freebsd-skq/sys/dev/aic7xxx/aic79xx.c
2020-09-01 21:37:14 +00:00

10336 lines
282 KiB
C

/*-
* Core routines and tables shareable across OS platforms.
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1994-2002, 2004 Justin T. Gibbs.
* Copyright (c) 2000-2003 Adaptec Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#246 $
*/
#ifdef __linux__
#include "aic79xx_osm.h"
#include "aic79xx_inline.h"
#include "aicasm/aicasm_insformat.h"
#else
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/aic7xxx/aic79xx_osm.h>
#include <dev/aic7xxx/aic79xx_inline.h>
#include <dev/aic7xxx/aicasm/aicasm_insformat.h>
#endif
/******************************** Globals *************************************/
struct ahd_softc_tailq ahd_tailq = TAILQ_HEAD_INITIALIZER(ahd_tailq);
uint32_t ahd_attach_to_HostRAID_controllers = 1;
/***************************** Lookup Tables **********************************/
char *ahd_chip_names[] =
{
"NONE",
"aic7901",
"aic7902",
"aic7901A"
};
/*
* Hardware error codes.
*/
struct ahd_hard_error_entry {
uint8_t errno;
char *errmesg;
};
static struct ahd_hard_error_entry ahd_hard_errors[] = {
{ DSCTMOUT, "Discard Timer has timed out" },
{ ILLOPCODE, "Illegal Opcode in sequencer program" },
{ SQPARERR, "Sequencer Parity Error" },
{ DPARERR, "Data-path Parity Error" },
{ MPARERR, "Scratch or SCB Memory Parity Error" },
{ CIOPARERR, "CIOBUS Parity Error" },
};
static const u_int num_errors = NUM_ELEMENTS(ahd_hard_errors);
static struct ahd_phase_table_entry ahd_phase_table[] =
{
{ P_DATAOUT, MSG_NOOP, "in Data-out phase" },
{ P_DATAIN, MSG_INITIATOR_DET_ERR, "in Data-in phase" },
{ P_DATAOUT_DT, MSG_NOOP, "in DT Data-out phase" },
{ P_DATAIN_DT, MSG_INITIATOR_DET_ERR, "in DT Data-in phase" },
{ P_COMMAND, MSG_NOOP, "in Command phase" },
{ P_MESGOUT, MSG_NOOP, "in Message-out phase" },
{ P_STATUS, MSG_INITIATOR_DET_ERR, "in Status phase" },
{ P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" },
{ P_BUSFREE, MSG_NOOP, "while idle" },
{ 0, MSG_NOOP, "in unknown phase" }
};
/*
* In most cases we only wish to itterate over real phases, so
* exclude the last element from the count.
*/
static const u_int num_phases = NUM_ELEMENTS(ahd_phase_table) - 1;
/* Our Sequencer Program */
#include "aic79xx_seq.h"
/**************************** Function Declarations ***************************/
static void ahd_handle_transmission_error(struct ahd_softc *ahd);
static void ahd_handle_lqiphase_error(struct ahd_softc *ahd,
u_int lqistat1);
static int ahd_handle_pkt_busfree(struct ahd_softc *ahd,
u_int busfreetime);
static int ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
static void ahd_handle_proto_violation(struct ahd_softc *ahd);
static void ahd_force_renegotiation(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo);
static struct ahd_tmode_tstate*
ahd_alloc_tstate(struct ahd_softc *ahd,
u_int scsi_id, char channel);
#ifdef AHD_TARGET_MODE
static void ahd_free_tstate(struct ahd_softc *ahd,
u_int scsi_id, char channel, int force);
#endif
static void ahd_devlimited_syncrate(struct ahd_softc *ahd,
struct ahd_initiator_tinfo *,
u_int *period,
u_int *ppr_options,
role_t role);
static void ahd_update_neg_table(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo,
struct ahd_transinfo *tinfo);
static void ahd_update_pending_scbs(struct ahd_softc *ahd);
static void ahd_fetch_devinfo(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo);
static void ahd_scb_devinfo(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo,
struct scb *scb);
static void ahd_setup_initiator_msgout(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo,
struct scb *scb);
static void ahd_build_transfer_msg(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo);
static void ahd_construct_sdtr(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo,
u_int period, u_int offset);
static void ahd_construct_wdtr(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo,
u_int bus_width);
static void ahd_construct_ppr(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo,
u_int period, u_int offset,
u_int bus_width, u_int ppr_options);
static void ahd_clear_msg_state(struct ahd_softc *ahd);
static void ahd_handle_message_phase(struct ahd_softc *ahd);
typedef enum {
AHDMSG_1B,
AHDMSG_2B,
AHDMSG_EXT
} ahd_msgtype;
static int ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
u_int msgval, int full);
static int ahd_parse_msg(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo);
static int ahd_handle_msg_reject(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo);
static void ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo);
static void ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
static void ahd_handle_devreset(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo,
u_int lun, cam_status status,
char *message, int verbose_level);
#ifdef AHD_TARGET_MODE
static void ahd_setup_target_msgin(struct ahd_softc *ahd,
struct ahd_devinfo *devinfo,
struct scb *scb);
#endif
static u_int ahd_sglist_size(struct ahd_softc *ahd);
static u_int ahd_sglist_allocsize(struct ahd_softc *ahd);
static bus_dmamap_callback_t
ahd_dmamap_cb;
static void ahd_initialize_hscbs(struct ahd_softc *ahd);
static int ahd_init_scbdata(struct ahd_softc *ahd);
static void ahd_fini_scbdata(struct ahd_softc *ahd);
static void ahd_setup_iocell_workaround(struct ahd_softc *ahd);
static void ahd_iocell_first_selection(struct ahd_softc *ahd);
static void ahd_add_col_list(struct ahd_softc *ahd,
struct scb *scb, u_int col_idx);
static void ahd_rem_col_list(struct ahd_softc *ahd,
struct scb *scb);
static void ahd_chip_init(struct ahd_softc *ahd);
static void ahd_qinfifo_requeue(struct ahd_softc *ahd,
struct scb *prev_scb,
struct scb *scb);
static int ahd_qinfifo_count(struct ahd_softc *ahd);
static int ahd_search_scb_list(struct ahd_softc *ahd, int target,
char channel, int lun, u_int tag,
role_t role, uint32_t status,
ahd_search_action action,
u_int *list_head, u_int *list_tail,
u_int tid);
static void ahd_stitch_tid_list(struct ahd_softc *ahd,
u_int tid_prev, u_int tid_cur,
u_int tid_next);
static void ahd_add_scb_to_free_list(struct ahd_softc *ahd,
u_int scbid);
static u_int ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
u_int prev, u_int next, u_int tid);
static void ahd_reset_current_bus(struct ahd_softc *ahd);
static ahd_callback_t ahd_reset_poll;
static ahd_callback_t ahd_stat_timer;
#ifdef AHD_DUMP_SEQ
static void ahd_dumpseq(struct ahd_softc *ahd);
#endif
static void ahd_loadseq(struct ahd_softc *ahd);
static int ahd_check_patch(struct ahd_softc *ahd,
struct patch **start_patch,
u_int start_instr, u_int *skip_addr);
static u_int ahd_resolve_seqaddr(struct ahd_softc *ahd,
u_int address);
static void ahd_download_instr(struct ahd_softc *ahd,
u_int instrptr, uint8_t *dconsts);
static int ahd_probe_stack_size(struct ahd_softc *ahd);
static int ahd_other_scb_timeout(struct ahd_softc *ahd,
struct scb *scb,
struct scb *other_scb);
static int ahd_scb_active_in_fifo(struct ahd_softc *ahd,
struct scb *scb);
static void ahd_run_data_fifo(struct ahd_softc *ahd,
struct scb *scb);
#ifdef AHD_TARGET_MODE
static void ahd_queue_lstate_event(struct ahd_softc *ahd,
struct ahd_tmode_lstate *lstate,
u_int initiator_id,
u_int event_type,
u_int event_arg);
static void ahd_update_scsiid(struct ahd_softc *ahd,
u_int targid_mask);
static int ahd_handle_target_cmd(struct ahd_softc *ahd,
struct target_cmd *cmd);
#endif
/******************************** Private Inlines *****************************/
static __inline void ahd_assert_atn(struct ahd_softc *ahd);
static __inline int ahd_currently_packetized(struct ahd_softc *ahd);
static __inline int ahd_set_active_fifo(struct ahd_softc *ahd);
static __inline void
ahd_assert_atn(struct ahd_softc *ahd)
{
ahd_outb(ahd, SCSISIGO, ATNO);
}
/*
* Determine if the current connection has a packetized
* agreement. This does not necessarily mean that we
* are currently in a packetized transfer. We could
* just as easily be sending or receiving a message.
*/
static __inline int
ahd_currently_packetized(struct ahd_softc *ahd)
{
ahd_mode_state saved_modes;
int packetized;
saved_modes = ahd_save_modes(ahd);
if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
/*
* The packetized bit refers to the last
* connection, not the current one. Check
* for non-zero LQISTATE instead.
*/
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
packetized = ahd_inb(ahd, LQISTATE) != 0;
} else {
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
}
ahd_restore_modes(ahd, saved_modes);
return (packetized);
}
static __inline int
ahd_set_active_fifo(struct ahd_softc *ahd)
{
u_int active_fifo;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
switch (active_fifo) {
case 0:
case 1:
ahd_set_modes(ahd, active_fifo, active_fifo);
return (1);
default:
return (0);
}
}
/************************* Sequencer Execution Control ************************/
/*
* Restart the sequencer program from address zero
*/
void
ahd_restart(struct ahd_softc *ahd)
{
ahd_pause(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
/* No more pending messages */
ahd_clear_msg_state(ahd);
ahd_outb(ahd, SCSISIGO, 0); /* De-assert BSY */
ahd_outb(ahd, MSG_OUT, MSG_NOOP); /* No message to send */
ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
ahd_outb(ahd, SEQINTCTL, 0);
ahd_outb(ahd, LASTPHASE, P_BUSFREE);
ahd_outb(ahd, SEQ_FLAGS, 0);
ahd_outb(ahd, SAVED_SCSIID, 0xFF);
ahd_outb(ahd, SAVED_LUN, 0xFF);
/*
* Ensure that the sequencer's idea of TQINPOS
* matches our own. The sequencer increments TQINPOS
* only after it sees a DMA complete and a reset could
* occur before the increment leaving the kernel to believe
* the command arrived but the sequencer to not.
*/
ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
/* Always allow reselection */
ahd_outb(ahd, SCSISEQ1,
ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
/*
* Clear any pending sequencer interrupt. It is no
* longer relevant since we're resetting the Program
* Counter.
*/
ahd_outb(ahd, CLRINT, CLRSEQINT);
ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
ahd_unpause(ahd);
}
void
ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
{
ahd_mode_state saved_modes;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
printf("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
#endif
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, fifo, fifo);
ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
ahd_outb(ahd, CCSGCTL, CCSGRESET);
ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
ahd_outb(ahd, SG_STATE, 0);
ahd_restore_modes(ahd, saved_modes);
}
/************************* Input/Output Queues ********************************/
/*
* Flush and completed commands that are sitting in the command
* complete queues down on the chip but have yet to be dma'ed back up.
*/
void
ahd_flush_qoutfifo(struct ahd_softc *ahd)
{
struct scb *scb;
ahd_mode_state saved_modes;
u_int saved_scbptr;
u_int ccscbctl;
u_int scbid;
u_int next_scbid;
saved_modes = ahd_save_modes(ahd);
/*
* Flush the good status FIFO for completed packetized commands.
*/
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
saved_scbptr = ahd_get_scbptr(ahd);
while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
u_int fifo_mode;
u_int i;
scbid = ahd_inw(ahd, GSFIFO);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("%s: Warning - GSFIFO SCB %d invalid\n",
ahd_name(ahd), scbid);
AHD_CORRECTABLE_ERROR(ahd);
continue;
}
/*
* Determine if this transaction is still active in
* any FIFO. If it is, we must flush that FIFO to
* the host before completing the command.
*/
fifo_mode = 0;
rescan_fifos:
for (i = 0; i < 2; i++) {
/* Toggle to the other mode. */
fifo_mode ^= 1;
ahd_set_modes(ahd, fifo_mode, fifo_mode);
if (ahd_scb_active_in_fifo(ahd, scb) == 0)
continue;
ahd_run_data_fifo(ahd, scb);
/*
* Running this FIFO may cause a CFG4DATA for
* this same transaction to assert in the other
* FIFO or a new snapshot SAVEPTRS interrupt
* in this FIFO. Even running a FIFO may not
* clear the transaction if we are still waiting
* for data to drain to the host. We must loop
* until the transaction is not active in either
* FIFO just to be sure. Reset our loop counter
* so we will visit both FIFOs again before
* declaring this transaction finished. We
* also delay a bit so that status has a chance
* to change before we look at this FIFO again.
*/
aic_delay(200);
goto rescan_fifos;
}
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_set_scbptr(ahd, scbid);
if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
&& ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
|| (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
& SG_LIST_NULL) != 0)) {
u_int comp_head;
/*
* The transfer completed with a residual.
* Place this SCB on the complete DMA list
* so that we update our in-core copy of the
* SCB before completing the command.
*/
ahd_outb(ahd, SCB_SCSI_STATUS, 0);
ahd_outb(ahd, SCB_SGPTR,
ahd_inb_scbram(ahd, SCB_SGPTR)
| SG_STATUS_VALID);
ahd_outw(ahd, SCB_TAG, scbid);
ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
if (SCBID_IS_NULL(comp_head)) {
ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
} else {
u_int tail;
tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
ahd_set_scbptr(ahd, tail);
ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
ahd_set_scbptr(ahd, scbid);
}
} else
ahd_complete_scb(ahd, scb);
}
ahd_set_scbptr(ahd, saved_scbptr);
/*
* Setup for command channel portion of flush.
*/
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
/*
* Wait for any inprogress DMA to complete and clear DMA state
* if this if for an SCB in the qinfifo.
*/
while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
if ((ccscbctl & ARRDONE) != 0)
break;
} else if ((ccscbctl & CCSCBDONE) != 0)
break;
aic_delay(200);
}
/*
* We leave the sequencer to cleanup in the case of DMA's to
* update the qoutfifo. In all other cases (DMA's to the
* chip or a push of an SCB from the COMPLETE_DMA_SCB list),
* we disable the DMA engine so that the sequencer will not
* attempt to handle the DMA completion.
*/
if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
/*
* Complete any SCBs that just finished
* being DMA'ed into the qoutfifo.
*/
ahd_run_qoutfifo(ahd);
saved_scbptr = ahd_get_scbptr(ahd);
/*
* Manually update/complete any completed SCBs that are waiting to be
* DMA'ed back up to the host.
*/
scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
while (!SCBID_IS_NULL(scbid)) {
uint8_t *hscb_ptr;
u_int i;
ahd_set_scbptr(ahd, scbid);
next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("%s: Warning - DMA-up and complete "
"SCB %d invalid\n", ahd_name(ahd), scbid);
AHD_CORRECTABLE_ERROR(ahd);
continue;
}
hscb_ptr = (uint8_t *)scb->hscb;
for (i = 0; i < sizeof(struct hardware_scb); i++)
*hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
ahd_complete_scb(ahd, scb);
scbid = next_scbid;
}
ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
while (!SCBID_IS_NULL(scbid)) {
ahd_set_scbptr(ahd, scbid);
next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("%s: Warning - Complete Qfrz SCB %d invalid\n",
ahd_name(ahd), scbid);
AHD_CORRECTABLE_ERROR(ahd);
continue;
}
ahd_complete_scb(ahd, scb);
scbid = next_scbid;
}
ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
while (!SCBID_IS_NULL(scbid)) {
ahd_set_scbptr(ahd, scbid);
next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("%s: Warning - Complete SCB %d invalid\n",
ahd_name(ahd), scbid);
AHD_CORRECTABLE_ERROR(ahd);
continue;
}
ahd_complete_scb(ahd, scb);
scbid = next_scbid;
}
ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
/*
* Restore state.
*/
ahd_set_scbptr(ahd, saved_scbptr);
ahd_restore_modes(ahd, saved_modes);
ahd->flags |= AHD_UPDATE_PEND_CMDS;
}
/*
* Determine if an SCB for a packetized transaction
* is active in a FIFO.
*/
static int
ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
{
/*
* The FIFO is only active for our transaction if
* the SCBPTR matches the SCB's ID and the firmware
* has installed a handler for the FIFO or we have
* a pending SAVEPTRS or CFG4DATA interrupt.
*/
if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
|| ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
&& (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
return (0);
return (1);
}
/*
* Run a data fifo to completion for a transaction we know
* has completed across the SCSI bus (good status has been
* received). We are already set to the correct FIFO mode
* on entry to this routine.
*
* This function attempts to operate exactly as the firmware
* would when running this FIFO. Care must be taken to update
* this routine any time the firmware's FIFO algorithm is
* changed.
*/
static void
ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
{
u_int seqintsrc;
seqintsrc = ahd_inb(ahd, SEQINTSRC);
if ((seqintsrc & CFG4DATA) != 0) {
uint32_t datacnt;
uint32_t sgptr;
/*
* Clear full residual flag.
*/
sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
ahd_outb(ahd, SCB_SGPTR, sgptr);
/*
* Load datacnt and address.
*/
datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
sgptr |= LAST_SEG;
ahd_outb(ahd, SG_STATE, 0);
} else
ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
ahd_outb(ahd, SG_CACHE_PRE, sgptr);
ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
/*
* Initialize Residual Fields.
*/
ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
/*
* Mark the SCB as having a FIFO in use.
*/
ahd_outb(ahd, SCB_FIFO_USE_COUNT,
ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
/*
* Install a "fake" handler for this FIFO.
*/
ahd_outw(ahd, LONGJMP_ADDR, 0);
/*
* Notify the hardware that we have satisfied
* this sequencer interrupt.
*/
ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
} else if ((seqintsrc & SAVEPTRS) != 0) {
uint32_t sgptr;
uint32_t resid;
if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
/*
* Snapshot Save Pointers. All that
* is necessary to clear the snapshot
* is a CLRCHN.
*/
goto clrchn;
}
/*
* Disable S/G fetch so the DMA engine
* is available to future users.
*/
if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
ahd_outb(ahd, CCSGCTL, 0);
ahd_outb(ahd, SG_STATE, 0);
/*
* Flush the data FIFO. Strickly only
* necessary for Rev A parts.
*/
ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
/*
* Calculate residual.
*/
sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
resid = ahd_inl(ahd, SHCNT);
resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
/*
* Must back up to the correct S/G element.
* Typically this just means resetting our
* low byte to the offset in the SG_CACHE,
* but if we wrapped, we have to correct
* the other bytes of the sgptr too.
*/
if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
&& (sgptr & 0x80) == 0)
sgptr -= 0x100;
sgptr &= ~0xFF;
sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
& SG_ADDR_MASK;
ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
} else if ((resid & AHD_SG_LEN_MASK) == 0) {
ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
sgptr | SG_LIST_NULL);
}
/*
* Save Pointers.
*/
ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
ahd_outl(ahd, SCB_DATACNT, resid);
ahd_outl(ahd, SCB_SGPTR, sgptr);
ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
ahd_outb(ahd, SEQIMODE,
ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
/*
* If the data is to the SCSI bus, we are
* done, otherwise wait for FIFOEMP.
*/
if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
goto clrchn;
} else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
uint32_t sgptr;
uint64_t data_addr;
uint32_t data_len;
u_int dfcntrl;
/*
* Disable S/G fetch so the DMA engine
* is available to future users. We won't
* be using the DMA engine to load segments.
*/
if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
ahd_outb(ahd, CCSGCTL, 0);
ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
}
/*
* Wait for the DMA engine to notice that the
* host transfer is enabled and that there is
* space in the S/G FIFO for new segments before
* loading more segments.
*/
if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
&& (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
/*
* Determine the offset of the next S/G
* element to load.
*/
sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
sgptr &= SG_PTR_MASK;
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
struct ahd_dma64_seg *sg;
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
data_addr = sg->addr;
data_len = sg->len;
sgptr += sizeof(*sg);
} else {
struct ahd_dma_seg *sg;
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
data_addr <<= 8;
data_addr |= sg->addr;
data_len = sg->len;
sgptr += sizeof(*sg);
}
/*
* Update residual information.
*/
ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
/*
* Load the S/G.
*/
if (data_len & AHD_DMA_LAST_SEG) {
sgptr |= LAST_SEG;
ahd_outb(ahd, SG_STATE, 0);
}
ahd_outq(ahd, HADDR, data_addr);
ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
/*
* Advertise the segment to the hardware.
*/
dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
/*
* Use SCSIENWRDIS so that SCSIEN
* is never modified by this
* operation.
*/
dfcntrl |= SCSIENWRDIS;
}
ahd_outb(ahd, DFCNTRL, dfcntrl);
}
} else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
/*
* Transfer completed to the end of SG list
* and has flushed to the host.
*/
ahd_outb(ahd, SCB_SGPTR,
ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
goto clrchn;
} else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
clrchn:
/*
* Clear any handler for this FIFO, decrement
* the FIFO use count for the SCB, and release
* the FIFO.
*/
ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
ahd_outb(ahd, SCB_FIFO_USE_COUNT,
ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
}
}
/*
* Look for entries in the QoutFIFO that have completed.
* The valid_tag completion field indicates the validity
* of the entry - the valid value toggles each time through
* the queue. We use the sg_status field in the completion
* entry to avoid referencing the hscb if the completion
* occurred with no errors and no residual. sg_status is
* a copy of the first byte (little endian) of the sgptr
* hscb field.
*/
void
ahd_run_qoutfifo(struct ahd_softc *ahd)
{
struct ahd_completion *completion;
struct scb *scb;
u_int scb_index;
if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
panic("ahd_run_qoutfifo recursion");
ahd->flags |= AHD_RUNNING_QOUTFIFO;
ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
for (;;) {
completion = &ahd->qoutfifo[ahd->qoutfifonext];
if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
break;
scb_index = aic_le16toh(completion->tag);
scb = ahd_lookup_scb(ahd, scb_index);
if (scb == NULL) {
printf("%s: WARNING no command for scb %d "
"(cmdcmplt)\nQOUTPOS = %d\n",
ahd_name(ahd), scb_index,
ahd->qoutfifonext);
AHD_CORRECTABLE_ERROR(ahd);
ahd_dump_card_state(ahd);
} else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
ahd_handle_scb_status(ahd, scb);
} else {
ahd_done(ahd, scb);
}
ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
if (ahd->qoutfifonext == 0)
ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
}
ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
}
/************************* Interrupt Handling *********************************/
void
ahd_handle_hwerrint(struct ahd_softc *ahd)
{
/*
* Some catastrophic hardware error has occurred.
* Print it for the user and disable the controller.
*/
int i;
int error;
error = ahd_inb(ahd, ERROR);
for (i = 0; i < num_errors; i++) {
if ((error & ahd_hard_errors[i].errno) != 0) {
printf("%s: hwerrint, %s\n",
ahd_name(ahd), ahd_hard_errors[i].errmesg);
AHD_UNCORRECTABLE_ERROR(ahd);
}
}
ahd_dump_card_state(ahd);
panic("BRKADRINT");
/* Tell everyone that this HBA is no longer available */
ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
CAM_NO_HBA);
/* Tell the system that this controller has gone away. */
ahd_free(ahd);
}
void
ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
{
u_int seqintcode;
/*
* Save the sequencer interrupt code and clear the SEQINT
* bit. We will unpause the sequencer, if appropriate,
* after servicing the request.
*/
seqintcode = ahd_inb(ahd, SEQINTCODE);
ahd_outb(ahd, CLRINT, CLRSEQINT);
if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
/*
* Unpause the sequencer and let it clear
* SEQINT by writing NO_SEQINT to it. This
* will cause the sequencer to be paused again,
* which is the expected state of this routine.
*/
ahd_unpause(ahd);
while (!ahd_is_paused(ahd))
;
ahd_outb(ahd, CLRINT, CLRSEQINT);
}
ahd_update_modes(ahd);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0)
printf("%s: Handle Seqint Called for code %d\n",
ahd_name(ahd), seqintcode);
#endif
switch (seqintcode) {
case ENTERING_NONPACK:
{
struct scb *scb;
u_int scbid;
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
/*
* Somehow need to know if this
* is from a selection or reselection.
* From that, we can determine target
* ID so we at least have an I_T nexus.
*/
} else {
ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
ahd_outb(ahd, SEQ_FLAGS, 0x0);
}
if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
&& (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
/*
* Phase change after read stream with
* CRC error with P0 asserted on last
* packet.
*/
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
printf("%s: Assuming LQIPHASE_NLQ with "
"P0 assertion\n", ahd_name(ahd));
#endif
}
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
printf("%s: Entering NONPACK\n", ahd_name(ahd));
#endif
break;
}
case INVALID_SEQINT:
printf("%s: Invalid Sequencer interrupt occurred.\n",
ahd_name(ahd));
ahd_dump_card_state(ahd);
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
AHD_UNCORRECTABLE_ERROR(ahd);
break;
case STATUS_OVERRUN:
{
struct scb *scb;
u_int scbid;
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb != NULL)
ahd_print_path(ahd, scb);
else
printf("%s: ", ahd_name(ahd));
printf("SCB %d Packetized Status Overrun", scbid);
ahd_dump_card_state(ahd);
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
AHD_UNCORRECTABLE_ERROR(ahd);
break;
}
case CFG4ISTAT_INTR:
{
struct scb *scb;
u_int scbid;
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
ahd_dump_card_state(ahd);
printf("CFG4ISTAT: Free SCB %d referenced", scbid);
AHD_FATAL_ERROR(ahd);
panic("For safety");
}
ahd_outq(ahd, HADDR, scb->sense_busaddr);
ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
ahd_outb(ahd, HCNT + 2, 0);
ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
break;
}
case ILLEGAL_PHASE:
{
u_int bus_phase;
bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
printf("%s: ILLEGAL_PHASE 0x%x\n",
ahd_name(ahd), bus_phase);
switch (bus_phase) {
case P_DATAOUT:
case P_DATAIN:
case P_DATAOUT_DT:
case P_DATAIN_DT:
case P_MESGOUT:
case P_STATUS:
case P_MESGIN:
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
printf("%s: Issued Bus Reset.\n", ahd_name(ahd));
AHD_UNCORRECTABLE_ERROR(ahd);
break;
case P_COMMAND:
{
struct ahd_devinfo devinfo;
struct scb *scb;
struct ahd_tmode_tstate *tstate;
u_int scbid;
/*
* If a target takes us into the command phase
* assume that it has been externally reset and
* has thus lost our previous packetized negotiation
* agreement. Since we have not sent an identify
* message and may not have fully qualified the
* connection, we change our command to TUR, assert
* ATN and ABORT the task when we go to message in
* phase. The OSM will see the REQUEUE_REQUEST
* status and retry the command.
*/
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
AHD_CORRECTABLE_ERROR(ahd);
printf("Invalid phase with no valid SCB. "
"Resetting bus.\n");
ahd_reset_channel(ahd, 'A',
/*Initiate Reset*/TRUE);
break;
}
ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
SCB_GET_TARGET(ahd, scb),
SCB_GET_LUN(scb),
SCB_GET_CHANNEL(ahd, scb),
ROLE_INITIATOR);
ahd_fetch_transinfo(ahd,
devinfo.channel,
devinfo.our_scsiid,
devinfo.target,
&tstate);
ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_ACTIVE, /*paused*/TRUE);
ahd_set_syncrate(ahd, &devinfo, /*period*/0,
/*offset*/0, /*ppr_options*/0,
AHD_TRANS_ACTIVE, /*paused*/TRUE);
ahd_outb(ahd, SCB_CDB_STORE, 0);
ahd_outb(ahd, SCB_CDB_STORE+1, 0);
ahd_outb(ahd, SCB_CDB_STORE+2, 0);
ahd_outb(ahd, SCB_CDB_STORE+3, 0);
ahd_outb(ahd, SCB_CDB_STORE+4, 0);
ahd_outb(ahd, SCB_CDB_STORE+5, 0);
ahd_outb(ahd, SCB_CDB_LEN, 6);
scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
scb->hscb->control |= MK_MESSAGE;
ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
ahd_outb(ahd, MSG_OUT, HOST_MSG);
ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
/*
* The lun is 0, regardless of the SCB's lun
* as we have not sent an identify message.
*/
ahd_outb(ahd, SAVED_LUN, 0);
ahd_outb(ahd, SEQ_FLAGS, 0);
ahd_assert_atn(ahd);
scb->flags &= ~SCB_PACKETIZED;
scb->flags |= SCB_ABORT|SCB_CMDPHASE_ABORT;
ahd_freeze_devq(ahd, scb);
aic_set_transaction_status(scb, CAM_REQUEUE_REQ);
aic_freeze_scb(scb);
/*
* Allow the sequencer to continue with
* non-pack processing.
*/
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
ahd_outb(ahd, CLRLQOINT1, 0);
}
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
ahd_print_path(ahd, scb);
AHD_CORRECTABLE_ERROR(ahd);
printf("Unexpected command phase from "
"packetized target\n");
}
#endif
break;
}
}
break;
}
case CFG4OVERRUN:
{
struct scb *scb;
u_int scb_index;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
printf("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
ahd_inb(ahd, MODE_PTR));
}
#endif
scb_index = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scb_index);
if (scb == NULL) {
/*
* Attempt to transfer to an SCB that is
* not outstanding.
*/
ahd_assert_atn(ahd);
ahd_outb(ahd, MSG_OUT, HOST_MSG);
ahd->msgout_buf[0] = MSG_ABORT_TASK;
ahd->msgout_len = 1;
ahd->msgout_index = 0;
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
/*
* Clear status received flag to prevent any
* attempt to complete this bogus SCB.
*/
ahd_outb(ahd, SCB_CONTROL,
ahd_inb_scbram(ahd, SCB_CONTROL)
& ~STATUS_RCVD);
}
break;
}
case DUMP_CARD_STATE:
{
ahd_dump_card_state(ahd);
break;
}
case PDATA_REINIT:
{
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
printf("%s: PDATA_REINIT - DFCNTRL = 0x%x "
"SG_CACHE_SHADOW = 0x%x\n",
ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
ahd_inb(ahd, SG_CACHE_SHADOW));
}
#endif
ahd_reinitialize_dataptrs(ahd);
break;
}
case HOST_MSG_LOOP:
{
struct ahd_devinfo devinfo;
/*
* The sequencer has encountered a message phase
* that requires host assistance for completion.
* While handling the message phase(s), we will be
* notified by the sequencer after each byte is
* transferred so we can track bus phase changes.
*
* If this is the first time we've seen a HOST_MSG_LOOP
* interrupt, initialize the state of the host message
* loop.
*/
ahd_fetch_devinfo(ahd, &devinfo);
if (ahd->msg_type == MSG_TYPE_NONE) {
struct scb *scb;
u_int scb_index;
u_int bus_phase;
bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
if (bus_phase != P_MESGIN
&& bus_phase != P_MESGOUT) {
printf("ahd_intr: HOST_MSG_LOOP bad "
"phase 0x%x\n", bus_phase);
AHD_CORRECTABLE_ERROR(ahd);
/*
* Probably transitioned to bus free before
* we got here. Just punt the message.
*/
ahd_dump_card_state(ahd);
ahd_clear_intstat(ahd);
ahd_restart(ahd);
return;
}
scb_index = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scb_index);
if (devinfo.role == ROLE_INITIATOR) {
if (bus_phase == P_MESGOUT)
ahd_setup_initiator_msgout(ahd,
&devinfo,
scb);
else {
ahd->msg_type =
MSG_TYPE_INITIATOR_MSGIN;
ahd->msgin_index = 0;
}
}
#ifdef AHD_TARGET_MODE
else {
if (bus_phase == P_MESGOUT) {
ahd->msg_type =
MSG_TYPE_TARGET_MSGOUT;
ahd->msgin_index = 0;
}
else
ahd_setup_target_msgin(ahd,
&devinfo,
scb);
}
#endif
}
ahd_handle_message_phase(ahd);
break;
}
case NO_MATCH:
{
/* Ensure we don't leave the selection hardware on */
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
printf("%s:%c:%d: no active SCB for reconnecting "
"target - issuing BUS DEVICE RESET\n",
ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
printf("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
"REG0 == 0x%x ACCUM = 0x%x\n",
ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
printf("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
"SINDEX == 0x%x\n",
ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
ahd_find_busy_tcl(ahd,
BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
ahd_inb(ahd, SAVED_LUN))),
ahd_inw(ahd, SINDEX));
printf("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
"SCB_CONTROL == 0x%x\n",
ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
ahd_inb_scbram(ahd, SCB_LUN),
ahd_inb_scbram(ahd, SCB_CONTROL));
printf("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
printf("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
printf("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
ahd_dump_card_state(ahd);
ahd->msgout_buf[0] = MSG_BUS_DEV_RESET;
ahd->msgout_len = 1;
ahd->msgout_index = 0;
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
ahd_outb(ahd, MSG_OUT, HOST_MSG);
ahd_assert_atn(ahd);
break;
}
case PROTO_VIOLATION:
{
ahd_handle_proto_violation(ahd);
break;
}
case IGN_WIDE_RES:
{
struct ahd_devinfo devinfo;
ahd_fetch_devinfo(ahd, &devinfo);
ahd_handle_ign_wide_residue(ahd, &devinfo);
break;
}
case BAD_PHASE:
{
u_int lastphase;
lastphase = ahd_inb(ahd, LASTPHASE);
printf("%s:%c:%d: unknown scsi bus phase %x, "
"lastphase = 0x%x. Attempting to continue\n",
ahd_name(ahd), 'A',
SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
lastphase, ahd_inb(ahd, SCSISIGI));
AHD_CORRECTABLE_ERROR(ahd);
break;
}
case MISSED_BUSFREE:
{
u_int lastphase;
lastphase = ahd_inb(ahd, LASTPHASE);
printf("%s:%c:%d: Missed busfree. "
"Lastphase = 0x%x, Curphase = 0x%x\n",
ahd_name(ahd), 'A',
SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
lastphase, ahd_inb(ahd, SCSISIGI));
AHD_CORRECTABLE_ERROR(ahd);
ahd_restart(ahd);
return;
}
case DATA_OVERRUN:
{
/*
* When the sequencer detects an overrun, it
* places the controller in "BITBUCKET" mode
* and allows the target to complete its transfer.
* Unfortunately, none of the counters get updated
* when the controller is in this mode, so we have
* no way of knowing how large the overrun was.
*/
struct scb *scb;
u_int scbindex;
#ifdef AHD_DEBUG
u_int lastphase;
#endif
scbindex = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbindex);
#ifdef AHD_DEBUG
lastphase = ahd_inb(ahd, LASTPHASE);
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
ahd_print_path(ahd, scb);
printf("data overrun detected %s. Tag == 0x%x.\n",
ahd_lookup_phase_entry(lastphase)->phasemsg,
SCB_GET_TAG(scb));
ahd_print_path(ahd, scb);
printf("%s seen Data Phase. Length = %ld. "
"NumSGs = %d.\n",
ahd_inb(ahd, SEQ_FLAGS) & DPHASE
? "Have" : "Haven't",
aic_get_transfer_length(scb), scb->sg_count);
ahd_dump_sglist(scb);
}
#endif
/*
* Set this and it will take effect when the
* target does a command complete.
*/
ahd_freeze_devq(ahd, scb);
aic_set_transaction_status(scb, CAM_DATA_RUN_ERR);
aic_freeze_scb(scb);
break;
}
case MKMSG_FAILED:
{
struct ahd_devinfo devinfo;
struct scb *scb;
u_int scbid;
ahd_fetch_devinfo(ahd, &devinfo);
printf("%s:%c:%d:%d: Attempt to issue message failed\n",
ahd_name(ahd), devinfo.channel, devinfo.target,
devinfo.lun);
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
AHD_CORRECTABLE_ERROR(ahd);
if (scb != NULL
&& (scb->flags & SCB_RECOVERY_SCB) != 0)
/*
* Ensure that we didn't put a second instance of this
* SCB into the QINFIFO.
*/
ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
SCB_GET_CHANNEL(ahd, scb),
SCB_GET_LUN(scb), SCB_GET_TAG(scb),
ROLE_INITIATOR, /*status*/0,
SEARCH_REMOVE);
ahd_outb(ahd, SCB_CONTROL,
ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
break;
}
case TASKMGMT_FUNC_COMPLETE:
{
u_int scbid;
struct scb *scb;
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb != NULL) {
u_int lun;
u_int tag;
cam_status error;
ahd_print_path(ahd, scb);
printf("Task Management Func 0x%x Complete\n",
scb->hscb->task_management);
lun = CAM_LUN_WILDCARD;
tag = SCB_LIST_NULL;
switch (scb->hscb->task_management) {
case SIU_TASKMGMT_ABORT_TASK:
tag = SCB_GET_TAG(scb);
case SIU_TASKMGMT_ABORT_TASK_SET:
case SIU_TASKMGMT_CLEAR_TASK_SET:
lun = scb->hscb->lun;
error = CAM_REQ_ABORTED;
ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
'A', lun, tag, ROLE_INITIATOR,
error);
break;
case SIU_TASKMGMT_LUN_RESET:
lun = scb->hscb->lun;
case SIU_TASKMGMT_TARGET_RESET:
{
struct ahd_devinfo devinfo;
ahd_scb_devinfo(ahd, &devinfo, scb);
error = CAM_BDR_SENT;
ahd_handle_devreset(ahd, &devinfo, lun,
CAM_BDR_SENT,
lun != CAM_LUN_WILDCARD
? "Lun Reset"
: "Target Reset",
/*verbose_level*/0);
break;
}
default:
panic("Unexpected TaskMgmt Func\n");
break;
}
}
break;
}
case TASKMGMT_CMD_CMPLT_OKAY:
{
u_int scbid;
struct scb *scb;
/*
* An ABORT TASK TMF failed to be delivered before
* the targeted command completed normally.
*/
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb != NULL) {
/*
* Remove the second instance of this SCB from
* the QINFIFO if it is still there.
*/
ahd_print_path(ahd, scb);
printf("SCB completes before TMF\n");
/*
* Handle losing the race. Wait until any
* current selection completes. We will then
* set the TMF back to zero in this SCB so that
* the sequencer doesn't bother to issue another
* sequencer interrupt for its completion.
*/
while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
&& (ahd_inb(ahd, SSTAT0) & SELDO) == 0
&& (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
;
ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
SCB_GET_CHANNEL(ahd, scb),
SCB_GET_LUN(scb), SCB_GET_TAG(scb),
ROLE_INITIATOR, /*status*/0,
SEARCH_REMOVE);
}
break;
}
case TRACEPOINT0:
case TRACEPOINT1:
case TRACEPOINT2:
case TRACEPOINT3:
printf("%s: Tracepoint %d\n", ahd_name(ahd),
seqintcode - TRACEPOINT0);
break;
case NO_SEQINT:
break;
case SAW_HWERR:
ahd_handle_hwerrint(ahd);
break;
default:
printf("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
seqintcode);
break;
}
/*
* The sequencer is paused immediately on
* a SEQINT, so we should restart it when
* we're done.
*/
ahd_unpause(ahd);
}
void
ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
{
struct scb *scb;
u_int status0;
u_int status3;
u_int status;
u_int lqistat1;
u_int lqostat0;
u_int scbid;
u_int busfreetime;
ahd_update_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
lqistat1 = ahd_inb(ahd, LQISTAT1);
lqostat0 = ahd_inb(ahd, LQOSTAT0);
busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
if ((status0 & (SELDI|SELDO)) != 0) {
u_int simode0;
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
simode0 = ahd_inb(ahd, SIMODE0);
status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
}
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb != NULL
&& (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
scb = NULL;
if ((status0 & IOERR) != 0) {
u_int now_lvd;
now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
printf("%s: Transceiver State Has Changed to %s mode\n",
ahd_name(ahd), now_lvd ? "LVD" : "SE");
ahd_outb(ahd, CLRSINT0, CLRIOERR);
/*
* A change in I/O mode is equivalent to a bus reset.
*/
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
ahd_pause(ahd);
ahd_setup_iocell_workaround(ahd);
ahd_unpause(ahd);
} else if ((status0 & OVERRUN) != 0) {
printf("%s: SCSI offset overrun detected. Resetting bus.\n",
ahd_name(ahd));
AHD_CORRECTABLE_ERROR(ahd);
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
} else if ((status & SCSIRSTI) != 0) {
printf("%s: Someone reset channel A\n", ahd_name(ahd));
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
AHD_UNCORRECTABLE_ERROR(ahd);
} else if ((status & SCSIPERR) != 0) {
/* Make sure the sequencer is in a safe location. */
ahd_clear_critical_section(ahd);
ahd_handle_transmission_error(ahd);
} else if (lqostat0 != 0) {
printf("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
ahd_outb(ahd, CLRLQOINT0, lqostat0);
if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
ahd_outb(ahd, CLRLQOINT1, 0);
} else if ((status & SELTO) != 0) {
u_int scbid;
/* Stop the selection */
ahd_outb(ahd, SCSISEQ0, 0);
/* Make sure the sequencer is in a safe location. */
ahd_clear_critical_section(ahd);
/* No more pending messages */
ahd_clear_msg_state(ahd);
/* Clear interrupt state */
ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
/*
* Although the driver does not care about the
* 'Selection in Progress' status bit, the busy
* LED does. SELINGO is only cleared by a successful
* selection, so we must manually clear it to insure
* the LED turns off just incase no future successful
* selections occur (e.g. no devices on the bus).
*/
ahd_outb(ahd, CLRSINT0, CLRSELINGO);
scbid = ahd_inw(ahd, WAITING_TID_HEAD);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("%s: ahd_intr - referenced scb not "
"valid during SELTO scb(0x%x)\n",
ahd_name(ahd), scbid);
ahd_dump_card_state(ahd);
AHD_UNCORRECTABLE_ERROR(ahd);
} else {
struct ahd_devinfo devinfo;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
ahd_print_path(ahd, scb);
printf("Saw Selection Timeout for SCB 0x%x\n",
scbid);
}
#endif
ahd_scb_devinfo(ahd, &devinfo, scb);
aic_set_transaction_status(scb, CAM_SEL_TIMEOUT);
ahd_freeze_devq(ahd, scb);
/*
* Cancel any pending transactions on the device
* now that it seems to be missing. This will
* also revert us to async/narrow transfers until
* we can renegotiate with the device.
*/
ahd_handle_devreset(ahd, &devinfo,
CAM_LUN_WILDCARD,
CAM_SEL_TIMEOUT,
"Selection Timeout",
/*verbose_level*/1);
}
ahd_outb(ahd, CLRINT, CLRSCSIINT);
ahd_iocell_first_selection(ahd);
ahd_unpause(ahd);
} else if ((status0 & (SELDI|SELDO)) != 0) {
ahd_iocell_first_selection(ahd);
ahd_unpause(ahd);
} else if (status3 != 0) {
printf("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
ahd_name(ahd), status3);
AHD_CORRECTABLE_ERROR(ahd);
ahd_outb(ahd, CLRSINT3, status3);
} else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
/* Make sure the sequencer is in a safe location. */
ahd_clear_critical_section(ahd);
ahd_handle_lqiphase_error(ahd, lqistat1);
} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
/*
* This status can be delayed during some
* streaming operations. The SCSIPHASE
* handler has already dealt with this case
* so just clear the error.
*/
ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
} else if ((status & BUSFREE) != 0
|| (lqistat1 & LQOBUSFREE) != 0) {
u_int lqostat1;
int restart;
int clear_fifo;
int packetized;
u_int mode;
/*
* Clear our selection hardware as soon as possible.
* We may have an entry in the waiting Q for this target,
* that is affected by this busfree and we don't want to
* go about selecting the target while we handle the event.
*/
ahd_outb(ahd, SCSISEQ0, 0);
/* Make sure the sequencer is in a safe location. */
ahd_clear_critical_section(ahd);
/*
* Determine what we were up to at the time of
* the busfree.
*/
mode = AHD_MODE_SCSI;
busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
lqostat1 = ahd_inb(ahd, LQOSTAT1);
switch (busfreetime) {
case BUSFREE_DFF0:
case BUSFREE_DFF1:
{
u_int scbid;
struct scb *scb;
mode = busfreetime == BUSFREE_DFF0
? AHD_MODE_DFF0 : AHD_MODE_DFF1;
ahd_set_modes(ahd, mode, mode);
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("%s: Invalid SCB %d in DFF%d "
"during unexpected busfree\n",
ahd_name(ahd), scbid, mode);
packetized = 0;
AHD_CORRECTABLE_ERROR(ahd);
} else
packetized = (scb->flags & SCB_PACKETIZED) != 0;
clear_fifo = 1;
break;
}
case BUSFREE_LQO:
clear_fifo = 0;
packetized = 1;
break;
default:
clear_fifo = 0;
packetized = (lqostat1 & LQOBUSFREE) != 0;
if (!packetized
&& ahd_inb(ahd, LASTPHASE) == P_BUSFREE
&& (ahd_inb(ahd, SSTAT0) & SELDI) == 0
&& ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
|| (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
/*
* Assume packetized if we are not
* on the bus in a non-packetized
* capacity and any pending selection
* was a packetized selection.
*/
packetized = 1;
break;
}
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0)
printf("Saw Busfree. Busfreetime = 0x%x.\n",
busfreetime);
#endif
/*
* Busfrees that occur in non-packetized phases are
* handled by the nonpkt_busfree handler.
*/
if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
restart = ahd_handle_pkt_busfree(ahd, busfreetime);
} else {
packetized = 0;
restart = ahd_handle_nonpkt_busfree(ahd);
}
/*
* Clear the busfree interrupt status. The setting of
* the interrupt is a pulse, so in a perfect world, we
* would not need to muck with the ENBUSFREE logic. This
* would ensure that if the bus moves on to another
* connection, busfree protection is still in force. If
* BUSFREEREV is broken, however, we must manually clear
* the ENBUSFREE if the busfree occurred during a non-pack
* connection so that we don't get false positives during
* future, packetized, connections.
*/
ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
if (packetized == 0
&& (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
ahd_outb(ahd, SIMODE1,
ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
if (clear_fifo)
ahd_clear_fifo(ahd, mode);
ahd_clear_msg_state(ahd);
ahd_outb(ahd, CLRINT, CLRSCSIINT);
if (restart) {
ahd_restart(ahd);
} else {
ahd_unpause(ahd);
}
} else {
printf("%s: Missing case in ahd_handle_scsiint. status = %x\n",
ahd_name(ahd), status);
ahd_dump_card_state(ahd);
ahd_clear_intstat(ahd);
ahd_unpause(ahd);
}
}
static void
ahd_handle_transmission_error(struct ahd_softc *ahd)
{
struct scb *scb;
u_int scbid;
u_int lqistat1;
u_int msg_out;
u_int curphase;
u_int lastphase;
u_int perrdiag;
u_int cur_col;
int silent;
scb = NULL;
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
ahd_inb(ahd, LQISTAT2);
if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
&& (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
u_int lqistate;
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
lqistate = ahd_inb(ahd, LQISTATE);
if ((lqistate >= 0x1E && lqistate <= 0x24)
|| (lqistate == 0x29)) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
printf("%s: NLQCRC found via LQISTATE\n",
ahd_name(ahd));
}
#endif
lqistat1 |= LQICRCI_NLQ;
}
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
}
ahd_outb(ahd, CLRLQIINT1, lqistat1);
lastphase = ahd_inb(ahd, LASTPHASE);
curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
perrdiag = ahd_inb(ahd, PERRDIAG);
msg_out = MSG_INITIATOR_DET_ERR;
ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
/*
* Try to find the SCB associated with this error.
*/
silent = FALSE;
if (lqistat1 == 0
|| (lqistat1 & LQICRCI_NLQ) != 0) {
if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
ahd_set_active_fifo(ahd);
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb != NULL && SCB_IS_SILENT(scb))
silent = TRUE;
}
cur_col = 0;
if (silent == FALSE) {
printf("%s: Transmission error detected\n", ahd_name(ahd));
ahd_lqistat1_print(lqistat1, &cur_col, 50);
ahd_lastphase_print(lastphase, &cur_col, 50);
ahd_scsisigi_print(curphase, &cur_col, 50);
ahd_perrdiag_print(perrdiag, &cur_col, 50);
printf("\n");
AHD_CORRECTABLE_ERROR(ahd);
ahd_dump_card_state(ahd);
}
if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
if (silent == FALSE) {
printf("%s: Gross protocol error during incoming "
"packet. lqistat1 == 0x%x. Resetting bus.\n",
ahd_name(ahd), lqistat1);
AHD_UNCORRECTABLE_ERROR(ahd);
}
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
return;
} else if ((lqistat1 & LQICRCI_LQ) != 0) {
/*
* A CRC error has been detected on an incoming LQ.
* The bus is currently hung on the last ACK.
* Hit LQIRETRY to release the last ack, and
* wait for the sequencer to determine that ATNO
* is asserted while in message out to take us
* to our host message loop. No NONPACKREQ or
* LQIPHASE type errors will occur in this
* scenario. After this first LQIRETRY, the LQI
* manager will be in ISELO where it will
* happily sit until another packet phase begins.
* Unexpected bus free detection is enabled
* through any phases that occur after we release
* this last ack until the LQI manager sees a
* packet phase. This implies we may have to
* ignore a perfectly valid "unexected busfree"
* after our "initiator detected error" message is
* sent. A busfree is the expected response after
* we tell the target that it's L_Q was corrupted.
* (SPI4R09 10.7.3.3.3)
*/
ahd_outb(ahd, LQCTL2, LQIRETRY);
printf("LQIRetry for LQICRCI_LQ to release ACK\n");
AHD_CORRECTABLE_ERROR(ahd);
} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
/*
* We detected a CRC error in a NON-LQ packet.
* The hardware has varying behavior in this situation
* depending on whether this packet was part of a
* stream or not.
*
* PKT by PKT mode:
* The hardware has already acked the complete packet.
* If the target honors our outstanding ATN condition,
* we should be (or soon will be) in MSGOUT phase.
* This will trigger the LQIPHASE_LQ status bit as the
* hardware was expecting another LQ. Unexpected
* busfree detection is enabled. Once LQIPHASE_LQ is
* true (first entry into host message loop is much
* the same), we must clear LQIPHASE_LQ and hit
* LQIRETRY so the hardware is ready to handle
* a future LQ. NONPACKREQ will not be asserted again
* once we hit LQIRETRY until another packet is
* processed. The target may either go busfree
* or start another packet in response to our message.
*
* Read Streaming P0 asserted:
* If we raise ATN and the target completes the entire
* stream (P0 asserted during the last packet), the
* hardware will ack all data and return to the ISTART
* state. When the target reponds to our ATN condition,
* LQIPHASE_LQ will be asserted. We should respond to
* this with an LQIRETRY to prepare for any future
* packets. NONPACKREQ will not be asserted again
* once we hit LQIRETRY until another packet is
* processed. The target may either go busfree or
* start another packet in response to our message.
* Busfree detection is enabled.
*
* Read Streaming P0 not asserted:
* If we raise ATN and the target transitions to
* MSGOUT in or after a packet where P0 is not
* asserted, the hardware will assert LQIPHASE_NLQ.
* We should respond to the LQIPHASE_NLQ with an
* LQIRETRY. Should the target stay in a non-pkt
* phase after we send our message, the hardware
* will assert LQIPHASE_LQ. Recovery is then just as
* listed above for the read streaming with P0 asserted.
* Busfree detection is enabled.
*/
if (silent == FALSE)
printf("LQICRC_NLQ\n");
if (scb == NULL) {
printf("%s: No SCB valid for LQICRC_NLQ. "
"Resetting bus\n", ahd_name(ahd));
AHD_UNCORRECTABLE_ERROR(ahd);
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
return;
}
} else if ((lqistat1 & LQIBADLQI) != 0) {
printf("Need to handle BADLQI!\n");
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
return;
} else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
if ((curphase & ~P_DATAIN_DT) != 0) {
/* Ack the byte. So we can continue. */
if (silent == FALSE)
printf("Acking %s to clear perror\n",
ahd_lookup_phase_entry(curphase)->phasemsg);
ahd_inb(ahd, SCSIDAT);
}
if (curphase == P_MESGIN)
msg_out = MSG_PARITY_ERROR;
}
/*
* We've set the hardware to assert ATN if we
* get a parity error on "in" phases, so all we
* need to do is stuff the message buffer with
* the appropriate message. "In" phases have set
* mesg_out to something other than MSG_NOP.
*/
ahd->send_msg_perror = msg_out;
if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR)
scb->flags |= SCB_TRANSMISSION_ERROR;
ahd_outb(ahd, MSG_OUT, HOST_MSG);
ahd_outb(ahd, CLRINT, CLRSCSIINT);
ahd_unpause(ahd);
}
static void
ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
{
/*
* Clear the sources of the interrupts.
*/
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, CLRLQIINT1, lqistat1);
/*
* If the "illegal" phase changes were in response
* to our ATN to flag a CRC error, AND we ended up
* on packet boundaries, clear the error, restart the
* LQI manager as appropriate, and go on our merry
* way toward sending the message. Otherwise, reset
* the bus to clear the error.
*/
ahd_set_active_fifo(ahd);
if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
&& (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
if ((lqistat1 & LQIPHASE_LQ) != 0) {
printf("LQIRETRY for LQIPHASE_LQ\n");
AHD_CORRECTABLE_ERROR(ahd);
ahd_outb(ahd, LQCTL2, LQIRETRY);
} else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
printf("LQIRETRY for LQIPHASE_NLQ\n");
AHD_CORRECTABLE_ERROR(ahd);
ahd_outb(ahd, LQCTL2, LQIRETRY);
} else
panic("ahd_handle_lqiphase_error: No phase errors\n");
ahd_dump_card_state(ahd);
ahd_outb(ahd, CLRINT, CLRSCSIINT);
ahd_unpause(ahd);
} else {
printf("Reseting Channel for LQI Phase error\n");
AHD_CORRECTABLE_ERROR(ahd);
ahd_dump_card_state(ahd);
ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
}
}
/*
* Packetized unexpected or expected busfree.
* Entered in mode based on busfreetime.
*/
static int
ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
{
u_int lqostat1;
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
lqostat1 = ahd_inb(ahd, LQOSTAT1);
if ((lqostat1 & LQOBUSFREE) != 0) {
struct scb *scb;
u_int scbid;
u_int saved_scbptr;
u_int waiting_h;
u_int waiting_t;
u_int next;
/*
* The LQO manager detected an unexpected busfree
* either:
*
* 1) During an outgoing LQ.
* 2) After an outgoing LQ but before the first
* REQ of the command packet.
* 3) During an outgoing command packet.
*
* In all cases, CURRSCB is pointing to the
* SCB that encountered the failure. Clean
* up the queue, clear SELDO and LQOBUSFREE,
* and allow the sequencer to restart the select
* out at its lesure.
*/
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
scbid = ahd_inw(ahd, CURRSCB);
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL)
panic("SCB not valid during LQOBUSFREE");
/*
* Clear the status.
*/
ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
ahd_outb(ahd, CLRLQOINT1, 0);
ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
ahd_flush_device_writes(ahd);
ahd_outb(ahd, CLRSINT0, CLRSELDO);
/*
* Return the LQO manager to its idle loop. It will
* not do this automatically if the busfree occurs
* after the first REQ of either the LQ or command
* packet or between the LQ and command packet.
*/
ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
/*
* Update the waiting for selection queue so
* we restart on the correct SCB.
*/
waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
saved_scbptr = ahd_get_scbptr(ahd);
if (waiting_h != scbid) {
ahd_outw(ahd, WAITING_TID_HEAD, scbid);
waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
if (waiting_t == waiting_h) {
ahd_outw(ahd, WAITING_TID_TAIL, scbid);
next = SCB_LIST_NULL;
} else {
ahd_set_scbptr(ahd, waiting_h);
next = ahd_inw_scbram(ahd, SCB_NEXT2);
}
ahd_set_scbptr(ahd, scbid);
ahd_outw(ahd, SCB_NEXT2, next);
}
ahd_set_scbptr(ahd, saved_scbptr);
if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
if (SCB_IS_SILENT(scb) == FALSE) {
ahd_print_path(ahd, scb);
printf("Probable outgoing LQ CRC error. "
"Retrying command\n");
AHD_CORRECTABLE_ERROR(ahd);
}
scb->crc_retry_count++;
} else {
aic_set_transaction_status(scb, CAM_UNCOR_PARITY);
aic_freeze_scb(scb);
ahd_freeze_devq(ahd, scb);
}
/* Return unpausing the sequencer. */
return (0);
} else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
/*
* Ignore what are really parity errors that
* occur on the last REQ of a free running
* clock prior to going busfree. Some drives
* do not properly active negate just before
* going busfree resulting in a parity glitch.
*/
ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
printf("%s: Parity on last REQ detected "
"during busfree phase.\n",
ahd_name(ahd));
#endif
/* Return unpausing the sequencer. */
return (0);
}
if (ahd->src_mode != AHD_MODE_SCSI) {
u_int scbid;
struct scb *scb;
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
ahd_print_path(ahd, scb);
printf("Unexpected PKT busfree condition\n");
AHD_UNCORRECTABLE_ERROR(ahd);
ahd_dump_card_state(ahd);
ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
SCB_GET_LUN(scb), SCB_GET_TAG(scb),
ROLE_INITIATOR, CAM_UNEXP_BUSFREE);
/* Return restarting the sequencer. */
return (1);
}
printf("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
AHD_UNCORRECTABLE_ERROR(ahd);
ahd_dump_card_state(ahd);
/* Restart the sequencer. */
return (1);
}
/*
* Non-packetized unexpected or expected busfree.
*/
static int
ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
{
struct ahd_devinfo devinfo;
struct scb *scb;
u_int lastphase;
u_int saved_scsiid;
u_int saved_lun;
u_int target;
u_int initiator_role_id;
u_int scbid;
u_int ppr_busfree;
int printerror;
/*
* Look at what phase we were last in. If its message out,
* chances are pretty good that the busfree was in response
* to one of our abort requests.
*/
lastphase = ahd_inb(ahd, LASTPHASE);
saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
saved_lun = ahd_inb(ahd, SAVED_LUN);
target = SCSIID_TARGET(ahd, saved_scsiid);
initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
ahd_compile_devinfo(&devinfo, initiator_role_id,
target, saved_lun, 'A', ROLE_INITIATOR);
printerror = 1;
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
if (scb != NULL
&& (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
scb = NULL;
ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
if (lastphase == P_MESGOUT) {
u_int tag;
tag = SCB_LIST_NULL;
if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE)
|| ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) {
int found;
int sent_msg;
if (scb == NULL) {
ahd_print_devinfo(ahd, &devinfo);
printf("Abort for unidentified "
"connection completed.\n");
/* restart the sequencer. */
return (1);
}
sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
ahd_print_path(ahd, scb);
printf("SCB %d - Abort%s Completed.\n",
SCB_GET_TAG(scb),
sent_msg == MSG_ABORT_TAG ? "" : " Tag");
if (sent_msg == MSG_ABORT_TAG)
tag = SCB_GET_TAG(scb);
if ((scb->flags & SCB_CMDPHASE_ABORT) != 0) {
/*
* This abort is in response to an
* unexpected switch to command phase
* for a packetized connection. Since
* the identify message was never sent,
* "saved lun" is 0. We really want to
* abort only the SCB that encountered
* this error, which could have a different
* lun. The SCB will be retried so the OS
* will see the UA after renegotiating to
* packetized.
*/
tag = SCB_GET_TAG(scb);
saved_lun = scb->hscb->lun;
}
found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
tag, ROLE_INITIATOR,
CAM_REQ_ABORTED);
printf("found == 0x%x\n", found);
printerror = 0;
} else if (ahd_sent_msg(ahd, AHDMSG_1B,
MSG_BUS_DEV_RESET, TRUE)) {
#ifdef __FreeBSD__
/*
* Don't mark the user's request for this BDR
* as completing with CAM_BDR_SENT. CAM3
* specifies CAM_REQ_CMP.
*/
if (scb != NULL
&& scb->io_ctx->ccb_h.func_code== XPT_RESET_DEV
&& ahd_match_scb(ahd, scb, target, 'A',
CAM_LUN_WILDCARD, SCB_LIST_NULL,
ROLE_INITIATOR))
aic_set_transaction_status(scb, CAM_REQ_CMP);
#endif
ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
CAM_BDR_SENT, "Bus Device Reset",
/*verbose_level*/0);
printerror = 0;
} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE)
&& ppr_busfree == 0) {
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
/*
* PPR Rejected.
*
* If the previous negotiation was packetized,
* this could be because the device has been
* reset without our knowledge. Force our
* current negotiation to async and retry the
* negotiation. Otherwise retry the command
* with non-ppr negotiation.
*/
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("PPR negotiation rejected busfree.\n");
#endif
tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
devinfo.our_scsiid,
devinfo.target, &tstate);
if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
ahd_set_width(ahd, &devinfo,
MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_CUR,
/*paused*/TRUE);
ahd_set_syncrate(ahd, &devinfo,
/*period*/0, /*offset*/0,
/*ppr_options*/0,
AHD_TRANS_CUR,
/*paused*/TRUE);
/*
* The expect PPR busfree handler below
* will effect the retry and necessary
* abort.
*/
} else {
tinfo->curr.transport_version = 2;
tinfo->goal.transport_version = 2;
tinfo->goal.ppr_options = 0;
/*
* Remove any SCBs in the waiting for selection
* queue that may also be for this target so
* that command ordering is preserved.
*/
ahd_freeze_devq(ahd, scb);
ahd_qinfifo_requeue_tail(ahd, scb);
printerror = 0;
}
} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE)
&& ppr_busfree == 0) {
/*
* Negotiation Rejected. Go-narrow and
* retry command.
*/
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("WDTR negotiation rejected busfree.\n");
#endif
ahd_set_width(ahd, &devinfo,
MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_CUR|AHD_TRANS_GOAL,
/*paused*/TRUE);
/*
* Remove any SCBs in the waiting for selection
* queue that may also be for this target so that
* command ordering is preserved.
*/
ahd_freeze_devq(ahd, scb);
ahd_qinfifo_requeue_tail(ahd, scb);
printerror = 0;
} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE)
&& ppr_busfree == 0) {
/*
* Negotiation Rejected. Go-async and
* retry command.
*/
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("SDTR negotiation rejected busfree.\n");
#endif
ahd_set_syncrate(ahd, &devinfo,
/*period*/0, /*offset*/0,
/*ppr_options*/0,
AHD_TRANS_CUR|AHD_TRANS_GOAL,
/*paused*/TRUE);
/*
* Remove any SCBs in the waiting for selection
* queue that may also be for this target so that
* command ordering is preserved.
*/
ahd_freeze_devq(ahd, scb);
ahd_qinfifo_requeue_tail(ahd, scb);
printerror = 0;
} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
&& ahd_sent_msg(ahd, AHDMSG_1B,
MSG_INITIATOR_DET_ERR, TRUE)) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("Expected IDE Busfree\n");
#endif
printerror = 0;
} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
&& ahd_sent_msg(ahd, AHDMSG_1B,
MSG_MESSAGE_REJECT, TRUE)) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("Expected QAS Reject Busfree\n");
#endif
printerror = 0;
}
}
/*
* The busfree required flag is honored at the end of
* the message phases. We check it last in case we
* had to send some other message that caused a busfree.
*/
if (printerror != 0
&& (lastphase == P_MESGIN || lastphase == P_MESGOUT)
&& ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {
ahd_freeze_devq(ahd, scb);
aic_set_transaction_status(scb, CAM_REQUEUE_REQ);
aic_freeze_scb(scb);
if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
SCB_GET_CHANNEL(ahd, scb),
SCB_GET_LUN(scb), SCB_LIST_NULL,
ROLE_INITIATOR, CAM_REQ_ABORTED);
} else {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("PPR Negotiation Busfree.\n");
#endif
ahd_done(ahd, scb);
}
printerror = 0;
}
if (printerror != 0) {
int aborted;
aborted = 0;
if (scb != NULL) {
u_int tag;
if ((scb->hscb->control & TAG_ENB) != 0)
tag = SCB_GET_TAG(scb);
else
tag = SCB_LIST_NULL;
ahd_print_path(ahd, scb);
aborted = ahd_abort_scbs(ahd, target, 'A',
SCB_GET_LUN(scb), tag,
ROLE_INITIATOR,
CAM_UNEXP_BUSFREE);
} else {
/*
* We had not fully identified this connection,
* so we cannot abort anything.
*/
printf("%s: ", ahd_name(ahd));
}
printf("Unexpected busfree %s, %d SCBs aborted, "
"PRGMCNT == 0x%x\n",
ahd_lookup_phase_entry(lastphase)->phasemsg,
aborted,
ahd_inw(ahd, PRGMCNT));
AHD_UNCORRECTABLE_ERROR(ahd);
ahd_dump_card_state(ahd);
if (lastphase != P_BUSFREE)
ahd_force_renegotiation(ahd, &devinfo);
}
/* Always restart the sequencer. */
return (1);
}
static void
ahd_handle_proto_violation(struct ahd_softc *ahd)
{
struct ahd_devinfo devinfo;
struct scb *scb;
u_int scbid;
u_int seq_flags;
u_int curphase;
u_int lastphase;
int found;
ahd_fetch_devinfo(ahd, &devinfo);
scbid = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scbid);
seq_flags = ahd_inb(ahd, SEQ_FLAGS);
curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
lastphase = ahd_inb(ahd, LASTPHASE);
if ((seq_flags & NOT_IDENTIFIED) != 0) {
/*
* The reconnecting target either did not send an
* identify message, or did, but we didn't find an SCB
* to match.
*/
ahd_print_devinfo(ahd, &devinfo);
printf("Target did not send an IDENTIFY message. "
"LASTPHASE = 0x%x.\n", lastphase);
AHD_UNCORRECTABLE_ERROR(ahd);
scb = NULL;
} else if (scb == NULL) {
/*
* We don't seem to have an SCB active for this
* transaction. Print an error and reset the bus.
*/
ahd_print_devinfo(ahd, &devinfo);
printf("No SCB found during protocol violation\n");
AHD_UNCORRECTABLE_ERROR(ahd);
goto proto_violation_reset;
} else {
aic_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
if ((seq_flags & NO_CDB_SENT) != 0) {
ahd_print_path(ahd, scb);
printf("No or incomplete CDB sent to device.\n");
AHD_UNCORRECTABLE_ERROR(ahd);
} else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
& STATUS_RCVD) == 0) {
/*
* The target never bothered to provide status to
* us prior to completing the command. Since we don't
* know the disposition of this command, we must attempt
* to abort it. Assert ATN and prepare to send an abort
* message.
*/
ahd_print_path(ahd, scb);
printf("Completed command without status.\n");
} else {
ahd_print_path(ahd, scb);
printf("Unknown protocol violation.\n");
AHD_UNCORRECTABLE_ERROR(ahd);
ahd_dump_card_state(ahd);
}
}
if ((lastphase & ~P_DATAIN_DT) == 0
|| lastphase == P_COMMAND) {
proto_violation_reset:
/*
* Target either went directly to data
* phase or didn't respond to our ATN.
* The only safe thing to do is to blow
* it away with a bus reset.
*/
found = ahd_reset_channel(ahd, 'A', TRUE);
printf("%s: Issued Channel %c Bus Reset. "
"%d SCBs aborted\n", ahd_name(ahd), 'A', found);
AHD_UNCORRECTABLE_ERROR(ahd);
} else {
/*
* Leave the selection hardware off in case
* this abort attempt will affect yet to
* be sent commands.
*/
ahd_outb(ahd, SCSISEQ0,
ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
ahd_assert_atn(ahd);
ahd_outb(ahd, MSG_OUT, HOST_MSG);
if (scb == NULL) {
ahd_print_devinfo(ahd, &devinfo);
ahd->msgout_buf[0] = MSG_ABORT_TASK;
ahd->msgout_len = 1;
ahd->msgout_index = 0;
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
} else {
ahd_print_path(ahd, scb);
scb->flags |= SCB_ABORT;
}
printf("Protocol violation %s. Attempting to abort.\n",
ahd_lookup_phase_entry(curphase)->phasemsg);
AHD_UNCORRECTABLE_ERROR(ahd);
}
}
/*
* Force renegotiation to occur the next time we initiate
* a command to the current device.
*/
static void
ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
struct ahd_initiator_tinfo *targ_info;
struct ahd_tmode_tstate *tstate;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
ahd_print_devinfo(ahd, devinfo);
printf("Forcing renegotiation\n");
}
#endif
targ_info = ahd_fetch_transinfo(ahd,
devinfo->channel,
devinfo->our_scsiid,
devinfo->target,
&tstate);
ahd_update_neg_request(ahd, devinfo, tstate,
targ_info, AHD_NEG_IF_NON_ASYNC);
}
#define AHD_MAX_STEPS 2000
void
ahd_clear_critical_section(struct ahd_softc *ahd)
{
ahd_mode_state saved_modes;
int stepping;
int steps;
int first_instr;
u_int simode0;
u_int simode1;
u_int simode3;
u_int lqimode0;
u_int lqimode1;
u_int lqomode0;
u_int lqomode1;
if (ahd->num_critical_sections == 0)
return;
stepping = FALSE;
steps = 0;
first_instr = 0;
simode0 = 0;
simode1 = 0;
simode3 = 0;
lqimode0 = 0;
lqimode1 = 0;
lqomode0 = 0;
lqomode1 = 0;
saved_modes = ahd_save_modes(ahd);
for (;;) {
struct cs *cs;
u_int seqaddr;
u_int i;
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
seqaddr = ahd_inw(ahd, CURADDR);
cs = ahd->critical_sections;
for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
if (cs->begin < seqaddr && cs->end >= seqaddr)
break;
}
if (i == ahd->num_critical_sections)
break;
if (steps > AHD_MAX_STEPS) {
printf("%s: Infinite loop in critical section\n"
"%s: First Instruction 0x%x now 0x%x\n",
ahd_name(ahd), ahd_name(ahd), first_instr,
seqaddr);
AHD_FATAL_ERROR(ahd);
ahd_dump_card_state(ahd);
panic("critical section loop");
}
steps++;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0)
printf("%s: Single stepping at 0x%x\n", ahd_name(ahd),
seqaddr);
#endif
if (stepping == FALSE) {
first_instr = seqaddr;
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
simode0 = ahd_inb(ahd, SIMODE0);
simode3 = ahd_inb(ahd, SIMODE3);
lqimode0 = ahd_inb(ahd, LQIMODE0);
lqimode1 = ahd_inb(ahd, LQIMODE1);
lqomode0 = ahd_inb(ahd, LQOMODE0);
lqomode1 = ahd_inb(ahd, LQOMODE1);
ahd_outb(ahd, SIMODE0, 0);
ahd_outb(ahd, SIMODE3, 0);
ahd_outb(ahd, LQIMODE0, 0);
ahd_outb(ahd, LQIMODE1, 0);
ahd_outb(ahd, LQOMODE0, 0);
ahd_outb(ahd, LQOMODE1, 0);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
simode1 = ahd_inb(ahd, SIMODE1);
/*
* We don't clear ENBUSFREE. Unfortunately
* we cannot re-enable busfree detection within
* the current connection, so we must leave it
* on while single stepping.
*/
ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
stepping = TRUE;
}
ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
ahd_outb(ahd, CLRINT, CLRSCSIINT);
ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
ahd_outb(ahd, HCNTRL, ahd->unpause);
while (!ahd_is_paused(ahd))
aic_delay(200);
ahd_update_modes(ahd);
}
if (stepping) {
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
ahd_outb(ahd, SIMODE0, simode0);
ahd_outb(ahd, SIMODE3, simode3);
ahd_outb(ahd, LQIMODE0, lqimode0);
ahd_outb(ahd, LQIMODE1, lqimode1);
ahd_outb(ahd, LQOMODE0, lqomode0);
ahd_outb(ahd, LQOMODE1, lqomode1);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
ahd_outb(ahd, SIMODE1, simode1);
/*
* SCSIINT seems to glitch occasionally when
* the interrupt masks are restored. Clear SCSIINT
* one more time so that only persistent errors
* are seen as a real interrupt.
*/
ahd_outb(ahd, CLRINT, CLRSCSIINT);
}
ahd_restore_modes(ahd, saved_modes);
}
/*
* Clear any pending interrupt status.
*/
void
ahd_clear_intstat(struct ahd_softc *ahd)
{
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
/* Clear any interrupt conditions this may have caused */
ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
|CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
|CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
|CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
|CLRLQOATNPKT|CLRLQOTCRC);
ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
|CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
ahd_outb(ahd, CLRLQOINT0, 0);
ahd_outb(ahd, CLRLQOINT1, 0);
}
ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
|CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
|CLRIOERR|CLROVERRUN);
ahd_outb(ahd, CLRINT, CLRSCSIINT);
}
/**************************** Debugging Routines ******************************/
#ifdef AHD_DEBUG
uint32_t ahd_debug = AHD_DEBUG_OPTS;
#endif
void
ahd_print_scb(struct scb *scb)
{
struct hardware_scb *hscb;
int i;
hscb = scb->hscb;
printf("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
(void *)scb,
hscb->control,
hscb->scsiid,
hscb->lun,
hscb->cdb_len);
printf("Shared Data: ");
for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
printf("%#02x", hscb->shared_data.idata.cdb[i]);
printf(" dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
(uint32_t)((aic_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
(uint32_t)(aic_le64toh(hscb->dataptr) & 0xFFFFFFFF),
aic_le32toh(hscb->datacnt),
aic_le32toh(hscb->sgptr),
SCB_GET_TAG(scb));
ahd_dump_sglist(scb);
}
void
ahd_dump_sglist(struct scb *scb)
{
int i;
if (scb->sg_count > 0) {
if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
struct ahd_dma64_seg *sg_list;
sg_list = (struct ahd_dma64_seg*)scb->sg_list;
for (i = 0; i < scb->sg_count; i++) {
uint64_t addr;
addr = aic_le64toh(sg_list[i].addr);
printf("sg[%d] - Addr 0x%x%x : Length %d%s\n",
i,
(uint32_t)((addr >> 32) & 0xFFFFFFFF),
(uint32_t)(addr & 0xFFFFFFFF),
sg_list[i].len & AHD_SG_LEN_MASK,
(sg_list[i].len & AHD_DMA_LAST_SEG)
? " Last" : "");
}
} else {
struct ahd_dma_seg *sg_list;
sg_list = (struct ahd_dma_seg*)scb->sg_list;
for (i = 0; i < scb->sg_count; i++) {
uint32_t len;
len = aic_le32toh(sg_list[i].len);
printf("sg[%d] - Addr 0x%x%x : Length %d%s\n",
i,
(len & AHD_SG_HIGH_ADDR_MASK) >> 24,
aic_le32toh(sg_list[i].addr),
len & AHD_SG_LEN_MASK,
len & AHD_DMA_LAST_SEG ? " Last" : "");
}
}
}
}
/************************* Transfer Negotiation *******************************/
/*
* Allocate per target mode instance (ID we respond to as a target)
* transfer negotiation data structures.
*/
static struct ahd_tmode_tstate *
ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
{
struct ahd_tmode_tstate *master_tstate;
struct ahd_tmode_tstate *tstate;
int i;
master_tstate = ahd->enabled_targets[ahd->our_id];
if (ahd->enabled_targets[scsi_id] != NULL
&& ahd->enabled_targets[scsi_id] != master_tstate)
panic("%s: ahd_alloc_tstate - Target already allocated",
ahd_name(ahd));
tstate = malloc(sizeof(*tstate), M_DEVBUF, M_NOWAIT);
if (tstate == NULL)
return (NULL);
/*
* If we have allocated a master tstate, copy user settings from
* the master tstate (taken from SRAM or the EEPROM) for this
* channel, but reset our current and goal settings to async/narrow
* until an initiator talks to us.
*/
if (master_tstate != NULL) {
memcpy(tstate, master_tstate, sizeof(*tstate));
memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
for (i = 0; i < 16; i++) {
memset(&tstate->transinfo[i].curr, 0,
sizeof(tstate->transinfo[i].curr));
memset(&tstate->transinfo[i].goal, 0,
sizeof(tstate->transinfo[i].goal));
}
} else
memset(tstate, 0, sizeof(*tstate));
ahd->enabled_targets[scsi_id] = tstate;
return (tstate);
}
#ifdef AHD_TARGET_MODE
/*
* Free per target mode instance (ID we respond to as a target)
* transfer negotiation data structures.
*/
static void
ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
{
struct ahd_tmode_tstate *tstate;
/*
* Don't clean up our "master" tstate.
* It has our default user settings.
*/
if (scsi_id == ahd->our_id
&& force == FALSE)
return;
tstate = ahd->enabled_targets[scsi_id];
if (tstate != NULL)
free(tstate, M_DEVBUF);
ahd->enabled_targets[scsi_id] = NULL;
}
#endif
/*
* Called when we have an active connection to a target on the bus,
* this function finds the nearest period to the input period limited
* by the capabilities of the bus connectivity of and sync settings for
* the target.
*/
void
ahd_devlimited_syncrate(struct ahd_softc *ahd,
struct ahd_initiator_tinfo *tinfo,
u_int *period, u_int *ppr_options, role_t role)
{
struct ahd_transinfo *transinfo;
u_int maxsync;
if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
&& (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
maxsync = AHD_SYNCRATE_PACED;
} else {
maxsync = AHD_SYNCRATE_ULTRA;
/* Can't do DT related options on an SE bus */
*ppr_options &= MSG_EXT_PPR_QAS_REQ;
}
/*
* Never allow a value higher than our current goal
* period otherwise we may allow a target initiated
* negotiation to go above the limit as set by the
* user. In the case of an initiator initiated
* sync negotiation, we limit based on the user
* setting. This allows the system to still accept
* incoming negotiations even if target initiated
* negotiation is not performed.
*/
if (role == ROLE_TARGET)
transinfo = &tinfo->user;
else
transinfo = &tinfo->goal;
*ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
maxsync = MAX(maxsync, AHD_SYNCRATE_ULTRA2);
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
}
if (transinfo->period == 0) {
*period = 0;
*ppr_options = 0;
} else {
*period = MAX(*period, transinfo->period);
ahd_find_syncrate(ahd, period, ppr_options, maxsync);
}
}
/*
* Look up the valid period to SCSIRATE conversion in our table.
* Return the period and offset that should be sent to the target
* if this was the beginning of an SDTR.
*/
void
ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
u_int *ppr_options, u_int maxsync)
{
if (*period < maxsync)
*period = maxsync;
if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
&& *period > AHD_SYNCRATE_MIN_DT)
*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
if (*period > AHD_SYNCRATE_MIN)
*period = 0;
/* Honor PPR option conformance rules. */
if (*period > AHD_SYNCRATE_PACED)
*ppr_options &= ~MSG_EXT_PPR_RTI;
if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
*ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
*ppr_options &= MSG_EXT_PPR_QAS_REQ;
/* Skip all PACED only entries if IU is not available */
if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
&& *period < AHD_SYNCRATE_DT)
*period = AHD_SYNCRATE_DT;
/* Skip all DT only entries if DT is not available */
if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
&& *period < AHD_SYNCRATE_ULTRA2)
*period = AHD_SYNCRATE_ULTRA2;
}
/*
* Truncate the given synchronous offset to a value the
* current adapter type and syncrate are capable of.
*/
void
ahd_validate_offset(struct ahd_softc *ahd,
struct ahd_initiator_tinfo *tinfo,
u_int period, u_int *offset, int wide,
role_t role)
{
u_int maxoffset;
/* Limit offset to what we can do */
if (period == 0)
maxoffset = 0;
else if (period <= AHD_SYNCRATE_PACED) {
if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
maxoffset = MAX_OFFSET_PACED_BUG;
else
maxoffset = MAX_OFFSET_PACED;
} else
maxoffset = MAX_OFFSET_NON_PACED;
*offset = MIN(*offset, maxoffset);
if (tinfo != NULL) {
if (role == ROLE_TARGET)
*offset = MIN(*offset, tinfo->user.offset);
else
*offset = MIN(*offset, tinfo->goal.offset);
}
}
/*
* Truncate the given transfer width parameter to a value the
* current adapter type is capable of.
*/
void
ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
u_int *bus_width, role_t role)
{
switch (*bus_width) {
default:
if (ahd->features & AHD_WIDE) {
/* Respond Wide */
*bus_width = MSG_EXT_WDTR_BUS_16_BIT;
break;
}
/* FALLTHROUGH */
case MSG_EXT_WDTR_BUS_8_BIT:
*bus_width = MSG_EXT_WDTR_BUS_8_BIT;
break;
}
if (tinfo != NULL) {
if (role == ROLE_TARGET)
*bus_width = MIN(tinfo->user.width, *bus_width);
else
*bus_width = MIN(tinfo->goal.width, *bus_width);
}
}
/*
* Update the bitmask of targets for which the controller should
* negotiate with at the next convenient opportunity. This currently
* means the next time we send the initial identify messages for
* a new transaction.
*/
int
ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
struct ahd_tmode_tstate *tstate,
struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
{
u_int auto_negotiate_orig;
auto_negotiate_orig = tstate->auto_negotiate;
if (neg_type == AHD_NEG_ALWAYS) {
/*
* Force our "current" settings to be
* unknown so that unless a bus reset
* occurs the need to renegotiate is
* recorded persistently.
*/
if ((ahd->features & AHD_WIDE) != 0)
tinfo->curr.width = AHD_WIDTH_UNKNOWN;
tinfo->curr.period = AHD_PERIOD_UNKNOWN;
tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
}
if (tinfo->curr.period != tinfo->goal.period
|| tinfo->curr.width != tinfo->goal.width
|| tinfo->curr.offset != tinfo->goal.offset
|| tinfo->curr.ppr_options != tinfo->goal.ppr_options
|| (neg_type == AHD_NEG_IF_NON_ASYNC
&& (tinfo->goal.offset != 0
|| tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
|| tinfo->goal.ppr_options != 0)))
tstate->auto_negotiate |= devinfo->target_mask;
else
tstate->auto_negotiate &= ~devinfo->target_mask;
return (auto_negotiate_orig != tstate->auto_negotiate);
}
/*
* Update the user/goal/curr tables of synchronous negotiation
* parameters as well as, in the case of a current or active update,
* any data structures on the host controller. In the case of an
* active update, the specified target is currently talking to us on
* the bus, so the transfer parameter update must take effect
* immediately.
*/
void
ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
u_int period, u_int offset, u_int ppr_options,
u_int type, int paused)
{
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
u_int old_period;
u_int old_offset;
u_int old_ppr;
int active;
int update_needed;
active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
update_needed = 0;
if (period == 0 || offset == 0) {
period = 0;
offset = 0;
}
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
if ((type & AHD_TRANS_USER) != 0) {
tinfo->user.period = period;
tinfo->user.offset = offset;
tinfo->user.ppr_options = ppr_options;
}
if ((type & AHD_TRANS_GOAL) != 0) {
tinfo->goal.period = period;
tinfo->goal.offset = offset;
tinfo->goal.ppr_options = ppr_options;
}
old_period = tinfo->curr.period;
old_offset = tinfo->curr.offset;
old_ppr = tinfo->curr.ppr_options;
if ((type & AHD_TRANS_CUR) != 0
&& (old_period != period
|| old_offset != offset
|| old_ppr != ppr_options)) {
update_needed++;
tinfo->curr.period = period;
tinfo->curr.offset = offset;
tinfo->curr.ppr_options = ppr_options;
ahd_send_async(ahd, devinfo->channel, devinfo->target,
CAM_LUN_WILDCARD, AC_TRANSFER_NEG, NULL);
if (bootverbose) {
if (offset != 0) {
int options;
printf("%s: target %d synchronous with "
"period = 0x%x, offset = 0x%x",
ahd_name(ahd), devinfo->target,
period, offset);
options = 0;
if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
printf("(RDSTRM");
options++;
}
if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
printf("%s", options ? "|DT" : "(DT");
options++;
}
if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
printf("%s", options ? "|IU" : "(IU");
options++;
}
if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
printf("%s", options ? "|RTI" : "(RTI");
options++;
}
if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
printf("%s", options ? "|QAS" : "(QAS");
options++;
}
if (options != 0)
printf(")\n");
else
printf("\n");
} else {
printf("%s: target %d using "
"asynchronous transfers%s\n",
ahd_name(ahd), devinfo->target,
(ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
? "(QAS)" : "");
}
}
}
/*
* Always refresh the neg-table to handle the case of the
* sequencer setting the ENATNO bit for a MK_MESSAGE request.
* We will always renegotiate in that case if this is a
* packetized request. Also manage the busfree expected flag
* from this common routine so that we catch changes due to
* WDTR or SDTR messages.
*/
if ((type & AHD_TRANS_CUR) != 0) {
if (!paused)
ahd_pause(ahd);
ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
if (!paused)
ahd_unpause(ahd);
if (ahd->msg_type != MSG_TYPE_NONE) {
if ((old_ppr & MSG_EXT_PPR_IU_REQ)
!= (ppr_options & MSG_EXT_PPR_IU_REQ)) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
ahd_print_devinfo(ahd, devinfo);
printf("Expecting IU Change busfree\n");
}
#endif
ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
| MSG_FLAG_IU_REQ_CHANGED;
}
if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("PPR with IU_REQ outstanding\n");
#endif
ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
}
}
}
update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
tinfo, AHD_NEG_TO_GOAL);
if (update_needed && active)
ahd_update_pending_scbs(ahd);
}
/*
* Update the user/goal/curr tables of wide negotiation
* parameters as well as, in the case of a current or active update,
* any data structures on the host controller. In the case of an
* active update, the specified target is currently talking to us on
* the bus, so the transfer parameter update must take effect
* immediately.
*/
void
ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
u_int width, u_int type, int paused)
{
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
u_int oldwidth;
int active;
int update_needed;
active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
update_needed = 0;
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
if ((type & AHD_TRANS_USER) != 0)
tinfo->user.width = width;
if ((type & AHD_TRANS_GOAL) != 0)
tinfo->goal.width = width;
oldwidth = tinfo->curr.width;
if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
update_needed++;
tinfo->curr.width = width;
ahd_send_async(ahd, devinfo->channel, devinfo->target,
CAM_LUN_WILDCARD, AC_TRANSFER_NEG, NULL);
if (bootverbose) {
printf("%s: target %d using %dbit transfers\n",
ahd_name(ahd), devinfo->target,
8 * (0x01 << width));
}
}
if ((type & AHD_TRANS_CUR) != 0) {
if (!paused)
ahd_pause(ahd);
ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
if (!paused)
ahd_unpause(ahd);
}
update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
tinfo, AHD_NEG_TO_GOAL);
if (update_needed && active)
ahd_update_pending_scbs(ahd);
}
/*
* Update the current state of tagged queuing for a given target.
*/
void
ahd_set_tags(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
ahd_queue_alg alg)
{
ahd_platform_set_tags(ahd, devinfo, alg);
ahd_send_async(ahd, devinfo->channel, devinfo->target,
devinfo->lun, AC_TRANSFER_NEG, &alg);
}
static void
ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
struct ahd_transinfo *tinfo)
{
ahd_mode_state saved_modes;
u_int period;
u_int ppr_opts;
u_int con_opts;
u_int offset;
u_int saved_negoaddr;
uint8_t iocell_opts[sizeof(ahd->iocell_opts)];
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
saved_negoaddr = ahd_inb(ahd, NEGOADDR);
ahd_outb(ahd, NEGOADDR, devinfo->target);
period = tinfo->period;
offset = tinfo->offset;
memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
|MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
con_opts = 0;
if (period == 0)
period = AHD_SYNCRATE_ASYNC;
if (period == AHD_SYNCRATE_160) {
if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
/*
* When the SPI4 spec was finalized, PACE transfers
* was not made a configurable option in the PPR
* message. Instead it is assumed to be enabled for
* any syncrate faster than 80MHz. Nevertheless,
* Harpoon2A4 allows this to be configurable.
*
* Harpoon2A4 also assumes at most 2 data bytes per
* negotiated REQ/ACK offset. Paced transfers take
* 4, so we must adjust our offset.
*/
ppr_opts |= PPROPT_PACE;
offset *= 2;
/*
* Harpoon2A assumed that there would be a
* fallback rate between 160MHz and 80Mhz,
* so 7 is used as the period factor rather
* than 8 for 160MHz.
*/
period = AHD_SYNCRATE_REVA_160;
}
if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
~AHD_PRECOMP_MASK;
} else {
/*
* Precomp should be disabled for non-paced transfers.
*/
iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
&& (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
&& (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
/*
* Slow down our CRC interval to be
* compatible with non-packetized
* U160 devices that can't handle a
* CRC at full speed.
*/
con_opts |= ENSLOWCRC;
}
if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
/*
* On H2A4, revert to a slower slewrate
* on non-paced transfers.
*/
iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
~AHD_SLEWRATE_MASK;
}
}
ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
ahd_outb(ahd, NEGPERIOD, period);
ahd_outb(ahd, NEGPPROPTS, ppr_opts);
ahd_outb(ahd, NEGOFFSET, offset);
if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
con_opts |= WIDEXFER;
/*
* During packetized transfers, the target will
* give us the opportunity to send command packets
* without us asserting attention.
*/
if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
con_opts |= ENAUTOATNO;
ahd_outb(ahd, NEGCONOPTS, con_opts);
ahd_outb(ahd, NEGOADDR, saved_negoaddr);
ahd_restore_modes(ahd, saved_modes);
}
/*
* When the transfer settings for a connection change, setup for
* negotiation in pending SCBs to effect the change as quickly as
* possible. We also cancel any negotiations that are scheduled
* for inflight SCBs that have not been started yet.
*/
static void
ahd_update_pending_scbs(struct ahd_softc *ahd)
{
struct scb *pending_scb;
int pending_scb_count;
int paused;
u_int saved_scbptr;
ahd_mode_state saved_modes;
/*
* Traverse the pending SCB list and ensure that all of the
* SCBs there have the proper settings. We can only safely
* clear the negotiation required flag (setting requires the
* execution queue to be modified) and this is only possible
* if we are not already attempting to select out for this
* SCB. For this reason, all callers only call this routine
* if we are changing the negotiation settings for the currently
* active transaction on the bus.
*/
pending_scb_count = 0;
LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
struct ahd_devinfo devinfo;
struct ahd_tmode_tstate *tstate;
ahd_scb_devinfo(ahd, &devinfo, pending_scb);
ahd_fetch_transinfo(ahd, devinfo.channel,
devinfo.our_scsiid,
devinfo.target, &tstate);
if ((tstate->auto_negotiate & devinfo.target_mask) == 0
&& (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
pending_scb->hscb->control &= ~MK_MESSAGE;
}
ahd_sync_scb(ahd, pending_scb,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
pending_scb_count++;
}
if (pending_scb_count == 0)
return;
if (ahd_is_paused(ahd)) {
paused = 1;
} else {
paused = 0;
ahd_pause(ahd);
}
/*
* Force the sequencer to reinitialize the selection for
* the command at the head of the execution queue if it
* has already been setup. The negotiation changes may
* effect whether we select-out with ATN. It is only
* safe to clear ENSELO when the bus is not free and no
* selection is in progres or completed.
*/
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
&& (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
saved_scbptr = ahd_get_scbptr(ahd);
/* Ensure that the hscbs down on the card match the new information */
LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
u_int scb_tag;
u_int control;
scb_tag = SCB_GET_TAG(pending_scb);
ahd_set_scbptr(ahd, scb_tag);
control = ahd_inb_scbram(ahd, SCB_CONTROL);
control &= ~MK_MESSAGE;
control |= pending_scb->hscb->control & MK_MESSAGE;
ahd_outb(ahd, SCB_CONTROL, control);
}
ahd_set_scbptr(ahd, saved_scbptr);
ahd_restore_modes(ahd, saved_modes);
if (paused == 0)
ahd_unpause(ahd);
}
/**************************** Pathing Information *****************************/
static void
ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
ahd_mode_state saved_modes;
u_int saved_scsiid;
role_t role;
int our_id;
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
if (ahd_inb(ahd, SSTAT0) & TARGET)
role = ROLE_TARGET;
else
role = ROLE_INITIATOR;
if (role == ROLE_TARGET
&& (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
/* We were selected, so pull our id from TARGIDIN */
our_id = ahd_inb(ahd, TARGIDIN) & OID;
} else if (role == ROLE_TARGET)
our_id = ahd_inb(ahd, TOWNID);
else
our_id = ahd_inb(ahd, IOWNID);
saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
ahd_compile_devinfo(devinfo,
our_id,
SCSIID_TARGET(ahd, saved_scsiid),
ahd_inb(ahd, SAVED_LUN),
SCSIID_CHANNEL(ahd, saved_scsiid),
role);
ahd_restore_modes(ahd, saved_modes);
}
void
ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
printf("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
devinfo->target, devinfo->lun);
}
struct ahd_phase_table_entry*
ahd_lookup_phase_entry(int phase)
{
struct ahd_phase_table_entry *entry;
struct ahd_phase_table_entry *last_entry;
/*
* num_phases doesn't include the default entry which
* will be returned if the phase doesn't match.
*/
last_entry = &ahd_phase_table[num_phases];
for (entry = ahd_phase_table; entry < last_entry; entry++) {
if (phase == entry->phase)
break;
}
return (entry);
}
void
ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
u_int lun, char channel, role_t role)
{
devinfo->our_scsiid = our_id;
devinfo->target = target;
devinfo->lun = lun;
devinfo->target_offset = target;
devinfo->channel = channel;
devinfo->role = role;
if (channel == 'B')
devinfo->target_offset += 8;
devinfo->target_mask = (0x01 << devinfo->target_offset);
}
static void
ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
struct scb *scb)
{
role_t role;
int our_id;
our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
role = ROLE_INITIATOR;
if ((scb->hscb->control & TARGET_SCB) != 0)
role = ROLE_TARGET;
ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
}
/************************ Message Phase Processing ****************************/
/*
* When an initiator transaction with the MK_MESSAGE flag either reconnects
* or enters the initial message out phase, we are interrupted. Fill our
* outgoing message buffer with the appropriate message and beging handing
* the message phase(s) manually.
*/
static void
ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
struct scb *scb)
{
/*
* To facilitate adding multiple messages together,
* each routine should increment the index and len
* variables instead of setting them explicitly.
*/
ahd->msgout_index = 0;
ahd->msgout_len = 0;
if (ahd_currently_packetized(ahd))
ahd->msg_flags |= MSG_FLAG_PACKETIZED;
if (ahd->send_msg_perror
&& ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
ahd->msgout_len++;
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("Setting up for Parity Error delivery\n");
#endif
return;
} else if (scb == NULL) {
printf("%s: WARNING. No pending message for "
"I_T msgin. Issuing NO-OP\n", ahd_name(ahd));
AHD_CORRECTABLE_ERROR(ahd);
ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP;
ahd->msgout_len++;
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
return;
}
if ((scb->flags & SCB_DEVICE_RESET) == 0
&& (scb->flags & SCB_PACKETIZED) == 0
&& ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
u_int identify_msg;
identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
if ((scb->hscb->control & DISCENB) != 0)
identify_msg |= MSG_IDENTIFY_DISCFLAG;
ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
ahd->msgout_len++;
if ((scb->hscb->control & TAG_ENB) != 0) {
ahd->msgout_buf[ahd->msgout_index++] =
scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
ahd->msgout_len += 2;
}
}
if (scb->flags & SCB_DEVICE_RESET) {
ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET;
ahd->msgout_len++;
ahd_print_path(ahd, scb);
printf("Bus Device Reset Message Sent\n");
AHD_CORRECTABLE_ERROR(ahd);
/*
* Clear our selection hardware in advance of
* the busfree. We may have an entry in the waiting
* Q for this target, and we don't want to go about
* selecting while we handle the busfree and blow it
* away.
*/
ahd_outb(ahd, SCSISEQ0, 0);
} else if ((scb->flags & SCB_ABORT) != 0) {
if ((scb->hscb->control & TAG_ENB) != 0) {
ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG;
} else {
ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT;
}
ahd->msgout_len++;
ahd_print_path(ahd, scb);
printf("Abort%s Message Sent\n",
(scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
AHD_CORRECTABLE_ERROR(ahd);
/*
* Clear our selection hardware in advance of
* the busfree. We may have an entry in the waiting
* Q for this target, and we don't want to go about
* selecting while we handle the busfree and blow it
* away.
*/
ahd_outb(ahd, SCSISEQ0, 0);
} else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
ahd_build_transfer_msg(ahd, devinfo);
/*
* Clear our selection hardware in advance of potential
* PPR IU status change busfree. We may have an entry in
* the waiting Q for this target, and we don't want to go
* about selecting while we handle the busfree and blow
* it away.
*/
ahd_outb(ahd, SCSISEQ0, 0);
} else {
printf("ahd_intr: AWAITING_MSG for an SCB that "
"does not have a waiting message\n");
printf("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
devinfo->target_mask);
AHD_FATAL_ERROR(ahd);
panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
"SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
scb->flags);
}
/*
* Clear the MK_MESSAGE flag from the SCB so we aren't
* asked to send this message again.
*/
ahd_outb(ahd, SCB_CONTROL,
ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
scb->hscb->control &= ~MK_MESSAGE;
ahd->msgout_index = 0;
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
}
/*
* Build an appropriate transfer negotiation message for the
* currently active target.
*/
static void
ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
/*
* We need to initiate transfer negotiations.
* If our current and goal settings are identical,
* we want to renegotiate due to a check condition.
*/
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
int dowide;
int dosync;
int doppr;
u_int period;
u_int ppr_options;
u_int offset;
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
/*
* Filter our period based on the current connection.
* If we can't perform DT transfers on this segment (not in LVD
* mode for instance), then our decision to issue a PPR message
* may change.
*/
period = tinfo->goal.period;
offset = tinfo->goal.offset;
ppr_options = tinfo->goal.ppr_options;
/* Target initiated PPR is not allowed in the SCSI spec */
if (devinfo->role == ROLE_TARGET)
ppr_options = 0;
ahd_devlimited_syncrate(ahd, tinfo, &period,
&ppr_options, devinfo->role);
dowide = tinfo->curr.width != tinfo->goal.width;
dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
/*
* Only use PPR if we have options that need it, even if the device
* claims to support it. There might be an expander in the way
* that doesn't.
*/
doppr = ppr_options != 0;
if (!dowide && !dosync && !doppr) {
dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
dosync = tinfo->goal.offset != 0;
}
if (!dowide && !dosync && !doppr) {
/*
* Force async with a WDTR message if we have a wide bus,
* or just issue an SDTR with a 0 offset.
*/
if ((ahd->features & AHD_WIDE) != 0)
dowide = 1;
else
dosync = 1;
if (bootverbose) {
ahd_print_devinfo(ahd, devinfo);
printf("Ensuring async\n");
}
}
/* Target initiated PPR is not allowed in the SCSI spec */
if (devinfo->role == ROLE_TARGET)
doppr = 0;
/*
* Both the PPR message and SDTR message require the
* goal syncrate to be limited to what the target device
* is capable of handling (based on whether an LVD->SE
* expander is on the bus), so combine these two cases.
* Regardless, guarantee that if we are using WDTR and SDTR
* messages that WDTR comes first.
*/
if (doppr || (dosync && !dowide)) {
offset = tinfo->goal.offset;
ahd_validate_offset(ahd, tinfo, period, &offset,
doppr ? tinfo->goal.width
: tinfo->curr.width,
devinfo->role);
if (doppr) {
ahd_construct_ppr(ahd, devinfo, period, offset,
tinfo->goal.width, ppr_options);
} else {
ahd_construct_sdtr(ahd, devinfo, period, offset);
}
} else {
ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
}
}
/*
* Build a synchronous negotiation message in our message
* buffer based on the input parameters.
*/
static void
ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
u_int period, u_int offset)
{
if (offset == 0)
period = AHD_ASYNC_XFER_PERIOD;
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXTENDED;
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_SDTR_LEN;
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_SDTR;
ahd->msgout_buf[ahd->msgout_index++] = period;
ahd->msgout_buf[ahd->msgout_index++] = offset;
ahd->msgout_len += 5;
if (bootverbose) {
printf("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
ahd_name(ahd), devinfo->channel, devinfo->target,
devinfo->lun, period, offset);
}
}
/*
* Build a wide negotiateion message in our message
* buffer based on the input parameters.
*/
static void
ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
u_int bus_width)
{
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXTENDED;
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_WDTR_LEN;
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_WDTR;
ahd->msgout_buf[ahd->msgout_index++] = bus_width;
ahd->msgout_len += 4;
if (bootverbose) {
printf("(%s:%c:%d:%d): Sending WDTR %x\n",
ahd_name(ahd), devinfo->channel, devinfo->target,
devinfo->lun, bus_width);
}
}
/*
* Build a parallel protocol request message in our message
* buffer based on the input parameters.
*/
static void
ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
u_int period, u_int offset, u_int bus_width,
u_int ppr_options)
{
/*
* Always request precompensation from
* the other target if we are running
* at paced syncrates.
*/
if (period <= AHD_SYNCRATE_PACED)
ppr_options |= MSG_EXT_PPR_PCOMP_EN;
if (offset == 0)
period = AHD_ASYNC_XFER_PERIOD;
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXTENDED;
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_PPR_LEN;
ahd->msgout_buf[ahd->msgout_index++] = MSG_EXT_PPR;
ahd->msgout_buf[ahd->msgout_index++] = period;
ahd->msgout_buf[ahd->msgout_index++] = 0;
ahd->msgout_buf[ahd->msgout_index++] = offset;
ahd->msgout_buf[ahd->msgout_index++] = bus_width;
ahd->msgout_buf[ahd->msgout_index++] = ppr_options;
ahd->msgout_len += 8;
if (bootverbose) {
printf("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
"offset %x, ppr_options %x\n", ahd_name(ahd),
devinfo->channel, devinfo->target, devinfo->lun,
bus_width, period, offset, ppr_options);
}
}
/*
* Clear any active message state.
*/
static void
ahd_clear_msg_state(struct ahd_softc *ahd)
{
ahd_mode_state saved_modes;
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd->send_msg_perror = 0;
ahd->msg_flags = MSG_FLAG_NONE;
ahd->msgout_len = 0;
ahd->msgin_index = 0;
ahd->msg_type = MSG_TYPE_NONE;
if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
/*
* The target didn't care to respond to our
* message request, so clear ATN.
*/
ahd_outb(ahd, CLRSINT1, CLRATNO);
}
ahd_outb(ahd, MSG_OUT, MSG_NOOP);
ahd_outb(ahd, SEQ_FLAGS2,
ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
ahd_restore_modes(ahd, saved_modes);
}
/*
* Manual message loop handler.
*/
static void
ahd_handle_message_phase(struct ahd_softc *ahd)
{
struct ahd_devinfo devinfo;
u_int bus_phase;
int end_session;
ahd_fetch_devinfo(ahd, &devinfo);
end_session = FALSE;
bus_phase = ahd_inb(ahd, LASTPHASE);
if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
printf("LQIRETRY for LQIPHASE_OUTPKT\n");
ahd_outb(ahd, LQCTL2, LQIRETRY);
}
reswitch:
switch (ahd->msg_type) {
case MSG_TYPE_INITIATOR_MSGOUT:
{
int lastbyte;
int phasemis;
int msgdone;
if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
panic("HOST_MSG_LOOP interrupt with no active message");
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
ahd_print_devinfo(ahd, &devinfo);
printf("INITIATOR_MSG_OUT");
}
#endif
phasemis = bus_phase != P_MESGOUT;
if (phasemis) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
printf(" PHASEMIS %s\n",
ahd_lookup_phase_entry(bus_phase)
->phasemsg);
}
#endif
if (bus_phase == P_MESGIN) {
/*
* Change gears and see if
* this messages is of interest to
* us or should be passed back to
* the sequencer.
*/
ahd_outb(ahd, CLRSINT1, CLRATNO);
ahd->send_msg_perror = 0;
ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
ahd->msgin_index = 0;
goto reswitch;
}
end_session = TRUE;
break;
}
if (ahd->send_msg_perror) {
ahd_outb(ahd, CLRSINT1, CLRATNO);
ahd_outb(ahd, CLRSINT1, CLRREQINIT);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf(" byte 0x%x\n", ahd->send_msg_perror);
#endif
/*
* If we are notifying the target of a CRC error
* during packetized operations, the target is
* within its rights to acknowledge our message
* with a busfree.
*/
if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
&& ahd->send_msg_perror == MSG_INITIATOR_DET_ERR)
ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;
ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
break;
}
msgdone = ahd->msgout_index == ahd->msgout_len;
if (msgdone) {
/*
* The target has requested a retry.
* Re-assert ATN, reset our message index to
* 0, and try again.
*/
ahd->msgout_index = 0;
ahd_assert_atn(ahd);
}
lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
if (lastbyte) {
/* Last byte is signified by dropping ATN */
ahd_outb(ahd, CLRSINT1, CLRATNO);
}
/*
* Clear our interrupt status and present
* the next byte on the bus.
*/
ahd_outb(ahd, CLRSINT1, CLRREQINIT);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf(" byte 0x%x\n",
ahd->msgout_buf[ahd->msgout_index]);
#endif
ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
break;
}
case MSG_TYPE_INITIATOR_MSGIN:
{
int phasemis;
int message_done;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
ahd_print_devinfo(ahd, &devinfo);
printf("INITIATOR_MSG_IN");
}
#endif
phasemis = bus_phase != P_MESGIN;
if (phasemis) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
printf(" PHASEMIS %s\n",
ahd_lookup_phase_entry(bus_phase)
->phasemsg);
}
#endif
ahd->msgin_index = 0;
if (bus_phase == P_MESGOUT
&& (ahd->send_msg_perror != 0
|| (ahd->msgout_len != 0
&& ahd->msgout_index == 0))) {
ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
goto reswitch;
}
end_session = TRUE;
break;
}
/* Pull the byte in without acking it */
ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf(" byte 0x%x\n",
ahd->msgin_buf[ahd->msgin_index]);
#endif
message_done = ahd_parse_msg(ahd, &devinfo);
if (message_done) {
/*
* Clear our incoming message buffer in case there
* is another message following this one.
*/
ahd->msgin_index = 0;
/*
* If this message illicited a response,
* assert ATN so the target takes us to the
* message out phase.
*/
if (ahd->msgout_len != 0) {
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
ahd_print_devinfo(ahd, &devinfo);
printf("Asserting ATN for response\n");
}
#endif
ahd_assert_atn(ahd);
}
} else
ahd->msgin_index++;
if (message_done == MSGLOOP_TERMINATED) {
end_session = TRUE;
} else {
/* Ack the byte */
ahd_outb(ahd, CLRSINT1, CLRREQINIT);
ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
}
break;
}
case MSG_TYPE_TARGET_MSGIN:
{
int msgdone;
int msgout_request;
/*
* By default, the message loop will continue.
*/
ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
if (ahd->msgout_len == 0)
panic("Target MSGIN with no active message");
/*
* If we interrupted a mesgout session, the initiator
* will not know this until our first REQ. So, we
* only honor mesgout requests after we've sent our
* first byte.
*/
if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
&& ahd->msgout_index > 0)
msgout_request = TRUE;
else
msgout_request = FALSE;
if (msgout_request) {
/*
* Change gears and see if
* this messages is of interest to
* us or should be passed back to
* the sequencer.
*/
ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
ahd->msgin_index = 0;
/* Dummy read to REQ for first byte */
ahd_inb(ahd, SCSIDAT);
ahd_outb(ahd, SXFRCTL0,
ahd_inb(ahd, SXFRCTL0) | SPIOEN);
break;
}
msgdone = ahd->msgout_index == ahd->msgout_len;
if (msgdone) {
ahd_outb(ahd, SXFRCTL0,
ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
end_session = TRUE;
break;
}
/*
* Present the next byte on the bus.
*/
ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
break;
}
case MSG_TYPE_TARGET_MSGOUT:
{
int lastbyte;
int msgdone;
/*
* By default, the message loop will continue.
*/
ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
/*
* The initiator signals that this is
* the last byte by dropping ATN.
*/
lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
/*
* Read the latched byte, but turn off SPIOEN first
* so that we don't inadvertently cause a REQ for the
* next byte.
*/
ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
msgdone = ahd_parse_msg(ahd, &devinfo);
if (msgdone == MSGLOOP_TERMINATED) {
/*
* The message is *really* done in that it caused
* us to go to bus free. The sequencer has already
* been reset at this point, so pull the ejection
* handle.
*/
return;
}
ahd->msgin_index++;
/*
* XXX Read spec about initiator dropping ATN too soon
* and use msgdone to detect it.
*/
if (msgdone == MSGLOOP_MSGCOMPLETE) {
ahd->msgin_index = 0;
/*
* If this message illicited a response, transition
* to the Message in phase and send it.
*/
if (ahd->msgout_len != 0) {
ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
ahd_outb(ahd, SXFRCTL0,
ahd_inb(ahd, SXFRCTL0) | SPIOEN);
ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
ahd->msgin_index = 0;
break;
}
}
if (lastbyte)
end_session = TRUE;
else {
/* Ask for the next byte. */
ahd_outb(ahd, SXFRCTL0,
ahd_inb(ahd, SXFRCTL0) | SPIOEN);
}
break;
}
default:
panic("Unknown REQINIT message type");
}
if (end_session) {
if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
printf("%s: Returning to Idle Loop\n",
ahd_name(ahd));
ahd_clear_msg_state(ahd);
/*
* Perform the equivalent of a clear_target_state.
*/
ahd_outb(ahd, LASTPHASE, P_BUSFREE);
ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
} else {
ahd_clear_msg_state(ahd);
ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
}
}
}
/*
* See if we sent a particular extended message to the target.
* If "full" is true, return true only if the target saw the full
* message. If "full" is false, return true if the target saw at
* least the first byte of the message.
*/
static int
ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
{
int found;
u_int index;
found = FALSE;
index = 0;
while (index < ahd->msgout_len) {
if (ahd->msgout_buf[index] == MSG_EXTENDED) {
u_int end_index;
end_index = index + 1 + ahd->msgout_buf[index + 1];
if (ahd->msgout_buf[index+2] == msgval
&& type == AHDMSG_EXT) {
if (full) {
if (ahd->msgout_index > end_index)
found = TRUE;
} else if (ahd->msgout_index > index)
found = TRUE;
}
index = end_index;
} else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK
&& ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {
/* Skip tag type and tag id or residue param*/
index += 2;
} else {
/* Single byte message */
if (type == AHDMSG_1B
&& ahd->msgout_index > index
&& (ahd->msgout_buf[index] == msgval
|| ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
&& msgval == MSG_IDENTIFYFLAG)))
found = TRUE;
index++;
}
if (found)
break;
}
return (found);
}
/*
* Wait for a complete incoming message, parse it, and respond accordingly.
*/
static int
ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
int reject;
int done;
int response;
done = MSGLOOP_IN_PROG;
response = FALSE;
reject = FALSE;
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
devinfo->target, &tstate);
/*
* Parse as much of the message as is available,
* rejecting it if we don't support it. When
* the entire message is available and has been
* handled, return MSGLOOP_MSGCOMPLETE, indicating
* that we have parsed an entire message.
*
* In the case of extended messages, we accept the length
* byte outright and perform more checking once we know the
* extended message type.
*/
switch (ahd->msgin_buf[0]) {
case MSG_DISCONNECT:
case MSG_SAVEDATAPOINTER:
case MSG_CMDCOMPLETE:
case MSG_RESTOREPOINTERS:
case MSG_IGN_WIDE_RESIDUE:
/*
* End our message loop as these are messages
* the sequencer handles on its own.
*/
done = MSGLOOP_TERMINATED;
break;
case MSG_MESSAGE_REJECT:
response = ahd_handle_msg_reject(ahd, devinfo);
/* FALLTHROUGH */
case MSG_NOOP:
done = MSGLOOP_MSGCOMPLETE;
break;
case MSG_EXTENDED:
{
/* Wait for enough of the message to begin validation */
if (ahd->msgin_index < 2)
break;
switch (ahd->msgin_buf[2]) {
case MSG_EXT_SDTR:
{
u_int period;
u_int ppr_options;
u_int offset;
u_int saved_offset;
if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
reject = TRUE;
break;
}
/*
* Wait until we have both args before validating
* and acting on this message.
*
* Add one to MSG_EXT_SDTR_LEN to account for
* the extended message preamble.
*/
if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
break;
period = ahd->msgin_buf[3];
ppr_options = 0;
saved_offset = offset = ahd->msgin_buf[4];
ahd_devlimited_syncrate(ahd, tinfo, &period,
&ppr_options, devinfo->role);
ahd_validate_offset(ahd, tinfo, period, &offset,
tinfo->curr.width, devinfo->role);
if (bootverbose) {
printf("(%s:%c:%d:%d): Received "
"SDTR period %x, offset %x\n\t"
"Filtered to period %x, offset %x\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun,
ahd->msgin_buf[3], saved_offset,
period, offset);
}
ahd_set_syncrate(ahd, devinfo, period,
offset, ppr_options,
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
/*paused*/TRUE);
/*
* See if we initiated Sync Negotiation
* and didn't have to fall down to async
* transfers.
*/
if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) {
/* We started it */
if (saved_offset != offset) {
/* Went too low - force async */
reject = TRUE;
}
} else {
/*
* Send our own SDTR in reply
*/
if (bootverbose
&& devinfo->role == ROLE_INITIATOR) {
printf("(%s:%c:%d:%d): Target "
"Initiated SDTR\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun);
}
ahd->msgout_index = 0;
ahd->msgout_len = 0;
ahd_construct_sdtr(ahd, devinfo,
period, offset);
ahd->msgout_index = 0;
response = TRUE;
}
done = MSGLOOP_MSGCOMPLETE;
break;
}
case MSG_EXT_WDTR:
{
u_int bus_width;
u_int saved_width;
u_int sending_reply;
sending_reply = FALSE;
if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
reject = TRUE;
break;
}
/*
* Wait until we have our arg before validating
* and acting on this message.
*
* Add one to MSG_EXT_WDTR_LEN to account for
* the extended message preamble.
*/
if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
break;
bus_width = ahd->msgin_buf[3];
saved_width = bus_width;
ahd_validate_width(ahd, tinfo, &bus_width,
devinfo->role);
if (bootverbose) {
printf("(%s:%c:%d:%d): Received WDTR "
"%x filtered to %x\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun,
saved_width, bus_width);
}
if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) {
/*
* Don't send a WDTR back to the
* target, since we asked first.
* If the width went higher than our
* request, reject it.
*/
if (saved_width > bus_width) {
reject = TRUE;
printf("(%s:%c:%d:%d): requested %dBit "
"transfers. Rejecting...\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun,
8 * (0x01 << bus_width));
bus_width = 0;
}
} else {
/*
* Send our own WDTR in reply
*/
if (bootverbose
&& devinfo->role == ROLE_INITIATOR) {
printf("(%s:%c:%d:%d): Target "
"Initiated WDTR\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun);
}
ahd->msgout_index = 0;
ahd->msgout_len = 0;
ahd_construct_wdtr(ahd, devinfo, bus_width);
ahd->msgout_index = 0;
response = TRUE;
sending_reply = TRUE;
}
/*
* After a wide message, we are async, but
* some devices don't seem to honor this portion
* of the spec. Force a renegotiation of the
* sync component of our transfer agreement even
* if our goal is async. By updating our width
* after forcing the negotiation, we avoid
* renegotiating for width.
*/
ahd_update_neg_request(ahd, devinfo, tstate,
tinfo, AHD_NEG_ALWAYS);
ahd_set_width(ahd, devinfo, bus_width,
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
/*paused*/TRUE);
if (sending_reply == FALSE && reject == FALSE) {
/*
* We will always have an SDTR to send.
*/
ahd->msgout_index = 0;
ahd->msgout_len = 0;
ahd_build_transfer_msg(ahd, devinfo);
ahd->msgout_index = 0;
response = TRUE;
}
done = MSGLOOP_MSGCOMPLETE;
break;
}
case MSG_EXT_PPR:
{
u_int period;
u_int offset;
u_int bus_width;
u_int ppr_options;
u_int saved_width;
u_int saved_offset;
u_int saved_ppr_options;
if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
reject = TRUE;
break;
}
/*
* Wait until we have all args before validating
* and acting on this message.
*
* Add one to MSG_EXT_PPR_LEN to account for
* the extended message preamble.
*/
if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
break;
period = ahd->msgin_buf[3];
offset = ahd->msgin_buf[5];
bus_width = ahd->msgin_buf[6];
saved_width = bus_width;
ppr_options = ahd->msgin_buf[7];
/*
* According to the spec, a DT only
* period factor with no DT option
* set implies async.
*/
if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
&& period <= 9)
offset = 0;
saved_ppr_options = ppr_options;
saved_offset = offset;
/*
* Transfer options are only available if we
* are negotiating wide.
*/
if (bus_width == 0)
ppr_options &= MSG_EXT_PPR_QAS_REQ;
ahd_validate_width(ahd, tinfo, &bus_width,
devinfo->role);
ahd_devlimited_syncrate(ahd, tinfo, &period,
&ppr_options, devinfo->role);
ahd_validate_offset(ahd, tinfo, period, &offset,
bus_width, devinfo->role);
if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) {
/*
* If we are unable to do any of the
* requested options (we went too low),
* then we'll have to reject the message.
*/
if (saved_width > bus_width
|| saved_offset != offset
|| saved_ppr_options != ppr_options) {
reject = TRUE;
period = 0;
offset = 0;
bus_width = 0;
ppr_options = 0;
}
} else {
if (devinfo->role != ROLE_TARGET)
printf("(%s:%c:%d:%d): Target "
"Initiated PPR\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun);
else
printf("(%s:%c:%d:%d): Initiator "
"Initiated PPR\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun);
ahd->msgout_index = 0;
ahd->msgout_len = 0;
ahd_construct_ppr(ahd, devinfo, period, offset,
bus_width, ppr_options);
ahd->msgout_index = 0;
response = TRUE;
}
if (bootverbose) {
printf("(%s:%c:%d:%d): Received PPR width %x, "
"period %x, offset %x,options %x\n"
"\tFiltered to width %x, period %x, "
"offset %x, options %x\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun,
saved_width, ahd->msgin_buf[3],
saved_offset, saved_ppr_options,
bus_width, period, offset, ppr_options);
}
ahd_set_width(ahd, devinfo, bus_width,
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
/*paused*/TRUE);
ahd_set_syncrate(ahd, devinfo, period,
offset, ppr_options,
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
/*paused*/TRUE);
done = MSGLOOP_MSGCOMPLETE;
break;
}
default:
/* Unknown extended message. Reject it. */
reject = TRUE;
break;
}
break;
}
#ifdef AHD_TARGET_MODE
case MSG_BUS_DEV_RESET:
ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
CAM_BDR_SENT,
"Bus Device Reset Received",
/*verbose_level*/0);
ahd_restart(ahd);
done = MSGLOOP_TERMINATED;
break;
case MSG_ABORT_TAG:
case MSG_ABORT:
case MSG_CLEAR_QUEUE:
{
int tag;
/* Target mode messages */
if (devinfo->role != ROLE_TARGET) {
reject = TRUE;
break;
}
tag = SCB_LIST_NULL;
if (ahd->msgin_buf[0] == MSG_ABORT_TAG)
tag = ahd_inb(ahd, INITIATOR_TAG);
ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
devinfo->lun, tag, ROLE_TARGET,
CAM_REQ_ABORTED);
tstate = ahd->enabled_targets[devinfo->our_scsiid];
if (tstate != NULL) {
struct ahd_tmode_lstate* lstate;
lstate = tstate->enabled_luns[devinfo->lun];
if (lstate != NULL) {
ahd_queue_lstate_event(ahd, lstate,
devinfo->our_scsiid,
ahd->msgin_buf[0],
/*arg*/tag);
ahd_send_lstate_events(ahd, lstate);
}
}
ahd_restart(ahd);
done = MSGLOOP_TERMINATED;
break;
}
#endif
case MSG_QAS_REQUEST:
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
printf("%s: QAS request. SCSISIGI == 0x%x\n",
ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
#endif
ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
/* FALLTHROUGH */
case MSG_TERM_IO_PROC:
default:
reject = TRUE;
break;
}
if (reject) {
/*
* Setup to reject the message.
*/
ahd->msgout_index = 0;
ahd->msgout_len = 1;
ahd->msgout_buf[0] = MSG_MESSAGE_REJECT;
done = MSGLOOP_MSGCOMPLETE;
response = TRUE;
}
if (done != MSGLOOP_IN_PROG && !response)
/* Clear the outgoing message buffer */
ahd->msgout_len = 0;
return (done);
}
/*
* Process a message reject message.
*/
static int
ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
/*
* What we care about here is if we had an
* outstanding SDTR or WDTR message for this
* target. If we did, this is a signal that
* the target is refusing negotiation.
*/
struct scb *scb;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
u_int scb_index;
u_int last_msg;
int response = 0;
scb_index = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scb_index);
tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
devinfo->our_scsiid,
devinfo->target, &tstate);
/* Might be necessary */
last_msg = ahd_inb(ahd, LAST_MSG);
if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) {
if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE)
&& tinfo->goal.period <= AHD_SYNCRATE_PACED) {
/*
* Target may not like our SPI-4 PPR Options.
* Attempt to negotiate 80MHz which will turn
* off these options.
*/
if (bootverbose) {
printf("(%s:%c:%d:%d): PPR Rejected. "
"Trying simple U160 PPR\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun);
}
tinfo->goal.period = AHD_SYNCRATE_DT;
tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
| MSG_EXT_PPR_QAS_REQ
| MSG_EXT_PPR_DT_REQ;
} else {
/*
* Target does not support the PPR message.
* Attempt to negotiate SPI-2 style.
*/
if (bootverbose) {
printf("(%s:%c:%d:%d): PPR Rejected. "
"Trying WDTR/SDTR\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun);
}
tinfo->goal.ppr_options = 0;
tinfo->curr.transport_version = 2;
tinfo->goal.transport_version = 2;
}
ahd->msgout_index = 0;
ahd->msgout_len = 0;
ahd_build_transfer_msg(ahd, devinfo);
ahd->msgout_index = 0;
response = 1;
} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) {
/* note 8bit xfers */
printf("(%s:%c:%d:%d): refuses WIDE negotiation. Using "
"8bit transfers\n", ahd_name(ahd),
devinfo->channel, devinfo->target, devinfo->lun);
ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
/*paused*/TRUE);
/*
* No need to clear the sync rate. If the target
* did not accept the command, our syncrate is
* unaffected. If the target started the negotiation,
* but rejected our response, we already cleared the
* sync rate before sending our WDTR.
*/
if (tinfo->goal.offset != tinfo->curr.offset) {
/* Start the sync negotiation */
ahd->msgout_index = 0;
ahd->msgout_len = 0;
ahd_build_transfer_msg(ahd, devinfo);
ahd->msgout_index = 0;
response = 1;
}
} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) {
/* note asynch xfers and clear flag */
ahd_set_syncrate(ahd, devinfo, /*period*/0,
/*offset*/0, /*ppr_options*/0,
AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
/*paused*/TRUE);
printf("(%s:%c:%d:%d): refuses synchronous negotiation. "
"Using asynchronous transfers\n",
ahd_name(ahd), devinfo->channel,
devinfo->target, devinfo->lun);
} else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) {
int tag_type;
int mask;
tag_type = (scb->hscb->control & MSG_SIMPLE_TASK);
if (tag_type == MSG_SIMPLE_TASK) {
printf("(%s:%c:%d:%d): refuses tagged commands. "
"Performing non-tagged I/O\n", ahd_name(ahd),
devinfo->channel, devinfo->target, devinfo->lun);
ahd_set_tags(ahd, devinfo, AHD_QUEUE_NONE);
mask = ~0x23;
} else {
printf("(%s:%c:%d:%d): refuses %s tagged commands. "
"Performing simple queue tagged I/O only\n",
ahd_name(ahd), devinfo->channel, devinfo->target,
devinfo->lun, tag_type == MSG_ORDERED_TASK
? "ordered" : "head of queue");
ahd_set_tags(ahd, devinfo, AHD_QUEUE_BASIC);
mask = ~0x03;
}
/*
* Resend the identify for this CCB as the target
* may believe that the selection is invalid otherwise.
*/
ahd_outb(ahd, SCB_CONTROL,
ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
scb->hscb->control &= mask;
aic_set_transaction_tag(scb, /*enabled*/FALSE,
/*type*/MSG_SIMPLE_TASK);
ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
ahd_assert_atn(ahd);
ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
SCB_GET_TAG(scb));
/*
* Requeue all tagged commands for this target
* currently in our possession so they can be
* converted to untagged commands.
*/
ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
SCB_GET_CHANNEL(ahd, scb),
SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
ROLE_INITIATOR, CAM_REQUEUE_REQ,
SEARCH_COMPLETE);
} else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
/*
* Most likely the device believes that we had
* previously negotiated packetized.
*/
ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
| MSG_FLAG_IU_REQ_CHANGED;
ahd_force_renegotiation(ahd, devinfo);
ahd->msgout_index = 0;
ahd->msgout_len = 0;
ahd_build_transfer_msg(ahd, devinfo);
ahd->msgout_index = 0;
response = 1;
} else {
/*
* Otherwise, we ignore it.
*/
printf("%s:%c:%d: Message reject for %x -- ignored\n",
ahd_name(ahd), devinfo->channel, devinfo->target,
last_msg);
}
return (response);
}
/*
* Process an ingnore wide residue message.
*/
static void
ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
u_int scb_index;
struct scb *scb;
scb_index = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scb_index);
/*
* XXX Actually check data direction in the sequencer?
* Perhaps add datadir to some spare bits in the hscb?
*/
if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
|| aic_get_transfer_dir(scb) != CAM_DIR_IN) {
/*
* Ignore the message if we haven't
* seen an appropriate data phase yet.
*/
} else {
/*
* If the residual occurred on the last
* transfer and the transfer request was
* expected to end on an odd count, do
* nothing. Otherwise, subtract a byte
* and update the residual count accordingly.
*/
uint32_t sgptr;
sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
if ((sgptr & SG_LIST_NULL) != 0
&& (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
& SCB_XFERLEN_ODD) != 0) {
/*
* If the residual occurred on the last
* transfer and the transfer request was
* expected to end on an odd count, do
* nothing.
*/
} else {
uint32_t data_cnt;
uint64_t data_addr;
uint32_t sglen;
/* Pull in the rest of the sgptr */
sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
if ((sgptr & SG_LIST_NULL) != 0) {
/*
* The residual data count is not updated
* for the command run to completion case.
* Explicitly zero the count.
*/
data_cnt &= ~AHD_SG_LEN_MASK;
}
data_addr = ahd_inq(ahd, SHADDR);
data_cnt += 1;
data_addr -= 1;
sgptr &= SG_PTR_MASK;
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
struct ahd_dma64_seg *sg;
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
/*
* The residual sg ptr points to the next S/G
* to load so we must go back one.
*/
sg--;
sglen = aic_le32toh(sg->len) & AHD_SG_LEN_MASK;
if (sg != scb->sg_list
&& sglen < (data_cnt & AHD_SG_LEN_MASK)) {
sg--;
sglen = aic_le32toh(sg->len);
/*
* Preserve High Address and SG_LIST
* bits while setting the count to 1.
*/
data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
data_addr = aic_le64toh(sg->addr)
+ (sglen & AHD_SG_LEN_MASK)
- 1;
/*
* Increment sg so it points to the
* "next" sg.
*/
sg++;
sgptr = ahd_sg_virt_to_bus(ahd, scb,
sg);
}
} else {
struct ahd_dma_seg *sg;
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
/*
* The residual sg ptr points to the next S/G
* to load so we must go back one.
*/
sg--;
sglen = aic_le32toh(sg->len) & AHD_SG_LEN_MASK;
if (sg != scb->sg_list
&& sglen < (data_cnt & AHD_SG_LEN_MASK)) {
sg--;
sglen = aic_le32toh(sg->len);
/*
* Preserve High Address and SG_LIST
* bits while setting the count to 1.
*/
data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
data_addr = aic_le32toh(sg->addr)
+ (sglen & AHD_SG_LEN_MASK)
- 1;
/*
* Increment sg so it points to the
* "next" sg.
*/
sg++;
sgptr = ahd_sg_virt_to_bus(ahd, scb,
sg);
}
}
/*
* Toggle the "oddness" of the transfer length
* to handle this mid-transfer ignore wide
* residue. This ensures that the oddness is
* correct for subsequent data transfers.
*/
ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
^ SCB_XFERLEN_ODD);
ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
/*
* The FIFO's pointers will be updated if/when the
* sequencer re-enters a data phase.
*/
}
}
}
/*
* Reinitialize the data pointers for the active transfer
* based on its current residual.
*/
static void
ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
{
struct scb *scb;
ahd_mode_state saved_modes;
u_int scb_index;
u_int wait;
uint32_t sgptr;
uint32_t resid;
uint64_t dataptr;
AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
scb_index = ahd_get_scbptr(ahd);
scb = ahd_lookup_scb(ahd, scb_index);
/*
* Release and reacquire the FIFO so we
* have a clean slate.
*/
ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
wait = 1000;
while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
aic_delay(100);
if (wait == 0) {
ahd_print_path(ahd, scb);
printf("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
}
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, DFFSTAT,
ahd_inb(ahd, DFFSTAT)
| (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
/*
* Determine initial values for data_addr and data_cnt
* for resuming the data phase.
*/
sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
sgptr &= SG_PTR_MASK;
resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
| (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
| ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
struct ahd_dma64_seg *sg;
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
/* The residual sg_ptr always points to the next sg */
sg--;
dataptr = aic_le64toh(sg->addr)
+ (aic_le32toh(sg->len) & AHD_SG_LEN_MASK)
- resid;
ahd_outl(ahd, HADDR + 4, dataptr >> 32);
} else {
struct ahd_dma_seg *sg;
sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
/* The residual sg_ptr always points to the next sg */
sg--;
dataptr = aic_le32toh(sg->addr)
+ (aic_le32toh(sg->len) & AHD_SG_LEN_MASK)
- resid;
ahd_outb(ahd, HADDR + 4,
(aic_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
}
ahd_outl(ahd, HADDR, dataptr);
ahd_outb(ahd, HCNT + 2, resid >> 16);
ahd_outb(ahd, HCNT + 1, resid >> 8);
ahd_outb(ahd, HCNT, resid);
}
/*
* Handle the effects of issuing a bus device reset message.
*/
static void
ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
u_int lun, cam_status status, char *message,
int verbose_level)
{
#ifdef AHD_TARGET_MODE
struct ahd_tmode_tstate* tstate;
#endif
int found;
found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
lun, SCB_LIST_NULL, devinfo->role,
status);
#ifdef AHD_TARGET_MODE
/*
* Send an immediate notify ccb to all target mord peripheral
* drivers affected by this action.
*/
tstate = ahd->enabled_targets[devinfo->our_scsiid];
if (tstate != NULL) {
u_int cur_lun;
u_int max_lun;
if (lun != CAM_LUN_WILDCARD) {
cur_lun = 0;
max_lun = AHD_NUM_LUNS - 1;
} else {
cur_lun = lun;
max_lun = lun;
}
for (cur_lun <= max_lun; cur_lun++) {
struct ahd_tmode_lstate* lstate;
lstate = tstate->enabled_luns[cur_lun];
if (lstate == NULL)
continue;
ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
MSG_BUS_DEV_RESET, /*arg*/0);
ahd_send_lstate_events(ahd, lstate);
}
}
#endif
/*
* Go back to async/narrow transfers and renegotiate.
*/
ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_CUR, /*paused*/TRUE);
ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
/*ppr_options*/0, AHD_TRANS_CUR,
/*paused*/TRUE);
if (status != CAM_SEL_TIMEOUT)
ahd_send_async(ahd, devinfo->channel, devinfo->target,
lun, AC_SENT_BDR, NULL);
if (message != NULL
&& (verbose_level <= bootverbose)) {
AHD_CORRECTABLE_ERROR(ahd);
printf("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
message, devinfo->channel, devinfo->target, found);
}
}
#ifdef AHD_TARGET_MODE
static void
ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
struct scb *scb)
{
/*
* To facilitate adding multiple messages together,
* each routine should increment the index and len
* variables instead of setting them explicitly.
*/
ahd->msgout_index = 0;
ahd->msgout_len = 0;
if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
ahd_build_transfer_msg(ahd, devinfo);
else
panic("ahd_intr: AWAITING target message with no message");
ahd->msgout_index = 0;
ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
}
#endif
/**************************** Initialization **********************************/
static u_int
ahd_sglist_size(struct ahd_softc *ahd)
{
bus_size_t list_size;
list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
return (list_size);
}
/*
* Calculate the optimum S/G List allocation size. S/G elements used
* for a given transaction must be physically contiguous. Assume the
* OS will allocate full pages to us, so it doesn't make sense to request
* less than a page.
*/
static u_int
ahd_sglist_allocsize(struct ahd_softc *ahd)
{
bus_size_t sg_list_increment;
bus_size_t sg_list_size;
bus_size_t max_list_size;
bus_size_t best_list_size;
/* Start out with the minimum required for AHD_NSEG. */
sg_list_increment = ahd_sglist_size(ahd);
sg_list_size = sg_list_increment;
/* Get us as close as possible to a page in size. */
while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
sg_list_size += sg_list_increment;
/*
* Try to reduce the amount of wastage by allocating
* multiple pages.
*/
best_list_size = sg_list_size;
max_list_size = roundup(sg_list_increment, PAGE_SIZE);
if (max_list_size < 4 * PAGE_SIZE)
max_list_size = 4 * PAGE_SIZE;
if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
while ((sg_list_size + sg_list_increment) <= max_list_size
&& (sg_list_size % PAGE_SIZE) != 0) {
bus_size_t new_mod;
bus_size_t best_mod;
sg_list_size += sg_list_increment;
new_mod = sg_list_size % PAGE_SIZE;
best_mod = best_list_size % PAGE_SIZE;
if (new_mod > best_mod || new_mod == 0) {
best_list_size = sg_list_size;
}
}
return (best_list_size);
}
/*
* Allocate a controller structure for a new device
* and perform initial initializion.
*/
struct ahd_softc *
ahd_alloc(void *platform_arg, char *name)
{
struct ahd_softc *ahd;
#ifndef __FreeBSD__
ahd = malloc(sizeof(*ahd), M_DEVBUF, M_NOWAIT);
if (!ahd) {
printf("aic7xxx: cannot malloc softc!\n");
free(name, M_DEVBUF);
return NULL;
}
#else
ahd = device_get_softc((device_t)platform_arg);
#endif
memset(ahd, 0, sizeof(*ahd));
ahd->seep_config = malloc(sizeof(*ahd->seep_config),
M_DEVBUF, M_NOWAIT);
if (ahd->seep_config == NULL) {
#ifndef __FreeBSD__
free(ahd, M_DEVBUF);
#endif
free(name, M_DEVBUF);
return (NULL);
}
LIST_INIT(&ahd->pending_scbs);
LIST_INIT(&ahd->timedout_scbs);
/* We don't know our unit number until the OSM sets it */
ahd->name = name;
ahd->unit = -1;
ahd->description = NULL;
ahd->bus_description = NULL;
ahd->channel = 'A';
ahd->chip = AHD_NONE;
ahd->features = AHD_FENONE;
ahd->bugs = AHD_BUGNONE;
ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
| AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
aic_timer_init(&ahd->reset_timer);
aic_timer_init(&ahd->stat_timer);
ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
ahd->int_coalescing_stop_threshold =
AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;
if (ahd_platform_alloc(ahd, platform_arg) != 0) {
ahd_free(ahd);
ahd = NULL;
}
ahd_lockinit(ahd);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
printf("%s: scb size = 0x%x, hscb size = 0x%x\n",
ahd_name(ahd), (u_int)sizeof(struct scb),
(u_int)sizeof(struct hardware_scb));
}
#endif
return (ahd);
}
int
ahd_softc_init(struct ahd_softc *ahd)
{
ahd->unpause = 0;
ahd->pause = PAUSE;
return (0);
}
void
ahd_softc_insert(struct ahd_softc *ahd)
{
struct ahd_softc *list_ahd;
#if AIC_PCI_CONFIG > 0
/*
* Second Function PCI devices need to inherit some
* settings from function 0.
*/
if ((ahd->features & AHD_MULTI_FUNC) != 0) {
TAILQ_FOREACH(list_ahd, &ahd_tailq, links) {
aic_dev_softc_t list_pci;
aic_dev_softc_t pci;
list_pci = list_ahd->dev_softc;
pci = ahd->dev_softc;
if (aic_get_pci_slot(list_pci) == aic_get_pci_slot(pci)
&& aic_get_pci_bus(list_pci) == aic_get_pci_bus(pci)) {
struct ahd_softc *master;
struct ahd_softc *slave;
if (aic_get_pci_function(list_pci) == 0) {
master = list_ahd;
slave = ahd;
} else {
master = ahd;
slave = list_ahd;
}
slave->flags &= ~AHD_BIOS_ENABLED;
slave->flags |=
master->flags & AHD_BIOS_ENABLED;
break;
}
}
}
#endif
/*
* Insertion sort into our list of softcs.
*/
list_ahd = TAILQ_FIRST(&ahd_tailq);
while (list_ahd != NULL
&& ahd_softc_comp(ahd, list_ahd) <= 0)
list_ahd = TAILQ_NEXT(list_ahd, links);
if (list_ahd != NULL)
TAILQ_INSERT_BEFORE(list_ahd, ahd, links);
else
TAILQ_INSERT_TAIL(&ahd_tailq, ahd, links);
ahd->init_level++;
}
void
ahd_set_unit(struct ahd_softc *ahd, int unit)
{
ahd->unit = unit;
}
void
ahd_set_name(struct ahd_softc *ahd, char *name)
{
if (ahd->name != NULL)
free(ahd->name, M_DEVBUF);
ahd->name = name;
}
void
ahd_free(struct ahd_softc *ahd)
{
int i;
ahd_terminate_recovery_thread(ahd);
switch (ahd->init_level) {
default:
case 5:
ahd_shutdown(ahd);
/* FALLTHROUGH */
case 4:
aic_dmamap_unload(ahd, ahd->shared_data_dmat,
ahd->shared_data_map.dmamap);
/* FALLTHROUGH */
case 3:
aic_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
ahd->shared_data_map.dmamap);
/* FALLTHROUGH */
case 2:
aic_dma_tag_destroy(ahd, ahd->shared_data_dmat);
case 1:
#ifndef __linux__
aic_dma_tag_destroy(ahd, ahd->buffer_dmat);
#endif
break;
case 0:
break;
}
#ifndef __linux__
aic_dma_tag_destroy(ahd, ahd->parent_dmat);
#endif
ahd_platform_free(ahd);
ahd_fini_scbdata(ahd);
for (i = 0; i < AHD_NUM_TARGETS; i++) {
struct ahd_tmode_tstate *tstate;
tstate = ahd->enabled_targets[i];
if (tstate != NULL) {
#ifdef AHD_TARGET_MODE
int j;
for (j = 0; j < AHD_NUM_LUNS; j++) {
struct ahd_tmode_lstate *lstate;
lstate = tstate->enabled_luns[j];
if (lstate != NULL) {
xpt_free_path(lstate->path);
free(lstate, M_DEVBUF);
}
}
#endif
free(tstate, M_DEVBUF);
}
}
#ifdef AHD_TARGET_MODE
if (ahd->black_hole != NULL) {
xpt_free_path(ahd->black_hole->path);
free(ahd->black_hole, M_DEVBUF);
}
#endif
if (ahd->name != NULL)
free(ahd->name, M_DEVBUF);
if (ahd->seep_config != NULL)
free(ahd->seep_config, M_DEVBUF);
if (ahd->saved_stack != NULL)
free(ahd->saved_stack, M_DEVBUF);
#ifndef __FreeBSD__
free(ahd, M_DEVBUF);
#endif
return;
}
void
ahd_shutdown(void *arg)
{
struct ahd_softc *ahd;
ahd = (struct ahd_softc *)arg;
/*
* Stop periodic timer callbacks.
*/
aic_timer_stop(&ahd->reset_timer);
aic_timer_stop(&ahd->stat_timer);
/* This will reset most registers to 0, but not all */
ahd_reset(ahd, /*reinit*/FALSE);
}
/*
* Reset the controller and record some information about it
* that is only available just after a reset. If "reinit" is
* non-zero, this reset occurred after initial configuration
* and the caller requests that the chip be fully reinitialized
* to a runable state. Chip interrupts are *not* enabled after
* a reinitialization. The caller must enable interrupts via
* ahd_intr_enable().
*/
int
ahd_reset(struct ahd_softc *ahd, int reinit)
{
u_int sxfrctl1;
int wait;
uint32_t cmd;
/*
* Preserve the value of the SXFRCTL1 register for all channels.
* It contains settings that affect termination and we don't want
* to disturb the integrity of the bus.
*/
ahd_pause(ahd);
ahd_update_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
cmd = aic_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
uint32_t mod_cmd;
/*
* A4 Razor #632
* During the assertion of CHIPRST, the chip
* does not disable its parity logic prior to
* the start of the reset. This may cause a
* parity error to be detected and thus a
* spurious SERR or PERR assertion. Disble
* PERR and SERR responses during the CHIPRST.
*/
mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
aic_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
mod_cmd, /*bytes*/2);
}
ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
/*
* Ensure that the reset has finished. We delay 1000us
* prior to reading the register to make sure the chip
* has sufficiently completed its reset to handle register
* accesses.
*/
wait = 1000;
do {
aic_delay(1000);
} while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
if (wait == 0) {
printf("%s: WARNING - Failed chip reset! "
"Trying to initialize anyway.\n", ahd_name(ahd));
AHD_FATAL_ERROR(ahd);
}
ahd_outb(ahd, HCNTRL, ahd->pause);
if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
/*
* Clear any latched PCI error status and restore
* previous SERR and PERR response enables.
*/
aic_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
0xFF, /*bytes*/1);
aic_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
cmd, /*bytes*/2);
}
/*
* Mode should be SCSI after a chip reset, but lets
* set it just to be safe. We touch the MODE_PTR
* register directly so as to bypass the lazy update
* code in ahd_set_modes().
*/
ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, MODE_PTR,
ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
/*
* Restore SXFRCTL1.
*
* We must always initialize STPWEN to 1 before we
* restore the saved values. STPWEN is initialized
* to a tri-state condition which can only be cleared
* by turning it on.
*/
ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
ahd_outb(ahd, SXFRCTL1, sxfrctl1);
/* Determine chip configuration */
ahd->features &= ~AHD_WIDE;
if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
ahd->features |= AHD_WIDE;
/*
* If a recovery action has forced a chip reset,
* re-initialize the chip to our liking.
*/
if (reinit != 0)
ahd_chip_init(ahd);
return (0);
}
/*
* Determine the number of SCBs available on the controller
*/
int
ahd_probe_scbs(struct ahd_softc *ahd) {
int i;
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
for (i = 0; i < AHD_SCB_MAX; i++) {
int j;
ahd_set_scbptr(ahd, i);
ahd_outw(ahd, SCB_BASE, i);
for (j = 2; j < 64; j++)
ahd_outb(ahd, SCB_BASE+j, 0);
/* Start out life as unallocated (needing an abort) */
ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
if (ahd_inw_scbram(ahd, SCB_BASE) != i)
break;
ahd_set_scbptr(ahd, 0);
if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
break;
}
return (i);
}
static void
ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *baddr;
baddr = (bus_addr_t *)arg;
*baddr = segs->ds_addr;
}
static void
ahd_initialize_hscbs(struct ahd_softc *ahd)
{
int i;
for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
ahd_set_scbptr(ahd, i);
/* Clear the control byte. */
ahd_outb(ahd, SCB_CONTROL, 0);
/* Set the next pointer */
ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
}
}
static int
ahd_init_scbdata(struct ahd_softc *ahd)
{
struct scb_data *scb_data;
int i;
scb_data = &ahd->scb_data;
TAILQ_INIT(&scb_data->free_scbs);
for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
LIST_INIT(&scb_data->free_scb_lists[i]);
LIST_INIT(&scb_data->any_dev_free_scb_list);
SLIST_INIT(&scb_data->hscb_maps);
SLIST_INIT(&scb_data->sg_maps);
SLIST_INIT(&scb_data->sense_maps);
/* Determine the number of hardware SCBs and initialize them */
scb_data->maxhscbs = ahd_probe_scbs(ahd);
if (scb_data->maxhscbs == 0) {
printf("%s: No SCB space found\n", ahd_name(ahd));
AHD_FATAL_ERROR(ahd);
return (ENXIO);
}
ahd_initialize_hscbs(ahd);
/*
* Create our DMA tags. These tags define the kinds of device
* accessible memory allocations and memory mappings we will
* need to perform during normal operation.
*
* Unless we need to further restrict the allocation, we rely
* on the restrictions of the parent dmat, hence the common
* use of MAXADDR and MAXSIZE.
*/
/* DMA tag for our hardware scb structures */
if (aic_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
PAGE_SIZE, /*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/0, &scb_data->hscb_dmat) != 0) {
goto error_exit;
}
scb_data->init_level++;
/* DMA tag for our S/G structures. */
if (aic_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
ahd_sglist_allocsize(ahd), /*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/0, &scb_data->sg_dmat) != 0) {
goto error_exit;
}
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
printf("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
ahd_sglist_allocsize(ahd));
#endif
scb_data->init_level++;
/* DMA tag for our sense buffers. We allocate in page sized chunks */
if (aic_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
PAGE_SIZE, /*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/0, &scb_data->sense_dmat) != 0) {
goto error_exit;
}
scb_data->init_level++;
/* Perform initial CCB allocation */
while (ahd_alloc_scbs(ahd) != 0)
;
if (scb_data->numscbs == 0) {
printf("%s: ahd_init_scbdata - "
"Unable to allocate initial scbs\n",
ahd_name(ahd));
goto error_exit;
}
/*
* Note that we were successful
*/
return (0);
error_exit:
return (ENOMEM);
}
static struct scb *
ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
{
struct scb *scb;
/*
* Look on the pending list.
*/
LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
if (SCB_GET_TAG(scb) == tag)
return (scb);
}
/*
* Then on all of the collision free lists.
*/
TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
struct scb *list_scb;
list_scb = scb;
do {
if (SCB_GET_TAG(list_scb) == tag)
return (list_scb);
list_scb = LIST_NEXT(list_scb, collision_links);
} while (list_scb);
}
/*
* And finally on the generic free list.
*/
LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
if (SCB_GET_TAG(scb) == tag)
return (scb);
}
return (NULL);
}
static void
ahd_fini_scbdata(struct ahd_softc *ahd)
{
struct scb_data *scb_data;
scb_data = &ahd->scb_data;
if (scb_data == NULL)
return;
switch (scb_data->init_level) {
default:
case 7:
{
struct map_node *sns_map;
while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
aic_dmamap_unload(ahd, scb_data->sense_dmat,
sns_map->dmamap);
aic_dmamem_free(ahd, scb_data->sense_dmat,
sns_map->vaddr, sns_map->dmamap);
free(sns_map, M_DEVBUF);
}
aic_dma_tag_destroy(ahd, scb_data->sense_dmat);
/* FALLTHROUGH */
}
case 6:
{
struct map_node *sg_map;
while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
aic_dmamap_unload(ahd, scb_data->sg_dmat,
sg_map->dmamap);
aic_dmamem_free(ahd, scb_data->sg_dmat,
sg_map->vaddr, sg_map->dmamap);
free(sg_map, M_DEVBUF);
}
aic_dma_tag_destroy(ahd, scb_data->sg_dmat);
/* FALLTHROUGH */
}
case 5:
{
struct map_node *hscb_map;
while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
aic_dmamap_unload(ahd, scb_data->hscb_dmat,
hscb_map->dmamap);
aic_dmamem_free(ahd, scb_data->hscb_dmat,
hscb_map->vaddr, hscb_map->dmamap);
free(hscb_map, M_DEVBUF);
}
aic_dma_tag_destroy(ahd, scb_data->hscb_dmat);
/* FALLTHROUGH */
}
case 4:
case 3:
case 2:
case 1:
case 0:
break;
}
}
/*
* DSP filter Bypass must be enabled until the first selection
* after a change in bus mode (Razor #491 and #493).
*/
static void
ahd_setup_iocell_workaround(struct ahd_softc *ahd)
{
ahd_mode_state saved_modes;
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
| BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0)
printf("%s: Setting up iocell workaround\n", ahd_name(ahd));
#endif
ahd_restore_modes(ahd, saved_modes);
ahd->flags &= ~AHD_HAD_FIRST_SEL;
}
static void
ahd_iocell_first_selection(struct ahd_softc *ahd)
{
ahd_mode_state saved_modes;
u_int sblkctl;
if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
return;
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
sblkctl = ahd_inb(ahd, SBLKCTL);
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0)
printf("%s: iocell first selection\n", ahd_name(ahd));
#endif
if ((sblkctl & ENAB40) != 0) {
ahd_outb(ahd, DSPDATACTL,
ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0)
printf("%s: BYPASS now disabled\n", ahd_name(ahd));
#endif
}
ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
ahd_outb(ahd, CLRINT, CLRSCSIINT);
ahd_restore_modes(ahd, saved_modes);
ahd->flags |= AHD_HAD_FIRST_SEL;
}
/*************************** SCB Management ***********************************/
static void
ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
{
struct scb_list *free_list;
struct scb_tailq *free_tailq;
struct scb *first_scb;
scb->flags |= SCB_ON_COL_LIST;
AHD_SET_SCB_COL_IDX(scb, col_idx);
free_list = &ahd->scb_data.free_scb_lists[col_idx];
free_tailq = &ahd->scb_data.free_scbs;
first_scb = LIST_FIRST(free_list);
if (first_scb != NULL) {
LIST_INSERT_AFTER(first_scb, scb, collision_links);
} else {
LIST_INSERT_HEAD(free_list, scb, collision_links);
TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
}
}
static void
ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
{
struct scb_list *free_list;
struct scb_tailq *free_tailq;
struct scb *first_scb;
u_int col_idx;
scb->flags &= ~SCB_ON_COL_LIST;
col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
free_list = &ahd->scb_data.free_scb_lists[col_idx];
free_tailq = &ahd->scb_data.free_scbs;
first_scb = LIST_FIRST(free_list);
if (first_scb == scb) {
struct scb *next_scb;
/*
* Maintain order in the collision free
* lists for fairness if this device has
* other colliding tags active.
*/
next_scb = LIST_NEXT(scb, collision_links);
if (next_scb != NULL) {
TAILQ_INSERT_AFTER(free_tailq, scb,
next_scb, links.tqe);
}
TAILQ_REMOVE(free_tailq, scb, links.tqe);
}
LIST_REMOVE(scb, collision_links);
}
/*
* Get a free scb. If there are none, see if we can allocate a new SCB.
*/
struct scb *
ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
{
struct scb *scb;
int tries;
tries = 0;
look_again:
TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
ahd_rem_col_list(ahd, scb);
goto found;
}
}
if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {
if (tries++ != 0)
return (NULL);
if (ahd_alloc_scbs(ahd) == 0)
return (NULL);
goto look_again;
}
LIST_REMOVE(scb, links.le);
if (col_idx != AHD_NEVER_COL_IDX
&& (scb->col_scb != NULL)
&& (scb->col_scb->flags & SCB_ACTIVE) == 0) {
LIST_REMOVE(scb->col_scb, links.le);
ahd_add_col_list(ahd, scb->col_scb, col_idx);
}
found:
scb->flags |= SCB_ACTIVE;
return (scb);
}
/*
* Return an SCB resource to the free list.
*/
void
ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
{
/* Clean up for the next user */
scb->flags = SCB_FLAG_NONE;
scb->hscb->control = 0;
ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
if (scb->col_scb == NULL) {
/*
* No collision possible. Just free normally.
*/
LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
scb, links.le);
} else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {
/*
* The SCB we might have collided with is on
* a free collision list. Put both SCBs on
* the generic list.
*/
ahd_rem_col_list(ahd, scb->col_scb);
LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
scb, links.le);
LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
scb->col_scb, links.le);
} else if ((scb->col_scb->flags
& (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE
&& (scb->col_scb->hscb->control & TAG_ENB) != 0) {
/*
* The SCB we might collide with on the next allocation
* is still active in a non-packetized, tagged, context.
* Put us on the SCB collision list.
*/
ahd_add_col_list(ahd, scb,
AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
} else {
/*
* The SCB we might collide with on the next allocation
* is either active in a packetized context, or free.
* Since we can't collide, put this SCB on the generic
* free list.
*/
LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
scb, links.le);
}
aic_platform_scb_free(ahd, scb);
}
int
ahd_alloc_scbs(struct ahd_softc *ahd)
{
struct scb_data *scb_data;
struct scb *next_scb;
struct hardware_scb *hscb;
struct map_node *hscb_map;
struct map_node *sg_map;
struct map_node *sense_map;
uint8_t *segs;
uint8_t *sense_data;
bus_addr_t hscb_busaddr;
bus_addr_t sg_busaddr;
bus_addr_t sense_busaddr;
int newcount;
int i;
scb_data = &ahd->scb_data;
if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
/* Can't allocate any more */
return (0);
if (scb_data->scbs_left != 0) {
int offset;
offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
hscb_busaddr = hscb_map->busaddr + (offset * sizeof(*hscb));
} else {
hscb_map = malloc(sizeof(*hscb_map), M_DEVBUF, M_NOWAIT);
if (hscb_map == NULL)
return (0);
/* Allocate the next batch of hardware SCBs */
if (aic_dmamem_alloc(ahd, scb_data->hscb_dmat,
(void **)&hscb_map->vaddr,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
&hscb_map->dmamap) != 0) {
free(hscb_map, M_DEVBUF);
return (0);
}
SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
aic_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
&hscb_map->busaddr, /*flags*/0);
hscb = (struct hardware_scb *)hscb_map->vaddr;
hscb_busaddr = hscb_map->busaddr;
scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
}
if (scb_data->sgs_left != 0) {
int offset;
offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
- scb_data->sgs_left) * ahd_sglist_size(ahd);
sg_map = SLIST_FIRST(&scb_data->sg_maps);
segs = sg_map->vaddr + offset;
sg_busaddr = sg_map->busaddr + offset;
} else {
sg_map = malloc(sizeof(*sg_map), M_DEVBUF, M_NOWAIT);
if (sg_map == NULL)
return (0);
/* Allocate the next batch of S/G lists */
if (aic_dmamem_alloc(ahd, scb_data->sg_dmat,
(void **)&sg_map->vaddr,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
&sg_map->dmamap) != 0) {
free(sg_map, M_DEVBUF);
return (0);
}
SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
aic_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
sg_map->vaddr, ahd_sglist_allocsize(ahd),
ahd_dmamap_cb, &sg_map->busaddr, /*flags*/0);
segs = sg_map->vaddr;
sg_busaddr = sg_map->busaddr;
scb_data->sgs_left =
ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_MEMORY)
printf("Mapped SG data\n");
#endif
}
if (scb_data->sense_left != 0) {
int offset;
offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
sense_map = SLIST_FIRST(&scb_data->sense_maps);
sense_data = sense_map->vaddr + offset;
sense_busaddr = sense_map->busaddr + offset;
} else {
sense_map = malloc(sizeof(*sense_map), M_DEVBUF, M_NOWAIT);
if (sense_map == NULL)
return (0);
/* Allocate the next batch of sense buffers */
if (aic_dmamem_alloc(ahd, scb_data->sense_dmat,
(void **)&sense_map->vaddr,
BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
free(sense_map, M_DEVBUF);
return (0);
}
SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
aic_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
&sense_map->busaddr, /*flags*/0);
sense_data = sense_map->vaddr;
sense_busaddr = sense_map->busaddr;
scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_MEMORY)
printf("Mapped sense data\n");
#endif
}
newcount = MIN(scb_data->sense_left, scb_data->scbs_left);
newcount = MIN(newcount, scb_data->sgs_left);
newcount = MIN(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
scb_data->sense_left -= newcount;
scb_data->scbs_left -= newcount;
scb_data->sgs_left -= newcount;
for (i = 0; i < newcount; i++) {
struct scb_platform_data *pdata;
u_int col_tag;
#ifndef __linux__
int error;
#endif
next_scb = (struct scb *)malloc(sizeof(*next_scb),
M_DEVBUF, M_NOWAIT);
if (next_scb == NULL)
break;
pdata = (struct scb_platform_data *)malloc(sizeof(*pdata),
M_DEVBUF, M_NOWAIT);
if (pdata == NULL) {
free(next_scb, M_DEVBUF);
break;
}
next_scb->platform_data = pdata;
next_scb->hscb_map = hscb_map;
next_scb->sg_map = sg_map;
next_scb->sense_map = sense_map;
next_scb->sg_list = segs;
next_scb->sense_data = sense_data;
next_scb->sense_busaddr = sense_busaddr;
memset(hscb, 0, sizeof(*hscb));
next_scb->hscb = hscb;
hscb->hscb_busaddr = aic_htole32(hscb_busaddr);
/*
* The sequencer always starts with the second entry.
* The first entry is embedded in the scb.
*/
next_scb->sg_list_busaddr = sg_busaddr;
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
next_scb->sg_list_busaddr
+= sizeof(struct ahd_dma64_seg);
else
next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
next_scb->ahd_softc = ahd;
next_scb->flags = SCB_FLAG_NONE;
#ifndef __linux__
error = aic_dmamap_create(ahd, ahd->buffer_dmat, /*flags*/0,
&next_scb->dmamap);
if (error != 0) {
free(next_scb, M_DEVBUF);
free(pdata, M_DEVBUF);
break;
}
#endif
next_scb->hscb->tag = aic_htole16(scb_data->numscbs);
col_tag = scb_data->numscbs ^ 0x100;
next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
if (next_scb->col_scb != NULL)
next_scb->col_scb->col_scb = next_scb;
aic_timer_init(&next_scb->io_timer);
ahd_free_scb(ahd, next_scb);
hscb++;
hscb_busaddr += sizeof(*hscb);
segs += ahd_sglist_size(ahd);
sg_busaddr += ahd_sglist_size(ahd);
sense_data += AHD_SENSE_BUFSIZE;
sense_busaddr += AHD_SENSE_BUFSIZE;
scb_data->numscbs++;
}
return (i);
}
void
ahd_controller_info(struct ahd_softc *ahd, char *buf)
{
const char *speed;
const char *type;
int len;
len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
buf += len;
speed = "Ultra320 ";
if ((ahd->features & AHD_WIDE) != 0) {
type = "Wide ";
} else {
type = "Single ";
}
len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
speed, type, ahd->channel, ahd->our_id);
buf += len;
sprintf(buf, "%s, %d SCBs", ahd->bus_description,
ahd->scb_data.maxhscbs);
}
static const char *channel_strings[] = {
"Primary Low",
"Primary High",
"Secondary Low",
"Secondary High"
};
static const char *termstat_strings[] = {
"Terminated Correctly",
"Over Terminated",
"Under Terminated",
"Not Configured"
};
/*
* Start the board, ready for normal operation
*/
int
ahd_init(struct ahd_softc *ahd)
{
uint8_t *next_vaddr;
bus_addr_t next_baddr;
size_t driver_data_size;
int i;
int error;
u_int warn_user;
uint8_t current_sensing;
uint8_t fstat;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
ahd->stack_size = ahd_probe_stack_size(ahd);
ahd->saved_stack = malloc(ahd->stack_size * sizeof(uint16_t),
M_DEVBUF, M_NOWAIT);
if (ahd->saved_stack == NULL)
return (ENOMEM);
/*
* Verify that the compiler hasn't over-agressively
* padded important structures.
*/
if (sizeof(struct hardware_scb) != 64)
panic("Hardware SCB size is incorrect");
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
ahd->flags |= AHD_SEQUENCER_DEBUG;
#endif
/*
* Default to allowing initiator operations.
*/
ahd->flags |= AHD_INITIATORROLE;
/*
* Only allow target mode features if this unit has them enabled.
*/
if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
ahd->features &= ~AHD_TARGETMODE;
#ifndef __linux__
/* DMA tag for mapping buffers into device visible space. */
if (aic_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
/*lowaddr*/ahd->flags & AHD_39BIT_ADDRESSING
? (bus_addr_t)0x7FFFFFFFFFULL
: BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
/*maxsize*/(AHD_NSEG - 1) * PAGE_SIZE,
/*nsegments*/AHD_NSEG,
/*maxsegsz*/AHD_MAXTRANSFER_SIZE,
/*flags*/BUS_DMA_ALLOCNOW,
&ahd->buffer_dmat) != 0) {
return (ENOMEM);
}
#endif
ahd->init_level++;
/*
* DMA tag for our command fifos and other data in system memory
* the card's sequencer must be able to access. For initiator
* roles, we need to allocate space for the qoutfifo. When providing
* for the target mode role, we must additionally provide space for
* the incoming target command fifo.
*/
driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
+ sizeof(struct hardware_scb);
if ((ahd->features & AHD_TARGETMODE) != 0)
driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
driver_data_size += PKT_OVERRUN_BUFSIZE;
if (aic_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
/*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
/*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
driver_data_size,
/*nsegments*/1,
/*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
/*flags*/0, &ahd->shared_data_dmat) != 0) {
return (ENOMEM);
}
ahd->init_level++;
/* Allocation of driver data */
if (aic_dmamem_alloc(ahd, ahd->shared_data_dmat,
(void **)&ahd->shared_data_map.vaddr,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
&ahd->shared_data_map.dmamap) != 0) {
return (ENOMEM);
}
ahd->init_level++;
/* And permanently map it in */
aic_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
ahd->shared_data_map.vaddr, driver_data_size,
ahd_dmamap_cb, &ahd->shared_data_map.busaddr,
/*flags*/0);
ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
next_baddr = ahd->shared_data_map.busaddr
+ AHD_QOUT_SIZE*sizeof(struct ahd_completion);
if ((ahd->features & AHD_TARGETMODE) != 0) {
ahd->targetcmds = (struct target_cmd *)next_vaddr;
next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
}
if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
ahd->overrun_buf = next_vaddr;
next_vaddr += PKT_OVERRUN_BUFSIZE;
next_baddr += PKT_OVERRUN_BUFSIZE;
}
/*
* We need one SCB to serve as the "next SCB". Since the
* tag identifier in this SCB will never be used, there is
* no point in using a valid HSCB tag from an SCB pulled from
* the standard free pool. So, we allocate this "sentinel"
* specially from the DMA safe memory chunk used for the QOUTFIFO.
*/
ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
ahd->next_queued_hscb_map = &ahd->shared_data_map;
ahd->next_queued_hscb->hscb_busaddr = aic_htole32(next_baddr);
ahd->init_level++;
/* Allocate SCB data now that buffer_dmat is initialized */
if (ahd_init_scbdata(ahd) != 0)
return (ENOMEM);
if ((ahd->flags & AHD_INITIATORROLE) == 0)
ahd->flags &= ~AHD_RESET_BUS_A;
/*
* Before committing these settings to the chip, give
* the OSM one last chance to modify our configuration.
*/
ahd_platform_init(ahd);
/* Bring up the chip. */
ahd_chip_init(ahd);
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
goto init_done;
/*
* Verify termination based on current draw and
* warn user if the bus is over/under terminated.
*/
error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
CURSENSE_ENB);
if (error != 0) {
printf("%s: current sensing timeout 1\n", ahd_name(ahd));
goto init_done;
}
for (i = 20, fstat = FLX_FSTAT_BUSY;
(fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
if (error != 0) {
printf("%s: current sensing timeout 2\n",
ahd_name(ahd));
goto init_done;
}
}
if (i == 0) {
printf("%s: Timedout during current-sensing test\n",
ahd_name(ahd));
goto init_done;
}
/* Latch Current Sensing status. */
error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, &current_sensing);
if (error != 0) {
printf("%s: current sensing timeout 3\n", ahd_name(ahd));
goto init_done;
}
/* Diable current sensing. */
ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
printf("%s: current_sensing == 0x%x\n",
ahd_name(ahd), current_sensing);
}
#endif
warn_user = 0;
for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
u_int term_stat;
term_stat = (current_sensing & FLX_CSTAT_MASK);
switch (term_stat) {
case FLX_CSTAT_OVER:
case FLX_CSTAT_UNDER:
warn_user++;
case FLX_CSTAT_INVALID:
case FLX_CSTAT_OKAY:
if (warn_user == 0 && bootverbose == 0)
break;
printf("%s: %s Channel %s\n", ahd_name(ahd),
channel_strings[i], termstat_strings[term_stat]);
break;
}
}
if (warn_user) {
printf("%s: WARNING. Termination is not configured correctly.\n"
"%s: WARNING. SCSI bus operations may FAIL.\n",
ahd_name(ahd), ahd_name(ahd));
AHD_CORRECTABLE_ERROR(ahd);
}
init_done:
ahd_restart(ahd);
aic_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_MS,
ahd_stat_timer, ahd);
return (0);
}
/*
* (Re)initialize chip state after a chip reset.
*/
static void
ahd_chip_init(struct ahd_softc *ahd)
{
uint32_t busaddr;
u_int sxfrctl1;
u_int scsiseq_template;
u_int wait;
u_int i;
u_int target;
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
/*
* Take the LED out of diagnostic mode
*/
ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
/*
* Return HS_MAILBOX to its default value.
*/
ahd->hs_mailbox = 0;
ahd_outb(ahd, HS_MAILBOX, 0);
/* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
ahd_outb(ahd, IOWNID, ahd->our_id);
ahd_outb(ahd, TOWNID, ahd->our_id);
sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
&& (ahd->seltime != STIMESEL_MIN)) {
/*
* The selection timer duration is twice as long
* as it should be. Halve it by adding "1" to
* the user specified setting.
*/
sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
} else {
sxfrctl1 |= ahd->seltime;
}
ahd_outb(ahd, SXFRCTL0, DFON);
ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
/*
* Now that termination is set, wait for up
* to 500ms for our transceivers to settle. If
* the adapter does not have a cable attached,
* the transceivers may never settle, so don't
* complain if we fail here.
*/
for (wait = 10000;
(ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
wait--)
aic_delay(100);
/* Clear any false bus resets due to the transceivers settling */
ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
ahd_outb(ahd, CLRINT, CLRSCSIINT);
/* Initialize mode specific S/G state. */
for (i = 0; i < 2; i++) {
ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
ahd_outb(ahd, SG_STATE, 0);
ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
ahd_outb(ahd, SEQIMODE,
ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
|ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
}
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
} else {
ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
}
ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
/*
* Do not issue a target abort when a split completion
* error occurs. Let our PCIX interrupt handler deal
* with it instead. H2A4 Razor #625
*/
ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
/*
* Tweak IOCELL settings.
*/
if ((ahd->flags & AHD_HP_BOARD) != 0) {
for (i = 0; i < NUMDSPS; i++) {
ahd_outb(ahd, DSPSELECT, i);
ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
}
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0)
printf("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
WRTBIASCTL_HP_DEFAULT);
#endif
}
ahd_setup_iocell_workaround(ahd);
/*
* Enable LQI Manager interrupts.
*/
ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
| ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
| ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
/*
* We choose to have the sequencer catch LQOPHCHGINPKT errors
* manually for the command phase at the start of a packetized
* selection case. ENLQOBUSFREE should be made redundant by
* the BUSFREE interrupt, but it seems that some LQOBUSFREE
* events fail to assert the BUSFREE interrupt so we must
* also enable LQOBUSFREE interrupts.
*/
ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
/*
* Setup sequencer interrupt handlers.
*/
ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
/*
* Setup SCB Offset registers.
*/
if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
pkt_long_lun));
} else {
ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
}
ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
shared_data.idata.cdb));
ahd_outb(ahd, QNEXTPTR,
offsetof(struct hardware_scb, next_hscb_busaddr));
ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
ahd_outb(ahd, LUNLEN,
sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
} else {
ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
}
ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
ahd_outb(ahd, MAXCMD, 0xFF);
ahd_outb(ahd, SCBAUTOPTR,
AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
/* We haven't been enabled for target mode yet. */
ahd_outb(ahd, MULTARGID, 0);
ahd_outb(ahd, MULTARGID + 1, 0);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
/* Initialize the negotiation table. */
if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
/*
* Clear the spare bytes in the neg table to avoid
* spurious parity errors.
*/
for (target = 0; target < AHD_NUM_TARGETS; target++) {
ahd_outb(ahd, NEGOADDR, target);
ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
ahd_outb(ahd, ANNEXDAT, 0);
}
}
for (target = 0; target < AHD_NUM_TARGETS; target++) {
struct ahd_devinfo devinfo;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
target, &tstate);
ahd_compile_devinfo(&devinfo, ahd->our_id,
target, CAM_LUN_WILDCARD,
'A', ROLE_INITIATOR);
ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
}
ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
ahd_outb(ahd, CLRINT, CLRSCSIINT);
#ifdef NEEDS_MORE_TESTING
/*
* Always enable abort on incoming L_Qs if this feature is
* supported. We use this to catch invalid SCB references.
*/
if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
ahd_outb(ahd, LQCTL1, ABORTPENDING);
else
#endif
ahd_outb(ahd, LQCTL1, 0);
/* All of our queues are empty */
ahd->qoutfifonext = 0;
ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
for (i = 0; i < AHD_QOUT_SIZE; i++)
ahd->qoutfifo[i].valid_tag = 0;
ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
ahd->qinfifonext = 0;
for (i = 0; i < AHD_QIN_SIZE; i++)
ahd->qinfifo[i] = SCB_LIST_NULL;
if ((ahd->features & AHD_TARGETMODE) != 0) {
/* All target command blocks start out invalid. */
for (i = 0; i < AHD_TMODE_CMDS; i++)
ahd->targetcmds[i].cmd_valid = 0;
ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
ahd->tqinfifonext = 1;
ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
}
/* Initialize Scratch Ram. */
ahd_outb(ahd, SEQ_FLAGS, 0);
ahd_outb(ahd, SEQ_FLAGS2, 0);
/* We don't have any waiting selections */
ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
for (i = 0; i < AHD_NUM_TARGETS; i++)
ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
/*
* Nobody is waiting to be DMAed into the QOUTFIFO.
*/
ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
/*
* The Freeze Count is 0.
*/
ahd->qfreeze_cnt = 0;
ahd_outw(ahd, QFREEZE_COUNT, 0);
ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
/*
* Tell the sequencer where it can find our arrays in memory.
*/
busaddr = ahd->shared_data_map.busaddr;
ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
/*
* Setup the allowed SCSI Sequences based on operational mode.
* If we are a target, we'll enable select in operations once
* we've had a lun enabled.
*/
scsiseq_template = ENAUTOATNP;
if ((ahd->flags & AHD_INITIATORROLE) != 0)
scsiseq_template |= ENRSELI;
ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
/* There are no busy SCBs yet. */
for (target = 0; target < AHD_NUM_TARGETS; target++) {
int lun;
for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
}
/*
* Initialize the group code to command length table.
* Vendor Unique codes are set to 0 so we only capture
* the first byte of the cdb. These can be overridden
* when target mode is enabled.
*/
ahd_outb(ahd, CMDSIZE_TABLE, 5);
ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
/* Tell the sequencer of our initial queue positions */
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
ahd->qinfifonext = 0;
ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
ahd_set_hescb_qoff(ahd, 0);
ahd_set_snscb_qoff(ahd, 0);
ahd_set_sescb_qoff(ahd, 0);
ahd_set_sdscb_qoff(ahd, 0);
/*
* Tell the sequencer which SCB will be the next one it receives.
*/
busaddr = aic_le32toh(ahd->next_queued_hscb->hscb_busaddr);
ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
/*
* Default to coalescing disabled.
*/
ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
ahd_outw(ahd, CMDS_PENDING, 0);
ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
ahd->int_coalescing_maxcmds,
ahd->int_coalescing_mincmds);
ahd_enable_coalescing(ahd, FALSE);
ahd_loadseq(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
}
/*
* Setup default device and controller settings.
* This should only be called if our probe has
* determined that no configuration data is available.
*/
int
ahd_default_config(struct ahd_softc *ahd)
{
int targ;
ahd->our_id = 7;
/*
* Allocate a tstate to house information for our
* initiator presence on the bus as well as the user
* data for any target mode initiator.
*/
if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
printf("%s: unable to allocate ahd_tmode_tstate. "
"Failing attach\n", ahd_name(ahd));
AHD_FATAL_ERROR(ahd);
return (ENOMEM);
}
for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
struct ahd_devinfo devinfo;
struct ahd_initiator_tinfo *tinfo;
struct ahd_tmode_tstate *tstate;
uint16_t target_mask;
tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
targ, &tstate);
/*
* We support SPC2 and SPI4.
*/
tinfo->user.protocol_version = 4;
tinfo->user.transport_version = 4;
target_mask = 0x01 << targ;
ahd->user_discenable |= target_mask;
tstate->discenable |= target_mask;
ahd->user_tagenable |= target_mask;
#ifdef AHD_FORCE_160
tinfo->user.period = AHD_SYNCRATE_DT;
#else
tinfo->user.period = AHD_SYNCRATE_160;
#endif
tinfo->user.offset = MAX_OFFSET;
tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
| MSG_EXT_PPR_WR_FLOW
| MSG_EXT_PPR_HOLD_MCS
| MSG_EXT_PPR_IU_REQ
| MSG_EXT_PPR_QAS_REQ
| MSG_EXT_PPR_DT_REQ;
if ((ahd->features & AHD_RTI) != 0)
tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
/*
* Start out Async/Narrow/Untagged and with
* conservative protocol support.
*/
tinfo->goal.protocol_version = 2;
tinfo->goal.transport_version = 2;
tinfo->curr.protocol_version = 2;
tinfo->curr.transport_version = 2;
ahd_compile_devinfo(&devinfo, ahd->our_id,
targ, CAM_LUN_WILDCARD,
'A', ROLE_INITIATOR);
tstate->tagenable &= ~target_mask;
ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
/*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
/*paused*/TRUE);
}
return (0);
}
/*
* Parse device configuration information.
*/
int
ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
{
int targ;
int max_targ;
max_targ = sc->max_targets & CFMAXTARG;
ahd->our_id = sc->brtime_id & CFSCSIID;
/*
* Allocate a tstate to house information for our
* initiator presence on the bus as well as the user
* data for any target mode initiator.
*/
if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
printf("%s: unable to allocate ahd_tmode_tstate. "
"Failing attach\n", ahd_name(ahd));
AHD_FATAL_ERROR(ahd);
return (ENOMEM);
}
for (targ = 0; targ < max_targ; targ++) {
struct ahd_devinfo devinfo;
struct ahd_initiator_tinfo *tinfo;
struct ahd_transinfo *user_tinfo;
struct ahd_tmode_tstate *tstate;
uint16_t target_mask;
tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
targ, &tstate);
user_tinfo = &tinfo->user;
/*
* We support SPC2 and SPI4.
*/
tinfo->user.protocol_version = 4;
tinfo->user.transport_version = 4;
target_mask = 0x01 << targ;
ahd->user_discenable &= ~target_mask;
tstate->discenable &= ~target_mask;
ahd->user_tagenable &= ~target_mask;
if (sc->device_flags[targ] & CFDISC) {
tstate->discenable |= target_mask;
ahd->user_discenable |= target_mask;
ahd->user_tagenable |= target_mask;
} else {
/*
* Cannot be packetized without disconnection.
*/
sc->device_flags[targ] &= ~CFPACKETIZED;
}
user_tinfo->ppr_options = 0;
user_tinfo->period = (sc->device_flags[targ] & CFXFER);
if (user_tinfo->period < CFXFER_ASYNC) {
if (user_tinfo->period <= AHD_PERIOD_10MHz)
user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
user_tinfo->offset = MAX_OFFSET;
} else {
user_tinfo->offset = 0;
user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
}
#ifdef AHD_FORCE_160
if (user_tinfo->period <= AHD_SYNCRATE_160)
user_tinfo->period = AHD_SYNCRATE_DT;
#endif
if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
| MSG_EXT_PPR_WR_FLOW
| MSG_EXT_PPR_HOLD_MCS
| MSG_EXT_PPR_IU_REQ;
if ((ahd->features & AHD_RTI) != 0)
user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
}
if ((sc->device_flags[targ] & CFQAS) != 0)
user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
if ((sc->device_flags[targ] & CFWIDEB) != 0)
user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
else
user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0)
printf("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
user_tinfo->period, user_tinfo->offset,
user_tinfo->ppr_options);
#endif
/*
* Start out Async/Narrow/Untagged and with
* conservative protocol support.
*/
tstate->tagenable &= ~target_mask;
tinfo->goal.protocol_version = 2;
tinfo->goal.transport_version = 2;
tinfo->curr.protocol_version = 2;
tinfo->curr.transport_version = 2;
ahd_compile_devinfo(&devinfo, ahd->our_id,
targ, CAM_LUN_WILDCARD,
'A', ROLE_INITIATOR);
ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
/*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
/*paused*/TRUE);
}
ahd->flags &= ~AHD_SPCHK_ENB_A;
if (sc->bios_control & CFSPARITY)
ahd->flags |= AHD_SPCHK_ENB_A;
ahd->flags &= ~AHD_RESET_BUS_A;
if (sc->bios_control & CFRESETB)
ahd->flags |= AHD_RESET_BUS_A;
ahd->flags &= ~AHD_EXTENDED_TRANS_A;
if (sc->bios_control & CFEXTEND)
ahd->flags |= AHD_EXTENDED_TRANS_A;
ahd->flags &= ~AHD_BIOS_ENABLED;
if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
ahd->flags |= AHD_BIOS_ENABLED;
ahd->flags &= ~AHD_STPWLEVEL_A;
if ((sc->adapter_control & CFSTPWLEVEL) != 0)
ahd->flags |= AHD_STPWLEVEL_A;
return (0);
}
/*
* Parse device configuration information.
*/
int
ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
{
int error;
error = ahd_verify_vpd_cksum(vpd);
if (error == 0)
return (EINVAL);
if ((vpd->bios_flags & VPDBOOTHOST) != 0)
ahd->flags |= AHD_BOOT_CHANNEL;
return (0);
}
void
ahd_intr_enable(struct ahd_softc *ahd, int enable)
{
u_int hcntrl;
hcntrl = ahd_inb(ahd, HCNTRL);
hcntrl &= ~INTEN;
ahd->pause &= ~INTEN;
ahd->unpause &= ~INTEN;
if (enable) {
hcntrl |= INTEN;
ahd->pause |= INTEN;
ahd->unpause |= INTEN;
}
ahd_outb(ahd, HCNTRL, hcntrl);
}
void
ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
u_int mincmds)
{
if (timer > AHD_TIMER_MAX_US)
timer = AHD_TIMER_MAX_US;
ahd->int_coalescing_timer = timer;
if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
ahd->int_coalescing_maxcmds = maxcmds;
ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
}
void
ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
{
ahd->hs_mailbox &= ~ENINT_COALESCE;
if (enable)
ahd->hs_mailbox |= ENINT_COALESCE;
ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
ahd_flush_device_writes(ahd);
ahd_run_qoutfifo(ahd);
}
/*
* Ensure that the card is paused in a location
* outside of all critical sections and that all
* pending work is completed prior to returning.
* This routine should only be called from outside
* an interrupt context.
*/
void
ahd_pause_and_flushwork(struct ahd_softc *ahd)
{
u_int intstat;
u_int maxloops;
maxloops = 1000;
ahd->flags |= AHD_ALL_INTERRUPTS;
ahd_pause(ahd);
/*
* Freeze the outgoing selections. We do this only
* until we are safely paused without further selections
* pending.
*/
ahd->qfreeze_cnt--;
ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
do {
ahd_unpause(ahd);
/*
* Give the sequencer some time to service
* any active selections.
*/
aic_delay(500);
ahd_intr(ahd);
ahd_pause(ahd);
intstat = ahd_inb(ahd, INTSTAT);
if ((intstat & INT_PEND) == 0) {
ahd_clear_critical_section(ahd);
intstat = ahd_inb(ahd, INTSTAT);
}
} while (--maxloops
&& (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
&& ((intstat & INT_PEND) != 0
|| (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
|| (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
if (maxloops == 0) {
printf("Infinite interrupt loop, INTSTAT = %x",
ahd_inb(ahd, INTSTAT));
AHD_FATAL_ERROR(ahd);
}
ahd->qfreeze_cnt++;
ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
ahd_flush_qoutfifo(ahd);
ahd_platform_flushwork(ahd);
ahd->flags &= ~AHD_ALL_INTERRUPTS;
}
int
ahd_suspend(struct ahd_softc *ahd)
{
ahd_pause_and_flushwork(ahd);
if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
ahd_unpause(ahd);
return (EBUSY);
}
ahd_shutdown(ahd);
return (0);
}
int
ahd_resume(struct ahd_softc *ahd)
{
ahd_reset(ahd, /*reinit*/TRUE);
ahd_intr_enable(ahd, TRUE);
ahd_restart(ahd);
return (0);
}
/************************** Busy Target Table *********************************/
/*
* Set SCBPTR to the SCB that contains the busy
* table entry for TCL. Return the offset into
* the SCB that contains the entry for TCL.
* saved_scbid is dereferenced and set to the
* scbid that should be restored once manipualtion
* of the TCL entry is complete.
*/
static __inline u_int
ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
{
/*
* Index to the SCB that contains the busy entry.
*/
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
*saved_scbid = ahd_get_scbptr(ahd);
ahd_set_scbptr(ahd, TCL_LUN(tcl)
| ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
/*
* And now calculate the SCB offset to the entry.
* Each entry is 2 bytes wide, hence the
* multiplication by 2.
*/
return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
}
/*
* Return the untagged transaction id for a given target/channel lun.
*/
u_int
ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
{
u_int scbid;
u_int scb_offset;
u_int saved_scbptr;
scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
scbid = ahd_inw_scbram(ahd, scb_offset);
ahd_set_scbptr(ahd, saved_scbptr);
return (scbid);
}
void
ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
{
u_int scb_offset;
u_int saved_scbptr;
scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
ahd_outw(ahd, scb_offset, scbid);
ahd_set_scbptr(ahd, saved_scbptr);
}
/************************** SCB and SCB queue management **********************/
int
ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
char channel, int lun, u_int tag, role_t role)
{
int targ = SCB_GET_TARGET(ahd, scb);
char chan = SCB_GET_CHANNEL(ahd, scb);
int slun = SCB_GET_LUN(scb);
int match;
match = ((chan == channel) || (channel == ALL_CHANNELS));
if (match != 0)
match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
if (match != 0)
match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
if (match != 0) {
#ifdef AHD_TARGET_MODE
int group;
group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
if (role == ROLE_INITIATOR) {
match = (group != XPT_FC_GROUP_TMODE)
&& ((tag == SCB_GET_TAG(scb))
|| (tag == SCB_LIST_NULL));
} else if (role == ROLE_TARGET) {
match = (group == XPT_FC_GROUP_TMODE)
&& ((tag == scb->io_ctx->csio.tag_id)
|| (tag == SCB_LIST_NULL));
}
#else /* !AHD_TARGET_MODE */
match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
#endif /* AHD_TARGET_MODE */
}
return match;
}
void
ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
{
int target;
char channel;
int lun;
target = SCB_GET_TARGET(ahd, scb);
lun = SCB_GET_LUN(scb);
channel = SCB_GET_CHANNEL(ahd, scb);
ahd_search_qinfifo(ahd, target, channel, lun,
/*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
CAM_REQUEUE_REQ, SEARCH_COMPLETE);
ahd_platform_freeze_devq(ahd, scb);
}
void
ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
{
struct scb *prev_scb;
ahd_mode_state saved_modes;
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
prev_scb = NULL;
if (ahd_qinfifo_count(ahd) != 0) {
u_int prev_tag;
u_int prev_pos;
prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
prev_tag = ahd->qinfifo[prev_pos];
prev_scb = ahd_lookup_scb(ahd, prev_tag);
}
ahd_qinfifo_requeue(ahd, prev_scb, scb);
ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
ahd_restore_modes(ahd, saved_modes);
}
static void
ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
struct scb *scb)
{
if (prev_scb == NULL) {
uint32_t busaddr;
busaddr = aic_le32toh(scb->hscb->hscb_busaddr);
ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
} else {
prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
ahd_sync_scb(ahd, prev_scb,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
ahd->qinfifonext++;
scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
static int
ahd_qinfifo_count(struct ahd_softc *ahd)
{
u_int qinpos;
u_int wrap_qinpos;
u_int wrap_qinfifonext;
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
qinpos = ahd_get_snscb_qoff(ahd);
wrap_qinpos = AHD_QIN_WRAP(qinpos);
wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
if (wrap_qinfifonext >= wrap_qinpos)
return (wrap_qinfifonext - wrap_qinpos);
else
return (wrap_qinfifonext
+ NUM_ELEMENTS(ahd->qinfifo) - wrap_qinpos);
}
void
ahd_reset_cmds_pending(struct ahd_softc *ahd)
{
struct scb *scb;
ahd_mode_state saved_modes;
u_int pending_cmds;
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
/*
* Don't count any commands as outstanding that the
* sequencer has already marked for completion.
*/
ahd_flush_qoutfifo(ahd);
pending_cmds = 0;
LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
pending_cmds++;
}
ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
ahd_restore_modes(ahd, saved_modes);
ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
}
void
ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
{
cam_status ostat;
cam_status cstat;
ostat = aic_get_transaction_status(scb);
if (ostat == CAM_REQ_INPROG)
aic_set_transaction_status(scb, status);
cstat = aic_get_transaction_status(scb);
if (cstat != CAM_REQ_CMP)
aic_freeze_scb(scb);
ahd_done(ahd, scb);
}
int
ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
int lun, u_int tag, role_t role, uint32_t status,
ahd_search_action action)
{
struct scb *scb;
struct scb *mk_msg_scb;
struct scb *prev_scb;
ahd_mode_state saved_modes;
u_int qinstart;
u_int qinpos;
u_int qintail;
u_int tid_next;
u_int tid_prev;
u_int scbid;
u_int seq_flags2;
u_int savedscbptr;
uint32_t busaddr;
int found;
int targets;
/* Must be in CCHAN mode */
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
/*
* Halt any pending SCB DMA. The sequencer will reinitiate
* this dma if the qinfifo is not empty once we unpause.
*/
if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
== (CCARREN|CCSCBEN|CCSCBDIR)) {
ahd_outb(ahd, CCSCBCTL,
ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
;
}
/* Determine sequencer's position in the qinfifo. */
qintail = AHD_QIN_WRAP(ahd->qinfifonext);
qinstart = ahd_get_snscb_qoff(ahd);
qinpos = AHD_QIN_WRAP(qinstart);
found = 0;
prev_scb = NULL;
if (action == SEARCH_PRINT) {
printf("qinstart = %d qinfifonext = %d\nQINFIFO:",
qinstart, ahd->qinfifonext);
}
/*
* Start with an empty queue. Entries that are not chosen
* for removal will be re-added to the queue as we go.
*/
ahd->qinfifonext = qinstart;
busaddr = aic_le32toh(ahd->next_queued_hscb->hscb_busaddr);
ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
while (qinpos != qintail) {
scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
if (scb == NULL) {
printf("qinpos = %d, SCB index = %d\n",
qinpos, ahd->qinfifo[qinpos]);
AHD_FATAL_ERROR(ahd);
panic("Loop 1\n");
}
if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
/*
* We found an scb that needs to be acted on.
*/
found++;
switch (action) {
case SEARCH_COMPLETE:
if ((scb->flags & SCB_ACTIVE) == 0)
printf("Inactive SCB in qinfifo\n");
ahd_done_with_status(ahd, scb, status);
/* FALLTHROUGH */
case SEARCH_REMOVE:
break;
case SEARCH_PRINT:
printf(" 0x%x", ahd->qinfifo[qinpos]);
/* FALLTHROUGH */
case SEARCH_COUNT:
ahd_qinfifo_requeue(ahd, prev_scb, scb);
prev_scb = scb;
break;
}
} else {
ahd_qinfifo_requeue(ahd, prev_scb, scb);
prev_scb = scb;
}
qinpos = AHD_QIN_WRAP(qinpos+1);
}
ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
if (action == SEARCH_PRINT)
printf("\nWAITING_TID_QUEUES:\n");
/*
* Search waiting for selection lists. We traverse the
* list of "their ids" waiting for selection and, if
* appropriate, traverse the SCBs of each "their id"
* looking for matches.
*/
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
mk_msg_scb = ahd_lookup_scb(ahd, scbid);
} else
mk_msg_scb = NULL;
savedscbptr = ahd_get_scbptr(ahd);
tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
tid_prev = SCB_LIST_NULL;
targets = 0;
for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
u_int tid_head;
u_int tid_tail;
targets++;
if (targets > AHD_NUM_TARGETS)
panic("TID LIST LOOP");
if (scbid >= ahd->scb_data.numscbs) {
printf("%s: Waiting TID List inconsistency. "
"SCB index == 0x%x, yet numscbs == 0x%x.",
ahd_name(ahd), scbid, ahd->scb_data.numscbs);
ahd_dump_card_state(ahd);
panic("for safety");
}
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("%s: SCB = 0x%x Not Active!\n",
ahd_name(ahd), scbid);
panic("Waiting TID List traversal\n");
}
ahd_set_scbptr(ahd, scbid);
tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
tid_prev = scbid;
continue;
}
/*
* We found a list of scbs that needs to be searched.
*/
if (action == SEARCH_PRINT)
printf(" %d ( ", SCB_GET_TARGET(ahd, scb));
tid_head = scbid;
found += ahd_search_scb_list(ahd, target, channel,
lun, tag, role, status,
action, &tid_head, &tid_tail,
SCB_GET_TARGET(ahd, scb));
/*
* Check any MK_MESSAGE SCB that is still waiting to
* enter this target's waiting for selection queue.
*/
if (mk_msg_scb != NULL
&& ahd_match_scb(ahd, mk_msg_scb, target, channel,
lun, tag, role)) {
/*
* We found an scb that needs to be acted on.
*/
found++;
switch (action) {
case SEARCH_COMPLETE:
if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
printf("Inactive SCB pending MK_MSG\n");
ahd_done_with_status(ahd, mk_msg_scb, status);
/* FALLTHROUGH */
case SEARCH_REMOVE:
{
u_int tail_offset;
printf("Removing MK_MSG scb\n");
/*
* Reset our tail to the tail of the
* main per-target list.
*/
tail_offset = WAITING_SCB_TAILS
+ (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
ahd_outw(ahd, tail_offset, tid_tail);
seq_flags2 &= ~PENDING_MK_MESSAGE;
ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
ahd_outw(ahd, CMDS_PENDING,
ahd_inw(ahd, CMDS_PENDING)-1);
mk_msg_scb = NULL;
break;
}
case SEARCH_PRINT:
printf(" 0x%x", SCB_GET_TAG(scb));
/* FALLTHROUGH */
case SEARCH_COUNT:
break;
}
}
if (mk_msg_scb != NULL
&& SCBID_IS_NULL(tid_head)
&& ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
SCB_LIST_NULL, ROLE_UNKNOWN)) {
/*
* When removing the last SCB for a target
* queue with a pending MK_MESSAGE scb, we
* must queue the MK_MESSAGE scb.
*/
printf("Queueing mk_msg_scb\n");
tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
seq_flags2 &= ~PENDING_MK_MESSAGE;
ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
mk_msg_scb = NULL;
}
if (tid_head != scbid)
ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
if (!SCBID_IS_NULL(tid_head))
tid_prev = tid_head;
if (action == SEARCH_PRINT)
printf(")\n");
}
/* Restore saved state. */
ahd_set_scbptr(ahd, savedscbptr);
ahd_restore_modes(ahd, saved_modes);
return (found);
}
static int
ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
int lun, u_int tag, role_t role, uint32_t status,
ahd_search_action action, u_int *list_head,
u_int *list_tail, u_int tid)
{
struct scb *scb;
u_int scbid;
u_int next;
u_int prev;
int found;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
found = 0;
prev = SCB_LIST_NULL;
next = *list_head;
*list_tail = SCB_LIST_NULL;
for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
if (scbid >= ahd->scb_data.numscbs) {
printf("%s:SCB List inconsistency. "
"SCB == 0x%x, yet numscbs == 0x%x.",
ahd_name(ahd), scbid, ahd->scb_data.numscbs);
ahd_dump_card_state(ahd);
panic("for safety");
}
scb = ahd_lookup_scb(ahd, scbid);
if (scb == NULL) {
printf("%s: SCB = %d Not Active!\n",
ahd_name(ahd), scbid);
panic("Waiting List traversal\n");
}
ahd_set_scbptr(ahd, scbid);
*list_tail = scbid;
next = ahd_inw_scbram(ahd, SCB_NEXT);
if (ahd_match_scb(ahd, scb, target, channel,
lun, SCB_LIST_NULL, role) == 0) {
prev = scbid;
continue;
}
found++;
switch (action) {
case SEARCH_COMPLETE:
if ((scb->flags & SCB_ACTIVE) == 0)
printf("Inactive SCB in Waiting List\n");
ahd_done_with_status(ahd, scb, status);
/* FALLTHROUGH */
case SEARCH_REMOVE:
ahd_rem_wscb(ahd, scbid, prev, next, tid);
*list_tail = prev;
if (SCBID_IS_NULL(prev))
*list_head = next;
break;
case SEARCH_PRINT:
printf("0x%x ", scbid);
case SEARCH_COUNT:
prev = scbid;
break;
}
if (found > AHD_SCB_MAX)
panic("SCB LIST LOOP");
}
if (action == SEARCH_COMPLETE
|| action == SEARCH_REMOVE)
ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
return (found);
}
static void
ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
u_int tid_cur, u_int tid_next)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
if (SCBID_IS_NULL(tid_cur)) {
/* Bypass current TID list */
if (SCBID_IS_NULL(tid_prev)) {
ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
} else {
ahd_set_scbptr(ahd, tid_prev);
ahd_outw(ahd, SCB_NEXT2, tid_next);
}
if (SCBID_IS_NULL(tid_next))
ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
} else {
/* Stitch through tid_cur */
if (SCBID_IS_NULL(tid_prev)) {
ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
} else {
ahd_set_scbptr(ahd, tid_prev);
ahd_outw(ahd, SCB_NEXT2, tid_cur);
}
ahd_set_scbptr(ahd, tid_cur);
ahd_outw(ahd, SCB_NEXT2, tid_next);
if (SCBID_IS_NULL(tid_next))
ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
}
}
/*
* Manipulate the waiting for selection list and return the
* scb that follows the one that we remove.
*/
static u_int
ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
u_int prev, u_int next, u_int tid)
{
u_int tail_offset;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
if (!SCBID_IS_NULL(prev)) {
ahd_set_scbptr(ahd, prev);
ahd_outw(ahd, SCB_NEXT, next);
}
/*
* SCBs that have MK_MESSAGE set in them may
* cause the tail pointer to be updated without
* setting the next pointer of the previous tail.
* Only clear the tail if the removed SCB was
* the tail.
*/
tail_offset = WAITING_SCB_TAILS + (2 * tid);
if (SCBID_IS_NULL(next)
&& ahd_inw(ahd, tail_offset) == scbid)
ahd_outw(ahd, tail_offset, prev);
ahd_add_scb_to_free_list(ahd, scbid);
return (next);
}
/*
* Add the SCB as selected by SCBPTR onto the on chip list of
* free hardware SCBs. This list is empty/unused if we are not
* performing SCB paging.
*/
static void
ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
{
/* XXX Need some other mechanism to designate "free". */
/*
* Invalidate the tag so that our abort
* routines don't think it's active.
ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
*/
}
/******************************** Error Handling ******************************/
/*
* Abort all SCBs that match the given description (target/channel/lun/tag),
* setting their status to the passed in status if the status has not already
* been modified from CAM_REQ_INPROG. This routine assumes that the sequencer
* is paused before it is called.
*/
int
ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
int lun, u_int tag, role_t role, uint32_t status)
{
struct scb *scbp;
struct scb *scbp_next;
u_int i, j;
u_int maxtarget;
u_int minlun;
u_int maxlun;
int found;
ahd_mode_state saved_modes;
/* restore this when we're done */
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
/*
* Clean out the busy target table for any untagged commands.
*/
i = 0;
maxtarget = 16;
if (target != CAM_TARGET_WILDCARD) {
i = target;
if (channel == 'B')
i += 8;
maxtarget = i + 1;
}
if (lun == CAM_LUN_WILDCARD) {
minlun = 0;
maxlun = AHD_NUM_LUNS_NONPKT;
} else if (lun >= AHD_NUM_LUNS_NONPKT) {
minlun = maxlun = 0;
} else {
minlun = lun;
maxlun = lun + 1;
}
if (role != ROLE_TARGET) {
for (;i < maxtarget; i++) {
for (j = minlun;j < maxlun; j++) {
u_int scbid;
u_int tcl;
tcl = BUILD_TCL_RAW(i, 'A', j);
scbid = ahd_find_busy_tcl(ahd, tcl);
scbp = ahd_lookup_scb(ahd, scbid);
if (scbp == NULL
|| ahd_match_scb(ahd, scbp, target, channel,
lun, tag, role) == 0)
continue;
ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
}
}
}
/*
* Don't abort commands that have already completed,
* but haven't quite made it up to the host yet.
*/
ahd_flush_qoutfifo(ahd);
/*
* Go through the pending CCB list and look for
* commands for this target that are still active.
* These are other tagged commands that were
* disconnected when the reset occurred.
*/
scbp_next = LIST_FIRST(&ahd->pending_scbs);
while (scbp_next != NULL) {
scbp = scbp_next;
scbp_next = LIST_NEXT(scbp, pending_links);
if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
cam_status ostat;
ostat = aic_get_transaction_status(scbp);
if (ostat == CAM_REQ_INPROG)
aic_set_transaction_status(scbp, status);
if (aic_get_transaction_status(scbp) != CAM_REQ_CMP)
aic_freeze_scb(scbp);
if ((scbp->flags & SCB_ACTIVE) == 0)
printf("Inactive SCB on pending list\n");
ahd_done(ahd, scbp);
found++;
}
}
ahd_restore_modes(ahd, saved_modes);
ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status);
ahd->flags |= AHD_UPDATE_PEND_CMDS;
return found;
}
static void
ahd_reset_current_bus(struct ahd_softc *ahd)
{
uint8_t scsiseq;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
ahd_flush_device_writes(ahd);
aic_delay(AHD_BUSRESET_DELAY);
/* Turn off the bus reset */
ahd_outb(ahd, SCSISEQ0, scsiseq);
ahd_flush_device_writes(ahd);
aic_delay(AHD_BUSRESET_DELAY);
if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
/*
* 2A Razor #474
* Certain chip state is not cleared for
* SCSI bus resets that we initiate, so
* we must reset the chip.
*/
ahd_reset(ahd, /*reinit*/TRUE);
ahd_intr_enable(ahd, /*enable*/TRUE);
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
}
ahd_clear_intstat(ahd);
}
int
ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
{
struct ahd_devinfo devinfo;
u_int initiator;
u_int target;
u_int max_scsiid;
int found;
u_int fifo;
u_int next_fifo;
ahd->pending_device = NULL;
ahd_compile_devinfo(&devinfo,
CAM_TARGET_WILDCARD,
CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD,
channel, ROLE_UNKNOWN);
ahd_pause(ahd);
/* Make sure the sequencer is in a safe location. */
ahd_clear_critical_section(ahd);
#ifdef AHD_TARGET_MODE
if ((ahd->flags & AHD_TARGETROLE) != 0) {
ahd_run_tqinfifo(ahd, /*paused*/TRUE);
}
#endif
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
/*
* Disable selections so no automatic hardware
* functions will modify chip state.
*/
ahd_outb(ahd, SCSISEQ0, 0);
ahd_outb(ahd, SCSISEQ1, 0);
/*
* Safely shut down our DMA engines. Always start with
* the FIFO that is not currently active (if any are
* actively connected).
*/
next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
if (next_fifo > CURRFIFO_1)
/* If disconneced, arbitrarily start with FIFO1. */
next_fifo = fifo = 0;
do {
next_fifo ^= CURRFIFO_1;
ahd_set_modes(ahd, next_fifo, next_fifo);
ahd_outb(ahd, DFCNTRL,
ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
aic_delay(10);
/*
* Set CURRFIFO to the now inactive channel.
*/
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, DFFSTAT, next_fifo);
} while (next_fifo != fifo);
/*
* Reset the bus if we are initiating this reset
*/
ahd_clear_msg_state(ahd);
ahd_outb(ahd, SIMODE1,
ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
if (initiate_reset)
ahd_reset_current_bus(ahd);
ahd_clear_intstat(ahd);
/*
* Clean up all the state information for the
* pending transactions on this bus.
*/
found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
CAM_LUN_WILDCARD, SCB_LIST_NULL,
ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
/*
* Cleanup anything left in the FIFOs.
*/
ahd_clear_fifo(ahd, 0);
ahd_clear_fifo(ahd, 1);
/*
* Revert to async/narrow transfers until we renegotiate.
*/
max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
for (target = 0; target <= max_scsiid; target++) {
if (ahd->enabled_targets[target] == NULL)
continue;
for (initiator = 0; initiator <= max_scsiid; initiator++) {
struct ahd_devinfo devinfo;
ahd_compile_devinfo(&devinfo, target, initiator,
CAM_LUN_WILDCARD,
'A', ROLE_UNKNOWN);
ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHD_TRANS_CUR, /*paused*/TRUE);
ahd_set_syncrate(ahd, &devinfo, /*period*/0,
/*offset*/0, /*ppr_options*/0,
AHD_TRANS_CUR, /*paused*/TRUE);
}
}
#ifdef AHD_TARGET_MODE
max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
/*
* Send an immediate notify ccb to all target more peripheral
* drivers affected by this action.
*/
for (target = 0; target <= max_scsiid; target++) {
struct ahd_tmode_tstate* tstate;
u_int lun;
tstate = ahd->enabled_targets[target];
if (tstate == NULL)
continue;
for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
struct ahd_tmode_lstate* lstate;
lstate = tstate->enabled_luns[lun];
if (lstate == NULL)
continue;
ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
EVENT_TYPE_BUS_RESET, /*arg*/0);
ahd_send_lstate_events(ahd, lstate);
}
}
#endif
/* Notify the XPT that a bus reset occurred */
ahd_send_async(ahd, devinfo.channel, CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD, AC_BUS_RESET, NULL);
ahd_restart(ahd);
/*
* Freeze the SIMQ until our poller can determine that
* the bus reset has really gone away. We set the initial
* timer to 0 to have the check performed as soon as possible
* from the timer context.
*/
if ((ahd->flags & AHD_RESET_POLL_ACTIVE) == 0) {
ahd->flags |= AHD_RESET_POLL_ACTIVE;
aic_freeze_simq(ahd);
aic_timer_reset(&ahd->reset_timer, 0, ahd_reset_poll, ahd);
}
return (found);
}
#define AHD_RESET_POLL_MS 1
static void
ahd_reset_poll(void *arg)
{
struct ahd_softc *ahd = (struct ahd_softc *)arg;
u_int scsiseq1;
ahd_lock(ahd);
ahd_pause(ahd);
ahd_update_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
if ((ahd_inb(ahd, SSTAT1) & SCSIRSTI) != 0) {
aic_timer_reset(&ahd->reset_timer, AHD_RESET_POLL_MS,
ahd_reset_poll, ahd);
ahd_unpause(ahd);
ahd_unlock(ahd);
return;
}
/* Reset is now low. Complete chip reinitialization. */
ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
ahd_outb(ahd, SCSISEQ1, scsiseq1 & (ENSELI|ENRSELI|ENAUTOATNP));
ahd_unpause(ahd);
ahd->flags &= ~AHD_RESET_POLL_ACTIVE;
aic_release_simq(ahd);
ahd_unlock(ahd);
}
/**************************** Statistics Processing ***************************/
static void
ahd_stat_timer(void *arg)
{
struct ahd_softc *ahd = (struct ahd_softc *)arg;
int enint_coal;
ahd_lock(ahd);
enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
enint_coal |= ENINT_COALESCE;
else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
enint_coal &= ~ENINT_COALESCE;
if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
ahd_enable_coalescing(ahd, enint_coal);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
printf("%s: Interrupt coalescing "
"now %sabled. Cmds %d\n",
ahd_name(ahd),
(enint_coal & ENINT_COALESCE) ? "en" : "dis",
ahd->cmdcmplt_total);
#endif
}
ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
aic_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_MS,
ahd_stat_timer, ahd);
ahd_unlock(ahd);
}
/****************************** Status Processing *****************************/
void
ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
{
if (scb->hscb->shared_data.istatus.scsi_status != 0) {
ahd_handle_scsi_status(ahd, scb);
} else {
ahd_calc_residual(ahd, scb);
ahd_done(ahd, scb);
}
}
void
ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
{
struct hardware_scb *hscb;
int paused;
/*
* The sequencer freezes its select-out queue
* anytime a SCSI status error occurs. We must
* handle the error and increment our qfreeze count
* to allow the sequencer to continue. We don't
* bother clearing critical sections here since all
* operations are on data structures that the sequencer
* is not touching once the queue is frozen.
*/
hscb = scb->hscb;
if (ahd_is_paused(ahd)) {
paused = 1;
} else {
paused = 0;
ahd_pause(ahd);
}
/* Freeze the queue until the client sees the error. */
ahd_freeze_devq(ahd, scb);
aic_freeze_scb(scb);
ahd->qfreeze_cnt++;
ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
if (paused == 0)
ahd_unpause(ahd);
/* Don't want to clobber the original sense code */
if ((scb->flags & SCB_SENSE) != 0) {
/*
* Clear the SCB_SENSE Flag and perform
* a normal command completion.
*/
scb->flags &= ~SCB_SENSE;
aic_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
ahd_done(ahd, scb);
return;
}
aic_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
aic_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
switch (hscb->shared_data.istatus.scsi_status) {
case STATUS_PKT_SENSE:
{
struct scsi_status_iu_header *siu;
ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
siu = (struct scsi_status_iu_header *)scb->sense_data;
aic_set_scsi_status(scb, siu->status);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
ahd_print_path(ahd, scb);
printf("SCB 0x%x Received PKT Status of 0x%x\n",
SCB_GET_TAG(scb), siu->status);
printf("\tflags = 0x%x, sense len = 0x%x, "
"pktfail = 0x%x\n",
siu->flags, scsi_4btoul(siu->sense_length),
scsi_4btoul(siu->pkt_failures_length));
}
#endif
if ((siu->flags & SIU_RSPVALID) != 0) {
ahd_print_path(ahd, scb);
if (scsi_4btoul(siu->pkt_failures_length) < 4) {
printf("Unable to parse pkt_failures\n");
} else {
switch (SIU_PKTFAIL_CODE(siu)) {
case SIU_PFC_NONE:
printf("No packet failure found\n");
AHD_UNCORRECTABLE_ERROR(ahd);
break;
case SIU_PFC_CIU_FIELDS_INVALID:
printf("Invalid Command IU Field\n");
AHD_UNCORRECTABLE_ERROR(ahd);
break;
case SIU_PFC_TMF_NOT_SUPPORTED:
printf("TMF not supportd\n");
AHD_UNCORRECTABLE_ERROR(ahd);
break;
case SIU_PFC_TMF_FAILED:
printf("TMF failed\n");
AHD_UNCORRECTABLE_ERROR(ahd);
break;
case SIU_PFC_INVALID_TYPE_CODE:
printf("Invalid L_Q Type code\n");
AHD_UNCORRECTABLE_ERROR(ahd);
break;
case SIU_PFC_ILLEGAL_REQUEST:
AHD_UNCORRECTABLE_ERROR(ahd);
printf("Illegal request\n");
default:
break;
}
}
if (siu->status == SCSI_STATUS_OK)
aic_set_transaction_status(scb,
CAM_REQ_CMP_ERR);
}
if ((siu->flags & SIU_SNSVALID) != 0) {
scb->flags |= SCB_PKT_SENSE;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_SENSE) != 0)
printf("Sense data available\n");
#endif
}
ahd_done(ahd, scb);
break;
}
case SCSI_STATUS_CMD_TERMINATED:
case SCSI_STATUS_CHECK_COND:
{
struct ahd_devinfo devinfo;
struct ahd_dma_seg *sg;
struct scsi_sense *sc;
struct ahd_initiator_tinfo *targ_info;
struct ahd_tmode_tstate *tstate;
struct ahd_transinfo *tinfo;
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_SENSE) {
ahd_print_path(ahd, scb);
printf("SCB %d: requests Check Status\n",
SCB_GET_TAG(scb));
}
#endif
if (aic_perform_autosense(scb) == 0)
break;
ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
SCB_GET_TARGET(ahd, scb),
SCB_GET_LUN(scb),
SCB_GET_CHANNEL(ahd, scb),
ROLE_INITIATOR);
targ_info = ahd_fetch_transinfo(ahd,
devinfo.channel,
devinfo.our_scsiid,
devinfo.target,
&tstate);
tinfo = &targ_info->curr;
sg = scb->sg_list;
sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
/*
* Save off the residual if there is one.
*/
ahd_update_residual(ahd, scb);
#ifdef AHD_DEBUG
if (ahd_debug & AHD_SHOW_SENSE) {
ahd_print_path(ahd, scb);
printf("Sending Sense\n");
}
#endif
scb->sg_count = 0;
sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
aic_get_sense_bufsize(ahd, scb),
/*last*/TRUE);
sc->opcode = REQUEST_SENSE;
sc->byte2 = 0;
if (tinfo->protocol_version <= SCSI_REV_2
&& SCB_GET_LUN(scb) < 8)
sc->byte2 = SCB_GET_LUN(scb) << 5;
sc->unused[0] = 0;
sc->unused[1] = 0;
sc->length = aic_get_sense_bufsize(ahd, scb);
sc->control = 0;
/*
* We can't allow the target to disconnect.
* This will be an untagged transaction and
* having the target disconnect will make this
* transaction indestinguishable from outstanding
* tagged transactions.
*/
hscb->control = 0;
/*
* This request sense could be because the
* the device lost power or in some other
* way has lost our transfer negotiations.
* Renegotiate if appropriate. Unit attention
* errors will be reported before any data
* phases occur.
*/
if (aic_get_residual(scb) == aic_get_transfer_length(scb)) {
ahd_update_neg_request(ahd, &devinfo,
tstate, targ_info,
AHD_NEG_IF_NON_ASYNC);
}
if (tstate->auto_negotiate & devinfo.target_mask) {
hscb->control |= MK_MESSAGE;
scb->flags &=
~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET);
scb->flags |= SCB_AUTO_NEGOTIATE;
}
hscb->cdb_len = sizeof(*sc);
ahd_setup_data_scb(ahd, scb);
scb->flags |= SCB_SENSE;
ahd_queue_scb(ahd, scb);
/*
* Ensure we have enough time to actually
* retrieve the sense, but only schedule
* the timer if we are not in recovery or
* this is a recovery SCB that is allowed
* to have an active timer.
*/
if (ahd->scb_data.recovery_scbs == 0
|| (scb->flags & SCB_RECOVERY_SCB) != 0)
aic_scb_timer_reset(scb, 5 * 1000);
break;
}
case SCSI_STATUS_OK:
printf("%s: Interrupted for staus of 0???\n",
ahd_name(ahd));
/* FALLTHROUGH */
default:
ahd_done(ahd, scb);
break;
}
}
/*
* Calculate the residual for a just completed SCB.
*/
void
ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
{
struct hardware_scb *hscb;
struct initiator_status *spkt;
uint32_t sgptr;
uint32_t resid_sgptr;
uint32_t resid;
/*
* 5 cases.
* 1) No residual.
* SG_STATUS_VALID clear in sgptr.
* 2) Transferless command
* 3) Never performed any transfers.
* sgptr has SG_FULL_RESID set.
* 4) No residual but target did not
* save data pointers after the
* last transfer, so sgptr was
* never updated.
* 5) We have a partial residual.
* Use residual_sgptr to determine
* where we are.
*/
hscb = scb->hscb;
sgptr = aic_le32toh(hscb->sgptr);
if ((sgptr & SG_STATUS_VALID) == 0)
/* Case 1 */
return;
sgptr &= ~SG_STATUS_VALID;
if ((sgptr & SG_LIST_NULL) != 0)
/* Case 2 */
return;
/*
* Residual fields are the same in both
* target and initiator status packets,
* so we can always use the initiator fields
* regardless of the role for this SCB.
*/
spkt = &hscb->shared_data.istatus;
resid_sgptr = aic_le32toh(spkt->residual_sgptr);
if ((sgptr & SG_FULL_RESID) != 0) {
/* Case 3 */
resid = aic_get_transfer_length(scb);
} else if ((resid_sgptr & SG_LIST_NULL) != 0) {
/* Case 4 */
return;
} else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
ahd_print_path(ahd, scb);
printf("data overrun detected Tag == 0x%x.\n",
SCB_GET_TAG(scb));
ahd_freeze_devq(ahd, scb);
aic_set_transaction_status(scb, CAM_DATA_RUN_ERR);
aic_freeze_scb(scb);
return;
} else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
/* NOTREACHED */
} else {
struct ahd_dma_seg *sg;
/*
* Remainder of the SG where the transfer
* stopped.
*/
resid = aic_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
/* The residual sg_ptr always points to the next sg */
sg--;
/*
* Add up the contents of all residual
* SG segments that are after the SG where
* the transfer stopped.
*/
while ((aic_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
sg++;
resid += aic_le32toh(sg->len) & AHD_SG_LEN_MASK;
}
}
if ((scb->flags & SCB_SENSE) == 0)
aic_set_residual(scb, resid);
else
aic_set_sense_residual(scb, resid);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MISC) != 0) {
ahd_print_path(ahd, scb);
printf("Handled %sResidual of %d bytes\n",
(scb->flags & SCB_SENSE) ? "Sense " : "", resid);
}
#endif
}
/******************************* Target Mode **********************************/
#ifdef AHD_TARGET_MODE
/*
* Add a target mode event to this lun's queue
*/
static void
ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
u_int initiator_id, u_int event_type, u_int event_arg)
{
struct ahd_tmode_event *event;
int pending;
xpt_freeze_devq(lstate->path, /*count*/1);
if (lstate->event_w_idx >= lstate->event_r_idx)
pending = lstate->event_w_idx - lstate->event_r_idx;
else
pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
- (lstate->event_r_idx - lstate->event_w_idx);
if (event_type == EVENT_TYPE_BUS_RESET
|| event_type == MSG_BUS_DEV_RESET) {
/*
* Any earlier events are irrelevant, so reset our buffer.
* This has the effect of allowing us to deal with reset
* floods (an external device holding down the reset line)
* without losing the event that is really interesting.
*/
lstate->event_r_idx = 0;
lstate->event_w_idx = 0;
xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
}
if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
xpt_print_path(lstate->path);
printf("immediate event %x:%x lost\n",
lstate->event_buffer[lstate->event_r_idx].event_type,
lstate->event_buffer[lstate->event_r_idx].event_arg);
lstate->event_r_idx++;
if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
lstate->event_r_idx = 0;
xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
}
event = &lstate->event_buffer[lstate->event_w_idx];
event->initiator_id = initiator_id;
event->event_type = event_type;
event->event_arg = event_arg;
lstate->event_w_idx++;
if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
lstate->event_w_idx = 0;
}
/*
* Send any target mode events queued up waiting
* for immediate notify resources.
*/
void
ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
{
struct ccb_hdr *ccbh;
struct ccb_immediate_notify *inot;
while (lstate->event_r_idx != lstate->event_w_idx
&& (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
struct ahd_tmode_event *event;
event = &lstate->event_buffer[lstate->event_r_idx];
SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
inot = (struct ccb_immediate_notify *)ccbh;
switch (event->event_type) {
case EVENT_TYPE_BUS_RESET:
ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
break;
default:
ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
inot->arg = event->event_type;
inot->seq_id = event->event_arg;
break;
}
inot->initiator_id = event->initiator_id;
xpt_done((union ccb *)inot);
lstate->event_r_idx++;
if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
lstate->event_r_idx = 0;
}
}
#endif
/******************** Sequencer Program Patching/Download *********************/
#ifdef AHD_DUMP_SEQ
void
ahd_dumpseq(struct ahd_softc* ahd)
{
int i;
int max_prog;
max_prog = 2048;
ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
ahd_outw(ahd, PRGMCNT, 0);
for (i = 0; i < max_prog; i++) {
uint8_t ins_bytes[4];
ahd_insb(ahd, SEQRAM, ins_bytes, 4);
printf("0x%08x\n", ins_bytes[0] << 24
| ins_bytes[1] << 16
| ins_bytes[2] << 8
| ins_bytes[3]);
}
}
#endif
static void
ahd_loadseq(struct ahd_softc *ahd)
{
struct cs cs_table[num_critical_sections];
u_int begin_set[num_critical_sections];
u_int end_set[num_critical_sections];
struct patch *cur_patch;
u_int cs_count;
u_int cur_cs;
u_int i;
int downloaded;
u_int skip_addr;
u_int sg_prefetch_cnt;
u_int sg_prefetch_cnt_limit;
u_int sg_prefetch_align;
u_int sg_size;
u_int cacheline_mask;
uint8_t download_consts[DOWNLOAD_CONST_COUNT];
if (bootverbose)
printf("%s: Downloading Sequencer Program...",
ahd_name(ahd));
#if DOWNLOAD_CONST_COUNT != 8
#error "Download Const Mismatch"
#endif
/*
* Start out with 0 critical sections
* that apply to this firmware load.
*/
cs_count = 0;
cur_cs = 0;
memset(begin_set, 0, sizeof(begin_set));
memset(end_set, 0, sizeof(end_set));
/*
* Setup downloadable constant table.
*
* The computation for the S/G prefetch variables is
* a bit complicated. We would like to always fetch
* in terms of cachelined sized increments. However,
* if the cacheline is not an even multiple of the
* SG element size or is larger than our SG RAM, using
* just the cache size might leave us with only a portion
* of an SG element at the tail of a prefetch. If the
* cacheline is larger than our S/G prefetch buffer less
* the size of an SG element, we may round down to a cacheline
* that doesn't contain any or all of the S/G of interest
* within the bounds of our S/G ram. Provide variables to
* the sequencer that will allow it to handle these edge
* cases.
*/
/* Start by aligning to the nearest cacheline. */
sg_prefetch_align = ahd->pci_cachesize;
if (sg_prefetch_align == 0)
sg_prefetch_align = 8;
/* Round down to the nearest power of 2. */
while (powerof2(sg_prefetch_align) == 0)
sg_prefetch_align--;
cacheline_mask = sg_prefetch_align - 1;
/*
* If the cacheline boundary is greater than half our prefetch RAM
* we risk not being able to fetch even a single complete S/G
* segment if we align to that boundary.
*/
if (sg_prefetch_align > CCSGADDR_MAX/2)
sg_prefetch_align = CCSGADDR_MAX/2;
/* Start by fetching a single cacheline. */
sg_prefetch_cnt = sg_prefetch_align;
/*
* Increment the prefetch count by cachelines until
* at least one S/G element will fit.
*/
sg_size = sizeof(struct ahd_dma_seg);
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
sg_size = sizeof(struct ahd_dma64_seg);
while (sg_prefetch_cnt < sg_size)
sg_prefetch_cnt += sg_prefetch_align;
/*
* If the cacheline is not an even multiple of
* the S/G size, we may only get a partial S/G when
* we align. Add a cacheline if this is the case.
*/
if ((sg_prefetch_align % sg_size) != 0
&& (sg_prefetch_cnt < CCSGADDR_MAX))
sg_prefetch_cnt += sg_prefetch_align;
/*
* Lastly, compute a value that the sequencer can use
* to determine if the remainder of the CCSGRAM buffer
* has a full S/G element in it.
*/
sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
download_consts[SG_SIZEOF] = sg_size;
download_consts[PKT_OVERRUN_BUFOFFSET] =
(ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
download_consts[CACHELINE_MASK] = cacheline_mask;
cur_patch = patches;
downloaded = 0;
skip_addr = 0;
ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
ahd_outw(ahd, PRGMCNT, 0);
for (i = 0; i < sizeof(seqprog)/4; i++) {
if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
/*
* Don't download this instruction as it
* is in a patch that was removed.
*/
continue;
}
/*
* Move through the CS table until we find a CS
* that might apply to this instruction.
*/
for (; cur_cs < num_critical_sections; cur_cs++) {
if (critical_sections[cur_cs].end <= i) {
if (begin_set[cs_count] == TRUE
&& end_set[cs_count] == FALSE) {
cs_table[cs_count].end = downloaded;
end_set[cs_count] = TRUE;
cs_count++;
}
continue;
}
if (critical_sections[cur_cs].begin <= i
&& begin_set[cs_count] == FALSE) {
cs_table[cs_count].begin = downloaded;
begin_set[cs_count] = TRUE;
}
break;
}
ahd_download_instr(ahd, i, download_consts);
downloaded++;
}
ahd->num_critical_sections = cs_count;
if (cs_count != 0) {
cs_count *= sizeof(struct cs);
ahd->critical_sections = malloc(cs_count, M_DEVBUF, M_NOWAIT);
if (ahd->critical_sections == NULL)
panic("ahd_loadseq: Could not malloc");
memcpy(ahd->critical_sections, cs_table, cs_count);
}
ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
if (bootverbose) {
printf(" %d instructions downloaded\n", downloaded);
printf("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
}
}
static int
ahd_check_patch(struct ahd_softc *ahd, struct patch **start_patch,
u_int start_instr, u_int *skip_addr)
{
struct patch *cur_patch;
struct patch *last_patch;
u_int num_patches;
num_patches = sizeof(patches)/sizeof(struct patch);
last_patch = &patches[num_patches];
cur_patch = *start_patch;
while (cur_patch < last_patch && start_instr == cur_patch->begin) {
if (cur_patch->patch_func(ahd) == 0) {
/* Start rejecting code */
*skip_addr = start_instr + cur_patch->skip_instr;
cur_patch += cur_patch->skip_patch;
} else {
/* Accepted this patch. Advance to the next
* one and wait for our instruction pointer to
* hit this point.
*/
cur_patch++;
}
}
*start_patch = cur_patch;
if (start_instr < *skip_addr)
/* Still skipping */
return (0);
return (1);
}
static u_int
ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
{
struct patch *cur_patch;
int address_offset;
u_int skip_addr;
u_int i;
address_offset = 0;
cur_patch = patches;
skip_addr = 0;
for (i = 0; i < address;) {
ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
if (skip_addr > i) {
int end_addr;
end_addr = MIN(address, skip_addr);
address_offset += end_addr - i;
i = skip_addr;
} else {
i++;
}
}
return (address - address_offset);
}
static void
ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
{
union ins_formats instr;
struct ins_format1 *fmt1_ins;
struct ins_format3 *fmt3_ins;
u_int opcode;
/*
* The firmware is always compiled into a little endian format.
*/
instr.integer = aic_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
fmt1_ins = &instr.format1;
fmt3_ins = NULL;
/* Pull the opcode */
opcode = instr.format1.opcode;
switch (opcode) {
case AIC_OP_JMP:
case AIC_OP_JC:
case AIC_OP_JNC:
case AIC_OP_CALL:
case AIC_OP_JNE:
case AIC_OP_JNZ:
case AIC_OP_JE:
case AIC_OP_JZ:
{
fmt3_ins = &instr.format3;
fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
/* FALLTHROUGH */
}
case AIC_OP_OR:
case AIC_OP_AND:
case AIC_OP_XOR:
case AIC_OP_ADD:
case AIC_OP_ADC:
case AIC_OP_BMOV:
if (fmt1_ins->parity != 0) {
fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
}
fmt1_ins->parity = 0;
/* FALLTHROUGH */
case AIC_OP_ROL:
{
int i, count;
/* Calculate odd parity for the instruction */
for (i = 0, count = 0; i < 31; i++) {
uint32_t mask;
mask = 0x01 << i;
if ((instr.integer & mask) != 0)
count++;
}
if ((count & 0x01) == 0)
instr.format1.parity = 1;
/* The sequencer is a little endian cpu */
instr.integer = aic_htole32(instr.integer);
ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
break;
}
default:
panic("Unknown opcode encountered in seq program");
break;
}
}
static int
ahd_probe_stack_size(struct ahd_softc *ahd)
{
int last_probe;
last_probe = 0;
while (1) {
int i;
/*
* We avoid using 0 as a pattern to avoid
* confusion if the stack implementation
* "back-fills" with zeros when "poping'
* entries.
*/
for (i = 1; i <= last_probe+1; i++) {
ahd_outb(ahd, STACK, i & 0xFF);
ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
}
/* Verify */
for (i = last_probe+1; i > 0; i--) {
u_int stack_entry;
stack_entry = ahd_inb(ahd, STACK)
|(ahd_inb(ahd, STACK) << 8);
if (stack_entry != i)
goto sized;
}
last_probe++;
}
sized:
return (last_probe);
}
void
ahd_dump_all_cards_state(void)
{
struct ahd_softc *list_ahd;
TAILQ_FOREACH(list_ahd, &ahd_tailq, links) {
ahd_dump_card_state(list_ahd);
}
}
int
ahd_print_register(ahd_reg_parse_entry_t *table, u_int num_entries,
const char *name, u_int address, u_int value,
u_int *cur_column, u_int wrap_point)
{
int printed;
u_int printed_mask;
u_int dummy_column;
if (cur_column == NULL) {
dummy_column = 0;
cur_column = &dummy_column;
}
if (cur_column != NULL && *cur_column >= wrap_point) {
printf("\n");
*cur_column = 0;
}
printed = printf("%s[0x%x]", name, value);
if (table == NULL) {
printed += printf(" ");
*cur_column += printed;
return (printed);
}
printed_mask = 0;
while (printed_mask != 0xFF) {
int entry;
for (entry = 0; entry < num_entries; entry++) {
if (((value & table[entry].mask)
!= table[entry].value)
|| ((printed_mask & table[entry].mask)
== table[entry].mask))
continue;
printed += printf("%s%s",
printed_mask == 0 ? ":(" : "|",
table[entry].name);
printed_mask |= table[entry].mask;
break;
}
if (entry >= num_entries)
break;
}
if (printed_mask != 0)
printed += printf(") ");
else
printed += printf(" ");
*cur_column += printed;
return (printed);
}
void
ahd_dump_card_state(struct ahd_softc *ahd)
{
struct scb *scb;
ahd_mode_state saved_modes;
u_int dffstat;
int paused;
u_int scb_index;
u_int saved_scb_index;
u_int cur_col;
int i;
if (ahd_is_paused(ahd)) {
paused = 1;
} else {
paused = 0;
ahd_pause(ahd);
}
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
printf(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
"%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
ahd_name(ahd),
ahd_inw(ahd, CURADDR),
ahd_build_mode_state(ahd, ahd->saved_src_mode,
ahd->saved_dst_mode));
if (paused)
printf("Card was paused\n");
if (ahd_check_cmdcmpltqueues(ahd))
printf("Completions are pending\n");
/*
* Mode independent registers.
*/
cur_col = 0;
ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
&cur_col, 50);
ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
&cur_col, 50);
ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
printf("\n");
printf("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
"CURRSCB 0x%x NEXTSCB 0x%x\n",
ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
ahd_inw(ahd, NEXTSCB));
cur_col = 0;
/* QINFIFO */
ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
CAM_LUN_WILDCARD, SCB_LIST_NULL,
ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
saved_scb_index = ahd_get_scbptr(ahd);
printf("Pending list:");
i = 0;
LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
if (i++ > AHD_SCB_MAX)
break;
cur_col = printf("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
&cur_col, 60);
ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
&cur_col, 60);
}
printf("\nTotal %d\n", i);
printf("Kernel Free SCB lists: ");
i = 0;
TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
struct scb *list_scb;
printf("\n COLIDX[%d]: ", AHD_GET_SCB_COL_IDX(ahd, scb));
list_scb = scb;
do {
printf("%d ", SCB_GET_TAG(list_scb));
list_scb = LIST_NEXT(list_scb, collision_links);
} while (list_scb && i++ < AHD_SCB_MAX);
}
printf("\n Any Device: ");
LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
if (i++ > AHD_SCB_MAX)
break;
printf("%d ", SCB_GET_TAG(scb));
}
printf("\n");
printf("Sequencer Complete DMA-inprog list: ");
scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
i = 0;
while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
ahd_set_scbptr(ahd, scb_index);
printf("%d ", scb_index);
scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
}
printf("\n");
printf("Sequencer Complete list: ");
scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
i = 0;
while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
ahd_set_scbptr(ahd, scb_index);
printf("%d ", scb_index);
scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
}
printf("\n");
printf("Sequencer DMA-Up and Complete list: ");
scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
i = 0;
while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
ahd_set_scbptr(ahd, scb_index);
printf("%d ", scb_index);
scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
}
printf("\n");
printf("Sequencer On QFreeze and Complete list: ");
scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
i = 0;
while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
ahd_set_scbptr(ahd, scb_index);
printf("%d ", scb_index);
scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
}
printf("\n");
ahd_set_scbptr(ahd, saved_scb_index);
dffstat = ahd_inb(ahd, DFFSTAT);
for (i = 0; i < 2; i++) {
#ifdef AHD_DEBUG
struct scb *fifo_scb;
#endif
u_int fifo_scbptr;
ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
fifo_scbptr = ahd_get_scbptr(ahd);
printf("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
ahd_name(ahd), i,
(dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
cur_col = 0;
ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
&cur_col, 50);
ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
if (cur_col > 50) {
printf("\n");
cur_col = 0;
}
cur_col += printf("SHADDR = 0x%x%x, SHCNT = 0x%x ",
ahd_inl(ahd, SHADDR+4),
ahd_inl(ahd, SHADDR),
(ahd_inb(ahd, SHCNT)
| (ahd_inb(ahd, SHCNT + 1) << 8)
| (ahd_inb(ahd, SHCNT + 2) << 16)));
if (cur_col > 50) {
printf("\n");
cur_col = 0;
}
cur_col += printf("HADDR = 0x%x%x, HCNT = 0x%x ",
ahd_inl(ahd, HADDR+4),
ahd_inl(ahd, HADDR),
(ahd_inb(ahd, HCNT)
| (ahd_inb(ahd, HCNT + 1) << 8)
| (ahd_inb(ahd, HCNT + 2) << 16)));
ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_SG) != 0) {
fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
if (fifo_scb != NULL)
ahd_dump_sglist(fifo_scb);
}
#endif
}
printf("\nLQIN: ");
for (i = 0; i < 20; i++)
printf("0x%x ", ahd_inb(ahd, LQIN + i));
printf("\n");
ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
printf("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
ahd_inb(ahd, OPTIONMODE));
printf("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
ahd_inb(ahd, MAXCMDCNT));
printf("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
ahd_inb(ahd, SAVED_LUN));
ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
printf("\n");
ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
cur_col = 0;
ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
printf("\n");
ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
printf("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
ahd_inw(ahd, DINDEX));
printf("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
ahd_name(ahd), ahd_get_scbptr(ahd),
ahd_inw_scbram(ahd, SCB_NEXT),
ahd_inw_scbram(ahd, SCB_NEXT2));
printf("CDB %x %x %x %x %x %x\n",
ahd_inb_scbram(ahd, SCB_CDB_STORE),
ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
printf("STACK:");
for (i = 0; i < ahd->stack_size; i++) {
ahd->saved_stack[i] =
ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
printf(" 0x%x", ahd->saved_stack[i]);
}
for (i = ahd->stack_size-1; i >= 0; i--) {
ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
}
printf("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
ahd_platform_dump_card_state(ahd);
ahd_restore_modes(ahd, saved_modes);
if (paused == 0)
ahd_unpause(ahd);
}
void
ahd_dump_scbs(struct ahd_softc *ahd)
{
ahd_mode_state saved_modes;
u_int saved_scb_index;
int i;
saved_modes = ahd_save_modes(ahd);
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
saved_scb_index = ahd_get_scbptr(ahd);
for (i = 0; i < AHD_SCB_MAX; i++) {
ahd_set_scbptr(ahd, i);
printf("%3d", i);
printf("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
ahd_inb_scbram(ahd, SCB_CONTROL),
ahd_inb_scbram(ahd, SCB_SCSIID),
ahd_inw_scbram(ahd, SCB_NEXT),
ahd_inw_scbram(ahd, SCB_NEXT2),
ahd_inl_scbram(ahd, SCB_SGPTR),
ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
}
printf("\n");
ahd_set_scbptr(ahd, saved_scb_index);
ahd_restore_modes(ahd, saved_modes);
}
/*************************** Timeout Handling *********************************/
void
ahd_timeout(struct scb *scb)
{
struct ahd_softc *ahd;
ahd = scb->ahd_softc;
if ((scb->flags & SCB_ACTIVE) != 0) {
if ((scb->flags & SCB_TIMEDOUT) == 0) {
LIST_INSERT_HEAD(&ahd->timedout_scbs, scb,
timedout_links);
scb->flags |= SCB_TIMEDOUT;
}
ahd_wakeup_recovery_thread(ahd);
}
}
/*
* ahd_recover_commands determines if any of the commands that have currently
* timedout are the root cause for this timeout. Innocent commands are given
* a new timeout while we wait for the command executing on the bus to timeout.
* This routine is invoked from a thread context so we are allowed to sleep.
* Our lock is not held on entry.
*/
void
ahd_recover_commands(struct ahd_softc *ahd)
{
struct scb *scb;
struct scb *active_scb;
int found;
int was_paused;
u_int active_scbptr;
u_int last_phase;
/*
* Pause the controller and manually flush any
* commands that have just completed but that our
* interrupt handler has yet to see.
*/
was_paused = ahd_is_paused(ahd);
printf("%s: Recovery Initiated - Card was %spaused\n", ahd_name(ahd),
was_paused ? "" : "not ");
AHD_CORRECTABLE_ERROR(ahd);
ahd_dump_card_state(ahd);
ahd_pause_and_flushwork(ahd);
if (LIST_EMPTY(&ahd->timedout_scbs) != 0) {
/*
* The timedout commands have already
* completed. This typically means
* that either the timeout value was on
* the hairy edge of what the device
* requires or - more likely - interrupts
* are not happening.
*/
printf("%s: Timedout SCBs already complete. "
"Interrupts may not be functioning.\n", ahd_name(ahd));
ahd_unpause(ahd);
return;
}
/*
* Determine identity of SCB acting on the bus.
* This test only catches non-packetized transactions.
* Due to the fleeting nature of packetized operations,
* we can't easily determine that a packetized operation
* is on the bus.
*/
ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
last_phase = ahd_inb(ahd, LASTPHASE);
active_scbptr = ahd_get_scbptr(ahd);
active_scb = NULL;
if (last_phase != P_BUSFREE
|| (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) == 0)
active_scb = ahd_lookup_scb(ahd, active_scbptr);
while ((scb = LIST_FIRST(&ahd->timedout_scbs)) != NULL) {
int target;
int lun;
char channel;
target = SCB_GET_TARGET(ahd, scb);
channel = SCB_GET_CHANNEL(ahd, scb);
lun = SCB_GET_LUN(scb);
ahd_print_path(ahd, scb);
printf("SCB %d - timed out\n", SCB_GET_TAG(scb));
if (scb->flags & (SCB_DEVICE_RESET|SCB_ABORT)) {
/*
* Been down this road before.
* Do a full bus reset.
*/
aic_set_transaction_status(scb, CAM_CMD_TIMEOUT);
bus_reset:
found = ahd_reset_channel(ahd, channel,
/*Initiate Reset*/TRUE);
printf("%s: Issued Channel %c Bus Reset. "
"%d SCBs aborted\n", ahd_name(ahd), channel,
found);
continue;
}
/*
* Remove the command from the timedout list in
* preparation for requeing it.
*/
LIST_REMOVE(scb, timedout_links);
scb->flags &= ~SCB_TIMEDOUT;
if (active_scb != NULL) {
if (active_scb != scb) {
/*
* If the active SCB is not us, assume that
* the active SCB has a longer timeout than
* the timedout SCB, and wait for the active
* SCB to timeout. As a safeguard, only
* allow this deferral to continue if some
* untimed-out command is outstanding.
*/
if (ahd_other_scb_timeout(ahd, scb,
active_scb) == 0)
goto bus_reset;
continue;
}
/*
* We're active on the bus, so assert ATN
* and hope that the target responds.
*/
ahd_set_recoveryscb(ahd, active_scb);
active_scb->flags |= SCB_RECOVERY_SCB|SCB_DEVICE_RESET;
ahd_outb(ahd, MSG_OUT, HOST_MSG);
ahd_outb(ahd, SCSISIGO, last_phase|ATNO);
ahd_print_path(ahd, active_scb);
printf("BDR message in message buffer\n");
aic_scb_timer_reset(scb, 2 * 1000);
break;
} else if (last_phase != P_BUSFREE
&& ahd_inb(ahd, SCSIPHASE) == 0) {
/*
* SCB is not identified, there
* is no pending REQ, and the sequencer
* has not seen a busfree. Looks like
* a stuck connection waiting to
* go busfree. Reset the bus.
*/
printf("%s: Connection stuck awaiting busfree or "
"Identify Msg.\n", ahd_name(ahd));
goto bus_reset;
} else if (ahd_search_qinfifo(ahd, target, channel, lun,
SCB_GET_TAG(scb),
ROLE_INITIATOR, /*status*/0,
SEARCH_COUNT) > 0) {
/*
* We haven't even gone out on the bus
* yet, so the timeout must be due to
* some other command. Reset the timer
* and go on.
*/
if (ahd_other_scb_timeout(ahd, scb, NULL) == 0)
goto bus_reset;
} else {
/*
* This SCB is for a disconnected transaction
* and we haven't found a better candidate on
* the bus to explain this timeout.
*/
ahd_set_recoveryscb(ahd, scb);
/*
* Actually re-queue this SCB in an attempt
* to select the device before it reconnects.
* In either case (selection or reselection),
* we will now issue a target reset to the
* timed-out device.
*/
scb->flags |= SCB_DEVICE_RESET;
scb->hscb->cdb_len = 0;
scb->hscb->task_attribute = 0;
scb->hscb->task_management = SIU_TASKMGMT_ABORT_TASK;
ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
if ((scb->flags & SCB_PACKETIZED) != 0) {
/*
* Mark the SCB has having an outstanding
* task management function. Should the command
* complete normally before the task management
* function can be sent, the host will be
* notified to abort our requeued SCB.
*/
ahd_outb(ahd, SCB_TASK_MANAGEMENT,
scb->hscb->task_management);
} else {
/*
* If non-packetized, set the MK_MESSAGE control
* bit indicating that we desire to send a
* message. We also set the disconnected flag
* since there is no guarantee that our SCB
* control byte matches the version on the
* card. We don't want the sequencer to abort
* the command thinking an unsolicited
* reselection occurred.
*/
scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
/*
* The sequencer will never re-reference the
* in-core SCB. To make sure we are notified
* during reslection, set the MK_MESSAGE flag in
* the card's copy of the SCB.
*/
ahd_outb(ahd, SCB_CONTROL,
ahd_inb(ahd, SCB_CONTROL)|MK_MESSAGE);
}
/*
* Clear out any entries in the QINFIFO first
* so we are the next SCB for this target
* to run.
*/
ahd_search_qinfifo(ahd, target, channel, lun,
SCB_LIST_NULL, ROLE_INITIATOR,
CAM_REQUEUE_REQ, SEARCH_COMPLETE);
ahd_qinfifo_requeue_tail(ahd, scb);
ahd_set_scbptr(ahd, active_scbptr);
ahd_print_path(ahd, scb);
printf("Queuing a BDR SCB\n");
aic_scb_timer_reset(scb, 2 * 1000);
break;
}
}
/*
* Any remaining SCBs were not the "culprit", so remove
* them from the timeout list. The timer for these commands
* will be reset once the recovery SCB completes.
*/
while ((scb = LIST_FIRST(&ahd->timedout_scbs)) != NULL) {
LIST_REMOVE(scb, timedout_links);
scb->flags &= ~SCB_TIMEDOUT;
}
ahd_unpause(ahd);
}
/*
* Re-schedule a timeout for the passed in SCB if we determine that some
* other SCB is in the process of recovery or an SCB with a longer
* timeout is still pending. Limit our search to just "other_scb"
* if it is non-NULL.
*/
static int
ahd_other_scb_timeout(struct ahd_softc *ahd, struct scb *scb,
struct scb *other_scb)
{
u_int newtimeout;
int found;
ahd_print_path(ahd, scb);
printf("Other SCB Timeout%s",
(scb->flags & SCB_OTHERTCL_TIMEOUT) != 0
? " again\n" : "\n");
AHD_UNCORRECTABLE_ERROR(ahd);
newtimeout = aic_get_timeout(scb);
scb->flags |= SCB_OTHERTCL_TIMEOUT;
found = 0;
if (other_scb != NULL) {
if ((other_scb->flags
& (SCB_OTHERTCL_TIMEOUT|SCB_TIMEDOUT)) == 0
|| (other_scb->flags & SCB_RECOVERY_SCB) != 0) {
found++;
newtimeout = MAX(aic_get_timeout(other_scb),
newtimeout);
}
} else {
LIST_FOREACH(other_scb, &ahd->pending_scbs, pending_links) {
if ((other_scb->flags
& (SCB_OTHERTCL_TIMEOUT|SCB_TIMEDOUT)) == 0
|| (other_scb->flags & SCB_RECOVERY_SCB) != 0) {
found++;
newtimeout = MAX(aic_get_timeout(other_scb),
newtimeout);
}
}
}
if (found != 0)
aic_scb_timer_reset(scb, newtimeout);
else {
ahd_print_path(ahd, scb);
printf("No other SCB worth waiting for...\n");
}
return (found != 0);
}
/**************************** Flexport Logic **********************************/
/*
* Read count 16bit words from 16bit word address start_addr from the
* SEEPROM attached to the controller, into buf, using the controller's
* SEEPROM reading state machine. Optionally treat the data as a byte
* stream in terms of byte order.
*/
int
ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf,
u_int start_addr, u_int count, int bytestream)
{
u_int cur_addr;
u_int end_addr;
int error;
/*
* If we never make it through the loop even once,
* we were passed invalid arguments.
*/
error = EINVAL;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
end_addr = start_addr + count;
for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
ahd_outb(ahd, SEEADR, cur_addr);
ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
error = ahd_wait_seeprom(ahd);
if (error)
break;
if (bytestream != 0) {
uint8_t *bytestream_ptr;
bytestream_ptr = (uint8_t *)buf;
*bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
*bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
} else {
/*
* ahd_inw() already handles machine byte order.
*/
*buf = ahd_inw(ahd, SEEDAT);
}
buf++;
}
return (error);
}
/*
* Write count 16bit words from buf, into SEEPROM attache to the
* controller starting at 16bit word address start_addr, using the
* controller's SEEPROM writing state machine.
*/
int
ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf,
u_int start_addr, u_int count)
{
u_int cur_addr;
u_int end_addr;
int error;
int retval;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
error = ENOENT;
/* Place the chip into write-enable mode */
ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
error = ahd_wait_seeprom(ahd);
if (error)
return (error);
/*
* Write the data. If we don't get through the loop at
* least once, the arguments were invalid.
*/
retval = EINVAL;
end_addr = start_addr + count;
for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
ahd_outw(ahd, SEEDAT, *buf++);
ahd_outb(ahd, SEEADR, cur_addr);
ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
retval = ahd_wait_seeprom(ahd);
if (retval)
break;
}
/*
* Disable writes.
*/
ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
error = ahd_wait_seeprom(ahd);
if (error)
return (error);
return (retval);
}
/*
* Wait ~100us for the serial eeprom to satisfy our request.
*/
int
ahd_wait_seeprom(struct ahd_softc *ahd)
{
int cnt;
cnt = 5000;
while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
aic_delay(5);
if (cnt == 0)
return (ETIMEDOUT);
return (0);
}
/*
* Validate the two checksums in the per_channel
* vital product data struct.
*/
int
ahd_verify_vpd_cksum(struct vpd_config *vpd)
{
int i;
int maxaddr;
uint32_t checksum;
uint8_t *vpdarray;
vpdarray = (uint8_t *)vpd;
maxaddr = offsetof(struct vpd_config, vpd_checksum);
checksum = 0;
for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
checksum = checksum + vpdarray[i];
if (checksum == 0
|| (-checksum & 0xFF) != vpd->vpd_checksum)
return (0);
checksum = 0;
maxaddr = offsetof(struct vpd_config, checksum);
for (i = offsetof(struct vpd_config, default_target_flags);
i < maxaddr; i++)
checksum = checksum + vpdarray[i];
if (checksum == 0
|| (-checksum & 0xFF) != vpd->checksum)
return (0);
return (1);
}
int
ahd_verify_cksum(struct seeprom_config *sc)
{
int i;
int maxaddr;
uint32_t checksum;
uint16_t *scarray;
maxaddr = (sizeof(*sc)/2) - 1;
checksum = 0;
scarray = (uint16_t *)sc;
for (i = 0; i < maxaddr; i++)
checksum = checksum + scarray[i];
if (checksum == 0
|| (checksum & 0xFFFF) != sc->checksum) {
return (0);
} else {
return (1);
}
}
int
ahd_acquire_seeprom(struct ahd_softc *ahd)
{
/*
* We should be able to determine the SEEPROM type
* from the flexport logic, but unfortunately not
* all implementations have this logic and there is
* no programatic method for determining if the logic
* is present.
*/
return (1);
#if 0
uint8_t seetype;
int error;
error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
if (error != 0
|| ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
return (0);
return (1);
#endif
}
void
ahd_release_seeprom(struct ahd_softc *ahd)
{
/* Currently a no-op */
}
int
ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
{
int error;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
if (addr > 7)
panic("ahd_write_flexport: address out of range");
ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
error = ahd_wait_flexport(ahd);
if (error != 0)
return (error);
ahd_outb(ahd, BRDDAT, value);
ahd_flush_device_writes(ahd);
ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
ahd_flush_device_writes(ahd);
ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
ahd_flush_device_writes(ahd);
ahd_outb(ahd, BRDCTL, 0);
ahd_flush_device_writes(ahd);
return (0);
}
int
ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
{
int error;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
if (addr > 7)
panic("ahd_read_flexport: address out of range");
ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
error = ahd_wait_flexport(ahd);
if (error != 0)
return (error);
*value = ahd_inb(ahd, BRDDAT);
ahd_outb(ahd, BRDCTL, 0);
ahd_flush_device_writes(ahd);
return (0);
}
/*
* Wait at most 2 seconds for flexport arbitration to succeed.
*/
int
ahd_wait_flexport(struct ahd_softc *ahd)
{
int cnt;
AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
cnt = 1000000 * 2 / 5;
while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
aic_delay(5);
if (cnt == 0)
return (ETIMEDOUT);
return (0);
}
/************************* Target Mode ****************************************/
#ifdef AHD_TARGET_MODE
cam_status
ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
struct ahd_tmode_tstate **tstate,
struct ahd_tmode_lstate **lstate,
int notfound_failure)
{
if ((ahd->features & AHD_TARGETMODE) == 0)
return (CAM_REQ_INVALID);
/*
* Handle the 'black hole' device that sucks up
* requests to unattached luns on enabled targets.
*/
if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
&& ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
*tstate = NULL;
*lstate = ahd->black_hole;
} else {
u_int max_id;
max_id = (ahd->features & AHD_WIDE) ? 15 : 7;
if (ccb->ccb_h.target_id > max_id)
return (CAM_TID_INVALID);
if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
return (CAM_LUN_INVALID);
*tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
*lstate = NULL;
if (*tstate != NULL)
*lstate =
(*tstate)->enabled_luns[ccb->ccb_h.target_lun];
}
if (notfound_failure != 0 && *lstate == NULL)
return (CAM_PATH_INVALID);
return (CAM_REQ_CMP);
}
void
ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
{
#if NOT_YET
struct ahd_tmode_tstate *tstate;
struct ahd_tmode_lstate *lstate;
struct ccb_en_lun *cel;
cam_status status;
u_int target;
u_int lun;
u_int target_mask;
u_long s;
char channel;
status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
/*notfound_failure*/FALSE);
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
return;
}
if ((ahd->features & AHD_MULTIROLE) != 0) {
u_int our_id;
our_id = ahd->our_id;
if (ccb->ccb_h.target_id != our_id
&& ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
if ((ahd->features & AHD_MULTI_TID) != 0
&& (ahd->flags & AHD_INITIATORROLE) != 0) {
/*
* Only allow additional targets if
* the initiator role is disabled.
* The hardware cannot handle a re-select-in
* on the initiator id during a re-select-out
* on a different target id.
*/
status = CAM_TID_INVALID;
} else if ((ahd->flags & AHD_INITIATORROLE) != 0
|| ahd->enabled_luns > 0) {
/*
* Only allow our target id to change
* if the initiator role is not configured
* and there are no enabled luns which
* are attached to the currently registered
* scsi id.
*/
status = CAM_TID_INVALID;
}
}
}
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
return;
}
/*
* We now have an id that is valid.
* If we aren't in target mode, switch modes.
*/
if ((ahd->flags & AHD_TARGETROLE) == 0
&& ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
printf("Configuring Target Mode\n");
if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
ccb->ccb_h.status = CAM_BUSY;
return;
}
ahd->flags |= AHD_TARGETROLE;
if ((ahd->features & AHD_MULTIROLE) == 0)
ahd->flags &= ~AHD_INITIATORROLE;
ahd_pause(ahd);
ahd_loadseq(ahd);
ahd_restart(ahd);
}
cel = &ccb->cel;
target = ccb->ccb_h.target_id;
lun = ccb->ccb_h.target_lun;
channel = SIM_CHANNEL(ahd, sim);
target_mask = 0x01 << target;
if (channel == 'B')
target_mask <<= 8;
if (cel->enable != 0) {
u_int scsiseq1;
/* Are we already enabled?? */
if (lstate != NULL) {
xpt_print_path(ccb->ccb_h.path);
printf("Lun already enabled\n");
AHD_CORRECTABLE_ERROR(ahd);
ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
return;
}
if (cel->grp6_len != 0
|| cel->grp7_len != 0) {
/*
* Don't (yet?) support vendor
* specific commands.
*/
ccb->ccb_h.status = CAM_REQ_INVALID;
printf("Non-zero Group Codes\n");
return;
}
/*
* Seems to be okay.
* Setup our data structures.
*/
if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
tstate = ahd_alloc_tstate(ahd, target, channel);
if (tstate == NULL) {
xpt_print_path(ccb->ccb_h.path);
printf("Couldn't allocate tstate\n");
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
return;
}
}
lstate = malloc(sizeof(*lstate), M_DEVBUF, M_NOWAIT);
if (lstate == NULL) {
xpt_print_path(ccb->ccb_h.path);
printf("Couldn't allocate lstate\n");
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
return;
}
memset(lstate, 0, sizeof(*lstate));
status = xpt_create_path(&lstate->path, /*periph*/NULL,
xpt_path_path_id(ccb->ccb_h.path),
xpt_path_target_id(ccb->ccb_h.path),
xpt_path_lun_id(ccb->ccb_h.path));
if (status != CAM_REQ_CMP) {
free(lstate, M_DEVBUF);
xpt_print_path(ccb->ccb_h.path);
printf("Couldn't allocate path\n");
ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
return;
}
SLIST_INIT(&lstate->accept_tios);
SLIST_INIT(&lstate->immed_notifies);
ahd_pause(ahd);
if (target != CAM_TARGET_WILDCARD) {
tstate->enabled_luns[lun] = lstate;
ahd->enabled_luns++;
if ((ahd->features & AHD_MULTI_TID) != 0) {
u_int targid_mask;
targid_mask = ahd_inw(ahd, TARGID);
targid_mask |= target_mask;
ahd_outw(ahd, TARGID, targid_mask);
ahd_update_scsiid(ahd, targid_mask);
} else {
u_int our_id;
char channel;
channel = SIM_CHANNEL(ahd, sim);
our_id = SIM_SCSI_ID(ahd, sim);
/*
* This can only happen if selections
* are not enabled
*/
if (target != our_id) {
u_int sblkctl;
char cur_channel;
int swap;
sblkctl = ahd_inb(ahd, SBLKCTL);
cur_channel = (sblkctl & SELBUSB)
? 'B' : 'A';
if ((ahd->features & AHD_TWIN) == 0)
cur_channel = 'A';
swap = cur_channel != channel;
ahd->our_id = target;
if (swap)
ahd_outb(ahd, SBLKCTL,
sblkctl ^ SELBUSB);
ahd_outb(ahd, SCSIID, target);
if (swap)
ahd_outb(ahd, SBLKCTL, sblkctl);
}
}
} else
ahd->black_hole = lstate;
/* Allow select-in operations */
if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
scsiseq1 |= ENSELI;
ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
scsiseq1 = ahd_inb(ahd, SCSISEQ1);
scsiseq1 |= ENSELI;
ahd_outb(ahd, SCSISEQ1, scsiseq1);
}
ahd_unpause(ahd);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_print_path(ccb->ccb_h.path);
printf("Lun now enabled for target mode\n");
} else {
struct scb *scb;
int i, empty;
if (lstate == NULL) {
ccb->ccb_h.status = CAM_LUN_INVALID;
return;
}
ccb->ccb_h.status = CAM_REQ_CMP;
LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
struct ccb_hdr *ccbh;
ccbh = &scb->io_ctx->ccb_h;
if (ccbh->func_code == XPT_CONT_TARGET_IO
&& !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
printf("CTIO pending\n");
ccb->ccb_h.status = CAM_REQ_INVALID;
return;
}
}
if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
printf("ATIOs pending\n");
ccb->ccb_h.status = CAM_REQ_INVALID;
}
if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
printf("INOTs pending\n");
ccb->ccb_h.status = CAM_REQ_INVALID;
}
if (ccb->ccb_h.status != CAM_REQ_CMP) {
return;
}
xpt_print_path(ccb->ccb_h.path);
printf("Target mode disabled\n");
xpt_free_path(lstate->path);
free(lstate, M_DEVBUF);
ahd_pause(ahd);
/* Can we clean up the target too? */
if (target != CAM_TARGET_WILDCARD) {
tstate->enabled_luns[lun] = NULL;
ahd->enabled_luns--;
for (empty = 1, i = 0; i < 8; i++)
if (tstate->enabled_luns[i] != NULL) {
empty = 0;
break;
}
if (empty) {
ahd_free_tstate(ahd, target, channel,
/*force*/FALSE);
if (ahd->features & AHD_MULTI_TID) {
u_int targid_mask;
targid_mask = ahd_inw(ahd, TARGID);
targid_mask &= ~target_mask;
ahd_outw(ahd, TARGID, targid_mask);
ahd_update_scsiid(ahd, targid_mask);
}
}
} else {
ahd->black_hole = NULL;
/*
* We can't allow selections without
* our black hole device.
*/
empty = TRUE;
}
if (ahd->enabled_luns == 0) {
/* Disallow select-in */
u_int scsiseq1;
scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
scsiseq1 &= ~ENSELI;
ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
scsiseq1 = ahd_inb(ahd, SCSISEQ1);
scsiseq1 &= ~ENSELI;
ahd_outb(ahd, SCSISEQ1, scsiseq1);
if ((ahd->features & AHD_MULTIROLE) == 0) {
printf("Configuring Initiator Mode\n");
ahd->flags &= ~AHD_TARGETROLE;
ahd->flags |= AHD_INITIATORROLE;
ahd_pause(ahd);
ahd_loadseq(ahd);
ahd_restart(ahd);
/*
* Unpaused. The extra unpause
* that follows is harmless.
*/
}
}
ahd_unpause(ahd);
}
#endif
}
static void
ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
{
#if NOT_YET
u_int scsiid_mask;
u_int scsiid;
if ((ahd->features & AHD_MULTI_TID) == 0)
panic("ahd_update_scsiid called on non-multitid unit\n");
/*
* Since we will rely on the TARGID mask
* for selection enables, ensure that OID
* in SCSIID is not set to some other ID
* that we don't want to allow selections on.
*/
if ((ahd->features & AHD_ULTRA2) != 0)
scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
else
scsiid = ahd_inb(ahd, SCSIID);
scsiid_mask = 0x1 << (scsiid & OID);
if ((targid_mask & scsiid_mask) == 0) {
u_int our_id;
/* ffs counts from 1 */
our_id = ffs(targid_mask);
if (our_id == 0)
our_id = ahd->our_id;
else
our_id--;
scsiid &= TID;
scsiid |= our_id;
}
if ((ahd->features & AHD_ULTRA2) != 0)
ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
else
ahd_outb(ahd, SCSIID, scsiid);
#endif
}
void
ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
{
struct target_cmd *cmd;
ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
/*
* Only advance through the queue if we
* have the resources to process the command.
*/
if (ahd_handle_target_cmd(ahd, cmd) != 0)
break;
cmd->cmd_valid = 0;
ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
ahd->shared_data_dmamap,
ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
sizeof(struct target_cmd),
BUS_DMASYNC_PREREAD);
ahd->tqinfifonext++;
/*
* Lazily update our position in the target mode incoming
* command queue as seen by the sequencer.
*/
if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
u_int hs_mailbox;
hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
hs_mailbox &= ~HOST_TQINPOS;
hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
}
}
}
static int
ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
{
struct ahd_tmode_tstate *tstate;
struct ahd_tmode_lstate *lstate;
struct ccb_accept_tio *atio;
uint8_t *byte;
int initiator;
int target;
int lun;
initiator = SCSIID_TARGET(ahd, cmd->scsiid);
target = SCSIID_OUR_ID(cmd->scsiid);
lun = (cmd->identify & MSG_IDENTIFY_LUNMASK);
byte = cmd->bytes;
tstate = ahd->enabled_targets[target];
lstate = NULL;
if (tstate != NULL)
lstate = tstate->enabled_luns[lun];
/*
* Commands for disabled luns go to the black hole driver.
*/
if (lstate == NULL)
lstate = ahd->black_hole;
atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
if (atio == NULL) {
ahd->flags |= AHD_TQINFIFO_BLOCKED;
/*
* Wait for more ATIOs from the peripheral driver for this lun.
*/
return (1);
} else
ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_TQIN) != 0)
printf("Incoming command from %d for %d:%d%s\n",
initiator, target, lun,
lstate == ahd->black_hole ? "(Black Holed)" : "");
#endif
SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
if (lstate == ahd->black_hole) {
/* Fill in the wildcards */
atio->ccb_h.target_id = target;
atio->ccb_h.target_lun = lun;
}
/*
* Package it up and send it off to
* whomever has this lun enabled.
*/
atio->sense_len = 0;
atio->init_id = initiator;
if (byte[0] != 0xFF) {
/* Tag was included */
atio->tag_action = *byte++;
atio->tag_id = *byte++;
atio->ccb_h.flags |= CAM_TAG_ACTION_VALID;
} else {
atio->ccb_h.flags &= ~CAM_TAG_ACTION_VALID;
}
byte++;
/* Okay. Now determine the cdb size based on the command code */
switch (*byte >> CMD_GROUP_CODE_SHIFT) {
case 0:
atio->cdb_len = 6;
break;
case 1:
case 2:
atio->cdb_len = 10;
break;
case 4:
atio->cdb_len = 16;
break;
case 5:
atio->cdb_len = 12;
break;
case 3:
default:
/* Only copy the opcode. */
atio->cdb_len = 1;
printf("Reserved or VU command code type encountered\n");
break;
}
memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
atio->ccb_h.status |= CAM_CDB_RECVD;
if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
/*
* We weren't allowed to disconnect.
* We're hanging on the bus until a
* continue target I/O comes in response
* to this accept tio.
*/
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_TQIN) != 0)
printf("Received Immediate Command %d:%d:%d - %p\n",
initiator, target, lun, ahd->pending_device);
#endif
ahd->pending_device = lstate;
ahd_freeze_ccb((union ccb *)atio);
atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
}
xpt_done((union ccb*)atio);
return (0);
}
#endif