freebsd-skq/sys/ddb/db_ps.c
John Baldwin 44f3b09204 Switch the sleep/wakeup and condition variable implementations to use the
sleep queue interface:
- Sleep queues attempt to merge some of the benefits of both sleep queues
  and condition variables.  Having sleep qeueus in a hash table avoids
  having to allocate a queue head for each wait channel.  Thus, struct cv
  has shrunk down to just a single char * pointer now.  However, the
  hash table does not hold threads directly, but queue heads.  This means
  that once you have located a queue in the hash bucket, you no longer have
  to walk the rest of the hash chain looking for threads.  Instead, you have
  a list of all the threads sleeping on that wait channel.
- Outside of the sleepq code and the sleep/cv code the kernel no longer
  differentiates between cv's and sleep/wakeup.  For example, calls to
  abortsleep() and cv_abort() are replaced with a call to sleepq_abort().
  Thus, the TDF_CVWAITQ flag is removed.  Also, calls to unsleep() and
  cv_waitq_remove() have been replaced with calls to sleepq_remove().
- The sched_sleep() function no longer accepts a priority argument as
  sleep's no longer inherently bump the priority.  Instead, this is soley
  a propery of msleep() which explicitly calls sched_prio() before
  blocking.
- The TDF_ONSLEEPQ flag has been dropped as it was never used.  The
  associated TDF_SET_ONSLEEPQ and TDF_CLR_ON_SLEEPQ macros have also been
  dropped and replaced with a single explicit clearing of td_wchan.
  TD_SET_ONSLEEPQ() would really have only made sense if it had taken
  the wait channel and message as arguments anyway.  Now that that only
  happens in one place, a macro would be overkill.
2004-02-27 18:52:44 +00:00

199 lines
5.1 KiB
C

/*-
* Copyright (c) 1993 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/cons.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <ddb/ddb.h>
static void dumpthread(volatile struct proc *p, volatile struct thread *td);
void
db_ps(dummy1, dummy2, dummy3, dummy4)
db_expr_t dummy1;
boolean_t dummy2;
db_expr_t dummy3;
char * dummy4;
{
volatile struct proc *p, *pp;
volatile struct thread *td;
char *state;
int np, quit;
np = nprocs;
quit = 0;
/* sx_slock(&allproc_lock); */
if (!LIST_EMPTY(&allproc))
p = LIST_FIRST(&allproc);
else
p = &proc0;
db_setup_paging(db_simple_pager, &quit, DB_LINES_PER_PAGE);
db_printf(" pid proc uarea uid ppid pgrp flag stat wmesg wchan cmd\n");
while (--np >= 0 && !quit) {
if (p == NULL) {
printf("oops, ran out of processes early!\n");
break;
}
/* PROC_LOCK(p); */
pp = p->p_pptr;
if (pp == NULL)
pp = p;
switch(p->p_state) {
case PRS_NORMAL:
if (P_SHOULDSTOP(p))
state = "stop";
else
state = "";
break;
case PRS_NEW:
state = "new ";
break;
case PRS_ZOMBIE:
state = "zomb";
break;
default:
state = "Unkn";
break;
}
db_printf("%5d %8p %8p %4d %5d %5d %07x %s",
p->p_pid, (volatile void *)p, (void *)p->p_uarea,
p->p_ucred != NULL ? p->p_ucred->cr_ruid : 0, pp->p_pid,
p->p_pgrp != NULL ? p->p_pgrp->pg_id : 0, p->p_flag,
state);
if (p->p_flag & P_SA)
db_printf("(threaded) %s\n", p->p_comm);
FOREACH_THREAD_IN_PROC(p, td) {
dumpthread(p, td);
if (quit)
break;
}
/* PROC_UNLOCK(p); */
p = LIST_NEXT(p, p_list);
if (p == NULL && np > 0)
p = LIST_FIRST(&zombproc);
}
/* sx_sunlock(&allproc_lock); */
}
static void
dumpthread(volatile struct proc *p, volatile struct thread *td)
{
if (p->p_flag & P_SA)
db_printf( " thread %p ksegrp %p ", td, td->td_ksegrp);
if (TD_ON_SLEEPQ(td))
db_printf("[SLPQ %s %p]", td->td_wmesg, (void *)td->td_wchan);
switch (td->td_state) {
case TDS_INHIBITED:
if (TD_ON_LOCK(td)) {
db_printf("[LOCK %6s %8p]",
td->td_lockname,
(void *)td->td_blocked);
}
if (TD_IS_SLEEPING(td)) {
db_printf("[SLP]");
}
if (TD_IS_SWAPPED(td)) {
db_printf("[SWAP]");
}
if (TD_IS_SUSPENDED(td)) {
db_printf("[SUSP]");
}
if (TD_AWAITING_INTR(td)) {
db_printf("[IWAIT]");
}
break;
case TDS_CAN_RUN:
db_printf("[Can run]");
break;
case TDS_RUNQ:
db_printf("[RUNQ]");
break;
case TDS_RUNNING:
db_printf("[CPU %d]", td->td_oncpu);
break;
case TDS_INACTIVE:
db_printf("[INACTIVE]");
break;
default:
db_printf("[UNK: %#x]", td->td_state);
}
if (p->p_flag & P_SA) {
if (td->td_kse)
db_printf("[kse %p]", td->td_kse);
db_printf("\n");
} else
db_printf(" %s\n", p->p_comm);
}
#define INKERNEL(va) (((vm_offset_t)(va)) >= USRSTACK)
void
db_show_one_thread(db_expr_t addr, boolean_t have_addr,
db_expr_t count, char *modif)
{
struct proc *p;
struct thread *td;
if (!have_addr)
td = curthread;
else if (!INKERNEL(addr)) {
printf("bad thread address");
return;
} else
td = (struct thread *)addr;
/* quick sanity check */
if ((p = td->td_proc) != td->td_ksegrp->kg_proc)
return;
printf("Proc %p ",p);
dumpthread(p, td);
#ifdef __i386__
db_stack_thread((db_expr_t)td, 1, count, modif);
#endif
}