buf) && buf < end)
buf++;
if (u32buf != NULL)
u32buf[cnt] =
cpu_to_fdt32((uint32_t)strtol(buf, NULL, base));
else
u8buf[cnt] = (uint8_t)strtol(buf, NULL, base);
if (cnt + 1 <= lim - 1)
cnt++;
else
break;
buf++;
/* Find another number */
while ((isxdigit(*buf) || *buf == 'x') && buf < end)
buf++;
}
return (cnt);
}
#define TMP_MAX_ETH 8
static void
fixup_ethernet(const char *env, char *ethstr, int *eth_no, int len)
{
char *end, *str;
uint8_t tmp_addr[6];
int i, n;
/* Extract interface number */
i = strtol(env + 3, &end, 10);
if (end == (env + 3))
/* 'ethaddr' means interface 0 address */
n = 0;
else
n = i;
if (n > TMP_MAX_ETH)
return;
str = ub_env_get(env);
/* Convert macaddr string into a vector of uints */
fdt_strtovectx(str, &tmp_addr, 6, sizeof(uint8_t));
if (n != 0) {
i = strlen(env) - 7;
strncpy(ethstr + 8, env + 3, i);
}
/* Set actual property to a value from vect */
fdt_setprop(fdtp, fdt_path_offset(fdtp, ethstr),
"local-mac-address", &tmp_addr, 6 * sizeof(uint8_t));
/* Clear ethernet..XXXX.. string */
bzero(ethstr + 8, len - 8);
if (n + 1 > *eth_no)
*eth_no = n + 1;
}
static void
fixup_cpubusfreqs(unsigned long cpufreq, unsigned long busfreq)
{
int lo, o = 0, o2, maxo = 0, depth;
const uint32_t zero = 0;
/* We want to modify every subnode of /cpus */
o = fdt_path_offset(fdtp, "/cpus");
if (o < 0)
return;
/* maxo should contain offset of node next to /cpus */
depth = 0;
maxo = o;
while (depth != -1)
maxo = fdt_next_node(fdtp, maxo, &depth);
/* Find CPU frequency properties */
o = fdt_node_offset_by_prop_value(fdtp, o, "clock-frequency",
&zero, sizeof(uint32_t));
o2 = fdt_node_offset_by_prop_value(fdtp, o, "bus-frequency", &zero,
sizeof(uint32_t));
lo = MIN(o, o2);
while (o != -FDT_ERR_NOTFOUND && o2 != -FDT_ERR_NOTFOUND) {
o = fdt_node_offset_by_prop_value(fdtp, lo,
"clock-frequency", &zero, sizeof(uint32_t));
o2 = fdt_node_offset_by_prop_value(fdtp, lo, "bus-frequency",
&zero, sizeof(uint32_t));
/* We're only interested in /cpus subnode(s) */
if (lo > maxo)
break;
fdt_setprop_inplace_cell(fdtp, lo, "clock-frequency",
(uint32_t)cpufreq);
fdt_setprop_inplace_cell(fdtp, lo, "bus-frequency",
(uint32_t)busfreq);
lo = MIN(o, o2);
}
}
static int
fdt_reg_valid(uint32_t *reg, int len, int addr_cells, int size_cells)
{
int cells_in_tuple, i, tuples, tuple_size;
uint32_t cur_start, cur_size;
cells_in_tuple = (addr_cells + size_cells);
tuple_size = cells_in_tuple * sizeof(uint32_t);
tuples = len / tuple_size;
if (tuples == 0)
return (EINVAL);
for (i = 0; i < tuples; i++) {
if (addr_cells == 2)
cur_start = fdt64_to_cpu(reg[i * cells_in_tuple]);
else
cur_start = fdt32_to_cpu(reg[i * cells_in_tuple]);
if (size_cells == 2)
cur_size = fdt64_to_cpu(reg[i * cells_in_tuple + 2]);
else
cur_size = fdt32_to_cpu(reg[i * cells_in_tuple + 1]);
if (cur_size == 0)
return (EINVAL);
debugf(" reg#%d (start: 0x%0x size: 0x%0x) valid!\n",
i, cur_start, cur_size);
}
return (0);
}
static void
fixup_memory(struct sys_info *si)
{
struct mem_region *curmr;
uint32_t addr_cells, size_cells;
uint32_t *addr_cellsp, *reg, *size_cellsp;
int err, i, len, memory, realmrno, root;
uint8_t *buf, *sb;
uint64_t rstart, rsize;
int reserved;
root = fdt_path_offset(fdtp, "/");
if (root < 0) {
sprintf(command_errbuf, "Could not find root node !");
return;
}
memory = fdt_path_offset(fdtp, "/memory");
if (memory <= 0) {
/* Create proper '/memory' node. */
memory = fdt_add_subnode(fdtp, root, "memory");
if (memory <= 0) {
sprintf(command_errbuf, "Could not fixup '/memory' "
"node, error code : %d!\n", memory);
return;
}
err = fdt_setprop(fdtp, memory, "device_type", "memory",
sizeof("memory"));
if (err < 0)
return;
}
addr_cellsp = (uint32_t *)fdt_getprop(fdtp, root, "#address-cells",
NULL);
size_cellsp = (uint32_t *)fdt_getprop(fdtp, root, "#size-cells", NULL);
if (addr_cellsp == NULL || size_cellsp == NULL) {
sprintf(command_errbuf, "Could not fixup '/memory' node : "
"%s %s property not found in root node!\n",
(!addr_cellsp) ? "#address-cells" : "",
(!size_cellsp) ? "#size-cells" : "");
return;
}
addr_cells = fdt32_to_cpu(*addr_cellsp);
size_cells = fdt32_to_cpu(*size_cellsp);
/*
* Convert memreserve data to memreserve property
* Check if property already exists
*/
reserved = fdt_num_mem_rsv(fdtp);
if (reserved &&
(fdt_getprop(fdtp, root, "memreserve", NULL) == NULL)) {
len = (addr_cells + size_cells) * reserved * sizeof(uint32_t);
sb = buf = (uint8_t *)malloc(len);
if (!buf)
return;
bzero(buf, len);
for (i = 0; i < reserved; i++) {
curmr = &si->mr[i];
if (fdt_get_mem_rsv(fdtp, i, &rstart, &rsize))
break;
if (rsize) {
/* Ensure endianess, and put cells into a buffer */
if (addr_cells == 2)
*(uint64_t *)buf =
cpu_to_fdt64(rstart);
else
*(uint32_t *)buf =
cpu_to_fdt32(rstart);
buf += sizeof(uint32_t) * addr_cells;
if (size_cells == 2)
*(uint64_t *)buf =
cpu_to_fdt64(rsize);
else
*(uint32_t *)buf =
cpu_to_fdt32(rsize);
buf += sizeof(uint32_t) * size_cells;
}
}
/* Set property */
if ((err = fdt_setprop(fdtp, root, "memreserve", sb, len)) < 0)
printf("Could not fixup 'memreserve' property.\n");
free(sb);
}
/* Count valid memory regions entries in sysinfo. */
realmrno = si->mr_no;
for (i = 0; i < si->mr_no; i++)
if (si->mr[i].start == 0 && si->mr[i].size == 0)
realmrno--;
if (realmrno == 0) {
sprintf(command_errbuf, "Could not fixup '/memory' node : "
"sysinfo doesn't contain valid memory regions info!\n");
return;
}
if ((reg = (uint32_t *)fdt_getprop(fdtp, memory, "reg",
&len)) != NULL) {
if (fdt_reg_valid(reg, len, addr_cells, size_cells) == 0)
/*
* Do not apply fixup if existing 'reg' property
* seems to be valid.
*/
return;
}
len = (addr_cells + size_cells) * realmrno * sizeof(uint32_t);
sb = buf = (uint8_t *)malloc(len);
if (!buf)
return;
bzero(buf, len);
for (i = 0; i < si->mr_no; i++) {
curmr = &si->mr[i];
if (curmr->size != 0) {
/* Ensure endianess, and put cells into a buffer */
if (addr_cells == 2)
*(uint64_t *)buf =
cpu_to_fdt64(curmr->start);
else
*(uint32_t *)buf =
cpu_to_fdt32(curmr->start);
buf += sizeof(uint32_t) * addr_cells;
if (size_cells == 2)
*(uint64_t *)buf =
cpu_to_fdt64(curmr->size);
else
*(uint32_t *)buf =
cpu_to_fdt32(curmr->size);
buf += sizeof(uint32_t) * size_cells;
}
}
/* Set property */
if ((err = fdt_setprop(fdtp, memory, "reg", sb, len)) < 0)
sprintf(command_errbuf, "Could not fixup '/memory' node.\n");
free(sb);
}
static void
fixup_stdout(const char *env)
{
const char *str;
char *ptr;
int serialno;
int len, no, sero;
const struct fdt_property *prop;
char *tmp[10];
str = ub_env_get(env);
ptr = (char *)str + strlen(str) - 1;
while (ptr > str && isdigit(*(str - 1)))
str--;
if (ptr == str)
return;
serialno = (int)strtol(ptr, NULL, 0);
no = fdt_path_offset(fdtp, "/chosen");
if (no < 0)
return;
prop = fdt_get_property(fdtp, no, "stdout", &len);
/* If /chosen/stdout does not extist, create it */
if (prop == NULL || (prop != NULL && len == 0)) {
bzero(tmp, 10 * sizeof(char));
strcpy((char *)&tmp, "serial");
if (strlen(ptr) > 3)
/* Serial number too long */
return;
strncpy((char *)tmp + 6, ptr, 3);
sero = fdt_path_offset(fdtp, (const char *)tmp);
if (sero < 0)
/*
* If serial device we're trying to assign
* stdout to doesn't exist in DT -- return.
*/
return;
fdt_setprop(fdtp, no, "stdout", &tmp,
strlen((char *)&tmp) + 1);
fdt_setprop(fdtp, no, "stdin", &tmp,
strlen((char *)&tmp) + 1);
}
}
/*
* Locate the blob, fix it up and return its location.
*/
static int
fdt_fixup(void)
{
const char *env;
char *ethstr;
int chosen, eth_no, len;
struct sys_info *si;
env = NULL;
eth_no = 0;
ethstr = NULL;
len = 0;
debugf("fdt_fixup()\n");
if (fdtp == NULL && fdt_setup_fdtp() != 0)
return (0);
/* Create /chosen node (if not exists) */
if ((chosen = fdt_subnode_offset(fdtp, 0, "chosen")) ==
-FDT_ERR_NOTFOUND)
chosen = fdt_add_subnode(fdtp, 0, "chosen");
/* Value assigned to fixup-applied does not matter. */
if (fdt_getprop(fdtp, chosen, "fixup-applied", NULL))
return (1);
/* Acquire sys_info */
si = ub_get_sys_info();
while ((env = ub_env_enum(env)) != NULL) {
if (strncmp(env, "eth", 3) == 0 &&
strncmp(env + (strlen(env) - 4), "addr", 4) == 0) {
/*
* Handle Ethernet addrs: parse uboot env eth%daddr
*/
if (!eth_no) {
/*
* Check how many chars we will need to store
* maximal eth iface number.
*/
len = strlen(STRINGIFY(TMP_MAX_ETH)) +
strlen("ethernet");
/*
* Reserve mem for string "ethernet" and len
* chars for iface no.
*/
ethstr = (char *)malloc(len * sizeof(char));
bzero(ethstr, len * sizeof(char));
strcpy(ethstr, "ethernet0");
}
/* Modify blob */
fixup_ethernet(env, ethstr, &eth_no, len);
} else if (strcmp(env, "consoledev") == 0)
fixup_stdout(env);
}
/* Modify cpu(s) and bus clock frequenties in /cpus node [Hz] */
fixup_cpubusfreqs(si->clk_cpu, si->clk_bus);
/* Fixup memory regions */
fixup_memory(si);
fdt_setprop(fdtp, chosen, "fixup-applied", NULL, 0);
return (1);
}
/*
* Copy DTB blob to specified location and return size
*/
int
fdt_copy(vm_offset_t va)
{
int err;
debugf("fdt_copy va 0x%08x\n", va);
if (fdtp == NULL) {
err = fdt_setup_fdtp();
if (err) {
printf("No valid device tree blob found!\n");
return (0);
}
}
if (fdt_fixup() == 0)
return (0);
if (fdtp_va != 0) {
/* Overwrite the FDT with the fixed version. */
/* XXX Is this really appropriate? */
COPYIN(fdtp, fdtp_va, fdtp_size);
}
COPYIN(fdtp, va, fdtp_size);
return (fdtp_size);
}
int
command_fdt_internal(int argc, char *argv[])
{
cmdf_t *cmdh;
int flags;
char *cmd;
int i, err;
if (argc < 2) {
command_errmsg = "usage is 'fdt <command> [<args>]";
return (CMD_ERROR);
}
/*
* Validate fdt <command>.
*/
cmd = strdup(argv[1]);
i = 0;
cmdh = NULL;
while (!(commands[i].name == NULL)) {
if (strcmp(cmd, commands[i].name) == 0) {
/* found it */
cmdh = commands[i].handler;
flags = commands[i].flags;
break;
}
i++;
}
if (cmdh == NULL) {
command_errmsg = "unknown command";
return (CMD_ERROR);
}
if (flags & CMD_REQUIRES_BLOB) {
/*
* Check if uboot env vars were parsed already. If not, do it now.
*/
if (fdt_fixup() == 0)
return (CMD_ERROR);
}
/*
* Call command handler.
*/
err = (*cmdh)(argc, argv);
return (err);
}
static int
fdt_cmd_addr(int argc, char *argv[])
{
struct preloaded_file *fp;
struct fdt_header *hdr;
const char *addr;
char *cp;
fdt_to_load = NULL;
if (argc > 2)
addr = argv[2];
else {
sprintf(command_errbuf, "no address specified");
return (CMD_ERROR);
}
hdr = (struct fdt_header *)strtoul(addr, &cp, 16);
if (cp == addr) {
sprintf(command_errbuf, "Invalid address: %s", addr);
return (CMD_ERROR);
}
while ((fp = file_findfile(NULL, "dtb")) != NULL) {
file_discard(fp);
}
fdt_to_load = hdr;
return (CMD_OK);
}
static int
fdt_cmd_cd(int argc, char *argv[])
{
char *path;
char tmp[FDT_CWD_LEN];
int len, o;
path = (argc > 2) ? argv[2] : "/";
if (path[0] == '/') {
len = strlen(path);
if (len >= FDT_CWD_LEN)
goto fail;
} else {
/* Handle path specification relative to cwd */
len = strlen(cwd) + strlen(path) + 1;
if (len >= FDT_CWD_LEN)
goto fail;
strcpy(tmp, cwd);
strcat(tmp, "/");
strcat(tmp, path);
path = tmp;
}
o = fdt_path_offset(fdtp, path);
if (o < 0) {
sprintf(command_errbuf, "could not find node: '%s'", path);
return (CMD_ERROR);
}
strcpy(cwd, path);
return (CMD_OK);
fail:
sprintf(command_errbuf, "path too long: %d, max allowed: %d",
len, FDT_CWD_LEN - 1);
return (CMD_ERROR);
}
static int
fdt_cmd_hdr(int argc __unused, char *argv[] __unused)
{
char line[80];
int ver;
if (fdtp == NULL) {
command_errmsg = "no device tree blob pointer?!";
return (CMD_ERROR);
}
ver = fdt_version(fdtp);
pager_open();
sprintf(line, "\nFlattened device tree header (%p):\n", fdtp);
pager_output(line);
sprintf(line, " magic = 0x%08x\n", fdt_magic(fdtp));
pager_output(line);
sprintf(line, " size = %d\n", fdt_totalsize(fdtp));
pager_output(line);
sprintf(line, " off_dt_struct = 0x%08x\n",
fdt_off_dt_struct(fdtp));
pager_output(line);
sprintf(line, " off_dt_strings = 0x%08x\n",
fdt_off_dt_strings(fdtp));
pager_output(line);
sprintf(line, " off_mem_rsvmap = 0x%08x\n",
fdt_off_mem_rsvmap(fdtp));
pager_output(line);
sprintf(line, " version = %d\n", ver);
pager_output(line);
sprintf(line, " last compatible version = %d\n",
fdt_last_comp_version(fdtp));
pager_output(line);
if (ver >= 2) {
sprintf(line, " boot_cpuid = %d\n",
fdt_boot_cpuid_phys(fdtp));
pager_output(line);
}
if (ver >= 3) {
sprintf(line, " size_dt_strings = %d\n",
fdt_size_dt_strings(fdtp));
pager_output(line);
}
if (ver >= 17) {
sprintf(line, " size_dt_struct = %d\n",
fdt_size_dt_struct(fdtp));
pager_output(line);
}
pager_close();
return (CMD_OK);
}
static int
fdt_cmd_ls(int argc, char *argv[])
{
const char *prevname[FDT_MAX_DEPTH] = { NULL };
const char *name;
char *path;
int i, o, depth, len;
path = (argc > 2) ? argv[2] : NULL;
if (path == NULL)
path = cwd;
o = fdt_path_offset(fdtp, path);
if (o < 0) {
sprintf(command_errbuf, "could not find node: '%s'", path);
return (CMD_ERROR);
}
for (depth = 0;
(o >= 0) && (depth >= 0);
o = fdt_next_node(fdtp, o, &depth)) {
name = fdt_get_name(fdtp, o, &len);
if (depth > FDT_MAX_DEPTH) {
printf("max depth exceeded: %d\n", depth);
continue;
}
prevname[depth] = name;
/* Skip root (i = 1) when printing devices */
for (i = 1; i <= depth; i++) {
if (prevname[i] == NULL)
break;
if (strcmp(cwd, "/") == 0)
printf("/");
printf("%s", prevname[i]);
}
printf("\n");
}
return (CMD_OK);
}
static __inline int
isprint(int c)
{
return (c >= ' ' && c <= 0x7e);
}
static int
fdt_isprint(const void *data, int len, int *count)
{
const char *d;
char ch;
int yesno, i;
if (len == 0)
return (0);
d = (const char *)data;
if (d[len - 1] != '\0')
return (0);
*count = 0;
yesno = 1;
for (i = 0; i < len; i++) {
ch = *(d + i);
if (isprint(ch) || (ch == '\0' && i > 0)) {
/* Count strings */
if (ch == '\0')
(*count)++;
continue;
}
yesno = 0;
break;
}
return (yesno);
}
static int
fdt_data_str(const void *data, int len, int count, char **buf)
{
char *b, *tmp;
const char *d;
int buf_len, i, l;
/*
* Calculate the length for the string and allocate memory.
*
* Note that 'len' already includes at least one terminator.
*/
buf_len = len;
if (count > 1) {
/*
* Each token had already a terminator buried in 'len', but we
* only need one eventually, don't count space for these.
*/
buf_len -= count - 1;
/* Each consecutive token requires a ", " separator. */
buf_len += count * 2;
}
/* Add some space for surrounding double quotes. */
buf_len += count * 2;
/* Note that string being put in 'tmp' may be as big as 'buf_len'. */
b = (char *)malloc(buf_len);
tmp = (char *)malloc(buf_len);
if (b == NULL)
goto error;
if (tmp == NULL) {
free(b);
goto error;
}
b[0] = '\0';
/*
* Now that we have space, format the string.
*/
i = 0;
do {
d = (const char *)data + i;
l = strlen(d) + 1;
sprintf(tmp, "\"%s\"%s", d,
(i + l) < len ? ", " : "");
strcat(b, tmp);
i += l;
} while (i < len);
*buf = b;
free(tmp);
return (0);
error:
return (1);
}
static int
fdt_data_cell(const void *data, int len, char **buf)
{
char *b, *tmp;
const uint32_t *c;
int count, i, l;
/* Number of cells */
count = len / 4;
/*
* Calculate the length for the string and allocate memory.
*/
/* Each byte translates to 2 output characters */
l = len * 2;
if (count > 1) {
/* Each consecutive cell requires a " " separator. */
l += (count - 1) * 1;
}
/* Each cell will have a "0x" prefix */
l += count * 2;
/* Space for surrounding <> and terminator */
l += 3;
b = (char *)malloc(l);
tmp = (char *)malloc(l);
if (b == NULL)
goto error;
if (tmp == NULL) {
free(b);
goto error;
}
b[0] = '\0';
strcat(b, "<");
for (i = 0; i < len; i += 4) {
c = (const uint32_t *)((const uint8_t *)data + i);
sprintf(tmp, "0x%08x%s", fdt32_to_cpu(*c),
i < (len - 4) ? " " : "");
strcat(b, tmp);
}
strcat(b, ">");
*buf = b;
free(tmp);
return (0);
error:
return (1);
}
static int
fdt_data_bytes(const void *data, int len, char **buf)
{
char *b, *tmp;
const char *d;
int i, l;
/*
* Calculate the length for the string and allocate memory.
*/
/* Each byte translates to 2 output characters */
l = len * 2;
if (len > 1)
/* Each consecutive byte requires a " " separator. */
l += (len - 1) * 1;
/* Each byte will have a "0x" prefix */
l += len * 2;
/* Space for surrounding [] and terminator. */
l += 3;
b = (char *)malloc(l);
tmp = (char *)malloc(l);
if (b == NULL)
goto error;
if (tmp == NULL) {
free(b);
goto error;
}
b[0] = '\0';
strcat(b, "[");
for (i = 0, d = data; i < len; i++) {
sprintf(tmp, "0x%02x%s", d[i], i < len - 1 ? " " : "");
strcat(b, tmp);
}
strcat(b, "]");
*buf = b;
free(tmp);
return (0);
error:
return (1);
}
static int
fdt_data_fmt(const void *data, int len, char **buf)
{
int count;
if (len == 0) {
*buf = NULL;
return (1);
}
if (fdt_isprint(data, len, &count))
return (fdt_data_str(data, len, count, buf));
else if ((len % 4) == 0)
return (fdt_data_cell(data, len, buf));
else
return (fdt_data_bytes(data, len, buf));
}
static int
fdt_prop(int offset)
{
char *line, *buf;
const struct fdt_property *prop;
const char *name;
const void *data;
int len, rv;
line = NULL;
prop = fdt_offset_ptr(fdtp, offset, sizeof(*prop));
if (prop == NULL)
return (1);
name = fdt_string(fdtp, fdt32_to_cpu(prop->nameoff));
len = fdt32_to_cpu(prop->len);
rv = 0;
buf = NULL;
if (len == 0) {
/* Property without value */
line = (char *)malloc(strlen(name) + 2);
if (line == NULL) {
rv = 2;
goto out2;
}
sprintf(line, "%s\n", name);
goto out1;
}
/*
* Process property with value
*/
data = prop->data;
if (fdt_data_fmt(data, len, &buf) != 0) {
rv = 3;
goto out2;
}
line = (char *)malloc(strlen(name) + strlen(FDT_PROP_SEP) +
strlen(buf) + 2);
if (line == NULL) {
sprintf(command_errbuf, "could not allocate space for string");
rv = 4;
goto out2;
}
sprintf(line, "%s" FDT_PROP_SEP "%s\n", name, buf);
out1:
pager_open();
pager_output(line);
pager_close();
out2:
if (buf)
free(buf);
if (line)
free(line);
return (rv);
}
static int
fdt_modprop(int nodeoff, char *propname, void *value, char mode)
{
uint32_t cells[100];
char *buf;
int len, rv;
const struct fdt_property *p;
p = fdt_get_property(fdtp, nodeoff, propname, NULL);
if (p != NULL) {
if (mode == 1) {
/* Adding inexistant value in mode 1 is forbidden */
sprintf(command_errbuf, "property already exists!");
return (CMD_ERROR);
}
} else if (mode == 0) {
sprintf(command_errbuf, "property does not exist!");
return (CMD_ERROR);
}
len = strlen(value);
rv = 0;
buf = (char *)value;
switch (*buf) {
case '&':
/* phandles */
break;
case '<':
/* Data cells */
len = fdt_strtovect(buf, (void *)&cells, 100,
sizeof(uint32_t));
rv = fdt_setprop(fdtp, nodeoff, propname, &cells,
len * sizeof(uint32_t));
break;
case '[':
/* Data bytes */
len = fdt_strtovect(buf, (void *)&cells, 100,
sizeof(uint8_t));
rv = fdt_setprop(fdtp, nodeoff, propname, &cells,
len * sizeof(uint8_t));
break;
case '"':
default:
/* Default -- string */
rv = fdt_setprop_string(fdtp, nodeoff, propname, value);
break;
}
if (rv != 0) {
if (rv == -FDT_ERR_NOSPACE)
sprintf(command_errbuf,
"Device tree blob is too small!\n");
else
sprintf(command_errbuf,
"Could not add/modify property!\n");
}
return (rv);
}
/* Merge strings from argv into a single string */
static int
fdt_merge_strings(int argc, char *argv[], int start, char **buffer)
{
char *buf;
int i, idx, sz;
*buffer = NULL;
sz = 0;
for (i = start; i < argc; i++)
sz += strlen(argv[i]);
/* Additional bytes for whitespaces between args */
sz += argc - start;
buf = (char *)malloc(sizeof(char) * sz);
bzero(buf, sizeof(char) * sz);
if (buf == NULL) {
sprintf(command_errbuf, "could not allocate space "
"for string");
return (1);
}
idx = 0;
for (i = start, idx = 0; i < argc; i++) {
strcpy(buf + idx, argv[i]);
idx += strlen(argv[i]);
buf[idx] = ' ';
idx++;
}
buf[sz - 1] = '\0';
*buffer = buf;
return (0);
}
/* Extract offset and name of node/property from a given path */
static int
fdt_extract_nameloc(char **pathp, char **namep, int *nodeoff)
{
int o;
char *path = *pathp, *name = NULL, *subpath = NULL;
subpath = strrchr(path, '/');
if (subpath == NULL) {
o = fdt_path_offset(fdtp, cwd);
name = path;
path = (char *)&cwd;
} else {
*subpath = '\0';
if (strlen(path) == 0)
path = cwd;
name = subpath + 1;
o = fdt_path_offset(fdtp, path);
}
if (strlen(name) == 0) {
sprintf(command_errbuf, "name not specified");
return (1);
}
if (o < 0) {
sprintf(command_errbuf, "could not find node: '%s'", path);
return (1);
}
*namep = name;
*nodeoff = o;
*pathp = path;
return (0);
}
static int
fdt_cmd_prop(int argc, char *argv[])
{
char *path, *propname, *value;
int o, next, depth, rv;
uint32_t tag;
path = (argc > 2) ? argv[2] : NULL;
value = NULL;
if (argc > 3) {
/* Merge property value strings into one */
if (fdt_merge_strings(argc, argv, 3, &value) != 0)
return (CMD_ERROR);
} else
value = NULL;
if (path == NULL)
path = cwd;
rv = CMD_OK;
if (value) {
/* If value is specified -- try to modify prop. */
if (fdt_extract_nameloc(&path, &propname, &o) != 0)
return (CMD_ERROR);
rv = fdt_modprop(o, propname, value, 0);
if (rv)
return (CMD_ERROR);
return (CMD_OK);
}
/* User wants to display properties */
o = fdt_path_offset(fdtp, path);
if (o < 0) {
sprintf(command_errbuf, "could not find node: '%s'", path);
rv = CMD_ERROR;
goto out;
}
depth = 0;
while (depth >= 0) {
tag = fdt_next_tag(fdtp, o, &next);
switch (tag) {
case FDT_NOP:
break;
case FDT_PROP:
if (depth > 1)
/* Don't process properties of nested nodes */
break;
if (fdt_prop(o) != 0) {
sprintf(command_errbuf, "could not process "
"property");
rv = CMD_ERROR;
goto out;
}
break;
case FDT_BEGIN_NODE:
depth++;
if (depth > FDT_MAX_DEPTH) {
printf("warning: nesting too deep: %d\n",
depth);
goto out;
}
break;
case FDT_END_NODE:
depth--;
if (depth == 0)
/*
* This is the end of our starting node, force
* the loop finish.
*/
depth--;
break;
}
o = next;
}
out:
return (rv);
}
static int
fdt_cmd_mkprop(int argc, char *argv[])
{
int o;
char *path, *propname, *value;
path = (argc > 2) ? argv[2] : NULL;
value = NULL;
if (argc > 3) {
/* Merge property value strings into one */
if (fdt_merge_strings(argc, argv, 3, &value) != 0)
return (CMD_ERROR);
} else
value = NULL;
if (fdt_extract_nameloc(&path, &propname, &o) != 0)
return (CMD_ERROR);
if (fdt_modprop(o, propname, value, 1))
return (CMD_ERROR);
return (CMD_OK);
}
static int
fdt_cmd_rm(int argc, char *argv[])
{
int o, rv;
char *path = NULL, *propname;
if (argc > 2)
path = argv[2];
else {
sprintf(command_errbuf, "no node/property name specified");
return (CMD_ERROR);
}
o = fdt_path_offset(fdtp, path);
if (o < 0) {
/* If node not found -- try to find & delete property */
if (fdt_extract_nameloc(&path, &propname, &o) != 0)
return (CMD_ERROR);
if ((rv = fdt_delprop(fdtp, o, propname)) != 0) {
sprintf(command_errbuf, "could not delete"
"%s\n", (rv == -FDT_ERR_NOTFOUND) ?
"(property/node does not exist)" : "");
return (CMD_ERROR);
} else
return (CMD_OK);
}
/* If node exists -- remove node */
rv = fdt_del_node(fdtp, o);
if (rv) {
sprintf(command_errbuf, "could not delete node");
return (CMD_ERROR);
}
return (CMD_OK);
}
static int
fdt_cmd_mknode(int argc, char *argv[])
{
int o, rv;
char *path = NULL, *nodename = NULL;
if (argc > 2)
path = argv[2];
else {
sprintf(command_errbuf, "no node name specified");
return (CMD_ERROR);
}
if (fdt_extract_nameloc(&path, &nodename, &o) != 0)
return (CMD_ERROR);
rv = fdt_add_subnode(fdtp, o, nodename);
if (rv < 0) {
if (rv == -FDT_ERR_NOSPACE)
sprintf(command_errbuf,
"Device tree blob is too small!\n");
else
sprintf(command_errbuf,
"Could not add node!\n");
return (CMD_ERROR);
}
return (CMD_OK);
}
static int
fdt_cmd_pwd(int argc, char *argv[])
{
char line[FDT_CWD_LEN];
pager_open();
sprintf(line, "%s\n", cwd);
pager_output(line);
pager_close();
return (CMD_OK);
}
static int
fdt_cmd_mres(int argc, char *argv[])
{
uint64_t start, size;
int i, total;
char line[80];
pager_open();
total = fdt_num_mem_rsv(fdtp);
if (total > 0) {
pager_output("Reserved memory regions:\n");
for (i = 0; i < total; i++) {
fdt_get_mem_rsv(fdtp, i, &start, &size);
sprintf(line, "reg#%d: (start: 0x%jx, size: 0x%jx)\n",
i, start, size);
pager_output(line);
}
} else
pager_output("No reserved memory regions\n");
pager_close();
return (CMD_OK);
}
static int
fdt_cmd_nyi(int argc, char *argv[])
{
printf("command not yet implemented\n");
return (CMD_ERROR);
}