0c325f53f1
connections over multiple paths. Multipath routing relies on mbuf flowid data for both transit and outbound traffic. Current code fills mbuf flowid from inp_flowid for connection-oriented sockets. However, inp_flowid is currently not calculated for outbound connections. This change creates simple hashing functions and starts calculating hashes for TCP,UDP/UDP-Lite and raw IP if multipath routes are present in the system. Reviewed by: glebius (previous version),ae Differential Revision: https://reviews.freebsd.org/D26523
3378 lines
86 KiB
C
3378 lines
86 KiB
C
/*-
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1982, 1986, 1988, 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ip_output.c 8.3 (Berkeley) 1/21/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_kern_tls.h"
|
|
#include "opt_ratelimit.h"
|
|
#include "opt_route.h"
|
|
#include "opt_rss.h"
|
|
#include "opt_sctp.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktls.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/ucred.h>
|
|
|
|
#include <machine/in_cksum.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_vlan_var.h>
|
|
#include <net/if_llatbl.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/netisr.h>
|
|
#include <net/route.h>
|
|
#include <net/route/nhop.h>
|
|
#include <net/pfil.h>
|
|
#include <net/rss_config.h>
|
|
#include <net/vnet.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet6/in6_fib.h>
|
|
#include <netinet6/in6_var.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet/icmp6.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet6/nd6.h>
|
|
#include <netinet6/in6_rss.h>
|
|
|
|
#include <netipsec/ipsec_support.h>
|
|
#if defined(SCTP) || defined(SCTP_SUPPORT)
|
|
#include <netinet/sctp.h>
|
|
#include <netinet/sctp_crc32.h>
|
|
#endif
|
|
|
|
#include <netinet6/ip6protosw.h>
|
|
#include <netinet6/scope6_var.h>
|
|
|
|
extern int in6_mcast_loop;
|
|
|
|
struct ip6_exthdrs {
|
|
struct mbuf *ip6e_ip6;
|
|
struct mbuf *ip6e_hbh;
|
|
struct mbuf *ip6e_dest1;
|
|
struct mbuf *ip6e_rthdr;
|
|
struct mbuf *ip6e_dest2;
|
|
};
|
|
|
|
static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options");
|
|
|
|
static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **,
|
|
struct ucred *, int);
|
|
static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *,
|
|
struct socket *, struct sockopt *);
|
|
static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *);
|
|
static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *,
|
|
struct ucred *, int, int, int);
|
|
|
|
static int ip6_copyexthdr(struct mbuf **, caddr_t, int);
|
|
static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int,
|
|
struct ip6_frag **);
|
|
static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t);
|
|
static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *);
|
|
static int ip6_getpmtu(struct route_in6 *, int,
|
|
struct ifnet *, const struct in6_addr *, u_long *, int *, u_int,
|
|
u_int);
|
|
static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long,
|
|
u_long *, int *, u_int);
|
|
static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *);
|
|
static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int);
|
|
|
|
/*
|
|
* Make an extension header from option data. hp is the source,
|
|
* mp is the destination, and _ol is the optlen.
|
|
*/
|
|
#define MAKE_EXTHDR(hp, mp, _ol) \
|
|
do { \
|
|
if (hp) { \
|
|
struct ip6_ext *eh = (struct ip6_ext *)(hp); \
|
|
error = ip6_copyexthdr((mp), (caddr_t)(hp), \
|
|
((eh)->ip6e_len + 1) << 3); \
|
|
if (error) \
|
|
goto freehdrs; \
|
|
(_ol) += (*(mp))->m_len; \
|
|
} \
|
|
} while (/*CONSTCOND*/ 0)
|
|
|
|
/*
|
|
* Form a chain of extension headers.
|
|
* m is the extension header mbuf
|
|
* mp is the previous mbuf in the chain
|
|
* p is the next header
|
|
* i is the type of option.
|
|
*/
|
|
#define MAKE_CHAIN(m, mp, p, i)\
|
|
do {\
|
|
if (m) {\
|
|
if (!hdrsplit) \
|
|
panic("%s:%d: assumption failed: "\
|
|
"hdr not split: hdrsplit %d exthdrs %p",\
|
|
__func__, __LINE__, hdrsplit, &exthdrs);\
|
|
*mtod((m), u_char *) = *(p);\
|
|
*(p) = (i);\
|
|
p = mtod((m), u_char *);\
|
|
(m)->m_next = (mp)->m_next;\
|
|
(mp)->m_next = (m);\
|
|
(mp) = (m);\
|
|
}\
|
|
} while (/*CONSTCOND*/ 0)
|
|
|
|
void
|
|
in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset)
|
|
{
|
|
u_short csum;
|
|
|
|
csum = in_cksum_skip(m, offset + plen, offset);
|
|
if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0)
|
|
csum = 0xffff;
|
|
offset += m->m_pkthdr.csum_data; /* checksum offset */
|
|
|
|
if (offset + sizeof(csum) > m->m_len)
|
|
m_copyback(m, offset, sizeof(csum), (caddr_t)&csum);
|
|
else
|
|
*(u_short *)mtodo(m, offset) = csum;
|
|
}
|
|
|
|
static int
|
|
ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags,
|
|
int plen, int optlen, bool frag)
|
|
{
|
|
|
|
KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p "
|
|
"csum_flags %#x frag %d\n",
|
|
__func__, __LINE__, plen, optlen, m, ifp, csum_flags, frag));
|
|
|
|
if ((csum_flags & CSUM_DELAY_DATA_IPV6) ||
|
|
#if defined(SCTP) || defined(SCTP_SUPPORT)
|
|
(csum_flags & CSUM_SCTP_IPV6) ||
|
|
#endif
|
|
(!frag && (ifp->if_capenable & IFCAP_NOMAP) == 0)) {
|
|
m = mb_unmapped_to_ext(m);
|
|
if (m == NULL) {
|
|
if (frag)
|
|
in6_ifstat_inc(ifp, ifs6_out_fragfail);
|
|
else
|
|
IP6STAT_INC(ip6s_odropped);
|
|
return (ENOBUFS);
|
|
}
|
|
if (csum_flags & CSUM_DELAY_DATA_IPV6) {
|
|
in6_delayed_cksum(m, plen - optlen,
|
|
sizeof(struct ip6_hdr) + optlen);
|
|
m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6;
|
|
}
|
|
#if defined(SCTP) || defined(SCTP_SUPPORT)
|
|
if (csum_flags & CSUM_SCTP_IPV6) {
|
|
sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen);
|
|
m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto,
|
|
int fraglen , uint32_t id)
|
|
{
|
|
struct mbuf *m, **mnext, *m_frgpart;
|
|
struct ip6_hdr *ip6, *mhip6;
|
|
struct ip6_frag *ip6f;
|
|
int off;
|
|
int error;
|
|
int tlen = m0->m_pkthdr.len;
|
|
|
|
KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8"));
|
|
|
|
m = m0;
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
mnext = &m->m_nextpkt;
|
|
|
|
for (off = hlen; off < tlen; off += fraglen) {
|
|
m = m_gethdr(M_NOWAIT, MT_DATA);
|
|
if (!m) {
|
|
IP6STAT_INC(ip6s_odropped);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
/*
|
|
* Make sure the complete packet header gets copied
|
|
* from the originating mbuf to the newly created
|
|
* mbuf. This also ensures that existing firewall
|
|
* classification(s), VLAN tags and so on get copied
|
|
* to the resulting fragmented packet(s):
|
|
*/
|
|
if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) {
|
|
m_free(m);
|
|
IP6STAT_INC(ip6s_odropped);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
*mnext = m;
|
|
mnext = &m->m_nextpkt;
|
|
m->m_data += max_linkhdr;
|
|
mhip6 = mtod(m, struct ip6_hdr *);
|
|
*mhip6 = *ip6;
|
|
m->m_len = sizeof(*mhip6);
|
|
error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
|
|
if (error) {
|
|
IP6STAT_INC(ip6s_odropped);
|
|
return (error);
|
|
}
|
|
ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
|
|
if (off + fraglen >= tlen)
|
|
fraglen = tlen - off;
|
|
else
|
|
ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
|
|
mhip6->ip6_plen = htons((u_short)(fraglen + hlen +
|
|
sizeof(*ip6f) - sizeof(struct ip6_hdr)));
|
|
if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) {
|
|
IP6STAT_INC(ip6s_odropped);
|
|
return (ENOBUFS);
|
|
}
|
|
m_cat(m, m_frgpart);
|
|
m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f);
|
|
ip6f->ip6f_reserved = 0;
|
|
ip6f->ip6f_ident = id;
|
|
ip6f->ip6f_nxt = nextproto;
|
|
IP6STAT_INC(ip6s_ofragments);
|
|
in6_ifstat_inc(ifp, ifs6_out_fragcreat);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp,
|
|
struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro,
|
|
bool stamp_tag)
|
|
{
|
|
#ifdef KERN_TLS
|
|
struct ktls_session *tls = NULL;
|
|
#endif
|
|
struct m_snd_tag *mst;
|
|
int error;
|
|
|
|
MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
|
|
mst = NULL;
|
|
|
|
#ifdef KERN_TLS
|
|
/*
|
|
* If this is an unencrypted TLS record, save a reference to
|
|
* the record. This local reference is used to call
|
|
* ktls_output_eagain after the mbuf has been freed (thus
|
|
* dropping the mbuf's reference) in if_output.
|
|
*/
|
|
if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) {
|
|
tls = ktls_hold(m->m_next->m_epg_tls);
|
|
mst = tls->snd_tag;
|
|
|
|
/*
|
|
* If a TLS session doesn't have a valid tag, it must
|
|
* have had an earlier ifp mismatch, so drop this
|
|
* packet.
|
|
*/
|
|
if (mst == NULL) {
|
|
error = EAGAIN;
|
|
goto done;
|
|
}
|
|
/*
|
|
* Always stamp tags that include NIC ktls.
|
|
*/
|
|
stamp_tag = true;
|
|
}
|
|
#endif
|
|
#ifdef RATELIMIT
|
|
if (inp != NULL && mst == NULL) {
|
|
if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 ||
|
|
(inp->inp_snd_tag != NULL &&
|
|
inp->inp_snd_tag->ifp != ifp))
|
|
in_pcboutput_txrtlmt(inp, ifp, m);
|
|
|
|
if (inp->inp_snd_tag != NULL)
|
|
mst = inp->inp_snd_tag;
|
|
}
|
|
#endif
|
|
if (stamp_tag && mst != NULL) {
|
|
KASSERT(m->m_pkthdr.rcvif == NULL,
|
|
("trying to add a send tag to a forwarded packet"));
|
|
if (mst->ifp != ifp) {
|
|
error = EAGAIN;
|
|
goto done;
|
|
}
|
|
|
|
/* stamp send tag on mbuf */
|
|
m->m_pkthdr.snd_tag = m_snd_tag_ref(mst);
|
|
m->m_pkthdr.csum_flags |= CSUM_SND_TAG;
|
|
}
|
|
|
|
error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro);
|
|
|
|
done:
|
|
/* Check for route change invalidating send tags. */
|
|
#ifdef KERN_TLS
|
|
if (tls != NULL) {
|
|
if (error == EAGAIN)
|
|
error = ktls_output_eagain(inp, tls);
|
|
ktls_free(tls);
|
|
}
|
|
#endif
|
|
#ifdef RATELIMIT
|
|
if (error == EAGAIN)
|
|
in_pcboutput_eagain(inp);
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* IP6 output.
|
|
* The packet in mbuf chain m contains a skeletal IP6 header (with pri, len,
|
|
* nxt, hlim, src, dst).
|
|
* This function may modify ver and hlim only.
|
|
* The mbuf chain containing the packet will be freed.
|
|
* The mbuf opt, if present, will not be freed.
|
|
* If route_in6 ro is present and has ro_nh initialized, route lookup would be
|
|
* skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL,
|
|
* then result of route lookup is stored in ro->ro_nh.
|
|
*
|
|
* Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu
|
|
* is uint32_t. So we use u_long to hold largest one, which is rt_mtu.
|
|
*
|
|
* ifpp - XXX: just for statistics
|
|
*/
|
|
int
|
|
ip6_output(struct mbuf *m0, struct ip6_pktopts *opt,
|
|
struct route_in6 *ro, int flags, struct ip6_moptions *im6o,
|
|
struct ifnet **ifpp, struct inpcb *inp)
|
|
{
|
|
struct ip6_hdr *ip6;
|
|
struct ifnet *ifp, *origifp;
|
|
struct mbuf *m = m0;
|
|
struct mbuf *mprev;
|
|
struct route_in6 *ro_pmtu;
|
|
struct nhop_object *nh;
|
|
struct sockaddr_in6 *dst, sin6, src_sa, dst_sa;
|
|
struct in6_addr odst;
|
|
u_char *nexthdrp;
|
|
int tlen, len;
|
|
int error = 0;
|
|
int vlan_pcp = -1;
|
|
struct in6_ifaddr *ia = NULL;
|
|
u_long mtu;
|
|
int alwaysfrag, dontfrag;
|
|
u_int32_t optlen, plen = 0, unfragpartlen;
|
|
struct ip6_exthdrs exthdrs;
|
|
struct in6_addr src0, dst0;
|
|
u_int32_t zone;
|
|
bool hdrsplit;
|
|
int sw_csum, tso;
|
|
int needfiblookup;
|
|
uint32_t fibnum;
|
|
struct m_tag *fwd_tag = NULL;
|
|
uint32_t id;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
if (inp != NULL) {
|
|
INP_LOCK_ASSERT(inp);
|
|
M_SETFIB(m, inp->inp_inc.inc_fibnum);
|
|
if ((flags & IP_NODEFAULTFLOWID) == 0) {
|
|
/* Unconditionally set flowid. */
|
|
m->m_pkthdr.flowid = inp->inp_flowid;
|
|
M_HASHTYPE_SET(m, inp->inp_flowtype);
|
|
}
|
|
if ((inp->inp_flags2 & INP_2PCP_SET) != 0)
|
|
vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >>
|
|
INP_2PCP_SHIFT;
|
|
#ifdef NUMA
|
|
m->m_pkthdr.numa_domain = inp->inp_numa_domain;
|
|
#endif
|
|
}
|
|
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
/*
|
|
* IPSec checking which handles several cases.
|
|
* FAST IPSEC: We re-injected the packet.
|
|
* XXX: need scope argument.
|
|
*/
|
|
if (IPSEC_ENABLED(ipv6)) {
|
|
if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) {
|
|
if (error == EINPROGRESS)
|
|
error = 0;
|
|
goto done;
|
|
}
|
|
}
|
|
#endif /* IPSEC */
|
|
|
|
/* Source address validation. */
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
|
|
(flags & IPV6_UNSPECSRC) == 0) {
|
|
error = EOPNOTSUPP;
|
|
IP6STAT_INC(ip6s_badscope);
|
|
goto bad;
|
|
}
|
|
if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
|
|
error = EOPNOTSUPP;
|
|
IP6STAT_INC(ip6s_badscope);
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* If we are given packet options to add extension headers prepare them.
|
|
* Calculate the total length of the extension header chain.
|
|
* Keep the length of the unfragmentable part for fragmentation.
|
|
*/
|
|
bzero(&exthdrs, sizeof(exthdrs));
|
|
optlen = 0;
|
|
unfragpartlen = sizeof(struct ip6_hdr);
|
|
if (opt) {
|
|
/* Hop-by-Hop options header. */
|
|
MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen);
|
|
|
|
/* Destination options header (1st part). */
|
|
if (opt->ip6po_rthdr) {
|
|
#ifndef RTHDR_SUPPORT_IMPLEMENTED
|
|
/*
|
|
* If there is a routing header, discard the packet
|
|
* right away here. RH0/1 are obsolete and we do not
|
|
* currently support RH2/3/4.
|
|
* People trying to use RH253/254 may want to disable
|
|
* this check.
|
|
* The moment we do support any routing header (again)
|
|
* this block should check the routing type more
|
|
* selectively.
|
|
*/
|
|
error = EINVAL;
|
|
goto bad;
|
|
#endif
|
|
|
|
/*
|
|
* Destination options header (1st part).
|
|
* This only makes sense with a routing header.
|
|
* See Section 9.2 of RFC 3542.
|
|
* Disabling this part just for MIP6 convenience is
|
|
* a bad idea. We need to think carefully about a
|
|
* way to make the advanced API coexist with MIP6
|
|
* options, which might automatically be inserted in
|
|
* the kernel.
|
|
*/
|
|
MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1,
|
|
optlen);
|
|
}
|
|
/* Routing header. */
|
|
MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen);
|
|
|
|
unfragpartlen += optlen;
|
|
|
|
/*
|
|
* NOTE: we don't add AH/ESP length here (done in
|
|
* ip6_ipsec_output()).
|
|
*/
|
|
|
|
/* Destination options header (2nd part). */
|
|
MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen);
|
|
}
|
|
|
|
/*
|
|
* If there is at least one extension header,
|
|
* separate IP6 header from the payload.
|
|
*/
|
|
hdrsplit = false;
|
|
if (optlen) {
|
|
if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
|
|
m = NULL;
|
|
goto freehdrs;
|
|
}
|
|
m = exthdrs.ip6e_ip6;
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
hdrsplit = true;
|
|
}
|
|
|
|
/* Adjust mbuf packet header length. */
|
|
m->m_pkthdr.len += optlen;
|
|
plen = m->m_pkthdr.len - sizeof(*ip6);
|
|
|
|
/* If this is a jumbo payload, insert a jumbo payload option. */
|
|
if (plen > IPV6_MAXPACKET) {
|
|
if (!hdrsplit) {
|
|
if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
|
|
m = NULL;
|
|
goto freehdrs;
|
|
}
|
|
m = exthdrs.ip6e_ip6;
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
hdrsplit = true;
|
|
}
|
|
if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
|
|
goto freehdrs;
|
|
ip6->ip6_plen = 0;
|
|
} else
|
|
ip6->ip6_plen = htons(plen);
|
|
nexthdrp = &ip6->ip6_nxt;
|
|
|
|
if (optlen) {
|
|
/*
|
|
* Concatenate headers and fill in next header fields.
|
|
* Here we have, on "m"
|
|
* IPv6 payload
|
|
* and we insert headers accordingly.
|
|
* Finally, we should be getting:
|
|
* IPv6 hbh dest1 rthdr ah* [esp* dest2 payload].
|
|
*
|
|
* During the header composing process "m" points to IPv6
|
|
* header. "mprev" points to an extension header prior to esp.
|
|
*/
|
|
mprev = m;
|
|
|
|
/*
|
|
* We treat dest2 specially. This makes IPsec processing
|
|
* much easier. The goal here is to make mprev point the
|
|
* mbuf prior to dest2.
|
|
*
|
|
* Result: IPv6 dest2 payload.
|
|
* m and mprev will point to IPv6 header.
|
|
*/
|
|
if (exthdrs.ip6e_dest2) {
|
|
if (!hdrsplit)
|
|
panic("%s:%d: assumption failed: "
|
|
"hdr not split: hdrsplit %d exthdrs %p",
|
|
__func__, __LINE__, hdrsplit, &exthdrs);
|
|
exthdrs.ip6e_dest2->m_next = m->m_next;
|
|
m->m_next = exthdrs.ip6e_dest2;
|
|
*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
|
|
ip6->ip6_nxt = IPPROTO_DSTOPTS;
|
|
}
|
|
|
|
/*
|
|
* Result: IPv6 hbh dest1 rthdr dest2 payload.
|
|
* m will point to IPv6 header. mprev will point to the
|
|
* extension header prior to dest2 (rthdr in the above case).
|
|
*/
|
|
MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
|
|
MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
|
|
IPPROTO_DSTOPTS);
|
|
MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
|
|
IPPROTO_ROUTING);
|
|
}
|
|
|
|
IP6STAT_INC(ip6s_localout);
|
|
|
|
/* Route packet. */
|
|
ro_pmtu = ro;
|
|
if (opt && opt->ip6po_rthdr)
|
|
ro = &opt->ip6po_route;
|
|
if (ro != NULL)
|
|
dst = (struct sockaddr_in6 *)&ro->ro_dst;
|
|
else
|
|
dst = &sin6;
|
|
fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
|
|
|
|
again:
|
|
/*
|
|
* If specified, try to fill in the traffic class field.
|
|
* Do not override if a non-zero value is already set.
|
|
* We check the diffserv field and the ECN field separately.
|
|
*/
|
|
if (opt && opt->ip6po_tclass >= 0) {
|
|
int mask = 0;
|
|
|
|
if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
|
|
mask |= 0xfc;
|
|
if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
|
|
mask |= 0x03;
|
|
if (mask != 0)
|
|
ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
|
|
}
|
|
|
|
/* Fill in or override the hop limit field, if necessary. */
|
|
if (opt && opt->ip6po_hlim != -1)
|
|
ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
|
|
else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
|
|
if (im6o != NULL)
|
|
ip6->ip6_hlim = im6o->im6o_multicast_hlim;
|
|
else
|
|
ip6->ip6_hlim = V_ip6_defmcasthlim;
|
|
}
|
|
|
|
if (ro == NULL || ro->ro_nh == NULL) {
|
|
bzero(dst, sizeof(*dst));
|
|
dst->sin6_family = AF_INET6;
|
|
dst->sin6_len = sizeof(*dst);
|
|
dst->sin6_addr = ip6->ip6_dst;
|
|
}
|
|
/*
|
|
* Validate route against routing table changes.
|
|
* Make sure that the address family is set in route.
|
|
*/
|
|
nh = NULL;
|
|
ifp = NULL;
|
|
mtu = 0;
|
|
if (ro != NULL) {
|
|
if (ro->ro_nh != NULL && inp != NULL) {
|
|
ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */
|
|
NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie,
|
|
fibnum);
|
|
}
|
|
if (ro->ro_nh != NULL && fwd_tag == NULL &&
|
|
(!NH_IS_VALID(ro->ro_nh) ||
|
|
ro->ro_dst.sin6_family != AF_INET6 ||
|
|
!IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)))
|
|
RO_INVALIDATE_CACHE(ro);
|
|
|
|
if (ro->ro_nh != NULL && fwd_tag == NULL &&
|
|
ro->ro_dst.sin6_family == AF_INET6 &&
|
|
IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) {
|
|
nh = ro->ro_nh;
|
|
ifp = nh->nh_ifp;
|
|
} else {
|
|
if (ro->ro_lle)
|
|
LLE_FREE(ro->ro_lle); /* zeros ro_lle */
|
|
ro->ro_lle = NULL;
|
|
if (fwd_tag == NULL) {
|
|
bzero(&dst_sa, sizeof(dst_sa));
|
|
dst_sa.sin6_family = AF_INET6;
|
|
dst_sa.sin6_len = sizeof(dst_sa);
|
|
dst_sa.sin6_addr = ip6->ip6_dst;
|
|
}
|
|
error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp,
|
|
&nh, fibnum, m->m_pkthdr.flowid);
|
|
if (error != 0) {
|
|
IP6STAT_INC(ip6s_noroute);
|
|
if (ifp != NULL)
|
|
in6_ifstat_inc(ifp, ifs6_out_discard);
|
|
goto bad;
|
|
}
|
|
if (ifp != NULL)
|
|
mtu = ifp->if_mtu;
|
|
}
|
|
if (nh == NULL) {
|
|
/*
|
|
* If in6_selectroute() does not return a nexthop
|
|
* dst may not have been updated.
|
|
*/
|
|
*dst = dst_sa; /* XXX */
|
|
} else {
|
|
if (nh->nh_flags & NHF_HOST)
|
|
mtu = nh->nh_mtu;
|
|
ia = (struct in6_ifaddr *)(nh->nh_ifa);
|
|
counter_u64_add(nh->nh_pksent, 1);
|
|
}
|
|
} else {
|
|
struct nhop_object *nh;
|
|
struct in6_addr kdst;
|
|
uint32_t scopeid;
|
|
|
|
if (fwd_tag == NULL) {
|
|
bzero(&dst_sa, sizeof(dst_sa));
|
|
dst_sa.sin6_family = AF_INET6;
|
|
dst_sa.sin6_len = sizeof(dst_sa);
|
|
dst_sa.sin6_addr = ip6->ip6_dst;
|
|
}
|
|
|
|
if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) &&
|
|
im6o != NULL &&
|
|
(ifp = im6o->im6o_multicast_ifp) != NULL) {
|
|
/* We do not need a route lookup. */
|
|
*dst = dst_sa; /* XXX */
|
|
goto nonh6lookup;
|
|
}
|
|
|
|
in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid);
|
|
|
|
if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) ||
|
|
IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) {
|
|
if (scopeid > 0) {
|
|
ifp = in6_getlinkifnet(scopeid);
|
|
if (ifp == NULL) {
|
|
error = EHOSTUNREACH;
|
|
goto bad;
|
|
}
|
|
*dst = dst_sa; /* XXX */
|
|
goto nonh6lookup;
|
|
}
|
|
}
|
|
|
|
nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE,
|
|
m->m_pkthdr.flowid);
|
|
if (nh == NULL) {
|
|
IP6STAT_INC(ip6s_noroute);
|
|
/* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */
|
|
error = EHOSTUNREACH;;
|
|
goto bad;
|
|
}
|
|
|
|
ifp = nh->nh_ifp;
|
|
mtu = nh->nh_mtu;
|
|
ia = ifatoia6(nh->nh_ifa);
|
|
if (nh->nh_flags & NHF_GATEWAY)
|
|
dst->sin6_addr = nh->gw6_sa.sin6_addr;
|
|
nonh6lookup:
|
|
;
|
|
}
|
|
|
|
/* Then nh (for unicast) and ifp must be non-NULL valid values. */
|
|
if ((flags & IPV6_FORWARDING) == 0) {
|
|
/* XXX: the FORWARDING flag can be set for mrouting. */
|
|
in6_ifstat_inc(ifp, ifs6_out_request);
|
|
}
|
|
|
|
/* Setup data structures for scope ID checks. */
|
|
src0 = ip6->ip6_src;
|
|
bzero(&src_sa, sizeof(src_sa));
|
|
src_sa.sin6_family = AF_INET6;
|
|
src_sa.sin6_len = sizeof(src_sa);
|
|
src_sa.sin6_addr = ip6->ip6_src;
|
|
|
|
dst0 = ip6->ip6_dst;
|
|
/* Re-initialize to be sure. */
|
|
bzero(&dst_sa, sizeof(dst_sa));
|
|
dst_sa.sin6_family = AF_INET6;
|
|
dst_sa.sin6_len = sizeof(dst_sa);
|
|
dst_sa.sin6_addr = ip6->ip6_dst;
|
|
|
|
/* Check for valid scope ID. */
|
|
if (in6_setscope(&src0, ifp, &zone) == 0 &&
|
|
sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id &&
|
|
in6_setscope(&dst0, ifp, &zone) == 0 &&
|
|
sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) {
|
|
/*
|
|
* The outgoing interface is in the zone of the source
|
|
* and destination addresses.
|
|
*
|
|
* Because the loopback interface cannot receive
|
|
* packets with a different scope ID than its own,
|
|
* there is a trick to pretend the outgoing packet
|
|
* was received by the real network interface, by
|
|
* setting "origifp" different from "ifp". This is
|
|
* only allowed when "ifp" is a loopback network
|
|
* interface. Refer to code in nd6_output_ifp() for
|
|
* more details.
|
|
*/
|
|
origifp = ifp;
|
|
|
|
/*
|
|
* We should use ia_ifp to support the case of sending
|
|
* packets to an address of our own.
|
|
*/
|
|
if (ia != NULL && ia->ia_ifp)
|
|
ifp = ia->ia_ifp;
|
|
|
|
} else if ((ifp->if_flags & IFF_LOOPBACK) == 0 ||
|
|
sa6_recoverscope(&src_sa) != 0 ||
|
|
sa6_recoverscope(&dst_sa) != 0 ||
|
|
dst_sa.sin6_scope_id == 0 ||
|
|
(src_sa.sin6_scope_id != 0 &&
|
|
src_sa.sin6_scope_id != dst_sa.sin6_scope_id) ||
|
|
(origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) {
|
|
/*
|
|
* If the destination network interface is not a
|
|
* loopback interface, or the destination network
|
|
* address has no scope ID, or the source address has
|
|
* a scope ID set which is different from the
|
|
* destination address one, or there is no network
|
|
* interface representing this scope ID, the address
|
|
* pair is considered invalid.
|
|
*/
|
|
IP6STAT_INC(ip6s_badscope);
|
|
in6_ifstat_inc(ifp, ifs6_out_discard);
|
|
if (error == 0)
|
|
error = EHOSTUNREACH; /* XXX */
|
|
goto bad;
|
|
}
|
|
/* All scope ID checks are successful. */
|
|
|
|
if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
|
|
if (opt && opt->ip6po_nextroute.ro_nh) {
|
|
/*
|
|
* The nexthop is explicitly specified by the
|
|
* application. We assume the next hop is an IPv6
|
|
* address.
|
|
*/
|
|
dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
|
|
}
|
|
else if ((nh->nh_flags & NHF_GATEWAY))
|
|
dst = &nh->gw6_sa;
|
|
}
|
|
|
|
if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
|
|
m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */
|
|
} else {
|
|
m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
|
|
in6_ifstat_inc(ifp, ifs6_out_mcast);
|
|
|
|
/* Confirm that the outgoing interface supports multicast. */
|
|
if (!(ifp->if_flags & IFF_MULTICAST)) {
|
|
IP6STAT_INC(ip6s_noroute);
|
|
in6_ifstat_inc(ifp, ifs6_out_discard);
|
|
error = ENETUNREACH;
|
|
goto bad;
|
|
}
|
|
if ((im6o == NULL && in6_mcast_loop) ||
|
|
(im6o && im6o->im6o_multicast_loop)) {
|
|
/*
|
|
* Loop back multicast datagram if not expressly
|
|
* forbidden to do so, even if we have not joined
|
|
* the address; protocols will filter it later,
|
|
* thus deferring a hash lookup and lock acquisition
|
|
* at the expense of an m_copym().
|
|
*/
|
|
ip6_mloopback(ifp, m);
|
|
} else {
|
|
/*
|
|
* If we are acting as a multicast router, perform
|
|
* multicast forwarding as if the packet had just
|
|
* arrived on the interface to which we are about
|
|
* to send. The multicast forwarding function
|
|
* recursively calls this function, using the
|
|
* IPV6_FORWARDING flag to prevent infinite recursion.
|
|
*
|
|
* Multicasts that are looped back by ip6_mloopback(),
|
|
* above, will be forwarded by the ip6_input() routine,
|
|
* if necessary.
|
|
*/
|
|
if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
|
|
/*
|
|
* XXX: ip6_mforward expects that rcvif is NULL
|
|
* when it is called from the originating path.
|
|
* However, it may not always be the case.
|
|
*/
|
|
m->m_pkthdr.rcvif = NULL;
|
|
if (ip6_mforward(ip6, ifp, m) != 0) {
|
|
m_freem(m);
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Multicasts with a hoplimit of zero may be looped back,
|
|
* above, but must not be transmitted on a network.
|
|
* Also, multicasts addressed to the loopback interface
|
|
* are not sent -- the above call to ip6_mloopback() will
|
|
* loop back a copy if this host actually belongs to the
|
|
* destination group on the loopback interface.
|
|
*/
|
|
if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
|
|
IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
|
|
m_freem(m);
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fill the outgoing inteface to tell the upper layer
|
|
* to increment per-interface statistics.
|
|
*/
|
|
if (ifpp)
|
|
*ifpp = ifp;
|
|
|
|
/* Determine path MTU. */
|
|
if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst,
|
|
&mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0)
|
|
goto bad;
|
|
KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p "
|
|
"alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro,
|
|
ifp, alwaysfrag, fibnum));
|
|
|
|
/*
|
|
* The caller of this function may specify to use the minimum MTU
|
|
* in some cases.
|
|
* An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
|
|
* setting. The logic is a bit complicated; by default, unicast
|
|
* packets will follow path MTU while multicast packets will be sent at
|
|
* the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
|
|
* including unicast ones will be sent at the minimum MTU. Multicast
|
|
* packets will always be sent at the minimum MTU unless
|
|
* IP6PO_MINMTU_DISABLE is explicitly specified.
|
|
* See RFC 3542 for more details.
|
|
*/
|
|
if (mtu > IPV6_MMTU) {
|
|
if ((flags & IPV6_MINMTU))
|
|
mtu = IPV6_MMTU;
|
|
else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
|
|
mtu = IPV6_MMTU;
|
|
else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
|
|
(opt == NULL ||
|
|
opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
|
|
mtu = IPV6_MMTU;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear embedded scope identifiers if necessary.
|
|
* in6_clearscope() will touch the addresses only when necessary.
|
|
*/
|
|
in6_clearscope(&ip6->ip6_src);
|
|
in6_clearscope(&ip6->ip6_dst);
|
|
|
|
/*
|
|
* If the outgoing packet contains a hop-by-hop options header,
|
|
* it must be examined and processed even by the source node.
|
|
* (RFC 2460, section 4.)
|
|
*/
|
|
if (exthdrs.ip6e_hbh) {
|
|
struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
|
|
u_int32_t dummy; /* XXX unused */
|
|
u_int32_t plen = 0; /* XXX: ip6_process will check the value */
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len)
|
|
panic("ip6e_hbh is not contiguous");
|
|
#endif
|
|
/*
|
|
* XXX: if we have to send an ICMPv6 error to the sender,
|
|
* we need the M_LOOP flag since icmp6_error() expects
|
|
* the IPv6 and the hop-by-hop options header are
|
|
* contiguous unless the flag is set.
|
|
*/
|
|
m->m_flags |= M_LOOP;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
|
|
((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
|
|
&dummy, &plen) < 0) {
|
|
/* m was already freed at this point. */
|
|
error = EINVAL;/* better error? */
|
|
goto done;
|
|
}
|
|
m->m_flags &= ~M_LOOP; /* XXX */
|
|
m->m_pkthdr.rcvif = NULL;
|
|
}
|
|
|
|
/* Jump over all PFIL processing if hooks are not active. */
|
|
if (!PFIL_HOOKED_OUT(V_inet6_pfil_head))
|
|
goto passout;
|
|
|
|
odst = ip6->ip6_dst;
|
|
/* Run through list of hooks for output packets. */
|
|
switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) {
|
|
case PFIL_PASS:
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
break;
|
|
case PFIL_DROPPED:
|
|
error = EACCES;
|
|
/* FALLTHROUGH */
|
|
case PFIL_CONSUMED:
|
|
goto done;
|
|
}
|
|
|
|
needfiblookup = 0;
|
|
/* See if destination IP address was changed by packet filter. */
|
|
if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) {
|
|
m->m_flags |= M_SKIP_FIREWALL;
|
|
/* If destination is now ourself drop to ip6_input(). */
|
|
if (in6_localip(&ip6->ip6_dst)) {
|
|
m->m_flags |= M_FASTFWD_OURS;
|
|
if (m->m_pkthdr.rcvif == NULL)
|
|
m->m_pkthdr.rcvif = V_loif;
|
|
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
#if defined(SCTP) || defined(SCTP_SUPPORT)
|
|
if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
|
|
m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
|
|
#endif
|
|
error = netisr_queue(NETISR_IPV6, m);
|
|
goto done;
|
|
} else {
|
|
if (ro != NULL)
|
|
RO_INVALIDATE_CACHE(ro);
|
|
needfiblookup = 1; /* Redo the routing table lookup. */
|
|
}
|
|
}
|
|
/* See if fib was changed by packet filter. */
|
|
if (fibnum != M_GETFIB(m)) {
|
|
m->m_flags |= M_SKIP_FIREWALL;
|
|
fibnum = M_GETFIB(m);
|
|
if (ro != NULL)
|
|
RO_INVALIDATE_CACHE(ro);
|
|
needfiblookup = 1;
|
|
}
|
|
if (needfiblookup)
|
|
goto again;
|
|
|
|
/* See if local, if yes, send it to netisr. */
|
|
if (m->m_flags & M_FASTFWD_OURS) {
|
|
if (m->m_pkthdr.rcvif == NULL)
|
|
m->m_pkthdr.rcvif = V_loif;
|
|
if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR;
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
#if defined(SCTP) || defined(SCTP_SUPPORT)
|
|
if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6)
|
|
m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
|
|
#endif
|
|
error = netisr_queue(NETISR_IPV6, m);
|
|
goto done;
|
|
}
|
|
/* Or forward to some other address? */
|
|
if ((m->m_flags & M_IP6_NEXTHOP) &&
|
|
(fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
|
|
if (ro != NULL)
|
|
dst = (struct sockaddr_in6 *)&ro->ro_dst;
|
|
else
|
|
dst = &sin6;
|
|
bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6));
|
|
m->m_flags |= M_SKIP_FIREWALL;
|
|
m->m_flags &= ~M_IP6_NEXTHOP;
|
|
m_tag_delete(m, fwd_tag);
|
|
goto again;
|
|
}
|
|
|
|
passout:
|
|
if (vlan_pcp > -1)
|
|
EVL_APPLY_PRI(m, vlan_pcp);
|
|
/*
|
|
* Send the packet to the outgoing interface.
|
|
* If necessary, do IPv6 fragmentation before sending.
|
|
*
|
|
* The logic here is rather complex:
|
|
* 1: normal case (dontfrag == 0, alwaysfrag == 0)
|
|
* 1-a: send as is if tlen <= path mtu
|
|
* 1-b: fragment if tlen > path mtu
|
|
*
|
|
* 2: if user asks us not to fragment (dontfrag == 1)
|
|
* 2-a: send as is if tlen <= interface mtu
|
|
* 2-b: error if tlen > interface mtu
|
|
*
|
|
* 3: if we always need to attach fragment header (alwaysfrag == 1)
|
|
* always fragment
|
|
*
|
|
* 4: if dontfrag == 1 && alwaysfrag == 1
|
|
* error, as we cannot handle this conflicting request.
|
|
*/
|
|
sw_csum = m->m_pkthdr.csum_flags;
|
|
if (!hdrsplit) {
|
|
tso = ((sw_csum & ifp->if_hwassist &
|
|
(CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0;
|
|
sw_csum &= ~ifp->if_hwassist;
|
|
} else
|
|
tso = 0;
|
|
/*
|
|
* If we added extension headers, we will not do TSO and calculate the
|
|
* checksums ourselves for now.
|
|
* XXX-BZ Need a framework to know when the NIC can handle it, even
|
|
* with ext. hdrs.
|
|
*/
|
|
error = ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen, false);
|
|
if (error != 0)
|
|
goto bad;
|
|
/* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */
|
|
tlen = m->m_pkthdr.len;
|
|
|
|
if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso)
|
|
dontfrag = 1;
|
|
else
|
|
dontfrag = 0;
|
|
if (dontfrag && alwaysfrag) { /* Case 4. */
|
|
/* Conflicting request - can't transmit. */
|
|
error = EMSGSIZE;
|
|
goto bad;
|
|
}
|
|
if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */
|
|
/*
|
|
* Even if the DONTFRAG option is specified, we cannot send the
|
|
* packet when the data length is larger than the MTU of the
|
|
* outgoing interface.
|
|
* Notify the error by sending IPV6_PATHMTU ancillary data if
|
|
* application wanted to know the MTU value. Also return an
|
|
* error code (this is not described in the API spec).
|
|
*/
|
|
if (inp != NULL)
|
|
ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu);
|
|
error = EMSGSIZE;
|
|
goto bad;
|
|
}
|
|
|
|
/* Transmit packet without fragmentation. */
|
|
if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */
|
|
struct in6_ifaddr *ia6;
|
|
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
|
|
if (ia6) {
|
|
/* Record statistics for this interface address. */
|
|
counter_u64_add(ia6->ia_ifa.ifa_opackets, 1);
|
|
counter_u64_add(ia6->ia_ifa.ifa_obytes,
|
|
m->m_pkthdr.len);
|
|
ifa_free(&ia6->ia_ifa);
|
|
}
|
|
error = ip6_output_send(inp, ifp, origifp, m, dst, ro,
|
|
(flags & IP_NO_SND_TAG_RL) ? false : true);
|
|
goto done;
|
|
}
|
|
|
|
/* Try to fragment the packet. Cases 1-b and 3. */
|
|
if (mtu < IPV6_MMTU) {
|
|
/* Path MTU cannot be less than IPV6_MMTU. */
|
|
error = EMSGSIZE;
|
|
in6_ifstat_inc(ifp, ifs6_out_fragfail);
|
|
goto bad;
|
|
} else if (ip6->ip6_plen == 0) {
|
|
/* Jumbo payload cannot be fragmented. */
|
|
error = EMSGSIZE;
|
|
in6_ifstat_inc(ifp, ifs6_out_fragfail);
|
|
goto bad;
|
|
} else {
|
|
u_char nextproto;
|
|
|
|
/*
|
|
* Too large for the destination or interface;
|
|
* fragment if possible.
|
|
* Must be able to put at least 8 bytes per fragment.
|
|
*/
|
|
if (mtu > IPV6_MAXPACKET)
|
|
mtu = IPV6_MAXPACKET;
|
|
|
|
len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7;
|
|
if (len < 8) {
|
|
error = EMSGSIZE;
|
|
in6_ifstat_inc(ifp, ifs6_out_fragfail);
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* If the interface will not calculate checksums on
|
|
* fragmented packets, then do it here.
|
|
* XXX-BZ handle the hw offloading case. Need flags.
|
|
*/
|
|
error = ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags,
|
|
plen, optlen, true);
|
|
if (error != 0)
|
|
goto bad;
|
|
|
|
/*
|
|
* Change the next header field of the last header in the
|
|
* unfragmentable part.
|
|
*/
|
|
if (exthdrs.ip6e_rthdr) {
|
|
nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
|
|
*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
|
|
} else if (exthdrs.ip6e_dest1) {
|
|
nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
|
|
*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
|
|
} else if (exthdrs.ip6e_hbh) {
|
|
nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
|
|
*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
|
|
} else {
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
nextproto = ip6->ip6_nxt;
|
|
ip6->ip6_nxt = IPPROTO_FRAGMENT;
|
|
}
|
|
|
|
/*
|
|
* Loop through length of segment after first fragment,
|
|
* make new header and copy data of each part and link onto
|
|
* chain.
|
|
*/
|
|
m0 = m;
|
|
id = htonl(ip6_randomid());
|
|
error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id);
|
|
if (error != 0)
|
|
goto sendorfree;
|
|
|
|
in6_ifstat_inc(ifp, ifs6_out_fragok);
|
|
}
|
|
|
|
/* Remove leading garbage. */
|
|
sendorfree:
|
|
m = m0->m_nextpkt;
|
|
m0->m_nextpkt = 0;
|
|
m_freem(m0);
|
|
for (; m; m = m0) {
|
|
m0 = m->m_nextpkt;
|
|
m->m_nextpkt = 0;
|
|
if (error == 0) {
|
|
/* Record statistics for this interface address. */
|
|
if (ia) {
|
|
counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
|
|
counter_u64_add(ia->ia_ifa.ifa_obytes,
|
|
m->m_pkthdr.len);
|
|
}
|
|
if (vlan_pcp > -1)
|
|
EVL_APPLY_PRI(m, vlan_pcp);
|
|
error = ip6_output_send(inp, ifp, origifp, m, dst, ro,
|
|
true);
|
|
} else
|
|
m_freem(m);
|
|
}
|
|
|
|
if (error == 0)
|
|
IP6STAT_INC(ip6s_fragmented);
|
|
|
|
done:
|
|
return (error);
|
|
|
|
freehdrs:
|
|
m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */
|
|
m_freem(exthdrs.ip6e_dest1);
|
|
m_freem(exthdrs.ip6e_rthdr);
|
|
m_freem(exthdrs.ip6e_dest2);
|
|
/* FALLTHROUGH */
|
|
bad:
|
|
if (m)
|
|
m_freem(m);
|
|
goto done;
|
|
}
|
|
|
|
static int
|
|
ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
if (hlen > MCLBYTES)
|
|
return (ENOBUFS); /* XXX */
|
|
|
|
if (hlen > MLEN)
|
|
m = m_getcl(M_NOWAIT, MT_DATA, 0);
|
|
else
|
|
m = m_get(M_NOWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = hlen;
|
|
if (hdr)
|
|
bcopy(hdr, mtod(m, caddr_t), hlen);
|
|
|
|
*mp = m;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Insert jumbo payload option.
|
|
*/
|
|
static int
|
|
ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen)
|
|
{
|
|
struct mbuf *mopt;
|
|
u_char *optbuf;
|
|
u_int32_t v;
|
|
|
|
#define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
|
|
|
|
/*
|
|
* If there is no hop-by-hop options header, allocate new one.
|
|
* If there is one but it doesn't have enough space to store the
|
|
* jumbo payload option, allocate a cluster to store the whole options.
|
|
* Otherwise, use it to store the options.
|
|
*/
|
|
if (exthdrs->ip6e_hbh == NULL) {
|
|
mopt = m_get(M_NOWAIT, MT_DATA);
|
|
if (mopt == NULL)
|
|
return (ENOBUFS);
|
|
mopt->m_len = JUMBOOPTLEN;
|
|
optbuf = mtod(mopt, u_char *);
|
|
optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
|
|
exthdrs->ip6e_hbh = mopt;
|
|
} else {
|
|
struct ip6_hbh *hbh;
|
|
|
|
mopt = exthdrs->ip6e_hbh;
|
|
if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
|
|
/*
|
|
* XXX assumption:
|
|
* - exthdrs->ip6e_hbh is not referenced from places
|
|
* other than exthdrs.
|
|
* - exthdrs->ip6e_hbh is not an mbuf chain.
|
|
*/
|
|
int oldoptlen = mopt->m_len;
|
|
struct mbuf *n;
|
|
|
|
/*
|
|
* XXX: give up if the whole (new) hbh header does
|
|
* not fit even in an mbuf cluster.
|
|
*/
|
|
if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
|
|
return (ENOBUFS);
|
|
|
|
/*
|
|
* As a consequence, we must always prepare a cluster
|
|
* at this point.
|
|
*/
|
|
n = m_getcl(M_NOWAIT, MT_DATA, 0);
|
|
if (n == NULL)
|
|
return (ENOBUFS);
|
|
n->m_len = oldoptlen + JUMBOOPTLEN;
|
|
bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
|
|
oldoptlen);
|
|
optbuf = mtod(n, caddr_t) + oldoptlen;
|
|
m_freem(mopt);
|
|
mopt = exthdrs->ip6e_hbh = n;
|
|
} else {
|
|
optbuf = mtod(mopt, u_char *) + mopt->m_len;
|
|
mopt->m_len += JUMBOOPTLEN;
|
|
}
|
|
optbuf[0] = IP6OPT_PADN;
|
|
optbuf[1] = 1;
|
|
|
|
/*
|
|
* Adjust the header length according to the pad and
|
|
* the jumbo payload option.
|
|
*/
|
|
hbh = mtod(mopt, struct ip6_hbh *);
|
|
hbh->ip6h_len += (JUMBOOPTLEN >> 3);
|
|
}
|
|
|
|
/* fill in the option. */
|
|
optbuf[2] = IP6OPT_JUMBO;
|
|
optbuf[3] = 4;
|
|
v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
|
|
bcopy(&v, &optbuf[4], sizeof(u_int32_t));
|
|
|
|
/* finally, adjust the packet header length */
|
|
exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
|
|
|
|
return (0);
|
|
#undef JUMBOOPTLEN
|
|
}
|
|
|
|
/*
|
|
* Insert fragment header and copy unfragmentable header portions.
|
|
*/
|
|
static int
|
|
ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen,
|
|
struct ip6_frag **frghdrp)
|
|
{
|
|
struct mbuf *n, *mlast;
|
|
|
|
if (hlen > sizeof(struct ip6_hdr)) {
|
|
n = m_copym(m0, sizeof(struct ip6_hdr),
|
|
hlen - sizeof(struct ip6_hdr), M_NOWAIT);
|
|
if (n == NULL)
|
|
return (ENOBUFS);
|
|
m->m_next = n;
|
|
} else
|
|
n = m;
|
|
|
|
/* Search for the last mbuf of unfragmentable part. */
|
|
for (mlast = n; mlast->m_next; mlast = mlast->m_next)
|
|
;
|
|
|
|
if (M_WRITABLE(mlast) &&
|
|
M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
|
|
/* use the trailing space of the last mbuf for the fragment hdr */
|
|
*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
|
|
mlast->m_len);
|
|
mlast->m_len += sizeof(struct ip6_frag);
|
|
m->m_pkthdr.len += sizeof(struct ip6_frag);
|
|
} else {
|
|
/* allocate a new mbuf for the fragment header */
|
|
struct mbuf *mfrg;
|
|
|
|
mfrg = m_get(M_NOWAIT, MT_DATA);
|
|
if (mfrg == NULL)
|
|
return (ENOBUFS);
|
|
mfrg->m_len = sizeof(struct ip6_frag);
|
|
*frghdrp = mtod(mfrg, struct ip6_frag *);
|
|
mlast->m_next = mfrg;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Calculates IPv6 path mtu for destination @dst.
|
|
* Resulting MTU is stored in @mtup.
|
|
*
|
|
* Returns 0 on success.
|
|
*/
|
|
static int
|
|
ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup)
|
|
{
|
|
struct epoch_tracker et;
|
|
struct nhop_object *nh;
|
|
struct in6_addr kdst;
|
|
uint32_t scopeid;
|
|
int error;
|
|
|
|
in6_splitscope(dst, &kdst, &scopeid);
|
|
|
|
NET_EPOCH_ENTER(et);
|
|
nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0);
|
|
if (nh != NULL)
|
|
error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0);
|
|
else
|
|
error = EHOSTUNREACH;
|
|
NET_EPOCH_EXIT(et);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Calculates IPv6 path MTU for @dst based on transmit @ifp,
|
|
* and cached data in @ro_pmtu.
|
|
* MTU from (successful) route lookup is saved (along with dst)
|
|
* inside @ro_pmtu to avoid subsequent route lookups after packet
|
|
* filter processing.
|
|
*
|
|
* Stores mtu and always-frag value into @mtup and @alwaysfragp.
|
|
* Returns 0 on success.
|
|
*/
|
|
static int
|
|
ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup,
|
|
struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup,
|
|
int *alwaysfragp, u_int fibnum, u_int proto)
|
|
{
|
|
struct nhop_object *nh;
|
|
struct in6_addr kdst;
|
|
uint32_t scopeid;
|
|
struct sockaddr_in6 *sa6_dst, sin6;
|
|
u_long mtu;
|
|
|
|
NET_EPOCH_ASSERT();
|
|
|
|
mtu = 0;
|
|
if (ro_pmtu == NULL || do_lookup) {
|
|
/*
|
|
* Here ro_pmtu has final destination address, while
|
|
* ro might represent immediate destination.
|
|
* Use ro_pmtu destination since mtu might differ.
|
|
*/
|
|
if (ro_pmtu != NULL) {
|
|
sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
|
|
if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))
|
|
ro_pmtu->ro_mtu = 0;
|
|
} else
|
|
sa6_dst = &sin6;
|
|
|
|
if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) {
|
|
bzero(sa6_dst, sizeof(*sa6_dst));
|
|
sa6_dst->sin6_family = AF_INET6;
|
|
sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
|
|
sa6_dst->sin6_addr = *dst;
|
|
|
|
in6_splitscope(dst, &kdst, &scopeid);
|
|
nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0);
|
|
if (nh != NULL) {
|
|
mtu = nh->nh_mtu;
|
|
if (ro_pmtu != NULL)
|
|
ro_pmtu->ro_mtu = mtu;
|
|
}
|
|
} else
|
|
mtu = ro_pmtu->ro_mtu;
|
|
}
|
|
|
|
if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL)
|
|
mtu = ro_pmtu->ro_nh->nh_mtu;
|
|
|
|
return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto));
|
|
}
|
|
|
|
/*
|
|
* Calculate MTU based on transmit @ifp, route mtu @rt_mtu and
|
|
* hostcache data for @dst.
|
|
* Stores mtu and always-frag value into @mtup and @alwaysfragp.
|
|
*
|
|
* Returns 0 on success.
|
|
*/
|
|
static int
|
|
ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu,
|
|
u_long *mtup, int *alwaysfragp, u_int proto)
|
|
{
|
|
u_long mtu = 0;
|
|
int alwaysfrag = 0;
|
|
int error = 0;
|
|
|
|
if (rt_mtu > 0) {
|
|
u_int32_t ifmtu;
|
|
struct in_conninfo inc;
|
|
|
|
bzero(&inc, sizeof(inc));
|
|
inc.inc_flags |= INC_ISIPV6;
|
|
inc.inc6_faddr = *dst;
|
|
|
|
ifmtu = IN6_LINKMTU(ifp);
|
|
|
|
/* TCP is known to react to pmtu changes so skip hc */
|
|
if (proto != IPPROTO_TCP)
|
|
mtu = tcp_hc_getmtu(&inc);
|
|
|
|
if (mtu)
|
|
mtu = min(mtu, rt_mtu);
|
|
else
|
|
mtu = rt_mtu;
|
|
if (mtu == 0)
|
|
mtu = ifmtu;
|
|
else if (mtu < IPV6_MMTU) {
|
|
/*
|
|
* RFC2460 section 5, last paragraph:
|
|
* if we record ICMPv6 too big message with
|
|
* mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
|
|
* or smaller, with framgent header attached.
|
|
* (fragment header is needed regardless from the
|
|
* packet size, for translators to identify packets)
|
|
*/
|
|
alwaysfrag = 1;
|
|
mtu = IPV6_MMTU;
|
|
}
|
|
} else if (ifp) {
|
|
mtu = IN6_LINKMTU(ifp);
|
|
} else
|
|
error = EHOSTUNREACH; /* XXX */
|
|
|
|
*mtup = mtu;
|
|
if (alwaysfragp)
|
|
*alwaysfragp = alwaysfrag;
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* IP6 socket option processing.
|
|
*/
|
|
int
|
|
ip6_ctloutput(struct socket *so, struct sockopt *sopt)
|
|
{
|
|
int optdatalen, uproto;
|
|
void *optdata;
|
|
struct inpcb *inp = sotoinpcb(so);
|
|
int error, optval;
|
|
int level, op, optname;
|
|
int optlen;
|
|
struct thread *td;
|
|
#ifdef RSS
|
|
uint32_t rss_bucket;
|
|
int retval;
|
|
#endif
|
|
|
|
/*
|
|
* Don't use more than a quarter of mbuf clusters. N.B.:
|
|
* nmbclusters is an int, but nmbclusters * MCLBYTES may overflow
|
|
* on LP64 architectures, so cast to u_long to avoid undefined
|
|
* behavior. ILP32 architectures cannot have nmbclusters
|
|
* large enough to overflow for other reasons.
|
|
*/
|
|
#define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4)
|
|
|
|
level = sopt->sopt_level;
|
|
op = sopt->sopt_dir;
|
|
optname = sopt->sopt_name;
|
|
optlen = sopt->sopt_valsize;
|
|
td = sopt->sopt_td;
|
|
error = 0;
|
|
optval = 0;
|
|
uproto = (int)so->so_proto->pr_protocol;
|
|
|
|
if (level != IPPROTO_IPV6) {
|
|
error = EINVAL;
|
|
|
|
if (sopt->sopt_level == SOL_SOCKET &&
|
|
sopt->sopt_dir == SOPT_SET) {
|
|
switch (sopt->sopt_name) {
|
|
case SO_REUSEADDR:
|
|
INP_WLOCK(inp);
|
|
if ((so->so_options & SO_REUSEADDR) != 0)
|
|
inp->inp_flags2 |= INP_REUSEADDR;
|
|
else
|
|
inp->inp_flags2 &= ~INP_REUSEADDR;
|
|
INP_WUNLOCK(inp);
|
|
error = 0;
|
|
break;
|
|
case SO_REUSEPORT:
|
|
INP_WLOCK(inp);
|
|
if ((so->so_options & SO_REUSEPORT) != 0)
|
|
inp->inp_flags2 |= INP_REUSEPORT;
|
|
else
|
|
inp->inp_flags2 &= ~INP_REUSEPORT;
|
|
INP_WUNLOCK(inp);
|
|
error = 0;
|
|
break;
|
|
case SO_REUSEPORT_LB:
|
|
INP_WLOCK(inp);
|
|
if ((so->so_options & SO_REUSEPORT_LB) != 0)
|
|
inp->inp_flags2 |= INP_REUSEPORT_LB;
|
|
else
|
|
inp->inp_flags2 &= ~INP_REUSEPORT_LB;
|
|
INP_WUNLOCK(inp);
|
|
error = 0;
|
|
break;
|
|
case SO_SETFIB:
|
|
INP_WLOCK(inp);
|
|
inp->inp_inc.inc_fibnum = so->so_fibnum;
|
|
INP_WUNLOCK(inp);
|
|
error = 0;
|
|
break;
|
|
case SO_MAX_PACING_RATE:
|
|
#ifdef RATELIMIT
|
|
INP_WLOCK(inp);
|
|
inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
|
|
INP_WUNLOCK(inp);
|
|
error = 0;
|
|
#else
|
|
error = EOPNOTSUPP;
|
|
#endif
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
} else { /* level == IPPROTO_IPV6 */
|
|
switch (op) {
|
|
case SOPT_SET:
|
|
switch (optname) {
|
|
case IPV6_2292PKTOPTIONS:
|
|
#ifdef IPV6_PKTOPTIONS
|
|
case IPV6_PKTOPTIONS:
|
|
#endif
|
|
{
|
|
struct mbuf *m;
|
|
|
|
if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) {
|
|
printf("ip6_ctloutput: mbuf limit hit\n");
|
|
error = ENOBUFS;
|
|
break;
|
|
}
|
|
|
|
error = soopt_getm(sopt, &m); /* XXX */
|
|
if (error != 0)
|
|
break;
|
|
error = soopt_mcopyin(sopt, m); /* XXX */
|
|
if (error != 0)
|
|
break;
|
|
INP_WLOCK(inp);
|
|
error = ip6_pcbopts(&inp->in6p_outputopts, m,
|
|
so, sopt);
|
|
INP_WUNLOCK(inp);
|
|
m_freem(m); /* XXX */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Use of some Hop-by-Hop options or some
|
|
* Destination options, might require special
|
|
* privilege. That is, normal applications
|
|
* (without special privilege) might be forbidden
|
|
* from setting certain options in outgoing packets,
|
|
* and might never see certain options in received
|
|
* packets. [RFC 2292 Section 6]
|
|
* KAME specific note:
|
|
* KAME prevents non-privileged users from sending or
|
|
* receiving ANY hbh/dst options in order to avoid
|
|
* overhead of parsing options in the kernel.
|
|
*/
|
|
case IPV6_RECVHOPOPTS:
|
|
case IPV6_RECVDSTOPTS:
|
|
case IPV6_RECVRTHDRDSTOPTS:
|
|
if (td != NULL) {
|
|
error = priv_check(td,
|
|
PRIV_NETINET_SETHDROPTS);
|
|
if (error)
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case IPV6_UNICAST_HOPS:
|
|
case IPV6_HOPLIMIT:
|
|
|
|
case IPV6_RECVPKTINFO:
|
|
case IPV6_RECVHOPLIMIT:
|
|
case IPV6_RECVRTHDR:
|
|
case IPV6_RECVPATHMTU:
|
|
case IPV6_RECVTCLASS:
|
|
case IPV6_RECVFLOWID:
|
|
#ifdef RSS
|
|
case IPV6_RECVRSSBUCKETID:
|
|
#endif
|
|
case IPV6_V6ONLY:
|
|
case IPV6_AUTOFLOWLABEL:
|
|
case IPV6_ORIGDSTADDR:
|
|
case IPV6_BINDANY:
|
|
case IPV6_BINDMULTI:
|
|
#ifdef RSS
|
|
case IPV6_RSS_LISTEN_BUCKET:
|
|
#endif
|
|
case IPV6_VLAN_PCP:
|
|
if (optname == IPV6_BINDANY && td != NULL) {
|
|
error = priv_check(td,
|
|
PRIV_NETINET_BINDANY);
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
if (optlen != sizeof(int)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
error = sooptcopyin(sopt, &optval,
|
|
sizeof optval, sizeof optval);
|
|
if (error)
|
|
break;
|
|
switch (optname) {
|
|
case IPV6_UNICAST_HOPS:
|
|
if (optval < -1 || optval >= 256)
|
|
error = EINVAL;
|
|
else {
|
|
/* -1 = kernel default */
|
|
inp->in6p_hops = optval;
|
|
if ((inp->inp_vflag &
|
|
INP_IPV4) != 0)
|
|
inp->inp_ip_ttl = optval;
|
|
}
|
|
break;
|
|
#define OPTSET(bit) \
|
|
do { \
|
|
INP_WLOCK(inp); \
|
|
if (optval) \
|
|
inp->inp_flags |= (bit); \
|
|
else \
|
|
inp->inp_flags &= ~(bit); \
|
|
INP_WUNLOCK(inp); \
|
|
} while (/*CONSTCOND*/ 0)
|
|
#define OPTSET2292(bit) \
|
|
do { \
|
|
INP_WLOCK(inp); \
|
|
inp->inp_flags |= IN6P_RFC2292; \
|
|
if (optval) \
|
|
inp->inp_flags |= (bit); \
|
|
else \
|
|
inp->inp_flags &= ~(bit); \
|
|
INP_WUNLOCK(inp); \
|
|
} while (/*CONSTCOND*/ 0)
|
|
#define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0)
|
|
|
|
#define OPTSET2_N(bit, val) do { \
|
|
if (val) \
|
|
inp->inp_flags2 |= bit; \
|
|
else \
|
|
inp->inp_flags2 &= ~bit; \
|
|
} while (0)
|
|
#define OPTSET2(bit, val) do { \
|
|
INP_WLOCK(inp); \
|
|
OPTSET2_N(bit, val); \
|
|
INP_WUNLOCK(inp); \
|
|
} while (0)
|
|
#define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0)
|
|
#define OPTSET2292_EXCLUSIVE(bit) \
|
|
do { \
|
|
INP_WLOCK(inp); \
|
|
if (OPTBIT(IN6P_RFC2292)) { \
|
|
error = EINVAL; \
|
|
} else { \
|
|
if (optval) \
|
|
inp->inp_flags |= (bit); \
|
|
else \
|
|
inp->inp_flags &= ~(bit); \
|
|
} \
|
|
INP_WUNLOCK(inp); \
|
|
} while (/*CONSTCOND*/ 0)
|
|
|
|
case IPV6_RECVPKTINFO:
|
|
OPTSET2292_EXCLUSIVE(IN6P_PKTINFO);
|
|
break;
|
|
|
|
case IPV6_HOPLIMIT:
|
|
{
|
|
struct ip6_pktopts **optp;
|
|
|
|
/* cannot mix with RFC2292 */
|
|
if (OPTBIT(IN6P_RFC2292)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
INP_WLOCK(inp);
|
|
if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
|
|
INP_WUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
optp = &inp->in6p_outputopts;
|
|
error = ip6_pcbopt(IPV6_HOPLIMIT,
|
|
(u_char *)&optval, sizeof(optval),
|
|
optp, (td != NULL) ? td->td_ucred :
|
|
NULL, uproto);
|
|
INP_WUNLOCK(inp);
|
|
break;
|
|
}
|
|
|
|
case IPV6_RECVHOPLIMIT:
|
|
OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT);
|
|
break;
|
|
|
|
case IPV6_RECVHOPOPTS:
|
|
OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS);
|
|
break;
|
|
|
|
case IPV6_RECVDSTOPTS:
|
|
OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS);
|
|
break;
|
|
|
|
case IPV6_RECVRTHDRDSTOPTS:
|
|
OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS);
|
|
break;
|
|
|
|
case IPV6_RECVRTHDR:
|
|
OPTSET2292_EXCLUSIVE(IN6P_RTHDR);
|
|
break;
|
|
|
|
case IPV6_RECVPATHMTU:
|
|
/*
|
|
* We ignore this option for TCP
|
|
* sockets.
|
|
* (RFC3542 leaves this case
|
|
* unspecified.)
|
|
*/
|
|
if (uproto != IPPROTO_TCP)
|
|
OPTSET(IN6P_MTU);
|
|
break;
|
|
|
|
case IPV6_RECVFLOWID:
|
|
OPTSET2(INP_RECVFLOWID, optval);
|
|
break;
|
|
|
|
#ifdef RSS
|
|
case IPV6_RECVRSSBUCKETID:
|
|
OPTSET2(INP_RECVRSSBUCKETID, optval);
|
|
break;
|
|
#endif
|
|
|
|
case IPV6_V6ONLY:
|
|
INP_WLOCK(inp);
|
|
if (inp->inp_lport ||
|
|
!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) {
|
|
/*
|
|
* The socket is already bound.
|
|
*/
|
|
INP_WUNLOCK(inp);
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (optval) {
|
|
inp->inp_flags |= IN6P_IPV6_V6ONLY;
|
|
inp->inp_vflag &= ~INP_IPV4;
|
|
} else {
|
|
inp->inp_flags &= ~IN6P_IPV6_V6ONLY;
|
|
inp->inp_vflag |= INP_IPV4;
|
|
}
|
|
INP_WUNLOCK(inp);
|
|
break;
|
|
case IPV6_RECVTCLASS:
|
|
/* cannot mix with RFC2292 XXX */
|
|
OPTSET2292_EXCLUSIVE(IN6P_TCLASS);
|
|
break;
|
|
case IPV6_AUTOFLOWLABEL:
|
|
OPTSET(IN6P_AUTOFLOWLABEL);
|
|
break;
|
|
|
|
case IPV6_ORIGDSTADDR:
|
|
OPTSET2(INP_ORIGDSTADDR, optval);
|
|
break;
|
|
case IPV6_BINDANY:
|
|
OPTSET(INP_BINDANY);
|
|
break;
|
|
|
|
case IPV6_BINDMULTI:
|
|
OPTSET2(INP_BINDMULTI, optval);
|
|
break;
|
|
#ifdef RSS
|
|
case IPV6_RSS_LISTEN_BUCKET:
|
|
if ((optval >= 0) &&
|
|
(optval < rss_getnumbuckets())) {
|
|
INP_WLOCK(inp);
|
|
inp->inp_rss_listen_bucket = optval;
|
|
OPTSET2_N(INP_RSS_BUCKET_SET, 1);
|
|
INP_WUNLOCK(inp);
|
|
} else {
|
|
error = EINVAL;
|
|
}
|
|
break;
|
|
#endif
|
|
case IPV6_VLAN_PCP:
|
|
if ((optval >= -1) && (optval <=
|
|
(INP_2PCP_MASK >> INP_2PCP_SHIFT))) {
|
|
if (optval == -1) {
|
|
INP_WLOCK(inp);
|
|
inp->inp_flags2 &=
|
|
~(INP_2PCP_SET |
|
|
INP_2PCP_MASK);
|
|
INP_WUNLOCK(inp);
|
|
} else {
|
|
INP_WLOCK(inp);
|
|
inp->inp_flags2 |=
|
|
INP_2PCP_SET;
|
|
inp->inp_flags2 &=
|
|
~INP_2PCP_MASK;
|
|
inp->inp_flags2 |=
|
|
optval <<
|
|
INP_2PCP_SHIFT;
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
} else
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case IPV6_TCLASS:
|
|
case IPV6_DONTFRAG:
|
|
case IPV6_USE_MIN_MTU:
|
|
case IPV6_PREFER_TEMPADDR:
|
|
if (optlen != sizeof(optval)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
error = sooptcopyin(sopt, &optval,
|
|
sizeof optval, sizeof optval);
|
|
if (error)
|
|
break;
|
|
{
|
|
struct ip6_pktopts **optp;
|
|
INP_WLOCK(inp);
|
|
if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
|
|
INP_WUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
optp = &inp->in6p_outputopts;
|
|
error = ip6_pcbopt(optname,
|
|
(u_char *)&optval, sizeof(optval),
|
|
optp, (td != NULL) ? td->td_ucred :
|
|
NULL, uproto);
|
|
INP_WUNLOCK(inp);
|
|
break;
|
|
}
|
|
|
|
case IPV6_2292PKTINFO:
|
|
case IPV6_2292HOPLIMIT:
|
|
case IPV6_2292HOPOPTS:
|
|
case IPV6_2292DSTOPTS:
|
|
case IPV6_2292RTHDR:
|
|
/* RFC 2292 */
|
|
if (optlen != sizeof(int)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
error = sooptcopyin(sopt, &optval,
|
|
sizeof optval, sizeof optval);
|
|
if (error)
|
|
break;
|
|
switch (optname) {
|
|
case IPV6_2292PKTINFO:
|
|
OPTSET2292(IN6P_PKTINFO);
|
|
break;
|
|
case IPV6_2292HOPLIMIT:
|
|
OPTSET2292(IN6P_HOPLIMIT);
|
|
break;
|
|
case IPV6_2292HOPOPTS:
|
|
/*
|
|
* Check super-user privilege.
|
|
* See comments for IPV6_RECVHOPOPTS.
|
|
*/
|
|
if (td != NULL) {
|
|
error = priv_check(td,
|
|
PRIV_NETINET_SETHDROPTS);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
OPTSET2292(IN6P_HOPOPTS);
|
|
break;
|
|
case IPV6_2292DSTOPTS:
|
|
if (td != NULL) {
|
|
error = priv_check(td,
|
|
PRIV_NETINET_SETHDROPTS);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
|
|
break;
|
|
case IPV6_2292RTHDR:
|
|
OPTSET2292(IN6P_RTHDR);
|
|
break;
|
|
}
|
|
break;
|
|
case IPV6_PKTINFO:
|
|
case IPV6_HOPOPTS:
|
|
case IPV6_RTHDR:
|
|
case IPV6_DSTOPTS:
|
|
case IPV6_RTHDRDSTOPTS:
|
|
case IPV6_NEXTHOP:
|
|
{
|
|
/* new advanced API (RFC3542) */
|
|
u_char *optbuf;
|
|
u_char optbuf_storage[MCLBYTES];
|
|
int optlen;
|
|
struct ip6_pktopts **optp;
|
|
|
|
/* cannot mix with RFC2292 */
|
|
if (OPTBIT(IN6P_RFC2292)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We only ensure valsize is not too large
|
|
* here. Further validation will be done
|
|
* later.
|
|
*/
|
|
error = sooptcopyin(sopt, optbuf_storage,
|
|
sizeof(optbuf_storage), 0);
|
|
if (error)
|
|
break;
|
|
optlen = sopt->sopt_valsize;
|
|
optbuf = optbuf_storage;
|
|
INP_WLOCK(inp);
|
|
if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) {
|
|
INP_WUNLOCK(inp);
|
|
return (ECONNRESET);
|
|
}
|
|
optp = &inp->in6p_outputopts;
|
|
error = ip6_pcbopt(optname, optbuf, optlen,
|
|
optp, (td != NULL) ? td->td_ucred : NULL,
|
|
uproto);
|
|
INP_WUNLOCK(inp);
|
|
break;
|
|
}
|
|
#undef OPTSET
|
|
|
|
case IPV6_MULTICAST_IF:
|
|
case IPV6_MULTICAST_HOPS:
|
|
case IPV6_MULTICAST_LOOP:
|
|
case IPV6_JOIN_GROUP:
|
|
case IPV6_LEAVE_GROUP:
|
|
case IPV6_MSFILTER:
|
|
case MCAST_BLOCK_SOURCE:
|
|
case MCAST_UNBLOCK_SOURCE:
|
|
case MCAST_JOIN_GROUP:
|
|
case MCAST_LEAVE_GROUP:
|
|
case MCAST_JOIN_SOURCE_GROUP:
|
|
case MCAST_LEAVE_SOURCE_GROUP:
|
|
error = ip6_setmoptions(inp, sopt);
|
|
break;
|
|
|
|
case IPV6_PORTRANGE:
|
|
error = sooptcopyin(sopt, &optval,
|
|
sizeof optval, sizeof optval);
|
|
if (error)
|
|
break;
|
|
|
|
INP_WLOCK(inp);
|
|
switch (optval) {
|
|
case IPV6_PORTRANGE_DEFAULT:
|
|
inp->inp_flags &= ~(INP_LOWPORT);
|
|
inp->inp_flags &= ~(INP_HIGHPORT);
|
|
break;
|
|
|
|
case IPV6_PORTRANGE_HIGH:
|
|
inp->inp_flags &= ~(INP_LOWPORT);
|
|
inp->inp_flags |= INP_HIGHPORT;
|
|
break;
|
|
|
|
case IPV6_PORTRANGE_LOW:
|
|
inp->inp_flags &= ~(INP_HIGHPORT);
|
|
inp->inp_flags |= INP_LOWPORT;
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
INP_WUNLOCK(inp);
|
|
break;
|
|
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
case IPV6_IPSEC_POLICY:
|
|
if (IPSEC_ENABLED(ipv6)) {
|
|
error = IPSEC_PCBCTL(ipv6, inp, sopt);
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
#endif /* IPSEC */
|
|
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case SOPT_GET:
|
|
switch (optname) {
|
|
case IPV6_2292PKTOPTIONS:
|
|
#ifdef IPV6_PKTOPTIONS
|
|
case IPV6_PKTOPTIONS:
|
|
#endif
|
|
/*
|
|
* RFC3542 (effectively) deprecated the
|
|
* semantics of the 2292-style pktoptions.
|
|
* Since it was not reliable in nature (i.e.,
|
|
* applications had to expect the lack of some
|
|
* information after all), it would make sense
|
|
* to simplify this part by always returning
|
|
* empty data.
|
|
*/
|
|
sopt->sopt_valsize = 0;
|
|
break;
|
|
|
|
case IPV6_RECVHOPOPTS:
|
|
case IPV6_RECVDSTOPTS:
|
|
case IPV6_RECVRTHDRDSTOPTS:
|
|
case IPV6_UNICAST_HOPS:
|
|
case IPV6_RECVPKTINFO:
|
|
case IPV6_RECVHOPLIMIT:
|
|
case IPV6_RECVRTHDR:
|
|
case IPV6_RECVPATHMTU:
|
|
|
|
case IPV6_V6ONLY:
|
|
case IPV6_PORTRANGE:
|
|
case IPV6_RECVTCLASS:
|
|
case IPV6_AUTOFLOWLABEL:
|
|
case IPV6_BINDANY:
|
|
case IPV6_FLOWID:
|
|
case IPV6_FLOWTYPE:
|
|
case IPV6_RECVFLOWID:
|
|
#ifdef RSS
|
|
case IPV6_RSSBUCKETID:
|
|
case IPV6_RECVRSSBUCKETID:
|
|
#endif
|
|
case IPV6_BINDMULTI:
|
|
case IPV6_VLAN_PCP:
|
|
switch (optname) {
|
|
case IPV6_RECVHOPOPTS:
|
|
optval = OPTBIT(IN6P_HOPOPTS);
|
|
break;
|
|
|
|
case IPV6_RECVDSTOPTS:
|
|
optval = OPTBIT(IN6P_DSTOPTS);
|
|
break;
|
|
|
|
case IPV6_RECVRTHDRDSTOPTS:
|
|
optval = OPTBIT(IN6P_RTHDRDSTOPTS);
|
|
break;
|
|
|
|
case IPV6_UNICAST_HOPS:
|
|
optval = inp->in6p_hops;
|
|
break;
|
|
|
|
case IPV6_RECVPKTINFO:
|
|
optval = OPTBIT(IN6P_PKTINFO);
|
|
break;
|
|
|
|
case IPV6_RECVHOPLIMIT:
|
|
optval = OPTBIT(IN6P_HOPLIMIT);
|
|
break;
|
|
|
|
case IPV6_RECVRTHDR:
|
|
optval = OPTBIT(IN6P_RTHDR);
|
|
break;
|
|
|
|
case IPV6_RECVPATHMTU:
|
|
optval = OPTBIT(IN6P_MTU);
|
|
break;
|
|
|
|
case IPV6_V6ONLY:
|
|
optval = OPTBIT(IN6P_IPV6_V6ONLY);
|
|
break;
|
|
|
|
case IPV6_PORTRANGE:
|
|
{
|
|
int flags;
|
|
flags = inp->inp_flags;
|
|
if (flags & INP_HIGHPORT)
|
|
optval = IPV6_PORTRANGE_HIGH;
|
|
else if (flags & INP_LOWPORT)
|
|
optval = IPV6_PORTRANGE_LOW;
|
|
else
|
|
optval = 0;
|
|
break;
|
|
}
|
|
case IPV6_RECVTCLASS:
|
|
optval = OPTBIT(IN6P_TCLASS);
|
|
break;
|
|
|
|
case IPV6_AUTOFLOWLABEL:
|
|
optval = OPTBIT(IN6P_AUTOFLOWLABEL);
|
|
break;
|
|
|
|
case IPV6_ORIGDSTADDR:
|
|
optval = OPTBIT2(INP_ORIGDSTADDR);
|
|
break;
|
|
|
|
case IPV6_BINDANY:
|
|
optval = OPTBIT(INP_BINDANY);
|
|
break;
|
|
|
|
case IPV6_FLOWID:
|
|
optval = inp->inp_flowid;
|
|
break;
|
|
|
|
case IPV6_FLOWTYPE:
|
|
optval = inp->inp_flowtype;
|
|
break;
|
|
|
|
case IPV6_RECVFLOWID:
|
|
optval = OPTBIT2(INP_RECVFLOWID);
|
|
break;
|
|
#ifdef RSS
|
|
case IPV6_RSSBUCKETID:
|
|
retval =
|
|
rss_hash2bucket(inp->inp_flowid,
|
|
inp->inp_flowtype,
|
|
&rss_bucket);
|
|
if (retval == 0)
|
|
optval = rss_bucket;
|
|
else
|
|
error = EINVAL;
|
|
break;
|
|
|
|
case IPV6_RECVRSSBUCKETID:
|
|
optval = OPTBIT2(INP_RECVRSSBUCKETID);
|
|
break;
|
|
#endif
|
|
|
|
case IPV6_BINDMULTI:
|
|
optval = OPTBIT2(INP_BINDMULTI);
|
|
break;
|
|
|
|
case IPV6_VLAN_PCP:
|
|
if (OPTBIT2(INP_2PCP_SET)) {
|
|
optval = (inp->inp_flags2 &
|
|
INP_2PCP_MASK) >>
|
|
INP_2PCP_SHIFT;
|
|
} else {
|
|
optval = -1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (error)
|
|
break;
|
|
error = sooptcopyout(sopt, &optval,
|
|
sizeof optval);
|
|
break;
|
|
|
|
case IPV6_PATHMTU:
|
|
{
|
|
u_long pmtu = 0;
|
|
struct ip6_mtuinfo mtuinfo;
|
|
struct in6_addr addr;
|
|
|
|
if (!(so->so_state & SS_ISCONNECTED))
|
|
return (ENOTCONN);
|
|
/*
|
|
* XXX: we dot not consider the case of source
|
|
* routing, or optional information to specify
|
|
* the outgoing interface.
|
|
* Copy faddr out of inp to avoid holding lock
|
|
* on inp during route lookup.
|
|
*/
|
|
INP_RLOCK(inp);
|
|
bcopy(&inp->in6p_faddr, &addr, sizeof(addr));
|
|
INP_RUNLOCK(inp);
|
|
error = ip6_getpmtu_ctl(so->so_fibnum,
|
|
&addr, &pmtu);
|
|
if (error)
|
|
break;
|
|
if (pmtu > IPV6_MAXPACKET)
|
|
pmtu = IPV6_MAXPACKET;
|
|
|
|
bzero(&mtuinfo, sizeof(mtuinfo));
|
|
mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
|
|
optdata = (void *)&mtuinfo;
|
|
optdatalen = sizeof(mtuinfo);
|
|
error = sooptcopyout(sopt, optdata,
|
|
optdatalen);
|
|
break;
|
|
}
|
|
|
|
case IPV6_2292PKTINFO:
|
|
case IPV6_2292HOPLIMIT:
|
|
case IPV6_2292HOPOPTS:
|
|
case IPV6_2292RTHDR:
|
|
case IPV6_2292DSTOPTS:
|
|
switch (optname) {
|
|
case IPV6_2292PKTINFO:
|
|
optval = OPTBIT(IN6P_PKTINFO);
|
|
break;
|
|
case IPV6_2292HOPLIMIT:
|
|
optval = OPTBIT(IN6P_HOPLIMIT);
|
|
break;
|
|
case IPV6_2292HOPOPTS:
|
|
optval = OPTBIT(IN6P_HOPOPTS);
|
|
break;
|
|
case IPV6_2292RTHDR:
|
|
optval = OPTBIT(IN6P_RTHDR);
|
|
break;
|
|
case IPV6_2292DSTOPTS:
|
|
optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
|
|
break;
|
|
}
|
|
error = sooptcopyout(sopt, &optval,
|
|
sizeof optval);
|
|
break;
|
|
case IPV6_PKTINFO:
|
|
case IPV6_HOPOPTS:
|
|
case IPV6_RTHDR:
|
|
case IPV6_DSTOPTS:
|
|
case IPV6_RTHDRDSTOPTS:
|
|
case IPV6_NEXTHOP:
|
|
case IPV6_TCLASS:
|
|
case IPV6_DONTFRAG:
|
|
case IPV6_USE_MIN_MTU:
|
|
case IPV6_PREFER_TEMPADDR:
|
|
error = ip6_getpcbopt(inp, optname, sopt);
|
|
break;
|
|
|
|
case IPV6_MULTICAST_IF:
|
|
case IPV6_MULTICAST_HOPS:
|
|
case IPV6_MULTICAST_LOOP:
|
|
case IPV6_MSFILTER:
|
|
error = ip6_getmoptions(inp, sopt);
|
|
break;
|
|
|
|
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
|
|
case IPV6_IPSEC_POLICY:
|
|
if (IPSEC_ENABLED(ipv6)) {
|
|
error = IPSEC_PCBCTL(ipv6, inp, sopt);
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
#endif /* IPSEC */
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt)
|
|
{
|
|
int error = 0, optval, optlen;
|
|
const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
|
|
struct inpcb *inp = sotoinpcb(so);
|
|
int level, op, optname;
|
|
|
|
level = sopt->sopt_level;
|
|
op = sopt->sopt_dir;
|
|
optname = sopt->sopt_name;
|
|
optlen = sopt->sopt_valsize;
|
|
|
|
if (level != IPPROTO_IPV6) {
|
|
return (EINVAL);
|
|
}
|
|
|
|
switch (optname) {
|
|
case IPV6_CHECKSUM:
|
|
/*
|
|
* For ICMPv6 sockets, no modification allowed for checksum
|
|
* offset, permit "no change" values to help existing apps.
|
|
*
|
|
* RFC3542 says: "An attempt to set IPV6_CHECKSUM
|
|
* for an ICMPv6 socket will fail."
|
|
* The current behavior does not meet RFC3542.
|
|
*/
|
|
switch (op) {
|
|
case SOPT_SET:
|
|
if (optlen != sizeof(int)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
error = sooptcopyin(sopt, &optval, sizeof(optval),
|
|
sizeof(optval));
|
|
if (error)
|
|
break;
|
|
if (optval < -1 || (optval % 2) != 0) {
|
|
/*
|
|
* The API assumes non-negative even offset
|
|
* values or -1 as a special value.
|
|
*/
|
|
error = EINVAL;
|
|
} else if (so->so_proto->pr_protocol ==
|
|
IPPROTO_ICMPV6) {
|
|
if (optval != icmp6off)
|
|
error = EINVAL;
|
|
} else
|
|
inp->in6p_cksum = optval;
|
|
break;
|
|
|
|
case SOPT_GET:
|
|
if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
|
|
optval = icmp6off;
|
|
else
|
|
optval = inp->in6p_cksum;
|
|
|
|
error = sooptcopyout(sopt, &optval, sizeof(optval));
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set up IP6 options in pcb for insertion in output packets or
|
|
* specifying behavior of outgoing packets.
|
|
*/
|
|
static int
|
|
ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m,
|
|
struct socket *so, struct sockopt *sopt)
|
|
{
|
|
struct ip6_pktopts *opt = *pktopt;
|
|
int error = 0;
|
|
struct thread *td = sopt->sopt_td;
|
|
|
|
/* turn off any old options. */
|
|
if (opt) {
|
|
#ifdef DIAGNOSTIC
|
|
if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
|
|
opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
|
|
opt->ip6po_rhinfo.ip6po_rhi_rthdr)
|
|
printf("ip6_pcbopts: all specified options are cleared.\n");
|
|
#endif
|
|
ip6_clearpktopts(opt, -1);
|
|
} else {
|
|
opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT);
|
|
if (opt == NULL)
|
|
return (ENOMEM);
|
|
}
|
|
*pktopt = NULL;
|
|
|
|
if (!m || m->m_len == 0) {
|
|
/*
|
|
* Only turning off any previous options, regardless of
|
|
* whether the opt is just created or given.
|
|
*/
|
|
free(opt, M_IP6OPT);
|
|
return (0);
|
|
}
|
|
|
|
/* set options specified by user. */
|
|
if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ?
|
|
td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) {
|
|
ip6_clearpktopts(opt, -1); /* XXX: discard all options */
|
|
free(opt, M_IP6OPT);
|
|
return (error);
|
|
}
|
|
*pktopt = opt;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* initialize ip6_pktopts. beware that there are non-zero default values in
|
|
* the struct.
|
|
*/
|
|
void
|
|
ip6_initpktopts(struct ip6_pktopts *opt)
|
|
{
|
|
|
|
bzero(opt, sizeof(*opt));
|
|
opt->ip6po_hlim = -1; /* -1 means default hop limit */
|
|
opt->ip6po_tclass = -1; /* -1 means default traffic class */
|
|
opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
|
|
opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM;
|
|
}
|
|
|
|
static int
|
|
ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
|
|
struct ucred *cred, int uproto)
|
|
{
|
|
struct ip6_pktopts *opt;
|
|
|
|
if (*pktopt == NULL) {
|
|
*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
|
|
M_NOWAIT);
|
|
if (*pktopt == NULL)
|
|
return (ENOBUFS);
|
|
ip6_initpktopts(*pktopt);
|
|
}
|
|
opt = *pktopt;
|
|
|
|
return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto));
|
|
}
|
|
|
|
#define GET_PKTOPT_VAR(field, lenexpr) do { \
|
|
if (pktopt && pktopt->field) { \
|
|
INP_RUNLOCK(inp); \
|
|
optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \
|
|
malloc_optdata = true; \
|
|
INP_RLOCK(inp); \
|
|
if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \
|
|
INP_RUNLOCK(inp); \
|
|
free(optdata, M_TEMP); \
|
|
return (ECONNRESET); \
|
|
} \
|
|
pktopt = inp->in6p_outputopts; \
|
|
if (pktopt && pktopt->field) { \
|
|
optdatalen = min(lenexpr, sopt->sopt_valsize); \
|
|
bcopy(&pktopt->field, optdata, optdatalen); \
|
|
} else { \
|
|
free(optdata, M_TEMP); \
|
|
optdata = NULL; \
|
|
malloc_optdata = false; \
|
|
} \
|
|
} \
|
|
} while(0)
|
|
|
|
#define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \
|
|
(((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3)
|
|
|
|
#define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \
|
|
pktopt->field->sa_len)
|
|
|
|
static int
|
|
ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt)
|
|
{
|
|
void *optdata = NULL;
|
|
bool malloc_optdata = false;
|
|
int optdatalen = 0;
|
|
int error = 0;
|
|
struct in6_pktinfo null_pktinfo;
|
|
int deftclass = 0, on;
|
|
int defminmtu = IP6PO_MINMTU_MCASTONLY;
|
|
int defpreftemp = IP6PO_TEMPADDR_SYSTEM;
|
|
struct ip6_pktopts *pktopt;
|
|
|
|
INP_RLOCK(inp);
|
|
pktopt = inp->in6p_outputopts;
|
|
|
|
switch (optname) {
|
|
case IPV6_PKTINFO:
|
|
optdata = (void *)&null_pktinfo;
|
|
if (pktopt && pktopt->ip6po_pktinfo) {
|
|
bcopy(pktopt->ip6po_pktinfo, &null_pktinfo,
|
|
sizeof(null_pktinfo));
|
|
in6_clearscope(&null_pktinfo.ipi6_addr);
|
|
} else {
|
|
/* XXX: we don't have to do this every time... */
|
|
bzero(&null_pktinfo, sizeof(null_pktinfo));
|
|
}
|
|
optdatalen = sizeof(struct in6_pktinfo);
|
|
break;
|
|
case IPV6_TCLASS:
|
|
if (pktopt && pktopt->ip6po_tclass >= 0)
|
|
deftclass = pktopt->ip6po_tclass;
|
|
optdata = (void *)&deftclass;
|
|
optdatalen = sizeof(int);
|
|
break;
|
|
case IPV6_HOPOPTS:
|
|
GET_PKTOPT_EXT_HDR(ip6po_hbh);
|
|
break;
|
|
case IPV6_RTHDR:
|
|
GET_PKTOPT_EXT_HDR(ip6po_rthdr);
|
|
break;
|
|
case IPV6_RTHDRDSTOPTS:
|
|
GET_PKTOPT_EXT_HDR(ip6po_dest1);
|
|
break;
|
|
case IPV6_DSTOPTS:
|
|
GET_PKTOPT_EXT_HDR(ip6po_dest2);
|
|
break;
|
|
case IPV6_NEXTHOP:
|
|
GET_PKTOPT_SOCKADDR(ip6po_nexthop);
|
|
break;
|
|
case IPV6_USE_MIN_MTU:
|
|
if (pktopt)
|
|
defminmtu = pktopt->ip6po_minmtu;
|
|
optdata = (void *)&defminmtu;
|
|
optdatalen = sizeof(int);
|
|
break;
|
|
case IPV6_DONTFRAG:
|
|
if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
|
|
on = 1;
|
|
else
|
|
on = 0;
|
|
optdata = (void *)&on;
|
|
optdatalen = sizeof(on);
|
|
break;
|
|
case IPV6_PREFER_TEMPADDR:
|
|
if (pktopt)
|
|
defpreftemp = pktopt->ip6po_prefer_tempaddr;
|
|
optdata = (void *)&defpreftemp;
|
|
optdatalen = sizeof(int);
|
|
break;
|
|
default: /* should not happen */
|
|
#ifdef DIAGNOSTIC
|
|
panic("ip6_getpcbopt: unexpected option\n");
|
|
#endif
|
|
INP_RUNLOCK(inp);
|
|
return (ENOPROTOOPT);
|
|
}
|
|
INP_RUNLOCK(inp);
|
|
|
|
error = sooptcopyout(sopt, optdata, optdatalen);
|
|
if (malloc_optdata)
|
|
free(optdata, M_TEMP);
|
|
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
|
|
{
|
|
if (pktopt == NULL)
|
|
return;
|
|
|
|
if (optname == -1 || optname == IPV6_PKTINFO) {
|
|
if (pktopt->ip6po_pktinfo)
|
|
free(pktopt->ip6po_pktinfo, M_IP6OPT);
|
|
pktopt->ip6po_pktinfo = NULL;
|
|
}
|
|
if (optname == -1 || optname == IPV6_HOPLIMIT)
|
|
pktopt->ip6po_hlim = -1;
|
|
if (optname == -1 || optname == IPV6_TCLASS)
|
|
pktopt->ip6po_tclass = -1;
|
|
if (optname == -1 || optname == IPV6_NEXTHOP) {
|
|
if (pktopt->ip6po_nextroute.ro_nh) {
|
|
NH_FREE(pktopt->ip6po_nextroute.ro_nh);
|
|
pktopt->ip6po_nextroute.ro_nh = NULL;
|
|
}
|
|
if (pktopt->ip6po_nexthop)
|
|
free(pktopt->ip6po_nexthop, M_IP6OPT);
|
|
pktopt->ip6po_nexthop = NULL;
|
|
}
|
|
if (optname == -1 || optname == IPV6_HOPOPTS) {
|
|
if (pktopt->ip6po_hbh)
|
|
free(pktopt->ip6po_hbh, M_IP6OPT);
|
|
pktopt->ip6po_hbh = NULL;
|
|
}
|
|
if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
|
|
if (pktopt->ip6po_dest1)
|
|
free(pktopt->ip6po_dest1, M_IP6OPT);
|
|
pktopt->ip6po_dest1 = NULL;
|
|
}
|
|
if (optname == -1 || optname == IPV6_RTHDR) {
|
|
if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
|
|
free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
|
|
pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
|
|
if (pktopt->ip6po_route.ro_nh) {
|
|
NH_FREE(pktopt->ip6po_route.ro_nh);
|
|
pktopt->ip6po_route.ro_nh = NULL;
|
|
}
|
|
}
|
|
if (optname == -1 || optname == IPV6_DSTOPTS) {
|
|
if (pktopt->ip6po_dest2)
|
|
free(pktopt->ip6po_dest2, M_IP6OPT);
|
|
pktopt->ip6po_dest2 = NULL;
|
|
}
|
|
}
|
|
|
|
#define PKTOPT_EXTHDRCPY(type) \
|
|
do {\
|
|
if (src->type) {\
|
|
int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
|
|
dst->type = malloc(hlen, M_IP6OPT, canwait);\
|
|
if (dst->type == NULL)\
|
|
goto bad;\
|
|
bcopy(src->type, dst->type, hlen);\
|
|
}\
|
|
} while (/*CONSTCOND*/ 0)
|
|
|
|
static int
|
|
copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
|
|
{
|
|
if (dst == NULL || src == NULL) {
|
|
printf("ip6_clearpktopts: invalid argument\n");
|
|
return (EINVAL);
|
|
}
|
|
|
|
dst->ip6po_hlim = src->ip6po_hlim;
|
|
dst->ip6po_tclass = src->ip6po_tclass;
|
|
dst->ip6po_flags = src->ip6po_flags;
|
|
dst->ip6po_minmtu = src->ip6po_minmtu;
|
|
dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr;
|
|
if (src->ip6po_pktinfo) {
|
|
dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
|
|
M_IP6OPT, canwait);
|
|
if (dst->ip6po_pktinfo == NULL)
|
|
goto bad;
|
|
*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
|
|
}
|
|
if (src->ip6po_nexthop) {
|
|
dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
|
|
M_IP6OPT, canwait);
|
|
if (dst->ip6po_nexthop == NULL)
|
|
goto bad;
|
|
bcopy(src->ip6po_nexthop, dst->ip6po_nexthop,
|
|
src->ip6po_nexthop->sa_len);
|
|
}
|
|
PKTOPT_EXTHDRCPY(ip6po_hbh);
|
|
PKTOPT_EXTHDRCPY(ip6po_dest1);
|
|
PKTOPT_EXTHDRCPY(ip6po_dest2);
|
|
PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
|
|
return (0);
|
|
|
|
bad:
|
|
ip6_clearpktopts(dst, -1);
|
|
return (ENOBUFS);
|
|
}
|
|
#undef PKTOPT_EXTHDRCPY
|
|
|
|
struct ip6_pktopts *
|
|
ip6_copypktopts(struct ip6_pktopts *src, int canwait)
|
|
{
|
|
int error;
|
|
struct ip6_pktopts *dst;
|
|
|
|
dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
|
|
if (dst == NULL)
|
|
return (NULL);
|
|
ip6_initpktopts(dst);
|
|
|
|
if ((error = copypktopts(dst, src, canwait)) != 0) {
|
|
free(dst, M_IP6OPT);
|
|
return (NULL);
|
|
}
|
|
|
|
return (dst);
|
|
}
|
|
|
|
void
|
|
ip6_freepcbopts(struct ip6_pktopts *pktopt)
|
|
{
|
|
if (pktopt == NULL)
|
|
return;
|
|
|
|
ip6_clearpktopts(pktopt, -1);
|
|
|
|
free(pktopt, M_IP6OPT);
|
|
}
|
|
|
|
/*
|
|
* Set IPv6 outgoing packet options based on advanced API.
|
|
*/
|
|
int
|
|
ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt,
|
|
struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto)
|
|
{
|
|
struct cmsghdr *cm = NULL;
|
|
|
|
if (control == NULL || opt == NULL)
|
|
return (EINVAL);
|
|
|
|
ip6_initpktopts(opt);
|
|
if (stickyopt) {
|
|
int error;
|
|
|
|
/*
|
|
* If stickyopt is provided, make a local copy of the options
|
|
* for this particular packet, then override them by ancillary
|
|
* objects.
|
|
* XXX: copypktopts() does not copy the cached route to a next
|
|
* hop (if any). This is not very good in terms of efficiency,
|
|
* but we can allow this since this option should be rarely
|
|
* used.
|
|
*/
|
|
if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* XXX: Currently, we assume all the optional information is stored
|
|
* in a single mbuf.
|
|
*/
|
|
if (control->m_next)
|
|
return (EINVAL);
|
|
|
|
for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len),
|
|
control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
|
|
int error;
|
|
|
|
if (control->m_len < CMSG_LEN(0))
|
|
return (EINVAL);
|
|
|
|
cm = mtod(control, struct cmsghdr *);
|
|
if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
|
|
return (EINVAL);
|
|
if (cm->cmsg_level != IPPROTO_IPV6)
|
|
continue;
|
|
|
|
error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
|
|
cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set a particular packet option, as a sticky option or an ancillary data
|
|
* item. "len" can be 0 only when it's a sticky option.
|
|
* We have 4 cases of combination of "sticky" and "cmsg":
|
|
* "sticky=0, cmsg=0": impossible
|
|
* "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
|
|
* "sticky=1, cmsg=0": RFC3542 socket option
|
|
* "sticky=1, cmsg=1": RFC2292 socket option
|
|
*/
|
|
static int
|
|
ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
|
|
struct ucred *cred, int sticky, int cmsg, int uproto)
|
|
{
|
|
int minmtupolicy, preftemp;
|
|
int error;
|
|
|
|
if (!sticky && !cmsg) {
|
|
#ifdef DIAGNOSTIC
|
|
printf("ip6_setpktopt: impossible case\n");
|
|
#endif
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* IPV6_2292xxx is for backward compatibility to RFC2292, and should
|
|
* not be specified in the context of RFC3542. Conversely,
|
|
* RFC3542 types should not be specified in the context of RFC2292.
|
|
*/
|
|
if (!cmsg) {
|
|
switch (optname) {
|
|
case IPV6_2292PKTINFO:
|
|
case IPV6_2292HOPLIMIT:
|
|
case IPV6_2292NEXTHOP:
|
|
case IPV6_2292HOPOPTS:
|
|
case IPV6_2292DSTOPTS:
|
|
case IPV6_2292RTHDR:
|
|
case IPV6_2292PKTOPTIONS:
|
|
return (ENOPROTOOPT);
|
|
}
|
|
}
|
|
if (sticky && cmsg) {
|
|
switch (optname) {
|
|
case IPV6_PKTINFO:
|
|
case IPV6_HOPLIMIT:
|
|
case IPV6_NEXTHOP:
|
|
case IPV6_HOPOPTS:
|
|
case IPV6_DSTOPTS:
|
|
case IPV6_RTHDRDSTOPTS:
|
|
case IPV6_RTHDR:
|
|
case IPV6_USE_MIN_MTU:
|
|
case IPV6_DONTFRAG:
|
|
case IPV6_TCLASS:
|
|
case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */
|
|
return (ENOPROTOOPT);
|
|
}
|
|
}
|
|
|
|
switch (optname) {
|
|
case IPV6_2292PKTINFO:
|
|
case IPV6_PKTINFO:
|
|
{
|
|
struct ifnet *ifp = NULL;
|
|
struct in6_pktinfo *pktinfo;
|
|
|
|
if (len != sizeof(struct in6_pktinfo))
|
|
return (EINVAL);
|
|
|
|
pktinfo = (struct in6_pktinfo *)buf;
|
|
|
|
/*
|
|
* An application can clear any sticky IPV6_PKTINFO option by
|
|
* doing a "regular" setsockopt with ipi6_addr being
|
|
* in6addr_any and ipi6_ifindex being zero.
|
|
* [RFC 3542, Section 6]
|
|
*/
|
|
if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
|
|
pktinfo->ipi6_ifindex == 0 &&
|
|
IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
|
|
ip6_clearpktopts(opt, optname);
|
|
break;
|
|
}
|
|
|
|
if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
|
|
sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
|
|
return (EINVAL);
|
|
}
|
|
if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr))
|
|
return (EINVAL);
|
|
/* validate the interface index if specified. */
|
|
if (pktinfo->ipi6_ifindex > V_if_index)
|
|
return (ENXIO);
|
|
if (pktinfo->ipi6_ifindex) {
|
|
ifp = ifnet_byindex(pktinfo->ipi6_ifindex);
|
|
if (ifp == NULL)
|
|
return (ENXIO);
|
|
}
|
|
if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL ||
|
|
(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0))
|
|
return (ENETDOWN);
|
|
|
|
if (ifp != NULL &&
|
|
!IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
|
|
struct in6_ifaddr *ia;
|
|
|
|
in6_setscope(&pktinfo->ipi6_addr, ifp, NULL);
|
|
ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr);
|
|
if (ia == NULL)
|
|
return (EADDRNOTAVAIL);
|
|
ifa_free(&ia->ia_ifa);
|
|
}
|
|
/*
|
|
* We store the address anyway, and let in6_selectsrc()
|
|
* validate the specified address. This is because ipi6_addr
|
|
* may not have enough information about its scope zone, and
|
|
* we may need additional information (such as outgoing
|
|
* interface or the scope zone of a destination address) to
|
|
* disambiguate the scope.
|
|
* XXX: the delay of the validation may confuse the
|
|
* application when it is used as a sticky option.
|
|
*/
|
|
if (opt->ip6po_pktinfo == NULL) {
|
|
opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
|
|
M_IP6OPT, M_NOWAIT);
|
|
if (opt->ip6po_pktinfo == NULL)
|
|
return (ENOBUFS);
|
|
}
|
|
bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo));
|
|
break;
|
|
}
|
|
|
|
case IPV6_2292HOPLIMIT:
|
|
case IPV6_HOPLIMIT:
|
|
{
|
|
int *hlimp;
|
|
|
|
/*
|
|
* RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
|
|
* to simplify the ordering among hoplimit options.
|
|
*/
|
|
if (optname == IPV6_HOPLIMIT && sticky)
|
|
return (ENOPROTOOPT);
|
|
|
|
if (len != sizeof(int))
|
|
return (EINVAL);
|
|
hlimp = (int *)buf;
|
|
if (*hlimp < -1 || *hlimp > 255)
|
|
return (EINVAL);
|
|
|
|
opt->ip6po_hlim = *hlimp;
|
|
break;
|
|
}
|
|
|
|
case IPV6_TCLASS:
|
|
{
|
|
int tclass;
|
|
|
|
if (len != sizeof(int))
|
|
return (EINVAL);
|
|
tclass = *(int *)buf;
|
|
if (tclass < -1 || tclass > 255)
|
|
return (EINVAL);
|
|
|
|
opt->ip6po_tclass = tclass;
|
|
break;
|
|
}
|
|
|
|
case IPV6_2292NEXTHOP:
|
|
case IPV6_NEXTHOP:
|
|
if (cred != NULL) {
|
|
error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
if (len == 0) { /* just remove the option */
|
|
ip6_clearpktopts(opt, IPV6_NEXTHOP);
|
|
break;
|
|
}
|
|
|
|
/* check if cmsg_len is large enough for sa_len */
|
|
if (len < sizeof(struct sockaddr) || len < *buf)
|
|
return (EINVAL);
|
|
|
|
switch (((struct sockaddr *)buf)->sa_family) {
|
|
case AF_INET6:
|
|
{
|
|
struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
|
|
int error;
|
|
|
|
if (sa6->sin6_len != sizeof(struct sockaddr_in6))
|
|
return (EINVAL);
|
|
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
|
|
IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
|
|
return (EINVAL);
|
|
}
|
|
if ((error = sa6_embedscope(sa6, V_ip6_use_defzone))
|
|
!= 0) {
|
|
return (error);
|
|
}
|
|
break;
|
|
}
|
|
case AF_LINK: /* should eventually be supported */
|
|
default:
|
|
return (EAFNOSUPPORT);
|
|
}
|
|
|
|
/* turn off the previous option, then set the new option. */
|
|
ip6_clearpktopts(opt, IPV6_NEXTHOP);
|
|
opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
|
|
if (opt->ip6po_nexthop == NULL)
|
|
return (ENOBUFS);
|
|
bcopy(buf, opt->ip6po_nexthop, *buf);
|
|
break;
|
|
|
|
case IPV6_2292HOPOPTS:
|
|
case IPV6_HOPOPTS:
|
|
{
|
|
struct ip6_hbh *hbh;
|
|
int hbhlen;
|
|
|
|
/*
|
|
* XXX: We don't allow a non-privileged user to set ANY HbH
|
|
* options, since per-option restriction has too much
|
|
* overhead.
|
|
*/
|
|
if (cred != NULL) {
|
|
error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
if (len == 0) {
|
|
ip6_clearpktopts(opt, IPV6_HOPOPTS);
|
|
break; /* just remove the option */
|
|
}
|
|
|
|
/* message length validation */
|
|
if (len < sizeof(struct ip6_hbh))
|
|
return (EINVAL);
|
|
hbh = (struct ip6_hbh *)buf;
|
|
hbhlen = (hbh->ip6h_len + 1) << 3;
|
|
if (len != hbhlen)
|
|
return (EINVAL);
|
|
|
|
/* turn off the previous option, then set the new option. */
|
|
ip6_clearpktopts(opt, IPV6_HOPOPTS);
|
|
opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
|
|
if (opt->ip6po_hbh == NULL)
|
|
return (ENOBUFS);
|
|
bcopy(hbh, opt->ip6po_hbh, hbhlen);
|
|
|
|
break;
|
|
}
|
|
|
|
case IPV6_2292DSTOPTS:
|
|
case IPV6_DSTOPTS:
|
|
case IPV6_RTHDRDSTOPTS:
|
|
{
|
|
struct ip6_dest *dest, **newdest = NULL;
|
|
int destlen;
|
|
|
|
if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */
|
|
error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
if (len == 0) {
|
|
ip6_clearpktopts(opt, optname);
|
|
break; /* just remove the option */
|
|
}
|
|
|
|
/* message length validation */
|
|
if (len < sizeof(struct ip6_dest))
|
|
return (EINVAL);
|
|
dest = (struct ip6_dest *)buf;
|
|
destlen = (dest->ip6d_len + 1) << 3;
|
|
if (len != destlen)
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Determine the position that the destination options header
|
|
* should be inserted; before or after the routing header.
|
|
*/
|
|
switch (optname) {
|
|
case IPV6_2292DSTOPTS:
|
|
/*
|
|
* The old advacned API is ambiguous on this point.
|
|
* Our approach is to determine the position based
|
|
* according to the existence of a routing header.
|
|
* Note, however, that this depends on the order of the
|
|
* extension headers in the ancillary data; the 1st
|
|
* part of the destination options header must appear
|
|
* before the routing header in the ancillary data,
|
|
* too.
|
|
* RFC3542 solved the ambiguity by introducing
|
|
* separate ancillary data or option types.
|
|
*/
|
|
if (opt->ip6po_rthdr == NULL)
|
|
newdest = &opt->ip6po_dest1;
|
|
else
|
|
newdest = &opt->ip6po_dest2;
|
|
break;
|
|
case IPV6_RTHDRDSTOPTS:
|
|
newdest = &opt->ip6po_dest1;
|
|
break;
|
|
case IPV6_DSTOPTS:
|
|
newdest = &opt->ip6po_dest2;
|
|
break;
|
|
}
|
|
|
|
/* turn off the previous option, then set the new option. */
|
|
ip6_clearpktopts(opt, optname);
|
|
*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
|
|
if (*newdest == NULL)
|
|
return (ENOBUFS);
|
|
bcopy(dest, *newdest, destlen);
|
|
|
|
break;
|
|
}
|
|
|
|
case IPV6_2292RTHDR:
|
|
case IPV6_RTHDR:
|
|
{
|
|
struct ip6_rthdr *rth;
|
|
int rthlen;
|
|
|
|
if (len == 0) {
|
|
ip6_clearpktopts(opt, IPV6_RTHDR);
|
|
break; /* just remove the option */
|
|
}
|
|
|
|
/* message length validation */
|
|
if (len < sizeof(struct ip6_rthdr))
|
|
return (EINVAL);
|
|
rth = (struct ip6_rthdr *)buf;
|
|
rthlen = (rth->ip6r_len + 1) << 3;
|
|
if (len != rthlen)
|
|
return (EINVAL);
|
|
|
|
switch (rth->ip6r_type) {
|
|
case IPV6_RTHDR_TYPE_0:
|
|
if (rth->ip6r_len == 0) /* must contain one addr */
|
|
return (EINVAL);
|
|
if (rth->ip6r_len % 2) /* length must be even */
|
|
return (EINVAL);
|
|
if (rth->ip6r_len / 2 != rth->ip6r_segleft)
|
|
return (EINVAL);
|
|
break;
|
|
default:
|
|
return (EINVAL); /* not supported */
|
|
}
|
|
|
|
/* turn off the previous option */
|
|
ip6_clearpktopts(opt, IPV6_RTHDR);
|
|
opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
|
|
if (opt->ip6po_rthdr == NULL)
|
|
return (ENOBUFS);
|
|
bcopy(rth, opt->ip6po_rthdr, rthlen);
|
|
|
|
break;
|
|
}
|
|
|
|
case IPV6_USE_MIN_MTU:
|
|
if (len != sizeof(int))
|
|
return (EINVAL);
|
|
minmtupolicy = *(int *)buf;
|
|
if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
|
|
minmtupolicy != IP6PO_MINMTU_DISABLE &&
|
|
minmtupolicy != IP6PO_MINMTU_ALL) {
|
|
return (EINVAL);
|
|
}
|
|
opt->ip6po_minmtu = minmtupolicy;
|
|
break;
|
|
|
|
case IPV6_DONTFRAG:
|
|
if (len != sizeof(int))
|
|
return (EINVAL);
|
|
|
|
if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
|
|
/*
|
|
* we ignore this option for TCP sockets.
|
|
* (RFC3542 leaves this case unspecified.)
|
|
*/
|
|
opt->ip6po_flags &= ~IP6PO_DONTFRAG;
|
|
} else
|
|
opt->ip6po_flags |= IP6PO_DONTFRAG;
|
|
break;
|
|
|
|
case IPV6_PREFER_TEMPADDR:
|
|
if (len != sizeof(int))
|
|
return (EINVAL);
|
|
preftemp = *(int *)buf;
|
|
if (preftemp != IP6PO_TEMPADDR_SYSTEM &&
|
|
preftemp != IP6PO_TEMPADDR_NOTPREFER &&
|
|
preftemp != IP6PO_TEMPADDR_PREFER) {
|
|
return (EINVAL);
|
|
}
|
|
opt->ip6po_prefer_tempaddr = preftemp;
|
|
break;
|
|
|
|
default:
|
|
return (ENOPROTOOPT);
|
|
} /* end of switch */
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Routine called from ip6_output() to loop back a copy of an IP6 multicast
|
|
* packet to the input queue of a specified interface. Note that this
|
|
* calls the output routine of the loopback "driver", but with an interface
|
|
* pointer that might NOT be &loif -- easier than replicating that code here.
|
|
*/
|
|
void
|
|
ip6_mloopback(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct mbuf *copym;
|
|
struct ip6_hdr *ip6;
|
|
|
|
copym = m_copym(m, 0, M_COPYALL, M_NOWAIT);
|
|
if (copym == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Make sure to deep-copy IPv6 header portion in case the data
|
|
* is in an mbuf cluster, so that we can safely override the IPv6
|
|
* header portion later.
|
|
*/
|
|
if (!M_WRITABLE(copym) ||
|
|
copym->m_len < sizeof(struct ip6_hdr)) {
|
|
copym = m_pullup(copym, sizeof(struct ip6_hdr));
|
|
if (copym == NULL)
|
|
return;
|
|
}
|
|
ip6 = mtod(copym, struct ip6_hdr *);
|
|
/*
|
|
* clear embedded scope identifiers if necessary.
|
|
* in6_clearscope will touch the addresses only when necessary.
|
|
*/
|
|
in6_clearscope(&ip6->ip6_src);
|
|
in6_clearscope(&ip6->ip6_dst);
|
|
if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) {
|
|
copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 |
|
|
CSUM_PSEUDO_HDR;
|
|
copym->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
if_simloop(ifp, copym, AF_INET6, 0);
|
|
}
|
|
|
|
/*
|
|
* Chop IPv6 header off from the payload.
|
|
*/
|
|
static int
|
|
ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs)
|
|
{
|
|
struct mbuf *mh;
|
|
struct ip6_hdr *ip6;
|
|
|
|
ip6 = mtod(m, struct ip6_hdr *);
|
|
if (m->m_len > sizeof(*ip6)) {
|
|
mh = m_gethdr(M_NOWAIT, MT_DATA);
|
|
if (mh == NULL) {
|
|
m_freem(m);
|
|
return ENOBUFS;
|
|
}
|
|
m_move_pkthdr(mh, m);
|
|
M_ALIGN(mh, sizeof(*ip6));
|
|
m->m_len -= sizeof(*ip6);
|
|
m->m_data += sizeof(*ip6);
|
|
mh->m_next = m;
|
|
m = mh;
|
|
m->m_len = sizeof(*ip6);
|
|
bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
|
|
}
|
|
exthdrs->ip6e_ip6 = m;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Compute IPv6 extension header length.
|
|
*/
|
|
int
|
|
ip6_optlen(struct inpcb *inp)
|
|
{
|
|
int len;
|
|
|
|
if (!inp->in6p_outputopts)
|
|
return 0;
|
|
|
|
len = 0;
|
|
#define elen(x) \
|
|
(((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
|
|
|
|
len += elen(inp->in6p_outputopts->ip6po_hbh);
|
|
if (inp->in6p_outputopts->ip6po_rthdr)
|
|
/* dest1 is valid with rthdr only */
|
|
len += elen(inp->in6p_outputopts->ip6po_dest1);
|
|
len += elen(inp->in6p_outputopts->ip6po_rthdr);
|
|
len += elen(inp->in6p_outputopts->ip6po_dest2);
|
|
return len;
|
|
#undef elen
|
|
}
|