54091abe67
igb now has a queue notion that has a single interrupt with an RX/TX pair, this will reduce the total interrupts seen on a system. Both em and igb have a new watchdog method. igb has fixes from Pyun Yong-Hyeon that have improved stability, thank you :) I wish to MFC this for 7.3 asap, please test if able.
1328 lines
38 KiB
C
1328 lines
38 KiB
C
/******************************************************************************
|
|
|
|
Copyright (c) 2001-2010, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
******************************************************************************/
|
|
/*$FreeBSD$*/
|
|
|
|
/*
|
|
* 82541EI Gigabit Ethernet Controller
|
|
* 82541ER Gigabit Ethernet Controller
|
|
* 82541GI Gigabit Ethernet Controller
|
|
* 82541PI Gigabit Ethernet Controller
|
|
* 82547EI Gigabit Ethernet Controller
|
|
* 82547GI Gigabit Ethernet Controller
|
|
*/
|
|
|
|
#include "e1000_api.h"
|
|
|
|
static s32 e1000_init_phy_params_82541(struct e1000_hw *hw);
|
|
static s32 e1000_init_nvm_params_82541(struct e1000_hw *hw);
|
|
static s32 e1000_init_mac_params_82541(struct e1000_hw *hw);
|
|
static s32 e1000_reset_hw_82541(struct e1000_hw *hw);
|
|
static s32 e1000_init_hw_82541(struct e1000_hw *hw);
|
|
static s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
|
|
u16 *duplex);
|
|
static s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw);
|
|
static s32 e1000_setup_copper_link_82541(struct e1000_hw *hw);
|
|
static s32 e1000_check_for_link_82541(struct e1000_hw *hw);
|
|
static s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw);
|
|
static s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw,
|
|
bool active);
|
|
static s32 e1000_setup_led_82541(struct e1000_hw *hw);
|
|
static s32 e1000_cleanup_led_82541(struct e1000_hw *hw);
|
|
static void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw);
|
|
static s32 e1000_read_mac_addr_82541(struct e1000_hw *hw);
|
|
static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
|
|
bool link_up);
|
|
static s32 e1000_phy_init_script_82541(struct e1000_hw *hw);
|
|
static void e1000_power_down_phy_copper_82541(struct e1000_hw *hw);
|
|
|
|
static const u16 e1000_igp_cable_length_table[] =
|
|
{ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
|
|
5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
|
|
25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
|
|
40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
|
|
60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
|
|
90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
|
|
100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
|
|
110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
|
|
#define IGP01E1000_AGC_LENGTH_TABLE_SIZE \
|
|
(sizeof(e1000_igp_cable_length_table) / \
|
|
sizeof(e1000_igp_cable_length_table[0]))
|
|
|
|
/**
|
|
* e1000_init_phy_params_82541 - Init PHY func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
static s32 e1000_init_phy_params_82541(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
|
|
DEBUGFUNC("e1000_init_phy_params_82541");
|
|
|
|
phy->addr = 1;
|
|
phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
|
phy->reset_delay_us = 10000;
|
|
phy->type = e1000_phy_igp;
|
|
|
|
/* Function Pointers */
|
|
phy->ops.check_polarity = e1000_check_polarity_igp;
|
|
phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
|
|
phy->ops.get_cable_length = e1000_get_cable_length_igp_82541;
|
|
phy->ops.get_cfg_done = e1000_get_cfg_done_generic;
|
|
phy->ops.get_info = e1000_get_phy_info_igp;
|
|
phy->ops.read_reg = e1000_read_phy_reg_igp;
|
|
phy->ops.reset = e1000_phy_hw_reset_82541;
|
|
phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82541;
|
|
phy->ops.write_reg = e1000_write_phy_reg_igp;
|
|
phy->ops.power_up = e1000_power_up_phy_copper;
|
|
phy->ops.power_down = e1000_power_down_phy_copper_82541;
|
|
|
|
ret_val = e1000_get_phy_id(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Verify phy id */
|
|
if (phy->id != IGP01E1000_I_PHY_ID) {
|
|
ret_val = -E1000_ERR_PHY;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_nvm_params_82541 - Init NVM func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
static s32 e1000_init_nvm_params_82541(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_nvm_info *nvm = &hw->nvm;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u32 eecd = E1000_READ_REG(hw, E1000_EECD);
|
|
u16 size;
|
|
|
|
DEBUGFUNC("e1000_init_nvm_params_82541");
|
|
|
|
switch (nvm->override) {
|
|
case e1000_nvm_override_spi_large:
|
|
nvm->type = e1000_nvm_eeprom_spi;
|
|
eecd |= E1000_EECD_ADDR_BITS;
|
|
break;
|
|
case e1000_nvm_override_spi_small:
|
|
nvm->type = e1000_nvm_eeprom_spi;
|
|
eecd &= ~E1000_EECD_ADDR_BITS;
|
|
break;
|
|
case e1000_nvm_override_microwire_large:
|
|
nvm->type = e1000_nvm_eeprom_microwire;
|
|
eecd |= E1000_EECD_SIZE;
|
|
break;
|
|
case e1000_nvm_override_microwire_small:
|
|
nvm->type = e1000_nvm_eeprom_microwire;
|
|
eecd &= ~E1000_EECD_SIZE;
|
|
break;
|
|
default:
|
|
nvm->type = eecd & E1000_EECD_TYPE
|
|
? e1000_nvm_eeprom_spi
|
|
: e1000_nvm_eeprom_microwire;
|
|
break;
|
|
}
|
|
|
|
if (nvm->type == e1000_nvm_eeprom_spi) {
|
|
nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS)
|
|
? 16 : 8;
|
|
nvm->delay_usec = 1;
|
|
nvm->opcode_bits = 8;
|
|
nvm->page_size = (eecd & E1000_EECD_ADDR_BITS)
|
|
? 32 : 8;
|
|
|
|
/* Function Pointers */
|
|
nvm->ops.acquire = e1000_acquire_nvm_generic;
|
|
nvm->ops.read = e1000_read_nvm_spi;
|
|
nvm->ops.release = e1000_release_nvm_generic;
|
|
nvm->ops.update = e1000_update_nvm_checksum_generic;
|
|
nvm->ops.valid_led_default = e1000_valid_led_default_generic;
|
|
nvm->ops.validate = e1000_validate_nvm_checksum_generic;
|
|
nvm->ops.write = e1000_write_nvm_spi;
|
|
|
|
/*
|
|
* nvm->word_size must be discovered after the pointers
|
|
* are set so we can verify the size from the nvm image
|
|
* itself. Temporarily set it to a dummy value so the
|
|
* read will work.
|
|
*/
|
|
nvm->word_size = 64;
|
|
ret_val = nvm->ops.read(hw, NVM_CFG, 1, &size);
|
|
if (ret_val)
|
|
goto out;
|
|
size = (size & NVM_SIZE_MASK) >> NVM_SIZE_SHIFT;
|
|
/*
|
|
* if size != 0, it can be added to a constant and become
|
|
* the left-shift value to set the word_size. Otherwise,
|
|
* word_size stays at 64.
|
|
*/
|
|
if (size) {
|
|
size += NVM_WORD_SIZE_BASE_SHIFT_82541;
|
|
nvm->word_size = 1 << size;
|
|
}
|
|
} else {
|
|
nvm->address_bits = (eecd & E1000_EECD_ADDR_BITS)
|
|
? 8 : 6;
|
|
nvm->delay_usec = 50;
|
|
nvm->opcode_bits = 3;
|
|
nvm->word_size = (eecd & E1000_EECD_ADDR_BITS)
|
|
? 256 : 64;
|
|
|
|
/* Function Pointers */
|
|
nvm->ops.acquire = e1000_acquire_nvm_generic;
|
|
nvm->ops.read = e1000_read_nvm_microwire;
|
|
nvm->ops.release = e1000_release_nvm_generic;
|
|
nvm->ops.update = e1000_update_nvm_checksum_generic;
|
|
nvm->ops.valid_led_default = e1000_valid_led_default_generic;
|
|
nvm->ops.validate = e1000_validate_nvm_checksum_generic;
|
|
nvm->ops.write = e1000_write_nvm_microwire;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_mac_params_82541 - Init MAC func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
static s32 e1000_init_mac_params_82541(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
|
|
DEBUGFUNC("e1000_init_mac_params_82541");
|
|
|
|
/* Set media type */
|
|
hw->phy.media_type = e1000_media_type_copper;
|
|
/* Set mta register count */
|
|
mac->mta_reg_count = 128;
|
|
/* Set rar entry count */
|
|
mac->rar_entry_count = E1000_RAR_ENTRIES;
|
|
/* Set if part includes ASF firmware */
|
|
mac->asf_firmware_present = TRUE;
|
|
|
|
/* Function Pointers */
|
|
|
|
/* bus type/speed/width */
|
|
mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
|
|
/* function id */
|
|
mac->ops.set_lan_id = e1000_set_lan_id_single_port;
|
|
/* reset */
|
|
mac->ops.reset_hw = e1000_reset_hw_82541;
|
|
/* hw initialization */
|
|
mac->ops.init_hw = e1000_init_hw_82541;
|
|
/* link setup */
|
|
mac->ops.setup_link = e1000_setup_link_generic;
|
|
/* physical interface link setup */
|
|
mac->ops.setup_physical_interface = e1000_setup_copper_link_82541;
|
|
/* check for link */
|
|
mac->ops.check_for_link = e1000_check_for_link_82541;
|
|
/* link info */
|
|
mac->ops.get_link_up_info = e1000_get_link_up_info_82541;
|
|
/* multicast address update */
|
|
mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
|
|
/* writing VFTA */
|
|
mac->ops.write_vfta = e1000_write_vfta_generic;
|
|
/* clearing VFTA */
|
|
mac->ops.clear_vfta = e1000_clear_vfta_generic;
|
|
/* read mac address */
|
|
mac->ops.read_mac_addr = e1000_read_mac_addr_82541;
|
|
/* ID LED init */
|
|
mac->ops.id_led_init = e1000_id_led_init_generic;
|
|
/* setup LED */
|
|
mac->ops.setup_led = e1000_setup_led_82541;
|
|
/* cleanup LED */
|
|
mac->ops.cleanup_led = e1000_cleanup_led_82541;
|
|
/* turn on/off LED */
|
|
mac->ops.led_on = e1000_led_on_generic;
|
|
mac->ops.led_off = e1000_led_off_generic;
|
|
/* clear hardware counters */
|
|
mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82541;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_function_pointers_82541 - Init func ptrs.
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Called to initialize all function pointers and parameters.
|
|
**/
|
|
void e1000_init_function_pointers_82541(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_init_function_pointers_82541");
|
|
|
|
hw->mac.ops.init_params = e1000_init_mac_params_82541;
|
|
hw->nvm.ops.init_params = e1000_init_nvm_params_82541;
|
|
hw->phy.ops.init_params = e1000_init_phy_params_82541;
|
|
}
|
|
|
|
/**
|
|
* e1000_reset_hw_82541 - Reset hardware
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This resets the hardware into a known state.
|
|
**/
|
|
static s32 e1000_reset_hw_82541(struct e1000_hw *hw)
|
|
{
|
|
u32 ledctl, ctrl, icr, manc;
|
|
|
|
DEBUGFUNC("e1000_reset_hw_82541");
|
|
|
|
DEBUGOUT("Masking off all interrupts\n");
|
|
E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
|
|
|
|
E1000_WRITE_REG(hw, E1000_RCTL, 0);
|
|
E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
/*
|
|
* Delay to allow any outstanding PCI transactions to complete
|
|
* before resetting the device.
|
|
*/
|
|
msec_delay(10);
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
|
|
/* Must reset the Phy before resetting the MAC */
|
|
if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
|
|
E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_PHY_RST));
|
|
msec_delay(5);
|
|
}
|
|
|
|
DEBUGOUT("Issuing a global reset to 82541/82547 MAC\n");
|
|
switch (hw->mac.type) {
|
|
case e1000_82541:
|
|
case e1000_82541_rev_2:
|
|
/*
|
|
* These controllers can't ack the 64-bit write when
|
|
* issuing the reset, so we use IO-mapping as a
|
|
* workaround to issue the reset.
|
|
*/
|
|
E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
|
|
break;
|
|
default:
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
|
|
break;
|
|
}
|
|
|
|
/* Wait for NVM reload */
|
|
msec_delay(20);
|
|
|
|
/* Disable HW ARPs on ASF enabled adapters */
|
|
manc = E1000_READ_REG(hw, E1000_MANC);
|
|
manc &= ~E1000_MANC_ARP_EN;
|
|
E1000_WRITE_REG(hw, E1000_MANC, manc);
|
|
|
|
if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
|
|
e1000_phy_init_script_82541(hw);
|
|
|
|
/* Configure activity LED after Phy reset */
|
|
ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
|
|
ledctl &= IGP_ACTIVITY_LED_MASK;
|
|
ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
|
|
E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
|
|
}
|
|
|
|
/* Once again, mask the interrupts */
|
|
DEBUGOUT("Masking off all interrupts\n");
|
|
E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
|
|
|
|
/* Clear any pending interrupt events. */
|
|
icr = E1000_READ_REG(hw, E1000_ICR);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_hw_82541 - Initialize hardware
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This inits the hardware readying it for operation.
|
|
**/
|
|
static s32 e1000_init_hw_82541(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
|
|
u32 i, txdctl;
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_init_hw_82541");
|
|
|
|
/* Initialize identification LED */
|
|
ret_val = mac->ops.id_led_init(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error initializing identification LED\n");
|
|
/* This is not fatal and we should not stop init due to this */
|
|
}
|
|
|
|
/* Storing the Speed Power Down value for later use */
|
|
ret_val = hw->phy.ops.read_reg(hw,
|
|
IGP01E1000_GMII_FIFO,
|
|
&dev_spec->spd_default);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Disabling VLAN filtering */
|
|
DEBUGOUT("Initializing the IEEE VLAN\n");
|
|
mac->ops.clear_vfta(hw);
|
|
|
|
/* Setup the receive address. */
|
|
e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
|
|
|
|
/* Zero out the Multicast HASH table */
|
|
DEBUGOUT("Zeroing the MTA\n");
|
|
for (i = 0; i < mac->mta_reg_count; i++) {
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
|
|
/*
|
|
* Avoid back to back register writes by adding the register
|
|
* read (flush). This is to protect against some strange
|
|
* bridge configurations that may issue Memory Write Block
|
|
* (MWB) to our register space.
|
|
*/
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/* Setup link and flow control */
|
|
ret_val = mac->ops.setup_link(hw);
|
|
|
|
txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
|
|
txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
|
|
E1000_TXDCTL_FULL_TX_DESC_WB;
|
|
E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
|
|
|
|
/*
|
|
* Clear all of the statistics registers (clear on read). It is
|
|
* important that we do this after we have tried to establish link
|
|
* because the symbol error count will increment wildly if there
|
|
* is no link.
|
|
*/
|
|
e1000_clear_hw_cntrs_82541(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_link_up_info_82541 - Report speed and duplex
|
|
* @hw: pointer to the HW structure
|
|
* @speed: pointer to speed buffer
|
|
* @duplex: pointer to duplex buffer
|
|
*
|
|
* Retrieve the current speed and duplex configuration.
|
|
**/
|
|
static s32 e1000_get_link_up_info_82541(struct e1000_hw *hw, u16 *speed,
|
|
u16 *duplex)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val;
|
|
u16 data;
|
|
|
|
DEBUGFUNC("e1000_get_link_up_info_82541");
|
|
|
|
ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (!phy->speed_downgraded)
|
|
goto out;
|
|
|
|
/*
|
|
* IGP01 PHY may advertise full duplex operation after speed
|
|
* downgrade even if it is operating at half duplex.
|
|
* Here we set the duplex settings to match the duplex in the
|
|
* link partner's capabilities.
|
|
*/
|
|
ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_EXP, &data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (!(data & NWAY_ER_LP_NWAY_CAPS)) {
|
|
*duplex = HALF_DUPLEX;
|
|
} else {
|
|
ret_val = phy->ops.read_reg(hw, PHY_LP_ABILITY, &data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (*speed == SPEED_100) {
|
|
if (!(data & NWAY_LPAR_100TX_FD_CAPS))
|
|
*duplex = HALF_DUPLEX;
|
|
} else if (*speed == SPEED_10) {
|
|
if (!(data & NWAY_LPAR_10T_FD_CAPS))
|
|
*duplex = HALF_DUPLEX;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_phy_hw_reset_82541 - PHY hardware reset
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Verify the reset block is not blocking us from resetting. Acquire
|
|
* semaphore (if necessary) and read/set/write the device control reset
|
|
* bit in the PHY. Wait the appropriate delay time for the device to
|
|
* reset and release the semaphore (if necessary).
|
|
**/
|
|
static s32 e1000_phy_hw_reset_82541(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
u32 ledctl;
|
|
|
|
DEBUGFUNC("e1000_phy_hw_reset_82541");
|
|
|
|
ret_val = e1000_phy_hw_reset_generic(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
e1000_phy_init_script_82541(hw);
|
|
|
|
if ((hw->mac.type == e1000_82541) || (hw->mac.type == e1000_82547)) {
|
|
/* Configure activity LED after PHY reset */
|
|
ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
|
|
ledctl &= IGP_ACTIVITY_LED_MASK;
|
|
ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
|
|
E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_copper_link_82541 - Configure copper link settings
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Calls the appropriate function to configure the link for auto-neg or forced
|
|
* speed and duplex. Then we check for link, once link is established calls
|
|
* to configure collision distance and flow control are called. If link is
|
|
* not established, we return -E1000_ERR_PHY (-2).
|
|
**/
|
|
static s32 e1000_setup_copper_link_82541(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
|
|
s32 ret_val;
|
|
u32 ctrl, ledctl;
|
|
|
|
DEBUGFUNC("e1000_setup_copper_link_82541");
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
ctrl |= E1000_CTRL_SLU;
|
|
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
|
|
|
|
hw->phy.reset_disable = FALSE;
|
|
|
|
/* Earlier revs of the IGP phy require us to force MDI. */
|
|
if (hw->mac.type == e1000_82541 || hw->mac.type == e1000_82547) {
|
|
dev_spec->dsp_config = e1000_dsp_config_disabled;
|
|
phy->mdix = 1;
|
|
} else {
|
|
dev_spec->dsp_config = e1000_dsp_config_enabled;
|
|
}
|
|
|
|
ret_val = e1000_copper_link_setup_igp(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (hw->mac.autoneg) {
|
|
if (dev_spec->ffe_config == e1000_ffe_config_active)
|
|
dev_spec->ffe_config = e1000_ffe_config_enabled;
|
|
}
|
|
|
|
/* Configure activity LED after Phy reset */
|
|
ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
|
|
ledctl &= IGP_ACTIVITY_LED_MASK;
|
|
ledctl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
|
|
E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
|
|
|
|
ret_val = e1000_setup_copper_link_generic(hw);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_check_for_link_82541 - Check/Store link connection
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This checks the link condition of the adapter and stores the
|
|
* results in the hw->mac structure.
|
|
**/
|
|
static s32 e1000_check_for_link_82541(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
s32 ret_val;
|
|
bool link;
|
|
|
|
DEBUGFUNC("e1000_check_for_link_82541");
|
|
|
|
/*
|
|
* We only want to go out to the PHY registers to see if Auto-Neg
|
|
* has completed and/or if our link status has changed. The
|
|
* get_link_status flag is set upon receiving a Link Status
|
|
* Change or Rx Sequence Error interrupt.
|
|
*/
|
|
if (!mac->get_link_status) {
|
|
ret_val = E1000_SUCCESS;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* First we want to see if the MII Status Register reports
|
|
* link. If so, then we want to get the current speed/duplex
|
|
* of the PHY.
|
|
*/
|
|
ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (!link) {
|
|
ret_val = e1000_config_dsp_after_link_change_82541(hw, FALSE);
|
|
goto out; /* No link detected */
|
|
}
|
|
|
|
mac->get_link_status = FALSE;
|
|
|
|
/*
|
|
* Check if there was DownShift, must be checked
|
|
* immediately after link-up
|
|
*/
|
|
e1000_check_downshift_generic(hw);
|
|
|
|
/*
|
|
* If we are forcing speed/duplex, then we simply return since
|
|
* we have already determined whether we have link or not.
|
|
*/
|
|
if (!mac->autoneg) {
|
|
ret_val = -E1000_ERR_CONFIG;
|
|
goto out;
|
|
}
|
|
|
|
ret_val = e1000_config_dsp_after_link_change_82541(hw, TRUE);
|
|
|
|
/*
|
|
* Auto-Neg is enabled. Auto Speed Detection takes care
|
|
* of MAC speed/duplex configuration. So we only need to
|
|
* configure Collision Distance in the MAC.
|
|
*/
|
|
e1000_config_collision_dist_generic(hw);
|
|
|
|
/*
|
|
* Configure Flow Control now that Auto-Neg has completed.
|
|
* First, we need to restore the desired flow control
|
|
* settings because we may have had to re-autoneg with a
|
|
* different link partner.
|
|
*/
|
|
ret_val = e1000_config_fc_after_link_up_generic(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error configuring flow control\n");
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_config_dsp_after_link_change_82541 - Config DSP after link
|
|
* @hw: pointer to the HW structure
|
|
* @link_up: boolean flag for link up status
|
|
*
|
|
* Return E1000_ERR_PHY when failing to read/write the PHY, else E1000_SUCCESS
|
|
* at any other case.
|
|
*
|
|
* 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
|
|
* gigabit link is achieved to improve link quality.
|
|
**/
|
|
static s32 e1000_config_dsp_after_link_change_82541(struct e1000_hw *hw,
|
|
bool link_up)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
|
|
s32 ret_val;
|
|
u32 idle_errs = 0;
|
|
u16 phy_data, phy_saved_data, speed, duplex, i;
|
|
u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
|
|
u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
|
|
{IGP01E1000_PHY_AGC_PARAM_A,
|
|
IGP01E1000_PHY_AGC_PARAM_B,
|
|
IGP01E1000_PHY_AGC_PARAM_C,
|
|
IGP01E1000_PHY_AGC_PARAM_D};
|
|
|
|
DEBUGFUNC("e1000_config_dsp_after_link_change_82541");
|
|
|
|
if (link_up) {
|
|
ret_val = hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error getting link speed and duplex\n");
|
|
goto out;
|
|
}
|
|
|
|
if (speed != SPEED_1000) {
|
|
ret_val = E1000_SUCCESS;
|
|
goto out;
|
|
}
|
|
|
|
ret_val = phy->ops.get_cable_length(hw);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if ((dev_spec->dsp_config == e1000_dsp_config_enabled) &&
|
|
phy->min_cable_length >= 50) {
|
|
|
|
for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
|
|
ret_val = phy->ops.read_reg(hw,
|
|
dsp_reg_array[i],
|
|
&phy_data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
|
|
|
|
ret_val = phy->ops.write_reg(hw,
|
|
dsp_reg_array[i],
|
|
phy_data);
|
|
if (ret_val)
|
|
goto out;
|
|
}
|
|
dev_spec->dsp_config = e1000_dsp_config_activated;
|
|
}
|
|
|
|
if ((dev_spec->ffe_config != e1000_ffe_config_enabled) ||
|
|
(phy->min_cable_length >= 50)) {
|
|
ret_val = E1000_SUCCESS;
|
|
goto out;
|
|
}
|
|
|
|
/* clear previous idle error counts */
|
|
ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
for (i = 0; i < ffe_idle_err_timeout; i++) {
|
|
usec_delay(1000);
|
|
ret_val = phy->ops.read_reg(hw,
|
|
PHY_1000T_STATUS,
|
|
&phy_data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
|
|
if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
|
|
dev_spec->ffe_config = e1000_ffe_config_active;
|
|
|
|
ret_val = phy->ops.write_reg(hw,
|
|
IGP01E1000_PHY_DSP_FFE,
|
|
IGP01E1000_PHY_DSP_FFE_CM_CP);
|
|
if (ret_val)
|
|
goto out;
|
|
break;
|
|
}
|
|
|
|
if (idle_errs)
|
|
ffe_idle_err_timeout =
|
|
FFE_IDLE_ERR_COUNT_TIMEOUT_100;
|
|
}
|
|
} else {
|
|
if (dev_spec->dsp_config == e1000_dsp_config_activated) {
|
|
/*
|
|
* Save off the current value of register 0x2F5B
|
|
* to be restored at the end of the routines.
|
|
*/
|
|
ret_val = phy->ops.read_reg(hw,
|
|
0x2F5B,
|
|
&phy_saved_data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Disable the PHY transmitter */
|
|
ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
msec_delay_irq(20);
|
|
|
|
ret_val = phy->ops.write_reg(hw,
|
|
0x0000,
|
|
IGP01E1000_IEEE_FORCE_GIG);
|
|
if (ret_val)
|
|
goto out;
|
|
for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
|
|
ret_val = phy->ops.read_reg(hw,
|
|
dsp_reg_array[i],
|
|
&phy_data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
|
|
phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
|
|
|
|
ret_val = phy->ops.write_reg(hw,
|
|
dsp_reg_array[i],
|
|
phy_data);
|
|
if (ret_val)
|
|
goto out;
|
|
}
|
|
|
|
ret_val = phy->ops.write_reg(hw,
|
|
0x0000,
|
|
IGP01E1000_IEEE_RESTART_AUTONEG);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
msec_delay_irq(20);
|
|
|
|
/* Now enable the transmitter */
|
|
ret_val = phy->ops.write_reg(hw,
|
|
0x2F5B,
|
|
phy_saved_data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
dev_spec->dsp_config = e1000_dsp_config_enabled;
|
|
}
|
|
|
|
if (dev_spec->ffe_config != e1000_ffe_config_active) {
|
|
ret_val = E1000_SUCCESS;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Save off the current value of register 0x2F5B
|
|
* to be restored at the end of the routines.
|
|
*/
|
|
ret_val = phy->ops.read_reg(hw, 0x2F5B, &phy_saved_data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* Disable the PHY transmitter */
|
|
ret_val = phy->ops.write_reg(hw, 0x2F5B, 0x0003);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
msec_delay_irq(20);
|
|
|
|
ret_val = phy->ops.write_reg(hw,
|
|
0x0000,
|
|
IGP01E1000_IEEE_FORCE_GIG);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = phy->ops.write_reg(hw,
|
|
IGP01E1000_PHY_DSP_FFE,
|
|
IGP01E1000_PHY_DSP_FFE_DEFAULT);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = phy->ops.write_reg(hw,
|
|
0x0000,
|
|
IGP01E1000_IEEE_RESTART_AUTONEG);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
msec_delay_irq(20);
|
|
|
|
/* Now enable the transmitter */
|
|
ret_val = phy->ops.write_reg(hw, 0x2F5B, phy_saved_data);
|
|
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
dev_spec->ffe_config = e1000_ffe_config_enabled;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_cable_length_igp_82541 - Determine cable length for igp PHY
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* The automatic gain control (agc) normalizes the amplitude of the
|
|
* received signal, adjusting for the attenuation produced by the
|
|
* cable. By reading the AGC registers, which represent the
|
|
* combination of coarse and fine gain value, the value can be put
|
|
* into a lookup table to obtain the approximate cable length
|
|
* for each channel.
|
|
**/
|
|
static s32 e1000_get_cable_length_igp_82541(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u16 i, data;
|
|
u16 cur_agc_value, agc_value = 0;
|
|
u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
|
|
u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
|
|
{IGP01E1000_PHY_AGC_A,
|
|
IGP01E1000_PHY_AGC_B,
|
|
IGP01E1000_PHY_AGC_C,
|
|
IGP01E1000_PHY_AGC_D};
|
|
|
|
DEBUGFUNC("e1000_get_cable_length_igp_82541");
|
|
|
|
/* Read the AGC registers for all channels */
|
|
for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
|
|
ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
cur_agc_value = data >> IGP01E1000_AGC_LENGTH_SHIFT;
|
|
|
|
/* Bounds checking */
|
|
if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
|
|
(cur_agc_value == 0)) {
|
|
ret_val = -E1000_ERR_PHY;
|
|
goto out;
|
|
}
|
|
|
|
agc_value += cur_agc_value;
|
|
|
|
if (min_agc_value > cur_agc_value)
|
|
min_agc_value = cur_agc_value;
|
|
}
|
|
|
|
/* Remove the minimal AGC result for length < 50m */
|
|
if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * 50) {
|
|
agc_value -= min_agc_value;
|
|
/* Average the three remaining channels for the length. */
|
|
agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
|
|
} else {
|
|
/* Average the channels for the length. */
|
|
agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
|
|
}
|
|
|
|
phy->min_cable_length = (e1000_igp_cable_length_table[agc_value] >
|
|
IGP01E1000_AGC_RANGE)
|
|
? (e1000_igp_cable_length_table[agc_value] -
|
|
IGP01E1000_AGC_RANGE)
|
|
: 0;
|
|
phy->max_cable_length = e1000_igp_cable_length_table[agc_value] +
|
|
IGP01E1000_AGC_RANGE;
|
|
|
|
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_d3_lplu_state_82541 - Sets low power link up state for D3
|
|
* @hw: pointer to the HW structure
|
|
* @active: boolean used to enable/disable lplu
|
|
*
|
|
* Success returns 0, Failure returns 1
|
|
*
|
|
* The low power link up (lplu) state is set to the power management level D3
|
|
* and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
|
|
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
|
|
* is used during Dx states where the power conservation is most important.
|
|
* During driver activity, SmartSpeed should be enabled so performance is
|
|
* maintained.
|
|
**/
|
|
static s32 e1000_set_d3_lplu_state_82541(struct e1000_hw *hw, bool active)
|
|
{
|
|
struct e1000_phy_info *phy = &hw->phy;
|
|
s32 ret_val;
|
|
u16 data;
|
|
|
|
DEBUGFUNC("e1000_set_d3_lplu_state_82541");
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_82541_rev_2:
|
|
case e1000_82547_rev_2:
|
|
break;
|
|
default:
|
|
ret_val = e1000_set_d3_lplu_state_generic(hw, active);
|
|
goto out;
|
|
break;
|
|
}
|
|
|
|
ret_val = phy->ops.read_reg(hw, IGP01E1000_GMII_FIFO, &data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
if (!active) {
|
|
data &= ~IGP01E1000_GMII_FLEX_SPD;
|
|
ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/*
|
|
* LPLU and SmartSpeed are mutually exclusive. LPLU is used
|
|
* during Dx states where the power conservation is most
|
|
* important. During driver activity we should enable
|
|
* SmartSpeed, so performance is maintained.
|
|
*/
|
|
if (phy->smart_speed == e1000_smart_speed_on) {
|
|
ret_val = phy->ops.read_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
&data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
data |= IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = phy->ops.write_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
data);
|
|
if (ret_val)
|
|
goto out;
|
|
} else if (phy->smart_speed == e1000_smart_speed_off) {
|
|
ret_val = phy->ops.read_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
&data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = phy->ops.write_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
data);
|
|
if (ret_val)
|
|
goto out;
|
|
}
|
|
} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
|
|
(phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
|
|
(phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
|
|
data |= IGP01E1000_GMII_FLEX_SPD;
|
|
ret_val = phy->ops.write_reg(hw, IGP01E1000_GMII_FIFO, data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
/* When LPLU is enabled, we should disable SmartSpeed */
|
|
ret_val = phy->ops.read_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
&data);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = phy->ops.write_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG,
|
|
data);
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_led_82541 - Configures SW controllable LED
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This prepares the SW controllable LED for use and saves the current state
|
|
* of the LED so it can be later restored.
|
|
**/
|
|
static s32 e1000_setup_led_82541(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_setup_led_82541");
|
|
|
|
ret_val = hw->phy.ops.read_reg(hw,
|
|
IGP01E1000_GMII_FIFO,
|
|
&dev_spec->spd_default);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
ret_val = hw->phy.ops.write_reg(hw,
|
|
IGP01E1000_GMII_FIFO,
|
|
(u16)(dev_spec->spd_default &
|
|
~IGP01E1000_GMII_SPD));
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_cleanup_led_82541 - Set LED config to default operation
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Remove the current LED configuration and set the LED configuration
|
|
* to the default value, saved from the EEPROM.
|
|
**/
|
|
static s32 e1000_cleanup_led_82541(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_cleanup_led_82541");
|
|
|
|
ret_val = hw->phy.ops.write_reg(hw,
|
|
IGP01E1000_GMII_FIFO,
|
|
dev_spec->spd_default);
|
|
if (ret_val)
|
|
goto out;
|
|
|
|
E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_phy_init_script_82541 - Initialize GbE PHY
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Initializes the IGP PHY.
|
|
**/
|
|
static s32 e1000_phy_init_script_82541(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
|
|
u32 ret_val;
|
|
u16 phy_saved_data;
|
|
|
|
DEBUGFUNC("e1000_phy_init_script_82541");
|
|
|
|
if (!dev_spec->phy_init_script) {
|
|
ret_val = E1000_SUCCESS;
|
|
goto out;
|
|
}
|
|
|
|
/* Delay after phy reset to enable NVM configuration to load */
|
|
msec_delay(20);
|
|
|
|
/*
|
|
* Save off the current value of register 0x2F5B to be restored at
|
|
* the end of this routine.
|
|
*/
|
|
ret_val = hw->phy.ops.read_reg(hw, 0x2F5B, &phy_saved_data);
|
|
|
|
/* Disabled the PHY transmitter */
|
|
hw->phy.ops.write_reg(hw, 0x2F5B, 0x0003);
|
|
|
|
msec_delay(20);
|
|
|
|
hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
|
|
|
|
msec_delay(5);
|
|
|
|
switch (hw->mac.type) {
|
|
case e1000_82541:
|
|
case e1000_82547:
|
|
hw->phy.ops.write_reg(hw, 0x1F95, 0x0001);
|
|
|
|
hw->phy.ops.write_reg(hw, 0x1F71, 0xBD21);
|
|
|
|
hw->phy.ops.write_reg(hw, 0x1F79, 0x0018);
|
|
|
|
hw->phy.ops.write_reg(hw, 0x1F30, 0x1600);
|
|
|
|
hw->phy.ops.write_reg(hw, 0x1F31, 0x0014);
|
|
|
|
hw->phy.ops.write_reg(hw, 0x1F32, 0x161C);
|
|
|
|
hw->phy.ops.write_reg(hw, 0x1F94, 0x0003);
|
|
|
|
hw->phy.ops.write_reg(hw, 0x1F96, 0x003F);
|
|
|
|
hw->phy.ops.write_reg(hw, 0x2010, 0x0008);
|
|
break;
|
|
case e1000_82541_rev_2:
|
|
case e1000_82547_rev_2:
|
|
hw->phy.ops.write_reg(hw, 0x1F73, 0x0099);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
hw->phy.ops.write_reg(hw, 0x0000, 0x3300);
|
|
|
|
msec_delay(20);
|
|
|
|
/* Now enable the transmitter */
|
|
hw->phy.ops.write_reg(hw, 0x2F5B, phy_saved_data);
|
|
|
|
if (hw->mac.type == e1000_82547) {
|
|
u16 fused, fine, coarse;
|
|
|
|
/* Move to analog registers page */
|
|
hw->phy.ops.read_reg(hw,
|
|
IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
|
|
&fused);
|
|
|
|
if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
|
|
hw->phy.ops.read_reg(hw,
|
|
IGP01E1000_ANALOG_FUSE_STATUS,
|
|
&fused);
|
|
|
|
fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
|
|
coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
|
|
|
|
if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
|
|
coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
|
|
fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
|
|
} else if (coarse ==
|
|
IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
|
|
fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
|
|
|
|
fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
|
|
(fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
|
|
(coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
|
|
|
|
hw->phy.ops.write_reg(hw,
|
|
IGP01E1000_ANALOG_FUSE_CONTROL,
|
|
fused);
|
|
hw->phy.ops.write_reg(hw,
|
|
IGP01E1000_ANALOG_FUSE_BYPASS,
|
|
IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
|
|
}
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_init_script_state_82541 - Enable/Disable PHY init script
|
|
* @hw: pointer to the HW structure
|
|
* @state: boolean value used to enable/disable PHY init script
|
|
*
|
|
* Allows the driver to enable/disable the PHY init script, if the PHY is an
|
|
* IGP PHY.
|
|
**/
|
|
void e1000_init_script_state_82541(struct e1000_hw *hw, bool state)
|
|
{
|
|
struct e1000_dev_spec_82541 *dev_spec = &hw->dev_spec._82541;
|
|
|
|
DEBUGFUNC("e1000_init_script_state_82541");
|
|
|
|
if (hw->phy.type != e1000_phy_igp) {
|
|
DEBUGOUT("Initialization script not necessary.\n");
|
|
goto out;
|
|
}
|
|
|
|
dev_spec->phy_init_script = state;
|
|
|
|
out:
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* e1000_power_down_phy_copper_82541 - Remove link in case of PHY power down
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* In the case of a PHY power down to save power, or to turn off link during a
|
|
* driver unload, or wake on lan is not enabled, remove the link.
|
|
**/
|
|
static void e1000_power_down_phy_copper_82541(struct e1000_hw *hw)
|
|
{
|
|
/* If the management interface is not enabled, then power down */
|
|
if (!(E1000_READ_REG(hw, E1000_MANC) & E1000_MANC_SMBUS_EN))
|
|
e1000_power_down_phy_copper(hw);
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* e1000_clear_hw_cntrs_82541 - Clear device specific hardware counters
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Clears the hardware counters by reading the counter registers.
|
|
**/
|
|
static void e1000_clear_hw_cntrs_82541(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_clear_hw_cntrs_82541");
|
|
|
|
e1000_clear_hw_cntrs_base_generic(hw);
|
|
|
|
E1000_READ_REG(hw, E1000_PRC64);
|
|
E1000_READ_REG(hw, E1000_PRC127);
|
|
E1000_READ_REG(hw, E1000_PRC255);
|
|
E1000_READ_REG(hw, E1000_PRC511);
|
|
E1000_READ_REG(hw, E1000_PRC1023);
|
|
E1000_READ_REG(hw, E1000_PRC1522);
|
|
E1000_READ_REG(hw, E1000_PTC64);
|
|
E1000_READ_REG(hw, E1000_PTC127);
|
|
E1000_READ_REG(hw, E1000_PTC255);
|
|
E1000_READ_REG(hw, E1000_PTC511);
|
|
E1000_READ_REG(hw, E1000_PTC1023);
|
|
E1000_READ_REG(hw, E1000_PTC1522);
|
|
|
|
E1000_READ_REG(hw, E1000_ALGNERRC);
|
|
E1000_READ_REG(hw, E1000_RXERRC);
|
|
E1000_READ_REG(hw, E1000_TNCRS);
|
|
E1000_READ_REG(hw, E1000_CEXTERR);
|
|
E1000_READ_REG(hw, E1000_TSCTC);
|
|
E1000_READ_REG(hw, E1000_TSCTFC);
|
|
|
|
E1000_READ_REG(hw, E1000_MGTPRC);
|
|
E1000_READ_REG(hw, E1000_MGTPDC);
|
|
E1000_READ_REG(hw, E1000_MGTPTC);
|
|
}
|
|
|
|
/**
|
|
* e1000_read_mac_addr_82541 - Read device MAC address
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Reads the device MAC address from the EEPROM and stores the value.
|
|
**/
|
|
static s32 e1000_read_mac_addr_82541(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u16 offset, nvm_data, i;
|
|
|
|
DEBUGFUNC("e1000_read_mac_addr");
|
|
|
|
for (i = 0; i < ETH_ADDR_LEN; i += 2) {
|
|
offset = i >> 1;
|
|
ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
goto out;
|
|
}
|
|
hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
|
|
hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
|
|
}
|
|
|
|
for (i = 0; i < ETH_ADDR_LEN; i++)
|
|
hw->mac.addr[i] = hw->mac.perm_addr[i];
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|