allanjude 8aa87eff83 Import Skein 1.3
Bruce Schneier's hashing algorithm

Used by newer versions of ZFS
2016-05-27 02:42:46 +00:00

690 lines
26 KiB
C

/***********************************************************************
**
** Implementation of the Skein block functions.
**
** Source code author: Doug Whiting, 2008.
**
** This algorithm and source code is released to the public domain.
**
** Compile-time switches:
**
** SKEIN_USE_ASM -- set bits (256/512/1024) to select which
** versions use ASM code for block processing
** [default: use C for all block sizes]
**
************************************************************************/
#include <string.h>
#include "skein.h"
#ifndef SKEIN_USE_ASM
#define SKEIN_USE_ASM (0) /* default is all C code (no ASM) */
#endif
#ifndef SKEIN_LOOP
#define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
#endif
#define BLK_BITS (WCNT*64) /* some useful definitions for code here */
#define KW_TWK_BASE (0)
#define KW_KEY_BASE (3)
#define ks (kw + KW_KEY_BASE)
#define ts (kw + KW_TWK_BASE)
#ifdef SKEIN_DEBUG
#define DebugSaveTweak(ctx) { ctx->h.T[0] = ts[0]; ctx->h.T[1] = ts[1]; }
#else
#define DebugSaveTweak(ctx)
#endif
/***************************** Skein_256 ******************************/
#if !(SKEIN_USE_ASM & 256)
void Skein_256_Process_Block(Skein_256_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)
{ /* do it in C */
enum
{
WCNT = SKEIN_256_STATE_WORDS
};
#undef RCNT
#define RCNT (SKEIN_256_ROUNDS_TOTAL/8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_256 (((SKEIN_LOOP)/100)%10)
#else
#define SKEIN_UNROLL_256 (0)
#endif
#if SKEIN_UNROLL_256
#if (RCNT % SKEIN_UNROLL_256)
#error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
#endif
size_t r;
u64b_t kw[WCNT+4+RCNT*2]; /* key schedule words : chaining vars + tweak + "rotation"*/
#else
u64b_t kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
#endif
u64b_t X0,X1,X2,X3; /* local copy of context vars, for speed */
u64b_t w [WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
const u64b_t *Xptr[4]; /* use for debugging (help compiler put Xn in registers) */
Xptr[0] = &X0; Xptr[1] = &X1; Xptr[2] = &X2; Xptr[3] = &X3;
#endif
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
ts[0] = ctx->h.T[0];
ts[1] = ctx->h.T[1];
do {
/* this implementation only supports 2**64 input bytes (no carry out here) */
ts[0] += byteCntAdd; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->X[0];
ks[1] = ctx->X[1];
ks[2] = ctx->X[2];
ks[3] = ctx->X[3];
ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
ts[2] = ts[0] ^ ts[1];
Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
DebugSaveTweak(ctx);
Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
X0 = w[0] + ks[0]; /* do the first full key injection */
X1 = w[1] + ks[1] + ts[0];
X2 = w[2] + ks[2] + ts[1];
X3 = w[3] + ks[3];
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr); /* show starting state values */
blkPtr += SKEIN_256_BLOCK_BYTES;
/* run the rounds */
#define Round256(p0,p1,p2,p3,ROT,rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
#if SKEIN_UNROLL_256 == 0
#define R256(p0,p1,p2,p3,ROT,rNum) /* fully unrolled */ \
Round256(p0,p1,p2,p3,ROT,rNum) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);
#define I256(R) \
X0 += ks[((R)+1) % 5]; /* inject the key schedule value */ \
X1 += ks[((R)+2) % 5] + ts[((R)+1) % 3]; \
X2 += ks[((R)+3) % 5] + ts[((R)+2) % 3]; \
X3 += ks[((R)+4) % 5] + (R)+1; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
#else /* looping version */
#define R256(p0,p1,p2,p3,ROT,rNum) \
Round256(p0,p1,p2,p3,ROT,rNum) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);
#define I256(R) \
X0 += ks[r+(R)+0]; /* inject the key schedule value */ \
X1 += ks[r+(R)+1] + ts[r+(R)+0]; \
X2 += ks[r+(R)+2] + ts[r+(R)+1]; \
X3 += ks[r+(R)+3] + r+(R) ; \
ks[r + (R)+4 ] = ks[r+(R)-1]; /* rotate key schedule */\
ts[r + (R)+2 ] = ts[r+(R)-1]; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_256) /* loop thru it */
#endif
{
#define R256_8_rounds(R) \
R256(0,1,2,3,R_256_0,8*(R) + 1); \
R256(0,3,2,1,R_256_1,8*(R) + 2); \
R256(0,1,2,3,R_256_2,8*(R) + 3); \
R256(0,3,2,1,R_256_3,8*(R) + 4); \
I256(2*(R)); \
R256(0,1,2,3,R_256_4,8*(R) + 5); \
R256(0,3,2,1,R_256_5,8*(R) + 6); \
R256(0,1,2,3,R_256_6,8*(R) + 7); \
R256(0,3,2,1,R_256_7,8*(R) + 8); \
I256(2*(R)+1);
R256_8_rounds( 0);
#define R256_Unroll_R(NN) ((SKEIN_UNROLL_256 == 0 && SKEIN_256_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_256 > (NN)))
#if R256_Unroll_R( 1)
R256_8_rounds( 1);
#endif
#if R256_Unroll_R( 2)
R256_8_rounds( 2);
#endif
#if R256_Unroll_R( 3)
R256_8_rounds( 3);
#endif
#if R256_Unroll_R( 4)
R256_8_rounds( 4);
#endif
#if R256_Unroll_R( 5)
R256_8_rounds( 5);
#endif
#if R256_Unroll_R( 6)
R256_8_rounds( 6);
#endif
#if R256_Unroll_R( 7)
R256_8_rounds( 7);
#endif
#if R256_Unroll_R( 8)
R256_8_rounds( 8);
#endif
#if R256_Unroll_R( 9)
R256_8_rounds( 9);
#endif
#if R256_Unroll_R(10)
R256_8_rounds(10);
#endif
#if R256_Unroll_R(11)
R256_8_rounds(11);
#endif
#if R256_Unroll_R(12)
R256_8_rounds(12);
#endif
#if R256_Unroll_R(13)
R256_8_rounds(13);
#endif
#if R256_Unroll_R(14)
R256_8_rounds(14);
#endif
#if (SKEIN_UNROLL_256 > 14)
#error "need more unrolling in Skein_256_Process_Block"
#endif
}
/* do the final "feedforward" xor, update context chaining vars */
ctx->X[0] = X0 ^ w[0];
ctx->X[1] = X1 ^ w[1];
ctx->X[2] = X2 ^ w[2];
ctx->X[3] = X3 ^ w[3];
Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
}
while (--blkCnt);
ctx->h.T[0] = ts[0];
ctx->h.T[1] = ts[1];
}
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
size_t Skein_256_Process_Block_CodeSize(void)
{
return ((u08b_t *) Skein_256_Process_Block_CodeSize) -
((u08b_t *) Skein_256_Process_Block);
}
uint_t Skein_256_Unroll_Cnt(void)
{
return SKEIN_UNROLL_256;
}
#endif
#endif
/***************************** Skein_512 ******************************/
#if !(SKEIN_USE_ASM & 512)
void Skein_512_Process_Block(Skein_512_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)
{ /* do it in C */
enum
{
WCNT = SKEIN_512_STATE_WORDS
};
#undef RCNT
#define RCNT (SKEIN_512_ROUNDS_TOTAL/8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10)
#else
#define SKEIN_UNROLL_512 (0)
#endif
#if SKEIN_UNROLL_512
#if (RCNT % SKEIN_UNROLL_512)
#error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
#endif
size_t r;
u64b_t kw[WCNT+4+RCNT*2]; /* key schedule words : chaining vars + tweak + "rotation"*/
#else
u64b_t kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
#endif
u64b_t X0,X1,X2,X3,X4,X5,X6,X7; /* local copy of vars, for speed */
u64b_t w [WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
const u64b_t *Xptr[8]; /* use for debugging (help compiler put Xn in registers) */
Xptr[0] = &X0; Xptr[1] = &X1; Xptr[2] = &X2; Xptr[3] = &X3;
Xptr[4] = &X4; Xptr[5] = &X5; Xptr[6] = &X6; Xptr[7] = &X7;
#endif
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
ts[0] = ctx->h.T[0];
ts[1] = ctx->h.T[1];
do {
/* this implementation only supports 2**64 input bytes (no carry out here) */
ts[0] += byteCntAdd; /* update processed length */
/* precompute the key schedule for this block */
ks[0] = ctx->X[0];
ks[1] = ctx->X[1];
ks[2] = ctx->X[2];
ks[3] = ctx->X[3];
ks[4] = ctx->X[4];
ks[5] = ctx->X[5];
ks[6] = ctx->X[6];
ks[7] = ctx->X[7];
ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
ts[2] = ts[0] ^ ts[1];
Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
DebugSaveTweak(ctx);
Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
X0 = w[0] + ks[0]; /* do the first full key injection */
X1 = w[1] + ks[1];
X2 = w[2] + ks[2];
X3 = w[3] + ks[3];
X4 = w[4] + ks[4];
X5 = w[5] + ks[5] + ts[0];
X6 = w[6] + ks[6] + ts[1];
X7 = w[7] + ks[7];
blkPtr += SKEIN_512_BLOCK_BYTES;
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);
/* run the rounds */
#define Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4; \
X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6; \
#if SKEIN_UNROLL_512 == 0
#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) /* unrolled */ \
Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rNum,Xptr);
#define I512(R) \
X0 += ks[((R)+1) % 9]; /* inject the key schedule value */ \
X1 += ks[((R)+2) % 9]; \
X2 += ks[((R)+3) % 9]; \
X3 += ks[((R)+4) % 9]; \
X4 += ks[((R)+5) % 9]; \
X5 += ks[((R)+6) % 9] + ts[((R)+1) % 3]; \
X6 += ks[((R)+7) % 9] + ts[((R)+2) % 3]; \
X7 += ks[((R)+8) % 9] + (R)+1; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
#else /* looping version */
#define R512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
Round512(p0,p1,p2,p3,p4,p5,p6,p7,ROT,rNum) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rNum,Xptr);
#define I512(R) \
X0 += ks[r+(R)+0]; /* inject the key schedule value */ \
X1 += ks[r+(R)+1]; \
X2 += ks[r+(R)+2]; \
X3 += ks[r+(R)+3]; \
X4 += ks[r+(R)+4]; \
X5 += ks[r+(R)+5] + ts[r+(R)+0]; \
X6 += ks[r+(R)+6] + ts[r+(R)+1]; \
X7 += ks[r+(R)+7] + r+(R) ; \
ks[r + (R)+8] = ks[r+(R)-1]; /* rotate key schedule */ \
ts[r + (R)+2] = ts[r+(R)-1]; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
for (r=1;r < 2*RCNT;r+=2*SKEIN_UNROLL_512) /* loop thru it */
#endif /* end of looped code definitions */
{
#define R512_8_rounds(R) /* do 8 full rounds */ \
R512(0,1,2,3,4,5,6,7,R_512_0,8*(R)+ 1); \
R512(2,1,4,7,6,5,0,3,R_512_1,8*(R)+ 2); \
R512(4,1,6,3,0,5,2,7,R_512_2,8*(R)+ 3); \
R512(6,1,0,7,2,5,4,3,R_512_3,8*(R)+ 4); \
I512(2*(R)); \
R512(0,1,2,3,4,5,6,7,R_512_4,8*(R)+ 5); \
R512(2,1,4,7,6,5,0,3,R_512_5,8*(R)+ 6); \
R512(4,1,6,3,0,5,2,7,R_512_6,8*(R)+ 7); \
R512(6,1,0,7,2,5,4,3,R_512_7,8*(R)+ 8); \
I512(2*(R)+1); /* and key injection */
R512_8_rounds( 0);
#define R512_Unroll_R(NN) ((SKEIN_UNROLL_512 == 0 && SKEIN_512_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_512 > (NN)))
#if R512_Unroll_R( 1)
R512_8_rounds( 1);
#endif
#if R512_Unroll_R( 2)
R512_8_rounds( 2);
#endif
#if R512_Unroll_R( 3)
R512_8_rounds( 3);
#endif
#if R512_Unroll_R( 4)
R512_8_rounds( 4);
#endif
#if R512_Unroll_R( 5)
R512_8_rounds( 5);
#endif
#if R512_Unroll_R( 6)
R512_8_rounds( 6);
#endif
#if R512_Unroll_R( 7)
R512_8_rounds( 7);
#endif
#if R512_Unroll_R( 8)
R512_8_rounds( 8);
#endif
#if R512_Unroll_R( 9)
R512_8_rounds( 9);
#endif
#if R512_Unroll_R(10)
R512_8_rounds(10);
#endif
#if R512_Unroll_R(11)
R512_8_rounds(11);
#endif
#if R512_Unroll_R(12)
R512_8_rounds(12);
#endif
#if R512_Unroll_R(13)
R512_8_rounds(13);
#endif
#if R512_Unroll_R(14)
R512_8_rounds(14);
#endif
#if (SKEIN_UNROLL_512 > 14)
#error "need more unrolling in Skein_512_Process_Block"
#endif
}
/* do the final "feedforward" xor, update context chaining vars */
ctx->X[0] = X0 ^ w[0];
ctx->X[1] = X1 ^ w[1];
ctx->X[2] = X2 ^ w[2];
ctx->X[3] = X3 ^ w[3];
ctx->X[4] = X4 ^ w[4];
ctx->X[5] = X5 ^ w[5];
ctx->X[6] = X6 ^ w[6];
ctx->X[7] = X7 ^ w[7];
Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
}
while (--blkCnt);
ctx->h.T[0] = ts[0];
ctx->h.T[1] = ts[1];
}
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
size_t Skein_512_Process_Block_CodeSize(void)
{
return ((u08b_t *) Skein_512_Process_Block_CodeSize) -
((u08b_t *) Skein_512_Process_Block);
}
uint_t Skein_512_Unroll_Cnt(void)
{
return SKEIN_UNROLL_512;
}
#endif
#endif
/***************************** Skein1024 ******************************/
#if !(SKEIN_USE_ASM & 1024)
void Skein1024_Process_Block(Skein1024_Ctxt_t *ctx,const u08b_t *blkPtr,size_t blkCnt,size_t byteCntAdd)
{ /* do it in C, always looping (unrolled is bigger AND slower!) */
enum
{
WCNT = SKEIN1024_STATE_WORDS
};
#undef RCNT
#define RCNT (SKEIN1024_ROUNDS_TOTAL/8)
#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
#define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
#else
#define SKEIN_UNROLL_1024 (0)
#endif
#if (SKEIN_UNROLL_1024 != 0)
#if (RCNT % SKEIN_UNROLL_1024)
#error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
#endif
size_t r;
u64b_t kw[WCNT+4+RCNT*2]; /* key schedule words : chaining vars + tweak + "rotation"*/
#else
u64b_t kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
#endif
u64b_t X00,X01,X02,X03,X04,X05,X06,X07, /* local copy of vars, for speed */
X08,X09,X10,X11,X12,X13,X14,X15;
u64b_t w [WCNT]; /* local copy of input block */
#ifdef SKEIN_DEBUG
const u64b_t *Xptr[16]; /* use for debugging (help compiler put Xn in registers) */
Xptr[ 0] = &X00; Xptr[ 1] = &X01; Xptr[ 2] = &X02; Xptr[ 3] = &X03;
Xptr[ 4] = &X04; Xptr[ 5] = &X05; Xptr[ 6] = &X06; Xptr[ 7] = &X07;
Xptr[ 8] = &X08; Xptr[ 9] = &X09; Xptr[10] = &X10; Xptr[11] = &X11;
Xptr[12] = &X12; Xptr[13] = &X13; Xptr[14] = &X14; Xptr[15] = &X15;
#endif
Skein_assert(blkCnt != 0); /* never call with blkCnt == 0! */
ts[0] = ctx->h.T[0];
ts[1] = ctx->h.T[1];
do {
/* this implementation only supports 2**64 input bytes (no carry out here) */
ts[0] += byteCntAdd; /* update processed length */
/* precompute the key schedule for this block */
ks[ 0] = ctx->X[ 0];
ks[ 1] = ctx->X[ 1];
ks[ 2] = ctx->X[ 2];
ks[ 3] = ctx->X[ 3];
ks[ 4] = ctx->X[ 4];
ks[ 5] = ctx->X[ 5];
ks[ 6] = ctx->X[ 6];
ks[ 7] = ctx->X[ 7];
ks[ 8] = ctx->X[ 8];
ks[ 9] = ctx->X[ 9];
ks[10] = ctx->X[10];
ks[11] = ctx->X[11];
ks[12] = ctx->X[12];
ks[13] = ctx->X[13];
ks[14] = ctx->X[14];
ks[15] = ctx->X[15];
ks[16] = ks[ 0] ^ ks[ 1] ^ ks[ 2] ^ ks[ 3] ^
ks[ 4] ^ ks[ 5] ^ ks[ 6] ^ ks[ 7] ^
ks[ 8] ^ ks[ 9] ^ ks[10] ^ ks[11] ^
ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
ts[2] = ts[0] ^ ts[1];
Skein_Get64_LSB_First(w,blkPtr,WCNT); /* get input block in little-endian format */
DebugSaveTweak(ctx);
Skein_Show_Block(BLK_BITS,&ctx->h,ctx->X,blkPtr,w,ks,ts);
X00 = w[ 0] + ks[ 0]; /* do the first full key injection */
X01 = w[ 1] + ks[ 1];
X02 = w[ 2] + ks[ 2];
X03 = w[ 3] + ks[ 3];
X04 = w[ 4] + ks[ 4];
X05 = w[ 5] + ks[ 5];
X06 = w[ 6] + ks[ 6];
X07 = w[ 7] + ks[ 7];
X08 = w[ 8] + ks[ 8];
X09 = w[ 9] + ks[ 9];
X10 = w[10] + ks[10];
X11 = w[11] + ks[11];
X12 = w[12] + ks[12];
X13 = w[13] + ks[13] + ts[0];
X14 = w[14] + ks[14] + ts[1];
X15 = w[15] + ks[15];
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INITIAL,Xptr);
#define Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rNum) \
X##p0 += X##p1; X##p1 = RotL_64(X##p1,ROT##_0); X##p1 ^= X##p0; \
X##p2 += X##p3; X##p3 = RotL_64(X##p3,ROT##_1); X##p3 ^= X##p2; \
X##p4 += X##p5; X##p5 = RotL_64(X##p5,ROT##_2); X##p5 ^= X##p4; \
X##p6 += X##p7; X##p7 = RotL_64(X##p7,ROT##_3); X##p7 ^= X##p6; \
X##p8 += X##p9; X##p9 = RotL_64(X##p9,ROT##_4); X##p9 ^= X##p8; \
X##pA += X##pB; X##pB = RotL_64(X##pB,ROT##_5); X##pB ^= X##pA; \
X##pC += X##pD; X##pD = RotL_64(X##pD,ROT##_6); X##pD ^= X##pC; \
X##pE += X##pF; X##pF = RotL_64(X##pF,ROT##_7); X##pF ^= X##pE; \
#if SKEIN_UNROLL_1024 == 0
#define R1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,rn,Xptr);
#define I1024(R) \
X00 += ks[((R)+ 1) % 17]; /* inject the key schedule value */ \
X01 += ks[((R)+ 2) % 17]; \
X02 += ks[((R)+ 3) % 17]; \
X03 += ks[((R)+ 4) % 17]; \
X04 += ks[((R)+ 5) % 17]; \
X05 += ks[((R)+ 6) % 17]; \
X06 += ks[((R)+ 7) % 17]; \
X07 += ks[((R)+ 8) % 17]; \
X08 += ks[((R)+ 9) % 17]; \
X09 += ks[((R)+10) % 17]; \
X10 += ks[((R)+11) % 17]; \
X11 += ks[((R)+12) % 17]; \
X12 += ks[((R)+13) % 17]; \
X13 += ks[((R)+14) % 17] + ts[((R)+1) % 3]; \
X14 += ks[((R)+15) % 17] + ts[((R)+2) % 3]; \
X15 += ks[((R)+16) % 17] + (R)+1; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
#else /* looping version */
#define R1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
Round1024(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC,pD,pE,pF,ROT,rn) \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,4*(r-1)+rn,Xptr);
#define I1024(R) \
X00 += ks[r+(R)+ 0]; /* inject the key schedule value */ \
X01 += ks[r+(R)+ 1]; \
X02 += ks[r+(R)+ 2]; \
X03 += ks[r+(R)+ 3]; \
X04 += ks[r+(R)+ 4]; \
X05 += ks[r+(R)+ 5]; \
X06 += ks[r+(R)+ 6]; \
X07 += ks[r+(R)+ 7]; \
X08 += ks[r+(R)+ 8]; \
X09 += ks[r+(R)+ 9]; \
X10 += ks[r+(R)+10]; \
X11 += ks[r+(R)+11]; \
X12 += ks[r+(R)+12]; \
X13 += ks[r+(R)+13] + ts[r+(R)+0]; \
X14 += ks[r+(R)+14] + ts[r+(R)+1]; \
X15 += ks[r+(R)+15] + r+(R) ; \
ks[r + (R)+16] = ks[r+(R)-1]; /* rotate key schedule */ \
ts[r + (R)+ 2] = ts[r+(R)-1]; \
Skein_Show_R_Ptr(BLK_BITS,&ctx->h,SKEIN_RND_KEY_INJECT,Xptr);
for (r=1;r <= 2*RCNT;r+=2*SKEIN_UNROLL_1024) /* loop thru it */
#endif
{
#define R1024_8_rounds(R) /* do 8 full rounds */ \
R1024(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,R1024_0,8*(R) + 1); \
R1024(00,09,02,13,06,11,04,15,10,07,12,03,14,05,08,01,R1024_1,8*(R) + 2); \
R1024(00,07,02,05,04,03,06,01,12,15,14,13,08,11,10,09,R1024_2,8*(R) + 3); \
R1024(00,15,02,11,06,13,04,09,14,01,08,05,10,03,12,07,R1024_3,8*(R) + 4); \
I1024(2*(R)); \
R1024(00,01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,R1024_4,8*(R) + 5); \
R1024(00,09,02,13,06,11,04,15,10,07,12,03,14,05,08,01,R1024_5,8*(R) + 6); \
R1024(00,07,02,05,04,03,06,01,12,15,14,13,08,11,10,09,R1024_6,8*(R) + 7); \
R1024(00,15,02,11,06,13,04,09,14,01,08,05,10,03,12,07,R1024_7,8*(R) + 8); \
I1024(2*(R)+1);
R1024_8_rounds( 0);
#define R1024_Unroll_R(NN) ((SKEIN_UNROLL_1024 == 0 && SKEIN1024_ROUNDS_TOTAL/8 > (NN)) || (SKEIN_UNROLL_1024 > (NN)))
#if R1024_Unroll_R( 1)
R1024_8_rounds( 1);
#endif
#if R1024_Unroll_R( 2)
R1024_8_rounds( 2);
#endif
#if R1024_Unroll_R( 3)
R1024_8_rounds( 3);
#endif
#if R1024_Unroll_R( 4)
R1024_8_rounds( 4);
#endif
#if R1024_Unroll_R( 5)
R1024_8_rounds( 5);
#endif
#if R1024_Unroll_R( 6)
R1024_8_rounds( 6);
#endif
#if R1024_Unroll_R( 7)
R1024_8_rounds( 7);
#endif
#if R1024_Unroll_R( 8)
R1024_8_rounds( 8);
#endif
#if R1024_Unroll_R( 9)
R1024_8_rounds( 9);
#endif
#if R1024_Unroll_R(10)
R1024_8_rounds(10);
#endif
#if R1024_Unroll_R(11)
R1024_8_rounds(11);
#endif
#if R1024_Unroll_R(12)
R1024_8_rounds(12);
#endif
#if R1024_Unroll_R(13)
R1024_8_rounds(13);
#endif
#if R1024_Unroll_R(14)
R1024_8_rounds(14);
#endif
#if (SKEIN_UNROLL_1024 > 14)
#error "need more unrolling in Skein_1024_Process_Block"
#endif
}
/* do the final "feedforward" xor, update context chaining vars */
ctx->X[ 0] = X00 ^ w[ 0];
ctx->X[ 1] = X01 ^ w[ 1];
ctx->X[ 2] = X02 ^ w[ 2];
ctx->X[ 3] = X03 ^ w[ 3];
ctx->X[ 4] = X04 ^ w[ 4];
ctx->X[ 5] = X05 ^ w[ 5];
ctx->X[ 6] = X06 ^ w[ 6];
ctx->X[ 7] = X07 ^ w[ 7];
ctx->X[ 8] = X08 ^ w[ 8];
ctx->X[ 9] = X09 ^ w[ 9];
ctx->X[10] = X10 ^ w[10];
ctx->X[11] = X11 ^ w[11];
ctx->X[12] = X12 ^ w[12];
ctx->X[13] = X13 ^ w[13];
ctx->X[14] = X14 ^ w[14];
ctx->X[15] = X15 ^ w[15];
Skein_Show_Round(BLK_BITS,&ctx->h,SKEIN_RND_FEED_FWD,ctx->X);
ts[1] &= ~SKEIN_T1_FLAG_FIRST;
blkPtr += SKEIN1024_BLOCK_BYTES;
}
while (--blkCnt);
ctx->h.T[0] = ts[0];
ctx->h.T[1] = ts[1];
}
#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
size_t Skein1024_Process_Block_CodeSize(void)
{
return ((u08b_t *) Skein1024_Process_Block_CodeSize) -
((u08b_t *) Skein1024_Process_Block);
}
uint_t Skein1024_Unroll_Cnt(void)
{
return SKEIN_UNROLL_1024;
}
#endif
#endif