Nathan Whitehorn 95e3bfe889 Simplify the ofw_bus_lookup_imap() API slightly: make it allocate maskbuf
internally instead of requiring the caller to allocate it.
2013-12-17 15:11:24 +00:00

2141 lines
66 KiB
C

/*-
* Copyright (c) 1999, 2000 Matthew R. Green
* Copyright (c) 2001 - 2003 by Thomas Moestl <tmm@FreeBSD.org>
* Copyright (c) 2009 by Marius Strobl <marius@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: NetBSD: psycho.c,v 1.39 2001/10/07 20:30:41 eeh Exp
* from: FreeBSD: psycho.c 183152 2008-09-18 19:45:22Z marius
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for `Fire' JBus to PCI Express and `Oberon' Uranus to PCI Express
* bridges
*/
#include "opt_fire.h"
#include "opt_ofw_pci.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/pciio.h>
#include <sys/pcpu.h>
#include <sys/rman.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/timetc.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_pci.h>
#include <dev/ofw/openfirm.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/bus.h>
#include <machine/bus_common.h>
#include <machine/bus_private.h>
#include <machine/fsr.h>
#include <machine/iommureg.h>
#include <machine/iommuvar.h>
#include <machine/pmap.h>
#include <machine/resource.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <sparc64/pci/ofw_pci.h>
#include <sparc64/pci/firereg.h>
#include <sparc64/pci/firevar.h>
#include "pcib_if.h"
struct fire_msiqarg;
static const struct fire_desc *fire_get_desc(device_t dev);
static void fire_dmamap_sync(bus_dma_tag_t dt __unused, bus_dmamap_t map,
bus_dmasync_op_t op);
static int fire_get_intrmap(struct fire_softc *sc, u_int ino,
bus_addr_t *intrmapptr, bus_addr_t *intrclrptr);
static void fire_intr_assign(void *arg);
static void fire_intr_clear(void *arg);
static void fire_intr_disable(void *arg);
static void fire_intr_enable(void *arg);
static int fire_intr_register(struct fire_softc *sc, u_int ino);
static inline void fire_msiq_common(struct intr_vector *iv,
struct fire_msiqarg *fmqa);
static void fire_msiq_filter(void *cookie);
static void fire_msiq_handler(void *cookie);
static void fire_set_intr(struct fire_softc *sc, u_int index, u_int ino,
driver_filter_t handler, void *arg);
static timecounter_get_t fire_get_timecount;
/* Interrupt handlers */
static driver_filter_t fire_dmc_pec;
static driver_filter_t fire_pcie;
static driver_filter_t fire_xcb;
/*
* Methods
*/
static bus_activate_resource_t fire_activate_resource;
static bus_adjust_resource_t fire_adjust_resource;
static pcib_alloc_msi_t fire_alloc_msi;
static pcib_alloc_msix_t fire_alloc_msix;
static bus_alloc_resource_t fire_alloc_resource;
static device_attach_t fire_attach;
static bus_get_dma_tag_t fire_get_dma_tag;
static ofw_bus_get_node_t fire_get_node;
static pcib_map_msi_t fire_map_msi;
static pcib_maxslots_t fire_maxslots;
static device_probe_t fire_probe;
static pcib_read_config_t fire_read_config;
static bus_read_ivar_t fire_read_ivar;
static pcib_release_msi_t fire_release_msi;
static pcib_release_msix_t fire_release_msix;
static pcib_route_interrupt_t fire_route_interrupt;
static bus_setup_intr_t fire_setup_intr;
static bus_teardown_intr_t fire_teardown_intr;
static pcib_write_config_t fire_write_config;
static device_method_t fire_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, fire_probe),
DEVMETHOD(device_attach, fire_attach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, bus_generic_resume),
/* Bus interface */
DEVMETHOD(bus_read_ivar, fire_read_ivar),
DEVMETHOD(bus_setup_intr, fire_setup_intr),
DEVMETHOD(bus_teardown_intr, fire_teardown_intr),
DEVMETHOD(bus_alloc_resource, fire_alloc_resource),
DEVMETHOD(bus_activate_resource, fire_activate_resource),
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
DEVMETHOD(bus_adjust_resource, fire_adjust_resource),
DEVMETHOD(bus_release_resource, bus_generic_release_resource),
DEVMETHOD(bus_get_dma_tag, fire_get_dma_tag),
/* pcib interface */
DEVMETHOD(pcib_maxslots, fire_maxslots),
DEVMETHOD(pcib_read_config, fire_read_config),
DEVMETHOD(pcib_write_config, fire_write_config),
DEVMETHOD(pcib_route_interrupt, fire_route_interrupt),
DEVMETHOD(pcib_alloc_msi, fire_alloc_msi),
DEVMETHOD(pcib_release_msi, fire_release_msi),
DEVMETHOD(pcib_alloc_msix, fire_alloc_msix),
DEVMETHOD(pcib_release_msix, fire_release_msix),
DEVMETHOD(pcib_map_msi, fire_map_msi),
/* ofw_bus interface */
DEVMETHOD(ofw_bus_get_node, fire_get_node),
DEVMETHOD_END
};
static devclass_t fire_devclass;
DEFINE_CLASS_0(pcib, fire_driver, fire_methods, sizeof(struct fire_softc));
EARLY_DRIVER_MODULE(fire, nexus, fire_driver, fire_devclass, 0, 0,
BUS_PASS_BUS);
MODULE_DEPEND(fire, nexus, 1, 1, 1);
static const struct intr_controller fire_ic = {
fire_intr_enable,
fire_intr_disable,
fire_intr_assign,
fire_intr_clear
};
struct fire_icarg {
struct fire_softc *fica_sc;
bus_addr_t fica_map;
bus_addr_t fica_clr;
};
static const struct intr_controller fire_msiqc_filter = {
fire_intr_enable,
fire_intr_disable,
fire_intr_assign,
NULL
};
struct fire_msiqarg {
struct fire_icarg fmqa_fica;
struct mtx fmqa_mtx;
struct fo_msiq_record *fmqa_base;
uint64_t fmqa_head;
uint64_t fmqa_tail;
uint32_t fmqa_msiq;
uint32_t fmqa_msi;
};
#define FIRE_PERF_CNT_QLTY 100
#define FIRE_SPC_BARRIER(spc, sc, offs, len, flags) \
bus_barrier((sc)->sc_mem_res[(spc)], (offs), (len), (flags))
#define FIRE_SPC_READ_8(spc, sc, offs) \
bus_read_8((sc)->sc_mem_res[(spc)], (offs))
#define FIRE_SPC_WRITE_8(spc, sc, offs, v) \
bus_write_8((sc)->sc_mem_res[(spc)], (offs), (v))
#ifndef FIRE_DEBUG
#define FIRE_SPC_SET(spc, sc, offs, reg, v) \
FIRE_SPC_WRITE_8((spc), (sc), (offs), (v))
#else
#define FIRE_SPC_SET(spc, sc, offs, reg, v) do { \
device_printf((sc)->sc_dev, reg " 0x%016llx -> 0x%016llx\n", \
(unsigned long long)FIRE_SPC_READ_8((spc), (sc), (offs)), \
(unsigned long long)(v)); \
FIRE_SPC_WRITE_8((spc), (sc), (offs), (v)); \
} while (0)
#endif
#define FIRE_PCI_BARRIER(sc, offs, len, flags) \
FIRE_SPC_BARRIER(FIRE_PCI, (sc), (offs), len, flags)
#define FIRE_PCI_READ_8(sc, offs) \
FIRE_SPC_READ_8(FIRE_PCI, (sc), (offs))
#define FIRE_PCI_WRITE_8(sc, offs, v) \
FIRE_SPC_WRITE_8(FIRE_PCI, (sc), (offs), (v))
#define FIRE_CTRL_BARRIER(sc, offs, len, flags) \
FIRE_SPC_BARRIER(FIRE_CTRL, (sc), (offs), len, flags)
#define FIRE_CTRL_READ_8(sc, offs) \
FIRE_SPC_READ_8(FIRE_CTRL, (sc), (offs))
#define FIRE_CTRL_WRITE_8(sc, offs, v) \
FIRE_SPC_WRITE_8(FIRE_CTRL, (sc), (offs), (v))
#define FIRE_PCI_SET(sc, offs, v) \
FIRE_SPC_SET(FIRE_PCI, (sc), (offs), # offs, (v))
#define FIRE_CTRL_SET(sc, offs, v) \
FIRE_SPC_SET(FIRE_CTRL, (sc), (offs), # offs, (v))
struct fire_desc {
const char *fd_string;
int fd_mode;
const char *fd_name;
};
static const struct fire_desc fire_compats[] = {
{ "pciex108e,80f0", FIRE_MODE_FIRE, "Fire" },
#if 0
{ "pciex108e,80f8", FIRE_MODE_OBERON, "Oberon" },
#endif
{ NULL, 0, NULL }
};
static const struct fire_desc *
fire_get_desc(device_t dev)
{
const struct fire_desc *desc;
const char *compat;
compat = ofw_bus_get_compat(dev);
if (compat == NULL)
return (NULL);
for (desc = fire_compats; desc->fd_string != NULL; desc++)
if (strcmp(desc->fd_string, compat) == 0)
return (desc);
return (NULL);
}
static int
fire_probe(device_t dev)
{
const char *dtype;
dtype = ofw_bus_get_type(dev);
if (dtype != NULL && strcmp(dtype, OFW_TYPE_PCIE) == 0 &&
fire_get_desc(dev) != NULL) {
device_set_desc(dev, "Sun Host-PCIe bridge");
return (BUS_PROBE_GENERIC);
}
return (ENXIO);
}
static int
fire_attach(device_t dev)
{
struct fire_softc *sc;
const struct fire_desc *desc;
struct ofw_pci_msi_ranges msi_ranges;
struct ofw_pci_msi_addr_ranges msi_addr_ranges;
struct ofw_pci_msi_eq_to_devino msi_eq_to_devino;
struct fire_msiqarg *fmqa;
struct timecounter *tc;
struct ofw_pci_ranges *range;
uint64_t ino_bitmap, val;
phandle_t node;
uint32_t prop, prop_array[2];
int i, j, mode;
u_int lw;
uint16_t mps;
sc = device_get_softc(dev);
node = ofw_bus_get_node(dev);
desc = fire_get_desc(dev);
mode = desc->fd_mode;
sc->sc_dev = dev;
sc->sc_node = node;
sc->sc_mode = mode;
sc->sc_flags = 0;
mtx_init(&sc->sc_msi_mtx, "msi_mtx", NULL, MTX_DEF);
mtx_init(&sc->sc_pcib_mtx, "pcib_mtx", NULL, MTX_SPIN);
/*
* Fire and Oberon have two register banks:
* (0) per-PBM PCI Express configuration and status registers
* (1) (shared) Fire/Oberon controller configuration and status
* registers
*/
for (i = 0; i < FIRE_NREG; i++) {
j = i;
sc->sc_mem_res[i] = bus_alloc_resource_any(dev,
SYS_RES_MEMORY, &j, RF_ACTIVE);
if (sc->sc_mem_res[i] == NULL)
panic("%s: could not allocate register bank %d",
__func__, i);
}
if (OF_getprop(node, "portid", &sc->sc_ign, sizeof(sc->sc_ign)) == -1)
panic("%s: could not determine IGN", __func__);
if (OF_getprop(node, "module-revision#", &prop, sizeof(prop)) == -1)
panic("%s: could not determine module-revision", __func__);
device_printf(dev, "%s, module-revision %d, IGN %#x\n",
desc->fd_name, prop, sc->sc_ign);
/*
* Hunt through all the interrupt mapping regs and register
* the interrupt controller for our interrupt vectors. We do
* this early in order to be able to catch stray interrupts.
*/
i = OF_getprop(node, "ino-bitmap", (void *)prop_array,
sizeof(prop_array));
if (i == -1)
panic("%s: could not get ino-bitmap", __func__);
ino_bitmap = ((uint64_t)prop_array[1] << 32) | prop_array[0];
for (i = 0; i <= FO_MAX_INO; i++) {
if ((ino_bitmap & (1ULL << i)) == 0)
continue;
j = fire_intr_register(sc, i);
if (j != 0)
device_printf(dev, "could not register interrupt "
"controller for INO %d (%d)\n", i, j);
}
/* JBC/UBC module initialization */
FIRE_CTRL_SET(sc, FO_XBC_ERR_LOG_EN, ~0ULL);
FIRE_CTRL_SET(sc, FO_XBC_ERR_STAT_CLR, ~0ULL);
/* not enabled by OpenSolaris */
FIRE_CTRL_SET(sc, FO_XBC_INT_EN, ~0ULL);
if (sc->sc_mode == FIRE_MODE_FIRE) {
FIRE_CTRL_SET(sc, FIRE_JBUS_PAR_CTRL,
FIRE_JBUS_PAR_CTRL_P_EN);
FIRE_CTRL_SET(sc, FIRE_JBC_FATAL_RST_EN,
((1ULL << FIRE_JBC_FATAL_RST_EN_SPARE_P_INT_SHFT) &
FIRE_JBC_FATAL_RST_EN_SPARE_P_INT_MASK) |
FIRE_JBC_FATAL_RST_EN_MB_PEA_P_INT |
FIRE_JBC_FATAL_RST_EN_CPE_P_INT |
FIRE_JBC_FATAL_RST_EN_APE_P_INT |
FIRE_JBC_FATAL_RST_EN_PIO_CPE_INT |
FIRE_JBC_FATAL_RST_EN_JTCEEW_P_INT |
FIRE_JBC_FATAL_RST_EN_JTCEEI_P_INT |
FIRE_JBC_FATAL_RST_EN_JTCEER_P_INT);
FIRE_CTRL_SET(sc, FIRE_JBC_CORE_BLOCK_INT_EN, ~0ULL);
}
/* TLU initialization */
FIRE_PCI_SET(sc, FO_PCI_TLU_OEVENT_STAT_CLR,
FO_PCI_TLU_OEVENT_S_MASK | FO_PCI_TLU_OEVENT_P_MASK);
/* not enabled by OpenSolaris */
FIRE_PCI_SET(sc, FO_PCI_TLU_OEVENT_INT_EN,
FO_PCI_TLU_OEVENT_S_MASK | FO_PCI_TLU_OEVENT_P_MASK);
FIRE_PCI_SET(sc, FO_PCI_TLU_UERR_STAT_CLR,
FO_PCI_TLU_UERR_INT_S_MASK | FO_PCI_TLU_UERR_INT_P_MASK);
/* not enabled by OpenSolaris */
FIRE_PCI_SET(sc, FO_PCI_TLU_UERR_INT_EN,
FO_PCI_TLU_UERR_INT_S_MASK | FO_PCI_TLU_UERR_INT_P_MASK);
FIRE_PCI_SET(sc, FO_PCI_TLU_CERR_STAT_CLR,
FO_PCI_TLU_CERR_INT_S_MASK | FO_PCI_TLU_CERR_INT_P_MASK);
/* not enabled by OpenSolaris */
FIRE_PCI_SET(sc, FO_PCI_TLU_CERR_INT_EN,
FO_PCI_TLU_CERR_INT_S_MASK | FO_PCI_TLU_CERR_INT_P_MASK);
val = FIRE_PCI_READ_8(sc, FO_PCI_TLU_CTRL) |
((FO_PCI_TLU_CTRL_L0S_TIM_DFLT << FO_PCI_TLU_CTRL_L0S_TIM_SHFT) &
FO_PCI_TLU_CTRL_L0S_TIM_MASK) |
((FO_PCI_TLU_CTRL_CFG_DFLT << FO_PCI_TLU_CTRL_CFG_SHFT) &
FO_PCI_TLU_CTRL_CFG_MASK);
if (sc->sc_mode == FIRE_MODE_OBERON)
val &= ~FO_PCI_TLU_CTRL_NWPR_EN;
val |= FO_PCI_TLU_CTRL_CFG_REMAIN_DETECT_QUIET;
FIRE_PCI_SET(sc, FO_PCI_TLU_CTRL, val);
FIRE_PCI_SET(sc, FO_PCI_TLU_DEV_CTRL, 0);
FIRE_PCI_SET(sc, FO_PCI_TLU_LNK_CTRL, FO_PCI_TLU_LNK_CTRL_CLK);
/* DLU/LPU initialization */
if (sc->sc_mode == FIRE_MODE_OBERON)
FIRE_PCI_SET(sc, FO_PCI_LPU_INT_MASK, 0);
else
FIRE_PCI_SET(sc, FO_PCI_LPU_RST, 0);
FIRE_PCI_SET(sc, FO_PCI_LPU_LNK_LYR_CFG,
FO_PCI_LPU_LNK_LYR_CFG_VC0_EN);
FIRE_PCI_SET(sc, FO_PCI_LPU_FLW_CTRL_UPDT_CTRL,
FO_PCI_LPU_FLW_CTRL_UPDT_CTRL_FC0_NP_EN |
FO_PCI_LPU_FLW_CTRL_UPDT_CTRL_FC0_P_EN);
if (sc->sc_mode == FIRE_MODE_OBERON)
FIRE_PCI_SET(sc, FO_PCI_LPU_TXLNK_RPLY_TMR_THRS,
(OBERON_PCI_LPU_TXLNK_RPLY_TMR_THRS_DFLT <<
FO_PCI_LPU_TXLNK_RPLY_TMR_THRS_SHFT) &
FO_PCI_LPU_TXLNK_RPLY_TMR_THRS_MASK);
else {
switch ((FIRE_PCI_READ_8(sc, FO_PCI_TLU_LNK_STAT) &
FO_PCI_TLU_LNK_STAT_WDTH_MASK) >>
FO_PCI_TLU_LNK_STAT_WDTH_SHFT) {
case 1:
lw = 0;
break;
case 4:
lw = 1;
break;
case 8:
lw = 2;
break;
case 16:
lw = 3;
break;
default:
lw = 0;
}
mps = (FIRE_PCI_READ_8(sc, FO_PCI_TLU_CTRL) &
FO_PCI_TLU_CTRL_CFG_MPS_MASK) >>
FO_PCI_TLU_CTRL_CFG_MPS_SHFT;
i = sizeof(fire_freq_nak_tmr_thrs) /
sizeof(*fire_freq_nak_tmr_thrs);
if (mps >= i)
mps = i - 1;
FIRE_PCI_SET(sc, FO_PCI_LPU_TXLNK_FREQ_LAT_TMR_THRS,
(fire_freq_nak_tmr_thrs[mps][lw] <<
FO_PCI_LPU_TXLNK_FREQ_LAT_TMR_THRS_SHFT) &
FO_PCI_LPU_TXLNK_FREQ_LAT_TMR_THRS_MASK);
FIRE_PCI_SET(sc, FO_PCI_LPU_TXLNK_RPLY_TMR_THRS,
(fire_rply_tmr_thrs[mps][lw] <<
FO_PCI_LPU_TXLNK_RPLY_TMR_THRS_SHFT) &
FO_PCI_LPU_TXLNK_RPLY_TMR_THRS_MASK);
FIRE_PCI_SET(sc, FO_PCI_LPU_TXLNK_RTR_FIFO_PTR,
((FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_TL_DFLT <<
FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_TL_SHFT) &
FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_TL_MASK) |
((FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_HD_DFLT <<
FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_HD_SHFT) &
FO_PCI_LPU_TXLNK_RTR_FIFO_PTR_HD_MASK));
FIRE_PCI_SET(sc, FO_PCI_LPU_LTSSM_CFG2,
(FO_PCI_LPU_LTSSM_CFG2_12_TO_DFLT <<
FO_PCI_LPU_LTSSM_CFG2_12_TO_SHFT) &
FO_PCI_LPU_LTSSM_CFG2_12_TO_MASK);
FIRE_PCI_SET(sc, FO_PCI_LPU_LTSSM_CFG3,
(FO_PCI_LPU_LTSSM_CFG3_2_TO_DFLT <<
FO_PCI_LPU_LTSSM_CFG3_2_TO_SHFT) &
FO_PCI_LPU_LTSSM_CFG3_2_TO_MASK);
FIRE_PCI_SET(sc, FO_PCI_LPU_LTSSM_CFG4,
((FO_PCI_LPU_LTSSM_CFG4_DATA_RATE_DFLT <<
FO_PCI_LPU_LTSSM_CFG4_DATA_RATE_SHFT) &
FO_PCI_LPU_LTSSM_CFG4_DATA_RATE_MASK) |
((FO_PCI_LPU_LTSSM_CFG4_N_FTS_DFLT <<
FO_PCI_LPU_LTSSM_CFG4_N_FTS_SHFT) &
FO_PCI_LPU_LTSSM_CFG4_N_FTS_MASK));
FIRE_PCI_SET(sc, FO_PCI_LPU_LTSSM_CFG5, 0);
}
/* ILU initialization */
FIRE_PCI_SET(sc, FO_PCI_ILU_ERR_STAT_CLR, ~0ULL);
/* not enabled by OpenSolaris */
FIRE_PCI_SET(sc, FO_PCI_ILU_INT_EN, ~0ULL);
/* IMU initialization */
FIRE_PCI_SET(sc, FO_PCI_IMU_ERR_STAT_CLR, ~0ULL);
FIRE_PCI_SET(sc, FO_PCI_IMU_INT_EN,
FIRE_PCI_READ_8(sc, FO_PCI_IMU_INT_EN) &
~(FO_PCI_IMU_ERR_INT_FATAL_MES_NOT_EN_S |
FO_PCI_IMU_ERR_INT_NFATAL_MES_NOT_EN_S |
FO_PCI_IMU_ERR_INT_COR_MES_NOT_EN_S |
FO_PCI_IMU_ERR_INT_FATAL_MES_NOT_EN_P |
FO_PCI_IMU_ERR_INT_NFATAL_MES_NOT_EN_P |
FO_PCI_IMU_ERR_INT_COR_MES_NOT_EN_P));
/* MMU initialization */
FIRE_PCI_SET(sc, FO_PCI_MMU_ERR_STAT_CLR,
FO_PCI_MMU_ERR_INT_S_MASK | FO_PCI_MMU_ERR_INT_P_MASK);
/* not enabled by OpenSolaris */
FIRE_PCI_SET(sc, FO_PCI_MMU_INT_EN,
FO_PCI_MMU_ERR_INT_S_MASK | FO_PCI_MMU_ERR_INT_P_MASK);
/* DMC initialization */
FIRE_PCI_SET(sc, FO_PCI_DMC_CORE_BLOCK_INT_EN, ~0ULL);
FIRE_PCI_SET(sc, FO_PCI_DMC_DBG_SEL_PORTA, 0);
FIRE_PCI_SET(sc, FO_PCI_DMC_DBG_SEL_PORTB, 0);
/* PEC initialization */
FIRE_PCI_SET(sc, FO_PCI_PEC_CORE_BLOCK_INT_EN, ~0ULL);
/* Establish handlers for interesting interrupts. */
if ((ino_bitmap & (1ULL << FO_DMC_PEC_INO)) != 0)
fire_set_intr(sc, 1, FO_DMC_PEC_INO, fire_dmc_pec, sc);
if ((ino_bitmap & (1ULL << FO_XCB_INO)) != 0)
fire_set_intr(sc, 0, FO_XCB_INO, fire_xcb, sc);
/* MSI/MSI-X support */
if (OF_getprop(node, "#msi", &sc->sc_msi_count,
sizeof(sc->sc_msi_count)) == -1)
panic("%s: could not determine MSI count", __func__);
if (OF_getprop(node, "msi-ranges", &msi_ranges,
sizeof(msi_ranges)) == -1)
sc->sc_msi_first = 0;
else
sc->sc_msi_first = msi_ranges.first;
if (OF_getprop(node, "msi-data-mask", &sc->sc_msi_data_mask,
sizeof(sc->sc_msi_data_mask)) == -1)
panic("%s: could not determine MSI data mask", __func__);
if (OF_getprop(node, "msix-data-width", &sc->sc_msix_data_width,
sizeof(sc->sc_msix_data_width)) > 0)
sc->sc_flags |= FIRE_MSIX;
if (OF_getprop(node, "msi-address-ranges", &msi_addr_ranges,
sizeof(msi_addr_ranges)) == -1)
panic("%s: could not determine MSI address ranges", __func__);
sc->sc_msi_addr32 = OFW_PCI_MSI_ADDR_RANGE_32(&msi_addr_ranges);
sc->sc_msi_addr64 = OFW_PCI_MSI_ADDR_RANGE_64(&msi_addr_ranges);
if (OF_getprop(node, "#msi-eqs", &sc->sc_msiq_count,
sizeof(sc->sc_msiq_count)) == -1)
panic("%s: could not determine MSI event queue count",
__func__);
if (OF_getprop(node, "msi-eq-size", &sc->sc_msiq_size,
sizeof(sc->sc_msiq_size)) == -1)
panic("%s: could not determine MSI event queue size",
__func__);
if (OF_getprop(node, "msi-eq-to-devino", &msi_eq_to_devino,
sizeof(msi_eq_to_devino)) == -1 &&
OF_getprop(node, "msi-eq-devino", &msi_eq_to_devino,
sizeof(msi_eq_to_devino)) == -1) {
sc->sc_msiq_first = 0;
sc->sc_msiq_ino_first = FO_EQ_FIRST_INO;
} else {
sc->sc_msiq_first = msi_eq_to_devino.eq_first;
sc->sc_msiq_ino_first = msi_eq_to_devino.devino_first;
}
if (sc->sc_msiq_ino_first < FO_EQ_FIRST_INO ||
sc->sc_msiq_ino_first + sc->sc_msiq_count - 1 > FO_EQ_LAST_INO)
panic("%s: event queues exceed INO range", __func__);
sc->sc_msi_bitmap = malloc(roundup2(sc->sc_msi_count, NBBY) / NBBY,
M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->sc_msi_bitmap == NULL)
panic("%s: could not malloc MSI bitmap", __func__);
sc->sc_msi_msiq_table = malloc(sc->sc_msi_count *
sizeof(*sc->sc_msi_msiq_table), M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->sc_msi_msiq_table == NULL)
panic("%s: could not malloc MSI-MSI event queue table",
__func__);
sc->sc_msiq_bitmap = malloc(roundup2(sc->sc_msiq_count, NBBY) / NBBY,
M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->sc_msiq_bitmap == NULL)
panic("%s: could not malloc MSI event queue bitmap", __func__);
j = FO_EQ_RECORD_SIZE * FO_EQ_NRECORDS * sc->sc_msiq_count;
sc->sc_msiq = contigmalloc(j, M_DEVBUF, M_NOWAIT, 0, ~0UL,
FO_EQ_ALIGNMENT, 0);
if (sc->sc_msiq == NULL)
panic("%s: could not contigmalloc MSI event queue", __func__);
memset(sc->sc_msiq, 0, j);
FIRE_PCI_SET(sc, FO_PCI_EQ_BASE_ADDR, FO_PCI_EQ_BASE_ADDR_BYPASS |
(pmap_kextract((vm_offset_t)sc->sc_msiq) &
FO_PCI_EQ_BASE_ADDR_MASK));
for (i = 0; i < sc->sc_msi_count; i++) {
j = (i + sc->sc_msi_first) << 3;
FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_MAP_BASE + j,
FIRE_PCI_READ_8(sc, FO_PCI_MSI_MAP_BASE + j) &
~FO_PCI_MSI_MAP_V);
}
for (i = 0; i < sc->sc_msiq_count; i++) {
j = i + sc->sc_msiq_ino_first;
if ((ino_bitmap & (1ULL << j)) == 0) {
mtx_lock(&sc->sc_msi_mtx);
setbit(sc->sc_msiq_bitmap, i);
mtx_unlock(&sc->sc_msi_mtx);
}
fmqa = intr_vectors[INTMAP_VEC(sc->sc_ign, j)].iv_icarg;
mtx_init(&fmqa->fmqa_mtx, "msiq_mtx", NULL, MTX_SPIN);
fmqa->fmqa_base =
(struct fo_msiq_record *)((caddr_t)sc->sc_msiq +
(FO_EQ_RECORD_SIZE * FO_EQ_NRECORDS * i));
j = i + sc->sc_msiq_first;
fmqa->fmqa_msiq = j;
j <<= 3;
fmqa->fmqa_head = FO_PCI_EQ_HD_BASE + j;
fmqa->fmqa_tail = FO_PCI_EQ_TL_BASE + j;
FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + j,
FO_PCI_EQ_CTRL_CLR_COVERR | FO_PCI_EQ_CTRL_CLR_E2I |
FO_PCI_EQ_CTRL_CLR_DIS);
FIRE_PCI_WRITE_8(sc, fmqa->fmqa_tail,
(0 << FO_PCI_EQ_TL_SHFT) & FO_PCI_EQ_TL_MASK);
FIRE_PCI_WRITE_8(sc, fmqa->fmqa_head,
(0 << FO_PCI_EQ_HD_SHFT) & FO_PCI_EQ_HD_MASK);
}
FIRE_PCI_SET(sc, FO_PCI_MSI_32_BIT_ADDR, sc->sc_msi_addr32 &
FO_PCI_MSI_32_BIT_ADDR_MASK);
FIRE_PCI_SET(sc, FO_PCI_MSI_64_BIT_ADDR, sc->sc_msi_addr64 &
FO_PCI_MSI_64_BIT_ADDR_MASK);
/*
* Establish a handler for interesting PCIe messages and disable
* unintersting ones.
*/
mtx_lock(&sc->sc_msi_mtx);
for (i = 0; i < sc->sc_msiq_count; i++) {
if (isclr(sc->sc_msiq_bitmap, i) != 0) {
j = i;
break;
}
}
if (i == sc->sc_msiq_count) {
mtx_unlock(&sc->sc_msi_mtx);
panic("%s: no spare event queue for PCIe messages", __func__);
}
setbit(sc->sc_msiq_bitmap, j);
mtx_unlock(&sc->sc_msi_mtx);
i = INTMAP_VEC(sc->sc_ign, j + sc->sc_msiq_ino_first);
if (bus_set_resource(dev, SYS_RES_IRQ, 2, i, 1) != 0)
panic("%s: failed to add interrupt for PCIe messages",
__func__);
fire_set_intr(sc, 2, INTINO(i), fire_pcie, intr_vectors[i].iv_icarg);
j += sc->sc_msiq_first;
/*
* "Please note that setting the EQNUM field to a value larger than
* 35 will yield unpredictable results."
*/
if (j > 35)
panic("%s: invalid queue for PCIe messages (%d)",
__func__, j);
FIRE_PCI_SET(sc, FO_PCI_ERR_COR, FO_PCI_ERR_PME_V |
((j << FO_PCI_ERR_PME_EQNUM_SHFT) & FO_PCI_ERR_PME_EQNUM_MASK));
FIRE_PCI_SET(sc, FO_PCI_ERR_NONFATAL, FO_PCI_ERR_PME_V |
((j << FO_PCI_ERR_PME_EQNUM_SHFT) & FO_PCI_ERR_PME_EQNUM_MASK));
FIRE_PCI_SET(sc, FO_PCI_ERR_FATAL, FO_PCI_ERR_PME_V |
((j << FO_PCI_ERR_PME_EQNUM_SHFT) & FO_PCI_ERR_PME_EQNUM_MASK));
FIRE_PCI_SET(sc, FO_PCI_PM_PME, 0);
FIRE_PCI_SET(sc, FO_PCI_PME_TO_ACK, 0);
FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_SET_BASE + (j << 3),
FO_PCI_EQ_CTRL_SET_EN);
#define TC_COUNTER_MAX_MASK 0xffffffff
/*
* Setup JBC/UBC performance counter 0 in bus cycle counting
* mode as timecounter.
*/
if (device_get_unit(dev) == 0) {
FIRE_CTRL_SET(sc, FO_XBC_PRF_CNT0, 0);
FIRE_CTRL_SET(sc, FO_XBC_PRF_CNT1, 0);
FIRE_CTRL_SET(sc, FO_XBC_PRF_CNT_SEL,
(FO_XBC_PRF_CNT_NONE << FO_XBC_PRF_CNT_CNT1_SHFT) |
(FO_XBC_PRF_CNT_XB_CLK << FO_XBC_PRF_CNT_CNT0_SHFT));
tc = malloc(sizeof(*tc), M_DEVBUF, M_NOWAIT | M_ZERO);
if (tc == NULL)
panic("%s: could not malloc timecounter", __func__);
tc->tc_get_timecount = fire_get_timecount;
tc->tc_counter_mask = TC_COUNTER_MAX_MASK;
if (OF_getprop(OF_peer(0), "clock-frequency", &prop,
sizeof(prop)) == -1)
panic("%s: could not determine clock frequency",
__func__);
tc->tc_frequency = prop;
tc->tc_name = strdup(device_get_nameunit(dev), M_DEVBUF);
tc->tc_priv = sc;
/*
* Due to initial problems with the JBus-driven performance
* counters not advancing which might be firmware dependent
* ensure that it actually works.
*/
if (fire_get_timecount(tc) - fire_get_timecount(tc) != 0)
tc->tc_quality = FIRE_PERF_CNT_QLTY;
else
tc->tc_quality = -FIRE_PERF_CNT_QLTY;
tc_init(tc);
}
/*
* Set up the IOMMU. Both Fire and Oberon have one per PBM, but
* neither has a streaming buffer.
*/
memcpy(&sc->sc_dma_methods, &iommu_dma_methods,
sizeof(sc->sc_dma_methods));
sc->sc_is.is_flags = IOMMU_FIRE | IOMMU_PRESERVE_PROM;
if (sc->sc_mode == FIRE_MODE_OBERON) {
sc->sc_is.is_flags |= IOMMU_FLUSH_CACHE;
sc->sc_is.is_pmaxaddr = IOMMU_MAXADDR(OBERON_IOMMU_BITS);
} else {
sc->sc_dma_methods.dm_dmamap_sync = fire_dmamap_sync;
sc->sc_is.is_pmaxaddr = IOMMU_MAXADDR(FIRE_IOMMU_BITS);
}
sc->sc_is.is_sb[0] = sc->sc_is.is_sb[1] = 0;
/* Punch in our copies. */
sc->sc_is.is_bustag = rman_get_bustag(sc->sc_mem_res[FIRE_PCI]);
sc->sc_is.is_bushandle = rman_get_bushandle(sc->sc_mem_res[FIRE_PCI]);
sc->sc_is.is_iommu = FO_PCI_MMU;
val = FIRE_PCI_READ_8(sc, FO_PCI_MMU + IMR_CTL);
iommu_init(device_get_nameunit(sc->sc_dev), &sc->sc_is, 7, -1, 0);
#ifdef FIRE_DEBUG
device_printf(dev, "FO_PCI_MMU + IMR_CTL 0x%016llx -> 0x%016llx\n",
(long long unsigned)val, (long long unsigned)sc->sc_is.is_cr);
#endif
/* Initialize memory and I/O rmans. */
sc->sc_pci_io_rman.rm_type = RMAN_ARRAY;
sc->sc_pci_io_rman.rm_descr = "Fire PCI I/O Ports";
if (rman_init(&sc->sc_pci_io_rman) != 0 ||
rman_manage_region(&sc->sc_pci_io_rman, 0, FO_IO_SIZE) != 0)
panic("%s: failed to set up I/O rman", __func__);
sc->sc_pci_mem_rman.rm_type = RMAN_ARRAY;
sc->sc_pci_mem_rman.rm_descr = "Fire PCI Memory";
if (rman_init(&sc->sc_pci_mem_rman) != 0 ||
rman_manage_region(&sc->sc_pci_mem_rman, 0, FO_MEM_SIZE) != 0)
panic("%s: failed to set up memory rman", __func__);
i = OF_getprop_alloc(node, "ranges", sizeof(*range), (void **)&range);
/*
* Make sure that the expected ranges are present. The
* OFW_PCI_CS_MEM64 one is not currently used though.
*/
if (i != FIRE_NRANGE)
panic("%s: unsupported number of ranges", __func__);
/*
* Find the addresses of the various bus spaces.
* There should not be multiple ones of one kind.
* The physical start addresses of the ranges are the configuration,
* memory and I/O handles.
*/
for (i = 0; i < FIRE_NRANGE; i++) {
j = OFW_PCI_RANGE_CS(&range[i]);
if (sc->sc_pci_bh[j] != 0)
panic("%s: duplicate range for space %d",
__func__, j);
sc->sc_pci_bh[j] = OFW_PCI_RANGE_PHYS(&range[i]);
}
free(range, M_OFWPROP);
/* Allocate our tags. */
sc->sc_pci_iot = sparc64_alloc_bus_tag(NULL, PCI_IO_BUS_SPACE);
if (sc->sc_pci_iot == NULL)
panic("%s: could not allocate PCI I/O tag", __func__);
sc->sc_pci_cfgt = sparc64_alloc_bus_tag(NULL, PCI_CONFIG_BUS_SPACE);
if (sc->sc_pci_cfgt == NULL)
panic("%s: could not allocate PCI configuration space tag",
__func__);
if (bus_dma_tag_create(bus_get_dma_tag(dev), 8, 0x100000000,
sc->sc_is.is_pmaxaddr, ~0, NULL, NULL, sc->sc_is.is_pmaxaddr,
0xff, 0xffffffff, 0, NULL, NULL, &sc->sc_pci_dmat) != 0)
panic("%s: could not create PCI DMA tag", __func__);
/* Customize the tag. */
sc->sc_pci_dmat->dt_cookie = &sc->sc_is;
sc->sc_pci_dmat->dt_mt = &sc->sc_dma_methods;
/*
* Get the bus range from the firmware.
* NB: Neither Fire nor Oberon support PCI bus reenumeration.
*/
i = OF_getprop(node, "bus-range", (void *)prop_array,
sizeof(prop_array));
if (i == -1)
panic("%s: could not get bus-range", __func__);
if (i != sizeof(prop_array))
panic("%s: broken bus-range (%d)", __func__, i);
sc->sc_pci_secbus = prop_array[0];
sc->sc_pci_subbus = prop_array[1];
if (bootverbose != 0)
device_printf(dev, "bus range %u to %u; PCI bus %d\n",
sc->sc_pci_secbus, sc->sc_pci_subbus, sc->sc_pci_secbus);
ofw_bus_setup_iinfo(node, &sc->sc_pci_iinfo, sizeof(ofw_pci_intr_t));
#define FIRE_SYSCTL_ADD_UINT(name, arg, desc) \
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev), \
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, \
(name), CTLFLAG_RD, (arg), 0, (desc))
FIRE_SYSCTL_ADD_UINT("ilu_err", &sc->sc_stats_ilu_err,
"ILU unknown errors");
FIRE_SYSCTL_ADD_UINT("jbc_ce_async", &sc->sc_stats_jbc_ce_async,
"JBC correctable errors");
FIRE_SYSCTL_ADD_UINT("jbc_unsol_int", &sc->sc_stats_jbc_unsol_int,
"JBC unsolicited interrupt ACK/NACK errors");
FIRE_SYSCTL_ADD_UINT("jbc_unsol_rd", &sc->sc_stats_jbc_unsol_rd,
"JBC unsolicited read response errors");
FIRE_SYSCTL_ADD_UINT("mmu_err", &sc->sc_stats_mmu_err, "MMU errors");
FIRE_SYSCTL_ADD_UINT("tlu_ce", &sc->sc_stats_tlu_ce,
"DLU/TLU correctable errors");
FIRE_SYSCTL_ADD_UINT("tlu_oe_non_fatal",
&sc->sc_stats_tlu_oe_non_fatal,
"DLU/TLU other event non-fatal errors summary"),
FIRE_SYSCTL_ADD_UINT("tlu_oe_rx_err", &sc->sc_stats_tlu_oe_rx_err,
"DLU/TLU receive other event errors"),
FIRE_SYSCTL_ADD_UINT("tlu_oe_tx_err", &sc->sc_stats_tlu_oe_tx_err,
"DLU/TLU transmit other event errors"),
FIRE_SYSCTL_ADD_UINT("ubc_dmardue", &sc->sc_stats_ubc_dmardue,
"UBC DMARDUE erros");
#undef FIRE_SYSCTL_ADD_UINT
device_add_child(dev, "pci", -1);
return (bus_generic_attach(dev));
}
static void
fire_set_intr(struct fire_softc *sc, u_int index, u_int ino,
driver_filter_t handler, void *arg)
{
u_long vec;
int rid;
rid = index;
sc->sc_irq_res[index] = bus_alloc_resource_any(sc->sc_dev,
SYS_RES_IRQ, &rid, RF_ACTIVE);
if (sc->sc_irq_res[index] == NULL ||
INTINO(vec = rman_get_start(sc->sc_irq_res[index])) != ino ||
INTIGN(vec) != sc->sc_ign ||
intr_vectors[vec].iv_ic != &fire_ic ||
bus_setup_intr(sc->sc_dev, sc->sc_irq_res[index],
INTR_TYPE_MISC | INTR_BRIDGE, handler, NULL, arg,
&sc->sc_ihand[index]) != 0)
panic("%s: failed to set up interrupt %d", __func__, index);
}
static int
fire_intr_register(struct fire_softc *sc, u_int ino)
{
struct fire_icarg *fica;
bus_addr_t intrclr, intrmap;
int error;
if (fire_get_intrmap(sc, ino, &intrmap, &intrclr) == 0)
return (ENXIO);
fica = malloc((ino >= FO_EQ_FIRST_INO && ino <= FO_EQ_LAST_INO) ?
sizeof(struct fire_msiqarg) : sizeof(struct fire_icarg), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (fica == NULL)
return (ENOMEM);
fica->fica_sc = sc;
fica->fica_map = intrmap;
fica->fica_clr = intrclr;
error = (intr_controller_register(INTMAP_VEC(sc->sc_ign, ino),
&fire_ic, fica));
if (error != 0)
free(fica, M_DEVBUF);
return (error);
}
static int
fire_get_intrmap(struct fire_softc *sc, u_int ino, bus_addr_t *intrmapptr,
bus_addr_t *intrclrptr)
{
if (ino > FO_MAX_INO) {
device_printf(sc->sc_dev, "out of range INO %d requested\n",
ino);
return (0);
}
ino <<= 3;
if (intrmapptr != NULL)
*intrmapptr = FO_PCI_INT_MAP_BASE + ino;
if (intrclrptr != NULL)
*intrclrptr = FO_PCI_INT_CLR_BASE + ino;
return (1);
}
/*
* Interrupt handlers
*/
static int
fire_dmc_pec(void *arg)
{
struct fire_softc *sc;
device_t dev;
uint64_t cestat, dmcstat, ilustat, imustat, mcstat, mmustat, mmutfar;
uint64_t mmutfsr, oestat, pecstat, uestat, val;
u_int fatal, oenfatal;
fatal = 0;
sc = arg;
dev = sc->sc_dev;
mtx_lock_spin(&sc->sc_pcib_mtx);
mcstat = FIRE_PCI_READ_8(sc, FO_PCI_MULTI_CORE_ERR_STAT);
if ((mcstat & FO_PCI_MULTI_CORE_ERR_STAT_DMC) != 0) {
dmcstat = FIRE_PCI_READ_8(sc, FO_PCI_DMC_CORE_BLOCK_ERR_STAT);
if ((dmcstat & FO_PCI_DMC_CORE_BLOCK_INT_EN_IMU) != 0) {
imustat = FIRE_PCI_READ_8(sc, FO_PCI_IMU_INT_STAT);
device_printf(dev, "IMU error %#llx\n",
(unsigned long long)imustat);
if ((imustat &
FO_PCI_IMU_ERR_INT_EQ_NOT_EN_P) != 0) {
fatal = 1;
val = FIRE_PCI_READ_8(sc,
FO_PCI_IMU_SCS_ERR_LOG);
device_printf(dev, "SCS error log %#llx\n",
(unsigned long long)val);
}
if ((imustat & FO_PCI_IMU_ERR_INT_EQ_OVER_P) != 0) {
fatal = 1;
val = FIRE_PCI_READ_8(sc,
FO_PCI_IMU_EQS_ERR_LOG);
device_printf(dev, "EQS error log %#llx\n",
(unsigned long long)val);
}
if ((imustat & (FO_PCI_IMU_ERR_INT_MSI_MAL_ERR_P |
FO_PCI_IMU_ERR_INT_MSI_PAR_ERR_P |
FO_PCI_IMU_ERR_INT_PMEACK_MES_NOT_EN_P |
FO_PCI_IMU_ERR_INT_PMPME_MES_NOT_EN_P |
FO_PCI_IMU_ERR_INT_FATAL_MES_NOT_EN_P |
FO_PCI_IMU_ERR_INT_NFATAL_MES_NOT_EN_P |
FO_PCI_IMU_ERR_INT_COR_MES_NOT_EN_P |
FO_PCI_IMU_ERR_INT_MSI_NOT_EN_P)) != 0) {
fatal = 1;
val = FIRE_PCI_READ_8(sc,
FO_PCI_IMU_RDS_ERR_LOG);
device_printf(dev, "RDS error log %#llx\n",
(unsigned long long)val);
}
}
if ((dmcstat & FO_PCI_DMC_CORE_BLOCK_INT_EN_MMU) != 0) {
fatal = 1;
mmustat = FIRE_PCI_READ_8(sc, FO_PCI_MMU_INT_STAT);
mmutfar = FIRE_PCI_READ_8(sc,
FO_PCI_MMU_TRANS_FAULT_ADDR);
mmutfsr = FIRE_PCI_READ_8(sc,
FO_PCI_MMU_TRANS_FAULT_STAT);
if ((mmustat & (FO_PCI_MMU_ERR_INT_TBW_DPE_P |
FO_PCI_MMU_ERR_INT_TBW_ERR_P |
FO_PCI_MMU_ERR_INT_TBW_UDE_P |
FO_PCI_MMU_ERR_INT_TBW_DME_P |
FO_PCI_MMU_ERR_INT_TTC_CAE_P |
FIRE_PCI_MMU_ERR_INT_TTC_DPE_P |
OBERON_PCI_MMU_ERR_INT_TTC_DUE_P |
FO_PCI_MMU_ERR_INT_TRN_ERR_P)) != 0)
fatal = 1;
else {
sc->sc_stats_mmu_err++;
FIRE_PCI_WRITE_8(sc, FO_PCI_MMU_ERR_STAT_CLR,
mmustat);
}
device_printf(dev,
"MMU error %#llx: TFAR %#llx TFSR %#llx\n",
(unsigned long long)mmustat,
(unsigned long long)mmutfar,
(unsigned long long)mmutfsr);
}
}
if ((mcstat & FO_PCI_MULTI_CORE_ERR_STAT_PEC) != 0) {
pecstat = FIRE_PCI_READ_8(sc, FO_PCI_PEC_CORE_BLOCK_INT_STAT);
if ((pecstat & FO_PCI_PEC_CORE_BLOCK_INT_STAT_UERR) != 0) {
fatal = 1;
uestat = FIRE_PCI_READ_8(sc,
FO_PCI_TLU_UERR_INT_STAT);
device_printf(dev,
"DLU/TLU uncorrectable error %#llx\n",
(unsigned long long)uestat);
if ((uestat & (FO_PCI_TLU_UERR_INT_UR_P |
OBERON_PCI_TLU_UERR_INT_POIS_P |
FO_PCI_TLU_UERR_INT_MFP_P |
FO_PCI_TLU_UERR_INT_ROF_P |
FO_PCI_TLU_UERR_INT_UC_P |
FIRE_PCI_TLU_UERR_INT_PP_P |
OBERON_PCI_TLU_UERR_INT_POIS_P)) != 0) {
val = FIRE_PCI_READ_8(sc,
FO_PCI_TLU_RX_UERR_HDR1_LOG);
device_printf(dev,
"receive header log %#llx\n",
(unsigned long long)val);
val = FIRE_PCI_READ_8(sc,
FO_PCI_TLU_RX_UERR_HDR2_LOG);
device_printf(dev,
"receive header log 2 %#llx\n",
(unsigned long long)val);
}
if ((uestat & FO_PCI_TLU_UERR_INT_CTO_P) != 0) {
val = FIRE_PCI_READ_8(sc,
FO_PCI_TLU_TX_UERR_HDR1_LOG);
device_printf(dev,
"transmit header log %#llx\n",
(unsigned long long)val);
val = FIRE_PCI_READ_8(sc,
FO_PCI_TLU_TX_UERR_HDR2_LOG);
device_printf(dev,
"transmit header log 2 %#llx\n",
(unsigned long long)val);
}
if ((uestat & FO_PCI_TLU_UERR_INT_DLP_P) != 0) {
val = FIRE_PCI_READ_8(sc,
FO_PCI_LPU_LNK_LYR_INT_STAT);
device_printf(dev,
"link layer interrupt and status %#llx\n",
(unsigned long long)val);
}
if ((uestat & FO_PCI_TLU_UERR_INT_TE_P) != 0) {
val = FIRE_PCI_READ_8(sc,
FO_PCI_LPU_PHY_LYR_INT_STAT);
device_printf(dev,
"phy layer interrupt and status %#llx\n",
(unsigned long long)val);
}
}
if ((pecstat & FO_PCI_PEC_CORE_BLOCK_INT_STAT_CERR) != 0) {
sc->sc_stats_tlu_ce++;
cestat = FIRE_PCI_READ_8(sc,
FO_PCI_TLU_CERR_INT_STAT);
device_printf(dev,
"DLU/TLU correctable error %#llx\n",
(unsigned long long)cestat);
val = FIRE_PCI_READ_8(sc,
FO_PCI_LPU_LNK_LYR_INT_STAT);
device_printf(dev,
"link layer interrupt and status %#llx\n",
(unsigned long long)val);
if ((cestat & FO_PCI_TLU_CERR_INT_RE_P) != 0) {
FIRE_PCI_WRITE_8(sc,
FO_PCI_LPU_LNK_LYR_INT_STAT, val);
val = FIRE_PCI_READ_8(sc,
FO_PCI_LPU_PHY_LYR_INT_STAT);
device_printf(dev,
"phy layer interrupt and status %#llx\n",
(unsigned long long)val);
}
FIRE_PCI_WRITE_8(sc, FO_PCI_TLU_CERR_STAT_CLR,
cestat);
}
if ((pecstat & FO_PCI_PEC_CORE_BLOCK_INT_STAT_OEVENT) != 0) {
oenfatal = 0;
oestat = FIRE_PCI_READ_8(sc,
FO_PCI_TLU_OEVENT_INT_STAT);
device_printf(dev, "DLU/TLU other event %#llx\n",
(unsigned long long)oestat);
if ((oestat & (FO_PCI_TLU_OEVENT_MFC_P |
FO_PCI_TLU_OEVENT_MRC_P |
FO_PCI_TLU_OEVENT_WUC_P |
FO_PCI_TLU_OEVENT_RUC_P |
FO_PCI_TLU_OEVENT_CRS_P)) != 0) {
val = FIRE_PCI_READ_8(sc,
FO_PCI_TLU_RX_OEVENT_HDR1_LOG);
device_printf(dev,
"receive header log %#llx\n",
(unsigned long long)val);
val = FIRE_PCI_READ_8(sc,
FO_PCI_TLU_RX_OEVENT_HDR2_LOG);
device_printf(dev,
"receive header log 2 %#llx\n",
(unsigned long long)val);
if ((oestat & (FO_PCI_TLU_OEVENT_MFC_P |
FO_PCI_TLU_OEVENT_MRC_P |
FO_PCI_TLU_OEVENT_WUC_P |
FO_PCI_TLU_OEVENT_RUC_P)) != 0)
fatal = 1;
else {
sc->sc_stats_tlu_oe_rx_err++;
oenfatal = 1;
}
}
if ((oestat & (FO_PCI_TLU_OEVENT_MFC_P |
FO_PCI_TLU_OEVENT_CTO_P |
FO_PCI_TLU_OEVENT_WUC_P |
FO_PCI_TLU_OEVENT_RUC_P)) != 0) {
val = FIRE_PCI_READ_8(sc,
FO_PCI_TLU_TX_OEVENT_HDR1_LOG);
device_printf(dev,
"transmit header log %#llx\n",
(unsigned long long)val);
val = FIRE_PCI_READ_8(sc,
FO_PCI_TLU_TX_OEVENT_HDR2_LOG);
device_printf(dev,
"transmit header log 2 %#llx\n",
(unsigned long long)val);
if ((oestat & (FO_PCI_TLU_OEVENT_MFC_P |
FO_PCI_TLU_OEVENT_CTO_P |
FO_PCI_TLU_OEVENT_WUC_P |
FO_PCI_TLU_OEVENT_RUC_P)) != 0)
fatal = 1;
else {
sc->sc_stats_tlu_oe_tx_err++;
oenfatal = 1;
}
}
if ((oestat & (FO_PCI_TLU_OEVENT_ERO_P |
FO_PCI_TLU_OEVENT_EMP_P |
FO_PCI_TLU_OEVENT_EPE_P |
FIRE_PCI_TLU_OEVENT_ERP_P |
OBERON_PCI_TLU_OEVENT_ERBU_P |
FIRE_PCI_TLU_OEVENT_EIP_P |
OBERON_PCI_TLU_OEVENT_EIUE_P)) != 0) {
fatal = 1;
val = FIRE_PCI_READ_8(sc,
FO_PCI_LPU_LNK_LYR_INT_STAT);
device_printf(dev,
"link layer interrupt and status %#llx\n",
(unsigned long long)val);
}
if ((oestat & (FO_PCI_TLU_OEVENT_IIP_P |
FO_PCI_TLU_OEVENT_EDP_P |
FIRE_PCI_TLU_OEVENT_EHP_P |
OBERON_PCI_TLU_OEVENT_TLUEITMO_S |
FO_PCI_TLU_OEVENT_ERU_P)) != 0)
fatal = 1;
if ((oestat & (FO_PCI_TLU_OEVENT_NFP_P |
FO_PCI_TLU_OEVENT_LWC_P |
FO_PCI_TLU_OEVENT_LIN_P |
FO_PCI_TLU_OEVENT_LRS_P |
FO_PCI_TLU_OEVENT_LDN_P |
FO_PCI_TLU_OEVENT_LUP_P)) != 0)
oenfatal = 1;
if (oenfatal != 0) {
sc->sc_stats_tlu_oe_non_fatal++;
FIRE_PCI_WRITE_8(sc,
FO_PCI_TLU_OEVENT_STAT_CLR, oestat);
if ((oestat & FO_PCI_TLU_OEVENT_LIN_P) != 0)
FIRE_PCI_WRITE_8(sc,
FO_PCI_LPU_LNK_LYR_INT_STAT,
FIRE_PCI_READ_8(sc,
FO_PCI_LPU_LNK_LYR_INT_STAT));
}
}
if ((pecstat & FO_PCI_PEC_CORE_BLOCK_INT_STAT_ILU) != 0) {
ilustat = FIRE_PCI_READ_8(sc, FO_PCI_ILU_INT_STAT);
device_printf(dev, "ILU error %#llx\n",
(unsigned long long)ilustat);
if ((ilustat & (FIRE_PCI_ILU_ERR_INT_IHB_PE_P |
FIRE_PCI_ILU_ERR_INT_IHB_PE_P)) != 0)
fatal = 1;
else {
sc->sc_stats_ilu_err++;
FIRE_PCI_WRITE_8(sc, FO_PCI_ILU_INT_STAT,
ilustat);
}
}
}
mtx_unlock_spin(&sc->sc_pcib_mtx);
if (fatal != 0)
panic("%s: fatal DMC/PEC error",
device_get_nameunit(sc->sc_dev));
return (FILTER_HANDLED);
}
static int
fire_xcb(void *arg)
{
struct fire_softc *sc;
device_t dev;
uint64_t errstat, intstat, val;
u_int fatal;
fatal = 0;
sc = arg;
dev = sc->sc_dev;
mtx_lock_spin(&sc->sc_pcib_mtx);
if (sc->sc_mode == FIRE_MODE_OBERON) {
intstat = FIRE_CTRL_READ_8(sc, FO_XBC_INT_STAT);
device_printf(dev, "UBC error: interrupt status %#llx\n",
(unsigned long long)intstat);
if ((intstat & ~(OBERON_UBC_ERR_INT_DMARDUEB_P |
OBERON_UBC_ERR_INT_DMARDUEA_P)) != 0)
fatal = 1;
else
sc->sc_stats_ubc_dmardue++;
if (fatal != 0) {
mtx_unlock_spin(&sc->sc_pcib_mtx);
panic("%s: fatal UBC core block error",
device_get_nameunit(sc->sc_dev));
} else {
FIRE_CTRL_SET(sc, FO_XBC_ERR_STAT_CLR, ~0ULL);
mtx_unlock_spin(&sc->sc_pcib_mtx);
}
} else {
errstat = FIRE_CTRL_READ_8(sc, FIRE_JBC_CORE_BLOCK_ERR_STAT);
if ((errstat & (FIRE_JBC_CORE_BLOCK_ERR_STAT_MERGE |
FIRE_JBC_CORE_BLOCK_ERR_STAT_JBCINT |
FIRE_JBC_CORE_BLOCK_ERR_STAT_DMCINT)) != 0) {
intstat = FIRE_CTRL_READ_8(sc, FO_XBC_INT_STAT);
device_printf(dev, "JBC interrupt status %#llx\n",
(unsigned long long)intstat);
if ((intstat & FIRE_JBC_ERR_INT_EBUS_TO_P) != 0) {
val = FIRE_CTRL_READ_8(sc,
FIRE_JBC_CSR_ERR_LOG);
device_printf(dev, "CSR error log %#llx\n",
(unsigned long long)val);
}
if ((intstat & (FIRE_JBC_ERR_INT_UNSOL_RD_P |
FIRE_JBC_ERR_INT_UNSOL_INT_P)) != 0) {
if ((intstat &
FIRE_JBC_ERR_INT_UNSOL_RD_P) != 0)
sc->sc_stats_jbc_unsol_rd++;
if ((intstat &
FIRE_JBC_ERR_INT_UNSOL_INT_P) != 0)
sc->sc_stats_jbc_unsol_int++;
val = FIRE_CTRL_READ_8(sc,
FIRE_DMCINT_IDC_ERR_LOG);
device_printf(dev,
"DMCINT IDC error log %#llx\n",
(unsigned long long)val);
}
if ((intstat & (FIRE_JBC_ERR_INT_MB_PER_P |
FIRE_JBC_ERR_INT_MB_PEW_P)) != 0) {
fatal = 1;
val = FIRE_CTRL_READ_8(sc,
FIRE_MERGE_TRANS_ERR_LOG);
device_printf(dev,
"merge transaction error log %#llx\n",
(unsigned long long)val);
}
if ((intstat & FIRE_JBC_ERR_INT_IJP_P) != 0) {
fatal = 1;
val = FIRE_CTRL_READ_8(sc,
FIRE_JBCINT_OTRANS_ERR_LOG);
device_printf(dev,
"JBCINT out transaction error log "
"%#llx\n", (unsigned long long)val);
val = FIRE_CTRL_READ_8(sc,
FIRE_JBCINT_OTRANS_ERR_LOG2);
device_printf(dev,
"JBCINT out transaction error log 2 "
"%#llx\n", (unsigned long long)val);
}
if ((intstat & (FIRE_JBC_ERR_INT_UE_ASYN_P |
FIRE_JBC_ERR_INT_CE_ASYN_P |
FIRE_JBC_ERR_INT_JTE_P | FIRE_JBC_ERR_INT_JBE_P |
FIRE_JBC_ERR_INT_JUE_P |
FIRE_JBC_ERR_INT_ICISE_P |
FIRE_JBC_ERR_INT_WR_DPE_P |
FIRE_JBC_ERR_INT_RD_DPE_P |
FIRE_JBC_ERR_INT_ILL_BMW_P |
FIRE_JBC_ERR_INT_ILL_BMR_P |
FIRE_JBC_ERR_INT_BJC_P)) != 0) {
if ((intstat & (FIRE_JBC_ERR_INT_UE_ASYN_P |
FIRE_JBC_ERR_INT_JTE_P |
FIRE_JBC_ERR_INT_JBE_P |
FIRE_JBC_ERR_INT_JUE_P |
FIRE_JBC_ERR_INT_ICISE_P |
FIRE_JBC_ERR_INT_WR_DPE_P |
FIRE_JBC_ERR_INT_RD_DPE_P |
FIRE_JBC_ERR_INT_ILL_BMW_P |
FIRE_JBC_ERR_INT_ILL_BMR_P |
FIRE_JBC_ERR_INT_BJC_P)) != 0)
fatal = 1;
else
sc->sc_stats_jbc_ce_async++;
val = FIRE_CTRL_READ_8(sc,
FIRE_JBCINT_ITRANS_ERR_LOG);
device_printf(dev,
"JBCINT in transaction error log %#llx\n",
(unsigned long long)val);
val = FIRE_CTRL_READ_8(sc,
FIRE_JBCINT_ITRANS_ERR_LOG2);
device_printf(dev,
"JBCINT in transaction error log 2 "
"%#llx\n", (unsigned long long)val);
}
if ((intstat & (FIRE_JBC_ERR_INT_PIO_UNMAP_RD_P |
FIRE_JBC_ERR_INT_ILL_ACC_RD_P |
FIRE_JBC_ERR_INT_PIO_UNMAP_P |
FIRE_JBC_ERR_INT_PIO_DPE_P |
FIRE_JBC_ERR_INT_PIO_CPE_P |
FIRE_JBC_ERR_INT_ILL_ACC_P)) != 0) {
fatal = 1;
val = FIRE_CTRL_READ_8(sc,
FIRE_JBC_CSR_ERR_LOG);
device_printf(dev,
"DMCINT ODCD error log %#llx\n",
(unsigned long long)val);
}
if ((intstat & (FIRE_JBC_ERR_INT_MB_PEA_P |
FIRE_JBC_ERR_INT_CPE_P | FIRE_JBC_ERR_INT_APE_P |
FIRE_JBC_ERR_INT_PIO_CPE_P |
FIRE_JBC_ERR_INT_JTCEEW_P |
FIRE_JBC_ERR_INT_JTCEEI_P |
FIRE_JBC_ERR_INT_JTCEER_P)) != 0) {
fatal = 1;
val = FIRE_CTRL_READ_8(sc,
FIRE_FATAL_ERR_LOG);
device_printf(dev, "fatal error log %#llx\n",
(unsigned long long)val);
val = FIRE_CTRL_READ_8(sc,
FIRE_FATAL_ERR_LOG2);
device_printf(dev, "fatal error log 2 "
"%#llx\n", (unsigned long long)val);
}
if (fatal != 0) {
mtx_unlock_spin(&sc->sc_pcib_mtx);
panic("%s: fatal JBC core block error",
device_get_nameunit(sc->sc_dev));
} else {
FIRE_CTRL_SET(sc, FO_XBC_ERR_STAT_CLR, ~0ULL);
mtx_unlock_spin(&sc->sc_pcib_mtx);
}
} else {
mtx_unlock_spin(&sc->sc_pcib_mtx);
panic("%s: unknown JCB core block error status %#llx",
device_get_nameunit(sc->sc_dev),
(unsigned long long)errstat);
}
}
return (FILTER_HANDLED);
}
static int
fire_pcie(void *arg)
{
struct fire_msiqarg *fmqa;
struct fire_softc *sc;
struct fo_msiq_record *qrec;
device_t dev;
uint64_t word0;
u_int head, msg, msiq;
fmqa = arg;
sc = fmqa->fmqa_fica.fica_sc;
dev = sc->sc_dev;
msiq = fmqa->fmqa_msiq;
mtx_lock_spin(&fmqa->fmqa_mtx);
head = (FIRE_PCI_READ_8(sc, fmqa->fmqa_head) & FO_PCI_EQ_HD_MASK) >>
FO_PCI_EQ_HD_SHFT;
qrec = &fmqa->fmqa_base[head];
word0 = qrec->fomqr_word0;
for (;;) {
KASSERT((word0 & FO_MQR_WORD0_FMT_TYPE_MSG) != 0,
("%s: received non-PCIe message in event queue %d "
"(word0 %#llx)", device_get_nameunit(dev), msiq,
(unsigned long long)word0));
msg = (word0 & FO_MQR_WORD0_DATA0_MASK) >>
FO_MQR_WORD0_DATA0_SHFT;
#define PCIE_MSG_CODE_ERR_COR 0x30
#define PCIE_MSG_CODE_ERR_NONFATAL 0x31
#define PCIE_MSG_CODE_ERR_FATAL 0x33
if (msg == PCIE_MSG_CODE_ERR_COR)
device_printf(dev, "correctable PCIe error\n");
else if (msg == PCIE_MSG_CODE_ERR_NONFATAL ||
msg == PCIE_MSG_CODE_ERR_FATAL)
panic("%s: %sfatal PCIe error",
device_get_nameunit(dev),
msg == PCIE_MSG_CODE_ERR_NONFATAL ? "non-" : "");
else
panic("%s: received unknown PCIe message %#x",
device_get_nameunit(dev), msg);
qrec->fomqr_word0 &= ~FO_MQR_WORD0_FMT_TYPE_MASK;
head = (head + 1) % sc->sc_msiq_size;
qrec = &fmqa->fmqa_base[head];
word0 = qrec->fomqr_word0;
if (__predict_true((word0 & FO_MQR_WORD0_FMT_TYPE_MASK) == 0))
break;
}
FIRE_PCI_WRITE_8(sc, fmqa->fmqa_head, (head & FO_PCI_EQ_HD_MASK) <<
FO_PCI_EQ_HD_SHFT);
if ((FIRE_PCI_READ_8(sc, fmqa->fmqa_tail) &
FO_PCI_EQ_TL_OVERR) != 0) {
device_printf(dev, "event queue %d overflow\n", msiq);
msiq <<= 3;
FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + msiq,
FIRE_PCI_READ_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + msiq) |
FO_PCI_EQ_CTRL_CLR_COVERR);
}
mtx_unlock_spin(&fmqa->fmqa_mtx);
return (FILTER_HANDLED);
}
static int
fire_maxslots(device_t dev)
{
return (1);
}
static uint32_t
fire_read_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg,
int width)
{
struct fire_softc *sc;
bus_space_handle_t bh;
u_long offset = 0;
uint32_t r, wrd;
int i;
uint16_t shrt;
uint8_t byte;
sc = device_get_softc(dev);
if (bus < sc->sc_pci_secbus || bus > sc->sc_pci_subbus ||
slot > PCI_SLOTMAX || func > PCI_FUNCMAX || reg > PCIE_REGMAX)
return (-1);
offset = FO_CONF_OFF(bus, slot, func, reg);
bh = sc->sc_pci_bh[OFW_PCI_CS_CONFIG];
switch (width) {
case 1:
i = bus_space_peek_1(sc->sc_pci_cfgt, bh, offset, &byte);
r = byte;
break;
case 2:
i = bus_space_peek_2(sc->sc_pci_cfgt, bh, offset, &shrt);
r = shrt;
break;
case 4:
i = bus_space_peek_4(sc->sc_pci_cfgt, bh, offset, &wrd);
r = wrd;
break;
default:
panic("%s: bad width", __func__);
/* NOTREACHED */
}
if (i) {
#ifdef FIRE_DEBUG
printf("%s: read data error reading: %d.%d.%d: 0x%x\n",
__func__, bus, slot, func, reg);
#endif
r = -1;
}
return (r);
}
static void
fire_write_config(device_t dev, u_int bus, u_int slot, u_int func, u_int reg,
uint32_t val, int width)
{
struct fire_softc *sc;
bus_space_handle_t bh;
u_long offset = 0;
sc = device_get_softc(dev);
if (bus < sc->sc_pci_secbus || bus > sc->sc_pci_subbus ||
slot > PCI_SLOTMAX || func > PCI_FUNCMAX || reg > PCIE_REGMAX)
return;
offset = FO_CONF_OFF(bus, slot, func, reg);
bh = sc->sc_pci_bh[OFW_PCI_CS_CONFIG];
switch (width) {
case 1:
bus_space_write_1(sc->sc_pci_cfgt, bh, offset, val);
break;
case 2:
bus_space_write_2(sc->sc_pci_cfgt, bh, offset, val);
break;
case 4:
bus_space_write_4(sc->sc_pci_cfgt, bh, offset, val);
break;
default:
panic("%s: bad width", __func__);
/* NOTREACHED */
}
}
static int
fire_route_interrupt(device_t bridge, device_t dev, int pin)
{
struct fire_softc *sc;
struct ofw_pci_register reg;
ofw_pci_intr_t pintr, mintr;
sc = device_get_softc(bridge);
pintr = pin;
if (ofw_bus_lookup_imap(ofw_bus_get_node(dev), &sc->sc_pci_iinfo,
&reg, sizeof(reg), &pintr, sizeof(pintr), &mintr, sizeof(mintr),
NULL) != 0)
return (mintr);
device_printf(bridge, "could not route pin %d for device %d.%d\n",
pin, pci_get_slot(dev), pci_get_function(dev));
return (PCI_INVALID_IRQ);
}
static int
fire_read_ivar(device_t dev, device_t child, int which, uintptr_t *result)
{
struct fire_softc *sc;
sc = device_get_softc(dev);
switch (which) {
case PCIB_IVAR_DOMAIN:
*result = device_get_unit(dev);
return (0);
case PCIB_IVAR_BUS:
*result = sc->sc_pci_secbus;
return (0);
}
return (ENOENT);
}
static void
fire_dmamap_sync(bus_dma_tag_t dt __unused, bus_dmamap_t map,
bus_dmasync_op_t op)
{
static u_char buf[VIS_BLOCKSIZE] __aligned(VIS_BLOCKSIZE);
register_t reg, s;
if ((map->dm_flags & DMF_LOADED) == 0)
return;
if ((op & BUS_DMASYNC_POSTREAD) != 0) {
s = intr_disable();
reg = rd(fprs);
wr(fprs, reg | FPRS_FEF, 0);
__asm __volatile("stda %%f0, [%0] %1"
: : "r" (buf), "n" (ASI_BLK_COMMIT_S));
membar(Sync);
wr(fprs, reg, 0);
intr_restore(s);
} else if ((op & BUS_DMASYNC_PREWRITE) != 0)
membar(Sync);
}
static void
fire_intr_enable(void *arg)
{
struct intr_vector *iv;
struct fire_icarg *fica;
struct fire_softc *sc;
struct pcpu *pc;
uint64_t mr;
u_int ctrl, i;
iv = arg;
fica = iv->iv_icarg;
sc = fica->fica_sc;
mr = FO_PCI_IMAP_V;
if (sc->sc_mode == FIRE_MODE_OBERON)
mr |= (iv->iv_mid << OBERON_PCI_IMAP_T_DESTID_SHFT) &
OBERON_PCI_IMAP_T_DESTID_MASK;
else
mr |= (iv->iv_mid << FIRE_PCI_IMAP_T_JPID_SHFT) &
FIRE_PCI_IMAP_T_JPID_MASK;
/*
* Given that all mondos for the same target are required to use the
* same interrupt controller we just use the CPU ID for indexing the
* latter.
*/
ctrl = 0;
for (i = 0; i < mp_ncpus; ++i) {
pc = pcpu_find(i);
if (pc == NULL || iv->iv_mid != pc->pc_mid)
continue;
ctrl = pc->pc_cpuid % 4;
break;
}
mr |= (1ULL << ctrl) << FO_PCI_IMAP_INT_CTRL_NUM_SHFT &
FO_PCI_IMAP_INT_CTRL_NUM_MASK;
FIRE_PCI_WRITE_8(sc, fica->fica_map, mr);
}
static void
fire_intr_disable(void *arg)
{
struct intr_vector *iv;
struct fire_icarg *fica;
struct fire_softc *sc;
iv = arg;
fica = iv->iv_icarg;
sc = fica->fica_sc;
FIRE_PCI_WRITE_8(sc, fica->fica_map,
FIRE_PCI_READ_8(sc, fica->fica_map) & ~FO_PCI_IMAP_V);
}
static void
fire_intr_assign(void *arg)
{
struct intr_vector *iv;
struct fire_icarg *fica;
struct fire_softc *sc;
uint64_t mr;
iv = arg;
fica = iv->iv_icarg;
sc = fica->fica_sc;
mr = FIRE_PCI_READ_8(sc, fica->fica_map);
if ((mr & FO_PCI_IMAP_V) != 0) {
FIRE_PCI_WRITE_8(sc, fica->fica_map, mr & ~FO_PCI_IMAP_V);
FIRE_PCI_BARRIER(sc, fica->fica_map, 8,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
while (FIRE_PCI_READ_8(sc, fica->fica_clr) != INTCLR_IDLE)
;
if ((mr & FO_PCI_IMAP_V) != 0)
fire_intr_enable(arg);
}
static void
fire_intr_clear(void *arg)
{
struct intr_vector *iv;
struct fire_icarg *fica;
iv = arg;
fica = iv->iv_icarg;
FIRE_PCI_WRITE_8(fica->fica_sc, fica->fica_clr, INTCLR_IDLE);
}
/*
* Given that the event queue implementation matches our current MD and MI
* interrupt frameworks like square pegs fit into round holes we are generous
* and use one event queue per MSI for now, which limits us to 35 MSIs/MSI-Xs
* per Host-PCIe-bridge (we use one event queue for the PCIe error messages).
* This seems tolerable as long as most devices just use one MSI/MSI-X anyway.
* Adding knowledge about MSIs/MSI-Xs to the MD interrupt code should allow us
* to decouple the 1:1 mapping at the cost of no longer being able to bind
* MSIs/MSI-Xs to specific CPUs as we currently have no reliable way to
* quiesce a device while we move its MSIs/MSI-Xs to another event queue.
*/
static int
fire_alloc_msi(device_t dev, device_t child, int count, int maxcount __unused,
int *irqs)
{
struct fire_softc *sc;
u_int i, j, msiqrun;
if (powerof2(count) == 0 || count > 32)
return (EINVAL);
sc = device_get_softc(dev);
mtx_lock(&sc->sc_msi_mtx);
msiqrun = 0;
for (i = 0; i < sc->sc_msiq_count; i++) {
for (j = i; j < i + count; j++) {
if (isclr(sc->sc_msiq_bitmap, j) == 0)
break;
}
if (j == i + count) {
msiqrun = i;
break;
}
}
if (i == sc->sc_msiq_count) {
mtx_unlock(&sc->sc_msi_mtx);
return (ENXIO);
}
for (i = 0; i + count < sc->sc_msi_count; i += count) {
for (j = i; j < i + count; j++)
if (isclr(sc->sc_msi_bitmap, j) == 0)
break;
if (j == i + count) {
for (j = 0; j < count; j++) {
setbit(sc->sc_msiq_bitmap, msiqrun + j);
setbit(sc->sc_msi_bitmap, i + j);
sc->sc_msi_msiq_table[i + j] = msiqrun + j;
irqs[j] = sc->sc_msi_first + i + j;
}
mtx_unlock(&sc->sc_msi_mtx);
return (0);
}
}
mtx_unlock(&sc->sc_msi_mtx);
return (ENXIO);
}
static int
fire_release_msi(device_t dev, device_t child, int count, int *irqs)
{
struct fire_softc *sc;
u_int i;
sc = device_get_softc(dev);
mtx_lock(&sc->sc_msi_mtx);
for (i = 0; i < count; i++) {
clrbit(sc->sc_msiq_bitmap,
sc->sc_msi_msiq_table[irqs[i] - sc->sc_msi_first]);
clrbit(sc->sc_msi_bitmap, irqs[i] - sc->sc_msi_first);
}
mtx_unlock(&sc->sc_msi_mtx);
return (0);
}
static int
fire_alloc_msix(device_t dev, device_t child, int *irq)
{
struct fire_softc *sc;
u_int i, msiq;
sc = device_get_softc(dev);
if ((sc->sc_flags & FIRE_MSIX) == 0)
return (ENXIO);
mtx_lock(&sc->sc_msi_mtx);
msiq = 0;
for (i = 0; i < sc->sc_msiq_count; i++) {
if (isclr(sc->sc_msiq_bitmap, i) != 0) {
msiq = i;
break;
}
}
if (i == sc->sc_msiq_count) {
mtx_unlock(&sc->sc_msi_mtx);
return (ENXIO);
}
for (i = sc->sc_msi_count - 1; i >= 0; i--) {
if (isclr(sc->sc_msi_bitmap, i) != 0) {
setbit(sc->sc_msiq_bitmap, msiq);
setbit(sc->sc_msi_bitmap, i);
sc->sc_msi_msiq_table[i] = msiq;
*irq = sc->sc_msi_first + i;
mtx_unlock(&sc->sc_msi_mtx);
return (0);
}
}
mtx_unlock(&sc->sc_msi_mtx);
return (ENXIO);
}
static int
fire_release_msix(device_t dev, device_t child, int irq)
{
struct fire_softc *sc;
sc = device_get_softc(dev);
if ((sc->sc_flags & FIRE_MSIX) == 0)
return (ENXIO);
mtx_lock(&sc->sc_msi_mtx);
clrbit(sc->sc_msiq_bitmap,
sc->sc_msi_msiq_table[irq - sc->sc_msi_first]);
clrbit(sc->sc_msi_bitmap, irq - sc->sc_msi_first);
mtx_unlock(&sc->sc_msi_mtx);
return (0);
}
static int
fire_map_msi(device_t dev, device_t child, int irq, uint64_t *addr,
uint32_t *data)
{
struct fire_softc *sc;
struct pci_devinfo *dinfo;
sc = device_get_softc(dev);
dinfo = device_get_ivars(child);
if (dinfo->cfg.msi.msi_alloc > 0) {
if ((irq & ~sc->sc_msi_data_mask) != 0) {
device_printf(dev, "invalid MSI 0x%x\n", irq);
return (EINVAL);
}
} else {
if ((sc->sc_flags & FIRE_MSIX) == 0)
return (ENXIO);
if (fls(irq) > sc->sc_msix_data_width) {
device_printf(dev, "invalid MSI-X 0x%x\n", irq);
return (EINVAL);
}
}
if (dinfo->cfg.msi.msi_alloc > 0 &&
(dinfo->cfg.msi.msi_ctrl & PCIM_MSICTRL_64BIT) == 0)
*addr = sc->sc_msi_addr32;
else
*addr = sc->sc_msi_addr64;
*data = irq;
return (0);
}
static void
fire_msiq_handler(void *cookie)
{
struct intr_vector *iv;
struct fire_msiqarg *fmqa;
iv = cookie;
fmqa = iv->iv_icarg;
/*
* Note that since fire_intr_clear() will clear the event queue
* interrupt after the handler associated with the MSI [sic] has
* been executed we have to protect the access to the event queue as
* otherwise nested event queue interrupts cause corruption of the
* event queue on MP machines. Obviously especially when abandoning
* the 1:1 mapping it would be better to not clear the event queue
* interrupt after each handler invocation but only once when the
* outstanding MSIs have been processed but unfortunately that
* doesn't work well and leads to interrupt storms with controllers/
* drivers which don't mask interrupts while the handler is executed.
* Maybe delaying clearing the MSI until after the handler has been
* executed could be used to work around this but that's not the
* intended usage and might in turn cause lost MSIs.
*/
mtx_lock_spin(&fmqa->fmqa_mtx);
fire_msiq_common(iv, fmqa);
mtx_unlock_spin(&fmqa->fmqa_mtx);
}
static void
fire_msiq_filter(void *cookie)
{
struct intr_vector *iv;
struct fire_msiqarg *fmqa;
iv = cookie;
fmqa = iv->iv_icarg;
/*
* For filters we don't use fire_intr_clear() since it would clear
* the event queue interrupt while we're still processing the event
* queue as filters and associated post-filter handler are executed
* directly, which in turn would lead to lost MSIs. So we clear the
* event queue interrupt only once after processing the event queue.
* Given that this still guarantees the filters to not be executed
* concurrently and no other CPU can clear the event queue interrupt
* while the event queue is still processed, we don't even need to
* interlock the access to the event queue in this case.
*/
critical_enter();
fire_msiq_common(iv, fmqa);
FIRE_PCI_WRITE_8(fmqa->fmqa_fica.fica_sc, fmqa->fmqa_fica.fica_clr,
INTCLR_IDLE);
critical_exit();
}
static inline void
fire_msiq_common(struct intr_vector *iv, struct fire_msiqarg *fmqa)
{
struct fire_softc *sc;
struct fo_msiq_record *qrec;
device_t dev;
uint64_t word0;
u_int head, msi, msiq;
sc = fmqa->fmqa_fica.fica_sc;
dev = sc->sc_dev;
msiq = fmqa->fmqa_msiq;
head = (FIRE_PCI_READ_8(sc, fmqa->fmqa_head) & FO_PCI_EQ_HD_MASK) >>
FO_PCI_EQ_HD_SHFT;
qrec = &fmqa->fmqa_base[head];
word0 = qrec->fomqr_word0;
for (;;) {
if (__predict_false((word0 & FO_MQR_WORD0_FMT_TYPE_MASK) == 0))
break;
KASSERT((word0 & FO_MQR_WORD0_FMT_TYPE_MSI64) != 0 ||
(word0 & FO_MQR_WORD0_FMT_TYPE_MSI32) != 0,
("%s: received non-MSI/MSI-X message in event queue %d "
"(word0 %#llx)", device_get_nameunit(dev), msiq,
(unsigned long long)word0));
msi = (word0 & FO_MQR_WORD0_DATA0_MASK) >>
FO_MQR_WORD0_DATA0_SHFT;
/*
* Sanity check the MSI/MSI-X as long as we use a 1:1 mapping.
*/
KASSERT(msi == fmqa->fmqa_msi,
("%s: received non-matching MSI/MSI-X in event queue %d "
"(%d versus %d)", device_get_nameunit(dev), msiq, msi,
fmqa->fmqa_msi));
FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_CLR_BASE + (msi << 3),
FO_PCI_MSI_CLR_EQWR_N);
if (__predict_false(intr_event_handle(iv->iv_event,
NULL) != 0))
printf("stray MSI/MSI-X in event queue %d\n", msiq);
qrec->fomqr_word0 &= ~FO_MQR_WORD0_FMT_TYPE_MASK;
head = (head + 1) % sc->sc_msiq_size;
qrec = &fmqa->fmqa_base[head];
word0 = qrec->fomqr_word0;
}
FIRE_PCI_WRITE_8(sc, fmqa->fmqa_head, (head & FO_PCI_EQ_HD_MASK) <<
FO_PCI_EQ_HD_SHFT);
if (__predict_false((FIRE_PCI_READ_8(sc, fmqa->fmqa_tail) &
FO_PCI_EQ_TL_OVERR) != 0)) {
device_printf(dev, "event queue %d overflow\n", msiq);
msiq <<= 3;
FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + msiq,
FIRE_PCI_READ_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + msiq) |
FO_PCI_EQ_CTRL_CLR_COVERR);
}
}
static int
fire_setup_intr(device_t dev, device_t child, struct resource *ires,
int flags, driver_filter_t *filt, driver_intr_t *intr, void *arg,
void **cookiep)
{
struct fire_softc *sc;
struct fire_msiqarg *fmqa;
u_long vec;
int error;
u_int msi, msiq;
sc = device_get_softc(dev);
/*
* XXX this assumes that a device only has one INTx, while in fact
* Cassini+ and Saturn can use all four the firmware has assigned
* to them, but so does pci(4).
*/
if (rman_get_rid(ires) != 0) {
msi = rman_get_start(ires);
msiq = sc->sc_msi_msiq_table[msi - sc->sc_msi_first];
vec = INTMAP_VEC(sc->sc_ign, sc->sc_msiq_ino_first + msiq);
msiq += sc->sc_msiq_first;
if (intr_vectors[vec].iv_ic != &fire_ic) {
device_printf(dev,
"invalid interrupt controller for vector 0x%lx\n",
vec);
return (EINVAL);
}
/*
* The MD interrupt code needs the vector rather than the MSI.
*/
rman_set_start(ires, vec);
rman_set_end(ires, vec);
error = bus_generic_setup_intr(dev, child, ires, flags, filt,
intr, arg, cookiep);
rman_set_start(ires, msi);
rman_set_end(ires, msi);
if (error != 0)
return (error);
fmqa = intr_vectors[vec].iv_icarg;
/*
* XXX inject our event queue handler.
*/
if (filt != NULL) {
intr_vectors[vec].iv_func = fire_msiq_filter;
intr_vectors[vec].iv_ic = &fire_msiqc_filter;
/*
* Ensure the event queue interrupt is cleared, it
* might have triggered before. Given we supply NULL
* as ic_clear, inthand_add() won't do this for us.
*/
FIRE_PCI_WRITE_8(sc, fmqa->fmqa_fica.fica_clr,
INTCLR_IDLE);
} else
intr_vectors[vec].iv_func = fire_msiq_handler;
/* Record the MSI/MSI-X as long as we we use a 1:1 mapping. */
fmqa->fmqa_msi = msi;
FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_SET_BASE + (msiq << 3),
FO_PCI_EQ_CTRL_SET_EN);
msi <<= 3;
FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_MAP_BASE + msi,
(FIRE_PCI_READ_8(sc, FO_PCI_MSI_MAP_BASE + msi) &
~FO_PCI_MSI_MAP_EQNUM_MASK) |
((msiq << FO_PCI_MSI_MAP_EQNUM_SHFT) &
FO_PCI_MSI_MAP_EQNUM_MASK));
FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_CLR_BASE + msi,
FO_PCI_MSI_CLR_EQWR_N);
FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_MAP_BASE + msi,
FIRE_PCI_READ_8(sc, FO_PCI_MSI_MAP_BASE + msi) |
FO_PCI_MSI_MAP_V);
return (error);
}
/*
* Make sure the vector is fully specified and we registered
* our interrupt controller for it.
*/
vec = rman_get_start(ires);
if (INTIGN(vec) != sc->sc_ign) {
device_printf(dev, "invalid interrupt vector 0x%lx\n", vec);
return (EINVAL);
}
if (intr_vectors[vec].iv_ic != &fire_ic) {
device_printf(dev,
"invalid interrupt controller for vector 0x%lx\n", vec);
return (EINVAL);
}
return (bus_generic_setup_intr(dev, child, ires, flags, filt, intr,
arg, cookiep));
}
static int
fire_teardown_intr(device_t dev, device_t child, struct resource *ires,
void *cookie)
{
struct fire_softc *sc;
u_long vec;
int error;
u_int msi, msiq;
sc = device_get_softc(dev);
if (rman_get_rid(ires) != 0) {
msi = rman_get_start(ires);
msiq = sc->sc_msi_msiq_table[msi - sc->sc_msi_first];
vec = INTMAP_VEC(sc->sc_ign, msiq + sc->sc_msiq_ino_first);
msiq += sc->sc_msiq_first;
msi <<= 3;
FIRE_PCI_WRITE_8(sc, FO_PCI_MSI_MAP_BASE + msi,
FIRE_PCI_READ_8(sc, FO_PCI_MSI_MAP_BASE + msi) &
~FO_PCI_MSI_MAP_V);
msiq <<= 3;
FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_CTRL_CLR_BASE + msiq,
FO_PCI_EQ_CTRL_CLR_COVERR | FO_PCI_EQ_CTRL_CLR_E2I |
FO_PCI_EQ_CTRL_CLR_DIS);
FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_TL_BASE + msiq,
(0 << FO_PCI_EQ_TL_SHFT) & FO_PCI_EQ_TL_MASK);
FIRE_PCI_WRITE_8(sc, FO_PCI_EQ_HD_BASE + msiq,
(0 << FO_PCI_EQ_HD_SHFT) & FO_PCI_EQ_HD_MASK);
intr_vectors[vec].iv_ic = &fire_ic;
/*
* The MD interrupt code needs the vector rather than the MSI.
*/
rman_set_start(ires, vec);
rman_set_end(ires, vec);
error = bus_generic_teardown_intr(dev, child, ires, cookie);
msi >>= 3;
rman_set_start(ires, msi);
rman_set_end(ires, msi);
return (error);
}
return (bus_generic_teardown_intr(dev, child, ires, cookie));
}
static struct resource *
fire_alloc_resource(device_t bus, device_t child, int type, int *rid,
u_long start, u_long end, u_long count, u_int flags)
{
struct fire_softc *sc;
struct resource *rv;
struct rman *rm;
sc = device_get_softc(bus);
switch (type) {
case SYS_RES_IRQ:
/*
* XXX: Don't accept blank ranges for now, only single
* interrupts. The other case should not happen with
* the MI PCI code...
* XXX: This may return a resource that is out of the
* range that was specified. Is this correct...?
*/
if (start != end)
panic("%s: XXX: interrupt range", __func__);
if (*rid == 0)
start = end = INTMAP_VEC(sc->sc_ign, end);
return (bus_generic_alloc_resource(bus, child, type, rid,
start, end, count, flags));
case SYS_RES_MEMORY:
rm = &sc->sc_pci_mem_rman;
break;
case SYS_RES_IOPORT:
rm = &sc->sc_pci_io_rman;
break;
default:
return (NULL);
}
rv = rman_reserve_resource(rm, start, end, count, flags & ~RF_ACTIVE,
child);
if (rv == NULL)
return (NULL);
rman_set_rid(rv, *rid);
if ((flags & RF_ACTIVE) != 0 && bus_activate_resource(child, type,
*rid, rv) != 0) {
rman_release_resource(rv);
return (NULL);
}
return (rv);
}
static int
fire_activate_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
struct fire_softc *sc;
struct bus_space_tag *tag;
sc = device_get_softc(bus);
switch (type) {
case SYS_RES_IRQ:
return (bus_generic_activate_resource(bus, child, type, rid,
r));
case SYS_RES_MEMORY:
tag = sparc64_alloc_bus_tag(r, PCI_MEMORY_BUS_SPACE);
if (tag == NULL)
return (ENOMEM);
rman_set_bustag(r, tag);
rman_set_bushandle(r, sc->sc_pci_bh[OFW_PCI_CS_MEM32] +
rman_get_start(r));
break;
case SYS_RES_IOPORT:
rman_set_bustag(r, sc->sc_pci_iot);
rman_set_bushandle(r, sc->sc_pci_bh[OFW_PCI_CS_IO] +
rman_get_start(r));
break;
}
return (rman_activate_resource(r));
}
static int
fire_adjust_resource(device_t bus, device_t child, int type,
struct resource *r, u_long start, u_long end)
{
struct fire_softc *sc;
struct rman *rm;
sc = device_get_softc(bus);
switch (type) {
case SYS_RES_IRQ:
return (bus_generic_adjust_resource(bus, child, type, r,
start, end));
case SYS_RES_MEMORY:
rm = &sc->sc_pci_mem_rman;
break;
case SYS_RES_IOPORT:
rm = &sc->sc_pci_io_rman;
break;
default:
return (EINVAL);
}
if (rman_is_region_manager(r, rm) == 0)
return (EINVAL);
return (rman_adjust_resource(r, start, end));
}
static bus_dma_tag_t
fire_get_dma_tag(device_t bus, device_t child __unused)
{
struct fire_softc *sc;
sc = device_get_softc(bus);
return (sc->sc_pci_dmat);
}
static phandle_t
fire_get_node(device_t bus, device_t child __unused)
{
struct fire_softc *sc;
sc = device_get_softc(bus);
/* We only have one child, the PCI bus, which needs our own node. */
return (sc->sc_node);
}
static u_int
fire_get_timecount(struct timecounter *tc)
{
struct fire_softc *sc;
sc = tc->tc_priv;
return (FIRE_CTRL_READ_8(sc, FO_XBC_PRF_CNT0) & TC_COUNTER_MAX_MASK);
}