freebsd-skq/usr.bin/localedef/collate.c
Alex Richardson 00c61a3b43 Allow bootstrapping localdef on non-FreeBSD systems
The current localedef simply assumes that the locale headers on build system
are compatible with those on the target system which is not necessarily true.
It generally works on FreeBSD (as long as we don't change the locale headers),
but Linux and macOS provide completely different locale headers.

This change adds new bootstrap headers that namespace certain xlocale
structures defined or used by in the headers that localdef needs.
This is required since system headers *must* be able to include the "real"
locale headers for printf(), etc., but we also want to access the target
systems's internal locale structures.

Reviewed By: yuripv, brooks
Differential Revision: https://reviews.freebsd.org/D25229
2020-07-15 12:07:59 +00:00

1327 lines
29 KiB
C

/*-
* Copyright 2018 Nexenta Systems, Inc.
* Copyright 2015 John Marino <draco@marino.st>
*
* This source code is derived from the illumos localedef command, and
* provided under BSD-style license terms by Nexenta Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* LC_COLLATE database generation routines for localedef.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/tree.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <wchar.h>
#include <limits.h>
#include "localedef.h"
#include "parser.h"
#include "collate.h"
_Static_assert(COLL_WEIGHTS_MAX == 10, "This code assumes a value of 10");
/*
* Design notes.
*
* It will be extremely helpful to the reader if they have access to
* the localedef and locale file format specifications available.
* Latest versions of these are available from www.opengroup.org.
*
* The design for the collation code is a bit complex. The goal is a
* single collation database as described in collate.h (in
* libc/port/locale). However, there are some other tidbits:
*
* a) The substitution entries are now a directly indexable array. A
* priority elsewhere in the table is taken as an index into the
* substitution table if it has a high bit (COLLATE_SUBST_PRIORITY)
* set. (The bit is cleared and the result is the index into the
* table.
*
* b) We eliminate duplicate entries into the substitution table.
* This saves a lot of space.
*
* c) The priorities for each level are "compressed", so that each
* sorting level has consecutively numbered priorities starting at 1.
* (O is reserved for the ignore priority.) This means sort levels
* which only have a few distinct priorities can represent the
* priority level in fewer bits, which makes the strxfrm output
* smaller.
*
* d) We record the total number of priorities so that strxfrm can
* figure out how many bytes to expand a numeric priority into.
*
* e) For the UNDEFINED pass (the last pass), we record the maximum
* number of bits needed to uniquely prioritize these entries, so that
* the last pass can also use smaller strxfrm output when possible.
*
* f) Priorities with the sign bit set are verboten. This works out
* because no active character set needs that bit to carry significant
* information once the character is in wide form.
*
* To process the entire data to make the database, we actually run
* multiple passes over the data.
*
* The first pass, which is done at parse time, identifies elements,
* substitutions, and such, and records them in priority order. As
* some priorities can refer to other priorities, using forward
* references, we use a table of references indicating whether the
* priority's value has been resolved, or whether it is still a
* reference.
*
* The second pass walks over all the items in priority order, noting
* that they are used directly, and not just an indirect reference.
* This is done by creating a "weight" structure for the item. The
* weights are stashed in an RB tree sorted by relative "priority".
*
* The third pass walks over all the weight structures, in priority
* order, and assigns a new monotonically increasing (per sort level)
* weight value to them. These are the values that will actually be
* written to the file.
*
* The fourth pass just writes the data out.
*/
/*
* In order to resolve the priorities, we create a table of priorities.
* Entries in the table can be in one of three states.
*
* UNKNOWN is for newly allocated entries, and indicates that nothing
* is known about the priority. (For example, when new entries are created
* for collating-symbols, this is the value assigned for them until the
* collating symbol's order has been determined.
*
* RESOLVED is used for an entry where the priority indicates the final
* numeric weight.
*
* REFER is used for entries that reference other entries. Typically
* this is used for forward references. A collating-symbol can never
* have this value.
*
* The "pass" field is used during final resolution to aid in detection
* of referencing loops. (For example <A> depends on <B>, but <B> has its
* priority dependent on <A>.)
*/
typedef enum {
UNKNOWN, /* priority is totally unknown */
RESOLVED, /* priority value fully resolved */
REFER /* priority is a reference (index) */
} res_t;
typedef struct weight {
int32_t pri;
int opt;
RB_ENTRY(weight) entry;
} weight_t;
typedef struct priority {
res_t res;
int32_t pri;
int pass;
int lineno;
} collpri_t;
#define NUM_WT collinfo.directive_count
/*
* These are the abstract collating symbols, which are just a symbolic
* way to reference a priority.
*/
struct collsym {
char *name;
int32_t ref;
RB_ENTRY(collsym) entry;
};
/*
* These are also abstract collating symbols, but we allow them to have
* different priorities at different levels.
*/
typedef struct collundef {
char *name;
int32_t ref[COLL_WEIGHTS_MAX];
RB_ENTRY(collundef) entry;
} collundef_t;
/*
* These are called "chains" in libc. This records the fact that two
* more characters should be treated as a single collating entity when
* they appear together. For example, in Spanish <C><h> gets collated
* as a character between <C> and <D>.
*/
struct collelem {
char *symbol;
wchar_t *expand;
int32_t ref[COLL_WEIGHTS_MAX];
RB_ENTRY(collelem) rb_bysymbol;
RB_ENTRY(collelem) rb_byexpand;
};
/*
* Individual characters have a sequence of weights as well.
*/
typedef struct collchar {
wchar_t wc;
int32_t ref[COLL_WEIGHTS_MAX];
RB_ENTRY(collchar) entry;
} collchar_t;
/*
* Substitution entries. The key is itself a priority. Note that
* when we create one of these, we *automatically* wind up with a
* fully resolved priority for the key, because creation of
* substitutions creates a resolved priority at the same time.
*/
typedef struct subst{
int32_t key;
int32_t ref[COLLATE_STR_LEN];
RB_ENTRY(subst) entry;
RB_ENTRY(subst) entry_ref;
} subst_t;
static RB_HEAD(collsyms, collsym) collsyms;
static RB_HEAD(collundefs, collundef) collundefs;
static RB_HEAD(elem_by_symbol, collelem) elem_by_symbol;
static RB_HEAD(elem_by_expand, collelem) elem_by_expand;
static RB_HEAD(collchars, collchar) collchars;
static RB_HEAD(substs, subst) substs[COLL_WEIGHTS_MAX];
static RB_HEAD(substs_ref, subst) substs_ref[COLL_WEIGHTS_MAX];
static RB_HEAD(weights, weight) weights[COLL_WEIGHTS_MAX];
static int32_t nweight[COLL_WEIGHTS_MAX];
/*
* This is state tracking for the ellipsis token. Note that we start
* the initial values so that the ellipsis logic will think we got a
* magic starting value of NUL. It starts at minus one because the
* starting point is exclusive -- i.e. the starting point is not
* itself handled by the ellipsis code.
*/
static int currorder = EOF;
static int lastorder = EOF;
static collelem_t *currelem;
static collchar_t *currchar;
static collundef_t *currundef;
static wchar_t ellipsis_start = 0;
static int32_t ellipsis_weights[COLL_WEIGHTS_MAX];
/*
* We keep a running tally of weights.
*/
static int nextpri = 1;
static int nextsubst[COLL_WEIGHTS_MAX] = { 0 };
/*
* This array collects up the weights for each level.
*/
static int32_t order_weights[COLL_WEIGHTS_MAX];
static int curr_weight = 0;
static int32_t subst_weights[COLLATE_STR_LEN];
static int curr_subst = 0;
/*
* Some initial priority values.
*/
static int32_t pri_undefined[COLL_WEIGHTS_MAX];
static int32_t pri_ignore;
static collate_info_t collinfo;
static int32_t subst_count[COLL_WEIGHTS_MAX];
static int32_t chain_count;
static int32_t large_count;
static collpri_t *prilist = NULL;
static int numpri = 0;
static int maxpri = 0;
static void start_order(int);
static int32_t
new_pri(void)
{
int i;
if (numpri >= maxpri) {
maxpri = maxpri ? maxpri * 2 : 1024;
prilist = realloc(prilist, sizeof (collpri_t) * maxpri);
if (prilist == NULL) {
fprintf(stderr,"out of memory");
return (-1);
}
for (i = numpri; i < maxpri; i++) {
prilist[i].res = UNKNOWN;
prilist[i].pri = 0;
prilist[i].pass = 0;
}
}
return (numpri++);
}
static collpri_t *
get_pri(int32_t ref)
{
if ((ref < 0) || (ref > numpri)) {
INTERR;
return (NULL);
}
return (&prilist[ref]);
}
static void
set_pri(int32_t ref, int32_t v, res_t res)
{
collpri_t *pri;
pri = get_pri(ref);
if ((res == REFER) && ((v < 0) || (v >= numpri))) {
INTERR;
}
/* Resolve self references */
if ((res == REFER) && (ref == v)) {
v = nextpri;
res = RESOLVED;
}
if (pri->res != UNKNOWN) {
warn("repeated item in order list (first on %d)",
pri->lineno);
return;
}
pri->lineno = lineno;
pri->pri = v;
pri->res = res;
}
static int32_t
resolve_pri(int32_t ref)
{
collpri_t *pri;
static int32_t pass = 0;
pri = get_pri(ref);
pass++;
while (pri->res == REFER) {
if (pri->pass == pass) {
/* report a line with the circular symbol */
lineno = pri->lineno;
fprintf(stderr,"circular reference in order list");
return (-1);
}
if ((pri->pri < 0) || (pri->pri >= numpri)) {
INTERR;
return (-1);
}
pri->pass = pass;
pri = &prilist[pri->pri];
}
if (pri->res == UNKNOWN) {
return (-1);
}
if (pri->res != RESOLVED)
INTERR;
return (pri->pri);
}
static int
weight_compare(const void *n1, const void *n2)
{
int32_t k1 = ((const weight_t *)n1)->pri;
int32_t k2 = ((const weight_t *)n2)->pri;
return (k1 < k2 ? -1 : k1 > k2 ? 1 : 0);
}
RB_GENERATE_STATIC(weights, weight, entry, weight_compare);
static int
collsym_compare(const void *n1, const void *n2)
{
const collsym_t *c1 = n1;
const collsym_t *c2 = n2;
int rv;
rv = strcmp(c1->name, c2->name);
return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
}
RB_GENERATE_STATIC(collsyms, collsym, entry, collsym_compare);
static int
collundef_compare(const void *n1, const void *n2)
{
const collundef_t *c1 = n1;
const collundef_t *c2 = n2;
int rv;
rv = strcmp(c1->name, c2->name);
return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
}
RB_GENERATE_STATIC(collundefs, collundef, entry, collundef_compare);
static int
element_compare_symbol(const void *n1, const void *n2)
{
const collelem_t *c1 = n1;
const collelem_t *c2 = n2;
int rv;
rv = strcmp(c1->symbol, c2->symbol);
return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
}
RB_GENERATE_STATIC(elem_by_symbol, collelem, rb_bysymbol, element_compare_symbol);
static int
element_compare_expand(const void *n1, const void *n2)
{
const collelem_t *c1 = n1;
const collelem_t *c2 = n2;
int rv;
rv = wcscmp(c1->expand, c2->expand);
return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
}
RB_GENERATE_STATIC(elem_by_expand, collelem, rb_byexpand, element_compare_expand);
static int
collchar_compare(const void *n1, const void *n2)
{
wchar_t k1 = ((const collchar_t *)n1)->wc;
wchar_t k2 = ((const collchar_t *)n2)->wc;
return (k1 < k2 ? -1 : k1 > k2 ? 1 : 0);
}
RB_GENERATE_STATIC(collchars, collchar, entry, collchar_compare);
static int
subst_compare(const void *n1, const void *n2)
{
int32_t k1 = ((const subst_t *)n1)->key;
int32_t k2 = ((const subst_t *)n2)->key;
return (k1 < k2 ? -1 : k1 > k2 ? 1 : 0);
}
RB_GENERATE_STATIC(substs, subst, entry, subst_compare);
static int
subst_compare_ref(const void *n1, const void *n2)
{
const wchar_t *c1 = ((const subst_t *)n1)->ref;
const wchar_t *c2 = ((const subst_t *)n2)->ref;
int rv;
rv = wcscmp(c1, c2);
return ((rv < 0) ? -1 : (rv > 0) ? 1 : 0);
}
RB_GENERATE_STATIC(substs_ref, subst, entry_ref, subst_compare_ref);
void
init_collate(void)
{
int i;
RB_INIT(&collsyms);
RB_INIT(&collundefs);
RB_INIT(&elem_by_symbol);
RB_INIT(&elem_by_expand);
RB_INIT(&collchars);
for (i = 0; i < COLL_WEIGHTS_MAX; i++) {
RB_INIT(&substs[i]);
RB_INIT(&substs_ref[i]);
RB_INIT(&weights[i]);
nweight[i] = 1;
}
(void) memset(&collinfo, 0, sizeof (collinfo));
/* allocate some initial priorities */
pri_ignore = new_pri();
set_pri(pri_ignore, 0, RESOLVED);
for (i = 0; i < COLL_WEIGHTS_MAX; i++) {
pri_undefined[i] = new_pri();
/* we will override this later */
set_pri(pri_undefined[i], COLLATE_MAX_PRIORITY, UNKNOWN);
}
}
void
define_collsym(char *name)
{
collsym_t *sym;
if ((sym = calloc(1, sizeof(*sym))) == NULL) {
fprintf(stderr,"out of memory");
return;
}
sym->name = name;
sym->ref = new_pri();
if (RB_FIND(collsyms, &collsyms, sym) != NULL) {
/*
* This should never happen because we are only called
* for undefined symbols.
*/
free(sym);
INTERR;
return;
}
RB_INSERT(collsyms, &collsyms, sym);
}
collsym_t *
lookup_collsym(char *name)
{
collsym_t srch;
srch.name = name;
return (RB_FIND(collsyms, &collsyms, &srch));
}
collelem_t *
lookup_collelem(char *symbol)
{
collelem_t srch;
srch.symbol = symbol;
return (RB_FIND(elem_by_symbol, &elem_by_symbol, &srch));
}
static collundef_t *
get_collundef(char *name)
{
collundef_t srch;
collundef_t *ud;
int i;
srch.name = name;
if ((ud = RB_FIND(collundefs, &collundefs, &srch)) == NULL) {
if (((ud = calloc(1, sizeof(*ud))) == NULL) ||
((ud->name = strdup(name)) == NULL)) {
fprintf(stderr,"out of memory");
free(ud);
return (NULL);
}
for (i = 0; i < NUM_WT; i++) {
ud->ref[i] = new_pri();
}
RB_INSERT(collundefs, &collundefs, ud);
}
add_charmap_undefined(name);
return (ud);
}
static collchar_t *
get_collchar(wchar_t wc, int create)
{
collchar_t srch;
collchar_t *cc;
int i;
srch.wc = wc;
cc = RB_FIND(collchars, &collchars, &srch);
if ((cc == NULL) && create) {
if ((cc = calloc(1, sizeof(*cc))) == NULL) {
fprintf(stderr, "out of memory");
return (NULL);
}
for (i = 0; i < NUM_WT; i++) {
cc->ref[i] = new_pri();
}
cc->wc = wc;
RB_INSERT(collchars, &collchars, cc);
}
return (cc);
}
void
end_order_collsym(collsym_t *sym)
{
start_order(T_COLLSYM);
/* update the weight */
set_pri(sym->ref, nextpri, RESOLVED);
nextpri++;
}
void
end_order(void)
{
int i;
int32_t pri;
int32_t ref;
collpri_t *p;
/* advance the priority/weight */
pri = nextpri;
switch (currorder) {
case T_CHAR:
for (i = 0; i < NUM_WT; i++) {
if (((ref = order_weights[i]) < 0) ||
((p = get_pri(ref)) == NULL) ||
(p->pri == -1)) {
/* unspecified weight is a self reference */
set_pri(currchar->ref[i], pri, RESOLVED);
} else {
set_pri(currchar->ref[i], ref, REFER);
}
order_weights[i] = -1;
}
/* leave a cookie trail in case next symbol is ellipsis */
ellipsis_start = currchar->wc + 1;
currchar = NULL;
break;
case T_ELLIPSIS:
/* save off the weights were we can find them */
for (i = 0; i < NUM_WT; i++) {
ellipsis_weights[i] = order_weights[i];
order_weights[i] = -1;
}
break;
case T_COLLELEM:
if (currelem == NULL) {
INTERR;
} else {
for (i = 0; i < NUM_WT; i++) {
if (((ref = order_weights[i]) < 0) ||
((p = get_pri(ref)) == NULL) ||
(p->pri == -1)) {
set_pri(currelem->ref[i], pri,
RESOLVED);
} else {
set_pri(currelem->ref[i], ref, REFER);
}
order_weights[i] = -1;
}
}
break;
case T_UNDEFINED:
for (i = 0; i < NUM_WT; i++) {
if (((ref = order_weights[i]) < 0) ||
((p = get_pri(ref)) == NULL) ||
(p->pri == -1)) {
set_pri(pri_undefined[i], -1, RESOLVED);
} else {
set_pri(pri_undefined[i], ref, REFER);
}
order_weights[i] = -1;
}
break;
case T_SYMBOL:
for (i = 0; i < NUM_WT; i++) {
if (((ref = order_weights[i]) < 0) ||
((p = get_pri(ref)) == NULL) ||
(p->pri == -1)) {
set_pri(currundef->ref[i], pri, RESOLVED);
} else {
set_pri(currundef->ref[i], ref, REFER);
}
order_weights[i] = -1;
}
break;
default:
INTERR;
}
nextpri++;
}
static void
start_order(int type)
{
int i;
lastorder = currorder;
currorder = type;
/* this is used to protect ELLIPSIS processing */
if ((lastorder == T_ELLIPSIS) && (type != T_CHAR)) {
fprintf(stderr, "character value expected");
}
for (i = 0; i < COLL_WEIGHTS_MAX; i++) {
order_weights[i] = -1;
}
curr_weight = 0;
}
void
start_order_undefined(void)
{
start_order(T_UNDEFINED);
}
void
start_order_symbol(char *name)
{
currundef = get_collundef(name);
start_order(T_SYMBOL);
}
void
start_order_char(wchar_t wc)
{
collchar_t *cc;
int32_t ref;
start_order(T_CHAR);
/*
* If we last saw an ellipsis, then we need to close the range.
* Handle that here. Note that we have to be careful because the
* items *inside* the range are treated exclusiveley to the items
* outside of the range. The ends of the range can have quite
* different weights than the range members.
*/
if (lastorder == T_ELLIPSIS) {
int i;
if (wc < ellipsis_start) {
fprintf(stderr, "malformed range!");
return;
}
while (ellipsis_start < wc) {
/*
* pick all of the saved weights for the
* ellipsis. note that -1 encodes for the
* ellipsis itself, which means to take the
* current relative priority.
*/
if ((cc = get_collchar(ellipsis_start, 1)) == NULL) {
INTERR;
return;
}
for (i = 0; i < NUM_WT; i++) {
collpri_t *p;
if (((ref = ellipsis_weights[i]) == -1) ||
((p = get_pri(ref)) == NULL) ||
(p->pri == -1)) {
set_pri(cc->ref[i], nextpri, RESOLVED);
} else {
set_pri(cc->ref[i], ref, REFER);
}
ellipsis_weights[i] = 0;
}
ellipsis_start++;
nextpri++;
}
}
currchar = get_collchar(wc, 1);
}
void
start_order_collelem(collelem_t *e)
{
start_order(T_COLLELEM);
currelem = e;
}
void
start_order_ellipsis(void)
{
int i;
start_order(T_ELLIPSIS);
if (lastorder != T_CHAR) {
fprintf(stderr, "illegal starting point for range");
return;
}
for (i = 0; i < NUM_WT; i++) {
ellipsis_weights[i] = order_weights[i];
}
}
void
define_collelem(char *name, wchar_t *wcs)
{
collelem_t *e;
int i;
if (wcslen(wcs) >= COLLATE_STR_LEN) {
fprintf(stderr,"expanded collation element too long");
return;
}
if ((e = calloc(1, sizeof(*e))) == NULL) {
fprintf(stderr, "out of memory");
return;
}
e->expand = wcs;
e->symbol = name;
/*
* This is executed before the order statement, so we don't
* know how many priorities we *really* need. We allocate one
* for each possible weight. Not a big deal, as collating-elements
* prove to be quite rare.
*/
for (i = 0; i < COLL_WEIGHTS_MAX; i++) {
e->ref[i] = new_pri();
}
/* A character sequence can only reduce to one element. */
if ((RB_FIND(elem_by_symbol, &elem_by_symbol, e) != NULL) ||
(RB_FIND(elem_by_expand, &elem_by_expand, e) != NULL)) {
fprintf(stderr, "duplicate collating element definition");
free(e);
return;
}
RB_INSERT(elem_by_symbol, &elem_by_symbol, e);
RB_INSERT(elem_by_expand, &elem_by_expand, e);
}
void
add_order_bit(int kw)
{
uint8_t bit = DIRECTIVE_UNDEF;
switch (kw) {
case T_FORWARD:
bit = DIRECTIVE_FORWARD;
break;
case T_BACKWARD:
bit = DIRECTIVE_BACKWARD;
break;
case T_POSITION:
bit = DIRECTIVE_POSITION;
break;
default:
INTERR;
break;
}
collinfo.directive[collinfo.directive_count] |= bit;
}
void
add_order_directive(void)
{
if (collinfo.directive_count >= COLL_WEIGHTS_MAX) {
fprintf(stderr, "too many directives (max %d)\n", COLL_WEIGHTS_MAX);
return;
}
collinfo.directive_count++;
}
static void
add_order_pri(int32_t ref)
{
if (curr_weight >= NUM_WT) {
fprintf(stderr, "too many weights (max %d)\n", NUM_WT);
return;
}
order_weights[curr_weight] = ref;
curr_weight++;
}
void
add_order_collsym(collsym_t *s)
{
add_order_pri(s->ref);
}
void
add_order_char(wchar_t wc)
{
collchar_t *cc;
if ((cc = get_collchar(wc, 1)) == NULL) {
INTERR;
return;
}
add_order_pri(cc->ref[curr_weight]);
}
void
add_order_collelem(collelem_t *e)
{
add_order_pri(e->ref[curr_weight]);
}
void
add_order_ignore(void)
{
add_order_pri(pri_ignore);
}
void
add_order_symbol(char *sym)
{
collundef_t *c;
if ((c = get_collundef(sym)) == NULL) {
INTERR;
return;
}
add_order_pri(c->ref[curr_weight]);
}
void
add_order_ellipsis(void)
{
/* special NULL value indicates self reference */
add_order_pri(0);
}
void
add_order_subst(void)
{
subst_t srch;
subst_t *s;
int i;
(void) memset(&srch, 0, sizeof (srch));
for (i = 0; i < curr_subst; i++) {
srch.ref[i] = subst_weights[i];
subst_weights[i] = 0;
}
s = RB_FIND(substs_ref, &substs_ref[curr_weight], &srch);
if (s == NULL) {
if ((s = calloc(1, sizeof(*s))) == NULL) {
fprintf(stderr,"out of memory");
return;
}
s->key = new_pri();
/*
* We use a self reference for our key, but we set a
* high bit to indicate that this is a substitution
* reference. This will expedite table lookups later,
* and prevent table lookups for situations that don't
* require it. (In short, its a big win, because we
* can skip a lot of binary searching.)
*/
set_pri(s->key,
(nextsubst[curr_weight] | COLLATE_SUBST_PRIORITY),
RESOLVED);
nextsubst[curr_weight] += 1;
for (i = 0; i < curr_subst; i++) {
s->ref[i] = srch.ref[i];
}
RB_INSERT(substs_ref, &substs_ref[curr_weight], s);
if (RB_FIND(substs, &substs[curr_weight], s) != NULL) {
INTERR;
return;
}
RB_INSERT(substs, &substs[curr_weight], s);
}
curr_subst = 0;
/*
* We are using the current (unique) priority as a search key
* in the substitution table.
*/
add_order_pri(s->key);
}
static void
add_subst_pri(int32_t ref)
{
if (curr_subst >= COLLATE_STR_LEN) {
fprintf(stderr,"substitution string is too long");
return;
}
subst_weights[curr_subst] = ref;
curr_subst++;
}
void
add_subst_char(wchar_t wc)
{
collchar_t *cc;
if (((cc = get_collchar(wc, 1)) == NULL) ||
(cc->wc != wc)) {
INTERR;
return;
}
/* we take the weight for the character at that position */
add_subst_pri(cc->ref[curr_weight]);
}
void
add_subst_collelem(collelem_t *e)
{
add_subst_pri(e->ref[curr_weight]);
}
void
add_subst_collsym(collsym_t *s)
{
add_subst_pri(s->ref);
}
void
add_subst_symbol(char *ptr)
{
collundef_t *cu;
if ((cu = get_collundef(ptr)) != NULL) {
add_subst_pri(cu->ref[curr_weight]);
}
}
void
add_weight(int32_t ref, int pass)
{
weight_t srch;
weight_t *w;
srch.pri = resolve_pri(ref);
/* No translation of ignores */
if (srch.pri == 0)
return;
/* Substitution priorities are not weights */
if (srch.pri & COLLATE_SUBST_PRIORITY)
return;
if (RB_FIND(weights, &weights[pass], &srch) != NULL)
return;
if ((w = calloc(1, sizeof(*w))) == NULL) {
fprintf(stderr, "out of memory");
return;
}
w->pri = srch.pri;
RB_INSERT(weights, &weights[pass], w);
}
void
add_weights(int32_t *refs)
{
int i;
for (i = 0; i < NUM_WT; i++) {
add_weight(refs[i], i);
}
}
int32_t
get_weight(int32_t ref, int pass)
{
weight_t srch;
weight_t *w;
int32_t pri;
pri = resolve_pri(ref);
if (pri & COLLATE_SUBST_PRIORITY) {
return (pri);
}
if (pri <= 0) {
return (pri);
}
srch.pri = pri;
if ((w = RB_FIND(weights, &weights[pass], &srch)) == NULL) {
INTERR;
return (-1);
}
return (w->opt);
}
wchar_t *
wsncpy(wchar_t *s1, const wchar_t *s2, size_t n)
{
wchar_t *os1 = s1;
n++;
while (--n > 0 && (*s1++ = htote(*s2++)) != 0)
continue;
if (n > 0)
while (--n > 0)
*s1++ = 0;
return (os1);
}
#define RB_COUNT(x, name, head, cnt) do { \
(cnt) = 0; \
RB_FOREACH(x, name, (head)) { \
(cnt)++; \
} \
} while (0)
#define RB_NUMNODES(type, name, head, cnt) do { \
type *t; \
cnt = 0; \
RB_FOREACH(t, name, head) { \
cnt++; \
} \
} while (0)
void
dump_collate(void)
{
FILE *f;
int i, j, n;
size_t sz;
int32_t pri;
collelem_t *ce;
collchar_t *cc;
subst_t *sb;
char vers[COLLATE_STR_LEN];
collate_char_t chars[UCHAR_MAX + 1];
collate_large_t *large;
collate_subst_t *subst[COLL_WEIGHTS_MAX];
collate_chain_t *chain;
/*
* We have to run through a preliminary pass to identify all the
* weights that we use for each sorting level.
*/
for (i = 0; i < NUM_WT; i++) {
add_weight(pri_ignore, i);
}
for (i = 0; i < NUM_WT; i++) {
RB_FOREACH(sb, substs, &substs[i]) {
for (j = 0; sb->ref[j]; j++) {
add_weight(sb->ref[j], i);
}
}
}
RB_FOREACH(ce, elem_by_expand, &elem_by_expand) {
add_weights(ce->ref);
}
RB_FOREACH(cc, collchars, &collchars) {
add_weights(cc->ref);
}
/*
* Now we walk the entire set of weights, removing the gaps
* in the weights. This gives us optimum usage. The walk
* occurs in priority.
*/
for (i = 0; i < NUM_WT; i++) {
weight_t *w;
RB_FOREACH(w, weights, &weights[i]) {
w->opt = nweight[i];
nweight[i] += 1;
}
}
(void) memset(&chars, 0, sizeof (chars));
(void) memset(vers, 0, COLLATE_STR_LEN);
(void) strlcpy(vers, COLLATE_VERSION, sizeof (vers));
/*
* We need to make sure we arrange for the UNDEFINED field
* to show up. Also, set the total weight counts.
*/
for (i = 0; i < NUM_WT; i++) {
if (resolve_pri(pri_undefined[i]) == -1) {
set_pri(pri_undefined[i], -1, RESOLVED);
/* they collate at the end of everything else */
collinfo.undef_pri[i] = htote(COLLATE_MAX_PRIORITY);
}
collinfo.pri_count[i] = htote(nweight[i]);
}
collinfo.pri_count[NUM_WT] = htote(max_wide());
collinfo.undef_pri[NUM_WT] = htote(COLLATE_MAX_PRIORITY);
collinfo.directive[NUM_WT] = DIRECTIVE_UNDEFINED;
/*
* Ordinary character priorities
*/
for (i = 0; i <= UCHAR_MAX; i++) {
if ((cc = get_collchar(i, 0)) != NULL) {
for (j = 0; j < NUM_WT; j++) {
chars[i].pri[j] =
htote(get_weight(cc->ref[j], j));
}
} else {
for (j = 0; j < NUM_WT; j++) {
chars[i].pri[j] =
htote(get_weight(pri_undefined[j], j));
}
/*
* Per POSIX, for undefined characters, we
* also have to add a last item, which is the
* character code.
*/
chars[i].pri[NUM_WT] = htote(i);
}
}
/*
* Substitution tables
*/
for (i = 0; i < NUM_WT; i++) {
collate_subst_t *st = NULL;
subst_t *temp;
RB_COUNT(temp, substs, &substs[i], n);
subst_count[i] = n;
if ((st = calloc(n, sizeof(collate_subst_t))) == NULL) {
fprintf(stderr, "out of memory");
return;
}
n = 0;
RB_FOREACH(sb, substs, &substs[i]) {
if ((st[n].key = resolve_pri(sb->key)) < 0) {
/* by definition these resolve! */
INTERR;
}
if (st[n].key != (n | COLLATE_SUBST_PRIORITY)) {
INTERR;
}
st[n].key = htote(st[n].key);
for (j = 0; sb->ref[j]; j++) {
st[n].pri[j] = htote(get_weight(sb->ref[j],
i));
}
n++;
}
if (n != subst_count[i])
INTERR;
subst[i] = st;
}
/*
* Chains, i.e. collating elements
*/
RB_NUMNODES(collelem_t, elem_by_expand, &elem_by_expand, chain_count);
chain = calloc(chain_count, sizeof(collate_chain_t));
if (chain == NULL) {
fprintf(stderr, "out of memory");
return;
}
n = 0;
RB_FOREACH(ce, elem_by_expand, &elem_by_expand) {
(void) wsncpy(chain[n].str, ce->expand, COLLATE_STR_LEN);
for (i = 0; i < NUM_WT; i++) {
chain[n].pri[i] = htote(get_weight(ce->ref[i], i));
}
n++;
}
if (n != chain_count)
INTERR;
/*
* Large (> UCHAR_MAX) character priorities
*/
RB_NUMNODES(collchar_t, collchars, &collchars, n);
large = calloc(n, sizeof(collate_large_t));
if (large == NULL) {
fprintf(stderr, "out of memory");
return;
}
i = 0;
RB_FOREACH(cc, collchars, &collchars) {
int undef = 0;
/* we already gathered those */
if (cc->wc <= UCHAR_MAX)
continue;
for (j = 0; j < NUM_WT; j++) {
if ((pri = get_weight(cc->ref[j], j)) < 0) {
undef = 1;
}
if (undef && (pri >= 0)) {
/* if undefined, then all priorities are */
INTERR;
} else {
large[i].pri.pri[j] = htote(pri);
}
}
if (!undef) {
large[i].val = htote(cc->wc);
large_count = i++;
}
}
if ((f = open_category()) == NULL) {
return;
}
/* Time to write the entire data set out */
for (i = 0; i < NUM_WT; i++)
collinfo.subst_count[i] = htote(subst_count[i]);
collinfo.chain_count = htote(chain_count);
collinfo.large_count = htote(large_count);
if ((wr_category(vers, COLLATE_STR_LEN, f) < 0) ||
(wr_category(&collinfo, sizeof (collinfo), f) < 0) ||
(wr_category(&chars, sizeof (chars), f) < 0)) {
return;
}
for (i = 0; i < NUM_WT; i++) {
sz = sizeof (collate_subst_t) * subst_count[i];
if (wr_category(subst[i], sz, f) < 0) {
return;
}
}
sz = sizeof (collate_chain_t) * chain_count;
if (wr_category(chain, sz, f) < 0) {
return;
}
sz = sizeof (collate_large_t) * large_count;
if (wr_category(large, sz, f) < 0) {
return;
}
close_category(f);
}