freebsd-skq/sys/riscv/riscv/busdma_bounce.c
Kristof Provost 3bebdc0564 riscv: very large dma mappings can cause integer overflow
Fix the return type for _bus_dmamap_addseg().
Based on the same fix done for arm64 in r348571.

Sponsored by:	Axiado
2020-09-02 11:33:31 +00:00

1330 lines
36 KiB
C

/*-
* Copyright (c) 1997, 1998 Justin T. Gibbs.
* Copyright (c) 2015-2016 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by Andrew Turner
* under sponsorship of the FreeBSD Foundation.
*
* Portions of this software were developed by Semihalf
* under sponsorship of the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/proc.h>
#include <sys/memdesc.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <machine/atomic.h>
#include <machine/bus.h>
#include <machine/md_var.h>
#include <machine/bus_dma_impl.h>
#define MAX_BPAGES 4096
enum {
BF_COULD_BOUNCE = 0x01,
BF_MIN_ALLOC_COMP = 0x02,
BF_KMEM_ALLOC = 0x04,
BF_COHERENT = 0x10,
};
struct bounce_zone;
struct bus_dma_tag {
struct bus_dma_tag_common common;
int map_count;
int bounce_flags;
bus_dma_segment_t *segments;
struct bounce_zone *bounce_zone;
};
struct bounce_page {
vm_offset_t vaddr; /* kva of bounce buffer */
bus_addr_t busaddr; /* Physical address */
vm_offset_t datavaddr; /* kva of client data */
vm_page_t datapage; /* physical page of client data */
vm_offset_t dataoffs; /* page offset of client data */
bus_size_t datacount; /* client data count */
STAILQ_ENTRY(bounce_page) links;
};
int busdma_swi_pending;
struct bounce_zone {
STAILQ_ENTRY(bounce_zone) links;
STAILQ_HEAD(bp_list, bounce_page) bounce_page_list;
int total_bpages;
int free_bpages;
int reserved_bpages;
int active_bpages;
int total_bounced;
int total_deferred;
int map_count;
bus_size_t alignment;
bus_addr_t lowaddr;
char zoneid[8];
char lowaddrid[20];
struct sysctl_ctx_list sysctl_tree;
struct sysctl_oid *sysctl_tree_top;
};
static struct mtx bounce_lock;
static int total_bpages;
static int busdma_zonecount;
static STAILQ_HEAD(, bounce_zone) bounce_zone_list;
static SYSCTL_NODE(_hw, OID_AUTO, busdma, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"Busdma parameters");
SYSCTL_INT(_hw_busdma, OID_AUTO, total_bpages, CTLFLAG_RD, &total_bpages, 0,
"Total bounce pages");
struct sync_list {
vm_offset_t vaddr; /* kva of client data */
bus_addr_t paddr; /* physical address */
vm_page_t pages; /* starting page of client data */
bus_size_t datacount; /* client data count */
};
struct bus_dmamap {
struct bp_list bpages;
int pagesneeded;
int pagesreserved;
bus_dma_tag_t dmat;
struct memdesc mem;
bus_dmamap_callback_t *callback;
void *callback_arg;
STAILQ_ENTRY(bus_dmamap) links;
u_int flags;
#define DMAMAP_COULD_BOUNCE (1 << 0)
#define DMAMAP_FROM_DMAMEM (1 << 1)
int sync_count;
struct sync_list slist[];
};
static STAILQ_HEAD(, bus_dmamap) bounce_map_waitinglist;
static STAILQ_HEAD(, bus_dmamap) bounce_map_callbacklist;
static void init_bounce_pages(void *dummy);
static int alloc_bounce_zone(bus_dma_tag_t dmat);
static int alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages);
static int reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
int commit);
static bus_addr_t add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map,
vm_offset_t vaddr, bus_addr_t addr, bus_size_t size);
static void free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage);
int run_filter(bus_dma_tag_t dmat, bus_addr_t paddr);
static void _bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
pmap_t pmap, void *buf, bus_size_t buflen, int flags);
static void _bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map,
vm_paddr_t buf, bus_size_t buflen, int flags);
static int _bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map,
int flags);
/*
* Allocate a device specific dma_tag.
*/
static int
bounce_bus_dma_tag_create(bus_dma_tag_t parent, bus_size_t alignment,
bus_addr_t boundary, bus_addr_t lowaddr, bus_addr_t highaddr,
bus_dma_filter_t *filter, void *filterarg, bus_size_t maxsize,
int nsegments, bus_size_t maxsegsz, int flags, bus_dma_lock_t *lockfunc,
void *lockfuncarg, bus_dma_tag_t *dmat)
{
bus_dma_tag_t newtag;
int error;
*dmat = NULL;
error = common_bus_dma_tag_create(parent != NULL ? &parent->common :
NULL, alignment, boundary, lowaddr, highaddr, filter, filterarg,
maxsize, nsegments, maxsegsz, flags, lockfunc, lockfuncarg,
sizeof (struct bus_dma_tag), (void **)&newtag);
if (error != 0)
return (error);
newtag->common.impl = &bus_dma_bounce_impl;
newtag->map_count = 0;
newtag->segments = NULL;
if ((flags & BUS_DMA_COHERENT) != 0)
newtag->bounce_flags |= BF_COHERENT;
if (parent != NULL) {
if ((newtag->common.filter != NULL ||
(parent->bounce_flags & BF_COULD_BOUNCE) != 0))
newtag->bounce_flags |= BF_COULD_BOUNCE;
/* Copy some flags from the parent */
newtag->bounce_flags |= parent->bounce_flags & BF_COHERENT;
}
if (newtag->common.lowaddr < ptoa((vm_paddr_t)Maxmem) ||
newtag->common.alignment > 1)
newtag->bounce_flags |= BF_COULD_BOUNCE;
if (((newtag->bounce_flags & BF_COULD_BOUNCE) != 0) &&
(flags & BUS_DMA_ALLOCNOW) != 0) {
struct bounce_zone *bz;
/* Must bounce */
if ((error = alloc_bounce_zone(newtag)) != 0) {
free(newtag, M_DEVBUF);
return (error);
}
bz = newtag->bounce_zone;
if (ptoa(bz->total_bpages) < maxsize) {
int pages;
pages = atop(round_page(maxsize)) - bz->total_bpages;
/* Add pages to our bounce pool */
if (alloc_bounce_pages(newtag, pages) < pages)
error = ENOMEM;
}
/* Performed initial allocation */
newtag->bounce_flags |= BF_MIN_ALLOC_COMP;
} else
error = 0;
if (error != 0)
free(newtag, M_DEVBUF);
else
*dmat = newtag;
CTR4(KTR_BUSDMA, "%s returned tag %p tag flags 0x%x error %d",
__func__, newtag, (newtag != NULL ? newtag->common.flags : 0),
error);
return (error);
}
static int
bounce_bus_dma_tag_destroy(bus_dma_tag_t dmat)
{
bus_dma_tag_t dmat_copy, parent;
int error;
error = 0;
dmat_copy = dmat;
if (dmat != NULL) {
if (dmat->map_count != 0) {
error = EBUSY;
goto out;
}
while (dmat != NULL) {
parent = (bus_dma_tag_t)dmat->common.parent;
atomic_subtract_int(&dmat->common.ref_count, 1);
if (dmat->common.ref_count == 0) {
if (dmat->segments != NULL)
free(dmat->segments, M_DEVBUF);
free(dmat, M_DEVBUF);
/*
* Last reference count, so
* release our reference
* count on our parent.
*/
dmat = parent;
} else
dmat = NULL;
}
}
out:
CTR3(KTR_BUSDMA, "%s tag %p error %d", __func__, dmat_copy, error);
return (error);
}
static bus_dmamap_t
alloc_dmamap(bus_dma_tag_t dmat, int flags)
{
u_long mapsize;
bus_dmamap_t map;
mapsize = sizeof(*map);
mapsize += sizeof(struct sync_list) * dmat->common.nsegments;
map = malloc(mapsize, M_DEVBUF, flags | M_ZERO);
if (map == NULL)
return (NULL);
/* Initialize the new map */
STAILQ_INIT(&map->bpages);
return (map);
}
/*
* Allocate a handle for mapping from kva/uva/physical
* address space into bus device space.
*/
static int
bounce_bus_dmamap_create(bus_dma_tag_t dmat, int flags, bus_dmamap_t *mapp)
{
struct bounce_zone *bz;
int error, maxpages, pages;
error = 0;
if (dmat->segments == NULL) {
dmat->segments = (bus_dma_segment_t *)malloc(
sizeof(bus_dma_segment_t) * dmat->common.nsegments,
M_DEVBUF, M_NOWAIT);
if (dmat->segments == NULL) {
CTR3(KTR_BUSDMA, "%s: tag %p error %d",
__func__, dmat, ENOMEM);
return (ENOMEM);
}
}
*mapp = alloc_dmamap(dmat, M_NOWAIT);
if (*mapp == NULL) {
CTR3(KTR_BUSDMA, "%s: tag %p error %d",
__func__, dmat, ENOMEM);
return (ENOMEM);
}
/*
* Bouncing might be required if the driver asks for an active
* exclusion region, a data alignment that is stricter than 1, and/or
* an active address boundary.
*/
if (dmat->bounce_flags & BF_COULD_BOUNCE) {
/* Must bounce */
if (dmat->bounce_zone == NULL) {
if ((error = alloc_bounce_zone(dmat)) != 0) {
free(*mapp, M_DEVBUF);
return (error);
}
}
bz = dmat->bounce_zone;
(*mapp)->flags = DMAMAP_COULD_BOUNCE;
/*
* Attempt to add pages to our pool on a per-instance
* basis up to a sane limit.
*/
if (dmat->common.alignment > 1)
maxpages = MAX_BPAGES;
else
maxpages = MIN(MAX_BPAGES, Maxmem -
atop(dmat->common.lowaddr));
if ((dmat->bounce_flags & BF_MIN_ALLOC_COMP) == 0 ||
(bz->map_count > 0 && bz->total_bpages < maxpages)) {
pages = MAX(atop(dmat->common.maxsize), 1);
pages = MIN(maxpages - bz->total_bpages, pages);
pages = MAX(pages, 1);
if (alloc_bounce_pages(dmat, pages) < pages)
error = ENOMEM;
if ((dmat->bounce_flags & BF_MIN_ALLOC_COMP)
== 0) {
if (error == 0) {
dmat->bounce_flags |=
BF_MIN_ALLOC_COMP;
}
} else
error = 0;
}
bz->map_count++;
}
if (error == 0)
dmat->map_count++;
else
free(*mapp, M_DEVBUF);
CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
__func__, dmat, dmat->common.flags, error);
return (error);
}
/*
* Destroy a handle for mapping from kva/uva/physical
* address space into bus device space.
*/
static int
bounce_bus_dmamap_destroy(bus_dma_tag_t dmat, bus_dmamap_t map)
{
/* Check we are destroying the correct map type */
if ((map->flags & DMAMAP_FROM_DMAMEM) != 0)
panic("bounce_bus_dmamap_destroy: Invalid map freed\n");
if (STAILQ_FIRST(&map->bpages) != NULL || map->sync_count != 0) {
CTR3(KTR_BUSDMA, "%s: tag %p error %d", __func__, dmat, EBUSY);
return (EBUSY);
}
if (dmat->bounce_zone) {
KASSERT((map->flags & DMAMAP_COULD_BOUNCE) != 0,
("%s: Bounce zone when cannot bounce", __func__));
dmat->bounce_zone->map_count--;
}
free(map, M_DEVBUF);
dmat->map_count--;
CTR2(KTR_BUSDMA, "%s: tag %p error 0", __func__, dmat);
return (0);
}
/*
* Allocate a piece of memory that can be efficiently mapped into
* bus device space based on the constraints lited in the dma tag.
* A dmamap to for use with dmamap_load is also allocated.
*/
static int
bounce_bus_dmamem_alloc(bus_dma_tag_t dmat, void** vaddr, int flags,
bus_dmamap_t *mapp)
{
/*
* XXX ARM64TODO:
* This bus_dma implementation requires IO-Coherent architecutre.
* If IO-Coherency is not guaranteed, the BUS_DMA_COHERENT flag has
* to be implented using non-cacheable memory.
*/
vm_memattr_t attr;
int mflags;
if (flags & BUS_DMA_NOWAIT)
mflags = M_NOWAIT;
else
mflags = M_WAITOK;
if (dmat->segments == NULL) {
dmat->segments = (bus_dma_segment_t *)malloc(
sizeof(bus_dma_segment_t) * dmat->common.nsegments,
M_DEVBUF, mflags);
if (dmat->segments == NULL) {
CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
__func__, dmat, dmat->common.flags, ENOMEM);
return (ENOMEM);
}
}
if (flags & BUS_DMA_ZERO)
mflags |= M_ZERO;
if (flags & BUS_DMA_NOCACHE)
attr = VM_MEMATTR_UNCACHEABLE;
else if ((flags & BUS_DMA_COHERENT) != 0 &&
(dmat->bounce_flags & BF_COHERENT) == 0)
/*
* If we have a non-coherent tag, and are trying to allocate
* a coherent block of memory it needs to be uncached.
*/
attr = VM_MEMATTR_UNCACHEABLE;
else
attr = VM_MEMATTR_DEFAULT;
/*
* Create the map, but don't set the could bounce flag as
* this allocation should never bounce;
*/
*mapp = alloc_dmamap(dmat, mflags);
if (*mapp == NULL) {
CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
__func__, dmat, dmat->common.flags, ENOMEM);
return (ENOMEM);
}
(*mapp)->flags = DMAMAP_FROM_DMAMEM;
/*
* Allocate the buffer from the malloc(9) allocator if...
* - It's small enough to fit into a single power of two sized bucket.
* - The alignment is less than or equal to the maximum size
* - The low address requirement is fulfilled.
* else allocate non-contiguous pages if...
* - The page count that could get allocated doesn't exceed
* nsegments also when the maximum segment size is less
* than PAGE_SIZE.
* - The alignment constraint isn't larger than a page boundary.
* - There are no boundary-crossing constraints.
* else allocate a block of contiguous pages because one or more of the
* constraints is something that only the contig allocator can fulfill.
*
* NOTE: The (dmat->common.alignment <= dmat->maxsize) check
* below is just a quick hack. The exact alignment guarantees
* of malloc(9) need to be nailed down, and the code below
* should be rewritten to take that into account.
*
* In the meantime warn the user if malloc gets it wrong.
*/
if ((dmat->common.maxsize <= PAGE_SIZE) &&
(dmat->common.alignment <= dmat->common.maxsize) &&
dmat->common.lowaddr >= ptoa((vm_paddr_t)Maxmem) &&
attr == VM_MEMATTR_DEFAULT) {
*vaddr = malloc(dmat->common.maxsize, M_DEVBUF, mflags);
} else if (dmat->common.nsegments >=
howmany(dmat->common.maxsize, MIN(dmat->common.maxsegsz, PAGE_SIZE)) &&
dmat->common.alignment <= PAGE_SIZE &&
(dmat->common.boundary % PAGE_SIZE) == 0) {
/* Page-based multi-segment allocations allowed */
*vaddr = (void *)kmem_alloc_attr(dmat->common.maxsize, mflags,
0ul, dmat->common.lowaddr, attr);
dmat->bounce_flags |= BF_KMEM_ALLOC;
} else {
*vaddr = (void *)kmem_alloc_contig(dmat->common.maxsize, mflags,
0ul, dmat->common.lowaddr, dmat->common.alignment != 0 ?
dmat->common.alignment : 1ul, dmat->common.boundary, attr);
dmat->bounce_flags |= BF_KMEM_ALLOC;
}
if (*vaddr == NULL) {
CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
__func__, dmat, dmat->common.flags, ENOMEM);
free(*mapp, M_DEVBUF);
return (ENOMEM);
} else if (vtophys(*vaddr) & (dmat->common.alignment - 1)) {
printf("bus_dmamem_alloc failed to align memory properly.\n");
}
dmat->map_count++;
CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x error %d",
__func__, dmat, dmat->common.flags, 0);
return (0);
}
/*
* Free a piece of memory and it's allociated dmamap, that was allocated
* via bus_dmamem_alloc. Make the same choice for free/contigfree.
*/
static void
bounce_bus_dmamem_free(bus_dma_tag_t dmat, void *vaddr, bus_dmamap_t map)
{
/*
* Check the map came from bounce_bus_dmamem_alloc, so the map
* should be NULL and the BF_KMEM_ALLOC flag cleared if malloc()
* was used and set if kmem_alloc_contig() was used.
*/
if ((map->flags & DMAMAP_FROM_DMAMEM) == 0)
panic("bus_dmamem_free: Invalid map freed\n");
if ((dmat->bounce_flags & BF_KMEM_ALLOC) == 0)
free(vaddr, M_DEVBUF);
else
kmem_free((vm_offset_t)vaddr, dmat->common.maxsize);
free(map, M_DEVBUF);
dmat->map_count--;
CTR3(KTR_BUSDMA, "%s: tag %p flags 0x%x", __func__, dmat,
dmat->bounce_flags);
}
static void
_bus_dmamap_count_phys(bus_dma_tag_t dmat, bus_dmamap_t map, vm_paddr_t buf,
bus_size_t buflen, int flags)
{
bus_addr_t curaddr;
bus_size_t sgsize;
if ((map->flags & DMAMAP_COULD_BOUNCE) != 0 && map->pagesneeded == 0) {
/*
* Count the number of bounce pages
* needed in order to complete this transfer
*/
curaddr = buf;
while (buflen != 0) {
sgsize = MIN(buflen, dmat->common.maxsegsz);
if (bus_dma_run_filter(&dmat->common, curaddr)) {
sgsize = MIN(sgsize,
PAGE_SIZE - (curaddr & PAGE_MASK));
map->pagesneeded++;
}
curaddr += sgsize;
buflen -= sgsize;
}
CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded);
}
}
static void
_bus_dmamap_count_pages(bus_dma_tag_t dmat, bus_dmamap_t map, pmap_t pmap,
void *buf, bus_size_t buflen, int flags)
{
vm_offset_t vaddr;
vm_offset_t vendaddr;
bus_addr_t paddr;
bus_size_t sg_len;
if ((map->flags & DMAMAP_COULD_BOUNCE) != 0 && map->pagesneeded == 0) {
CTR4(KTR_BUSDMA, "lowaddr= %d Maxmem= %d, boundary= %d, "
"alignment= %d", dmat->common.lowaddr,
ptoa((vm_paddr_t)Maxmem),
dmat->common.boundary, dmat->common.alignment);
CTR2(KTR_BUSDMA, "map= %p, pagesneeded= %d", map,
map->pagesneeded);
/*
* Count the number of bounce pages
* needed in order to complete this transfer
*/
vaddr = (vm_offset_t)buf;
vendaddr = (vm_offset_t)buf + buflen;
while (vaddr < vendaddr) {
sg_len = PAGE_SIZE - ((vm_offset_t)vaddr & PAGE_MASK);
if (pmap == kernel_pmap)
paddr = pmap_kextract(vaddr);
else
paddr = pmap_extract(pmap, vaddr);
if (bus_dma_run_filter(&dmat->common, paddr) != 0) {
sg_len = roundup2(sg_len,
dmat->common.alignment);
map->pagesneeded++;
}
vaddr += sg_len;
}
CTR1(KTR_BUSDMA, "pagesneeded= %d\n", map->pagesneeded);
}
}
static int
_bus_dmamap_reserve_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int flags)
{
/* Reserve Necessary Bounce Pages */
mtx_lock(&bounce_lock);
if (flags & BUS_DMA_NOWAIT) {
if (reserve_bounce_pages(dmat, map, 0) != 0) {
mtx_unlock(&bounce_lock);
return (ENOMEM);
}
} else {
if (reserve_bounce_pages(dmat, map, 1) != 0) {
/* Queue us for resources */
STAILQ_INSERT_TAIL(&bounce_map_waitinglist, map, links);
mtx_unlock(&bounce_lock);
return (EINPROGRESS);
}
}
mtx_unlock(&bounce_lock);
return (0);
}
/*
* Add a single contiguous physical range to the segment list.
*/
static bus_size_t
_bus_dmamap_addseg(bus_dma_tag_t dmat, bus_dmamap_t map, bus_addr_t curaddr,
bus_size_t sgsize, bus_dma_segment_t *segs, int *segp)
{
bus_addr_t baddr, bmask;
int seg;
/*
* Make sure we don't cross any boundaries.
*/
bmask = ~(dmat->common.boundary - 1);
if (dmat->common.boundary > 0) {
baddr = (curaddr + dmat->common.boundary) & bmask;
if (sgsize > (baddr - curaddr))
sgsize = (baddr - curaddr);
}
/*
* Insert chunk into a segment, coalescing with
* previous segment if possible.
*/
seg = *segp;
if (seg == -1) {
seg = 0;
segs[seg].ds_addr = curaddr;
segs[seg].ds_len = sgsize;
} else {
if (curaddr == segs[seg].ds_addr + segs[seg].ds_len &&
(segs[seg].ds_len + sgsize) <= dmat->common.maxsegsz &&
(dmat->common.boundary == 0 ||
(segs[seg].ds_addr & bmask) == (curaddr & bmask)))
segs[seg].ds_len += sgsize;
else {
if (++seg >= dmat->common.nsegments)
return (0);
segs[seg].ds_addr = curaddr;
segs[seg].ds_len = sgsize;
}
}
*segp = seg;
return (sgsize);
}
/*
* Utility function to load a physical buffer. segp contains
* the starting segment on entrace, and the ending segment on exit.
*/
static int
bounce_bus_dmamap_load_phys(bus_dma_tag_t dmat, bus_dmamap_t map,
vm_paddr_t buf, bus_size_t buflen, int flags, bus_dma_segment_t *segs,
int *segp)
{
struct sync_list *sl;
bus_size_t sgsize;
bus_addr_t curaddr, sl_end;
int error;
if (segs == NULL)
segs = dmat->segments;
if ((dmat->bounce_flags & BF_COULD_BOUNCE) != 0) {
_bus_dmamap_count_phys(dmat, map, buf, buflen, flags);
if (map->pagesneeded != 0) {
error = _bus_dmamap_reserve_pages(dmat, map, flags);
if (error)
return (error);
}
}
sl = map->slist + map->sync_count - 1;
sl_end = 0;
while (buflen > 0) {
curaddr = buf;
sgsize = MIN(buflen, dmat->common.maxsegsz);
if (((dmat->bounce_flags & BF_COULD_BOUNCE) != 0) &&
map->pagesneeded != 0 &&
bus_dma_run_filter(&dmat->common, curaddr)) {
sgsize = MIN(sgsize, PAGE_SIZE - (curaddr & PAGE_MASK));
curaddr = add_bounce_page(dmat, map, 0, curaddr,
sgsize);
} else if ((dmat->bounce_flags & BF_COHERENT) == 0) {
if (map->sync_count > 0)
sl_end = sl->paddr + sl->datacount;
if (map->sync_count == 0 || curaddr != sl_end) {
if (++map->sync_count > dmat->common.nsegments)
break;
sl++;
sl->vaddr = 0;
sl->paddr = curaddr;
sl->datacount = sgsize;
sl->pages = PHYS_TO_VM_PAGE(curaddr);
KASSERT(sl->pages != NULL,
("%s: page at PA:0x%08lx is not in "
"vm_page_array", __func__, curaddr));
} else
sl->datacount += sgsize;
}
sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
segp);
if (sgsize == 0)
break;
buf += sgsize;
buflen -= sgsize;
}
/*
* Did we fit?
*/
return (buflen != 0 ? EFBIG : 0); /* XXX better return value here? */
}
/*
* Utility function to load a linear buffer. segp contains
* the starting segment on entrace, and the ending segment on exit.
*/
static int
bounce_bus_dmamap_load_buffer(bus_dma_tag_t dmat, bus_dmamap_t map, void *buf,
bus_size_t buflen, pmap_t pmap, int flags, bus_dma_segment_t *segs,
int *segp)
{
struct sync_list *sl;
bus_size_t sgsize, max_sgsize;
bus_addr_t curaddr, sl_pend;
vm_offset_t kvaddr, vaddr, sl_vend;
int error;
if (segs == NULL)
segs = dmat->segments;
if ((dmat->bounce_flags & BF_COULD_BOUNCE) != 0) {
_bus_dmamap_count_pages(dmat, map, pmap, buf, buflen, flags);
if (map->pagesneeded != 0) {
error = _bus_dmamap_reserve_pages(dmat, map, flags);
if (error)
return (error);
}
}
sl = map->slist + map->sync_count - 1;
vaddr = (vm_offset_t)buf;
sl_pend = 0;
sl_vend = 0;
while (buflen > 0) {
/*
* Get the physical address for this segment.
*/
if (pmap == kernel_pmap) {
curaddr = pmap_kextract(vaddr);
kvaddr = vaddr;
} else {
curaddr = pmap_extract(pmap, vaddr);
kvaddr = 0;
}
/*
* Compute the segment size, and adjust counts.
*/
max_sgsize = MIN(buflen, dmat->common.maxsegsz);
sgsize = PAGE_SIZE - (curaddr & PAGE_MASK);
if (((dmat->bounce_flags & BF_COULD_BOUNCE) != 0) &&
map->pagesneeded != 0 &&
bus_dma_run_filter(&dmat->common, curaddr)) {
sgsize = roundup2(sgsize, dmat->common.alignment);
sgsize = MIN(sgsize, max_sgsize);
curaddr = add_bounce_page(dmat, map, kvaddr, curaddr,
sgsize);
} else if ((dmat->bounce_flags & BF_COHERENT) == 0) {
sgsize = MIN(sgsize, max_sgsize);
if (map->sync_count > 0) {
sl_pend = sl->paddr + sl->datacount;
sl_vend = sl->vaddr + sl->datacount;
}
if (map->sync_count == 0 ||
(kvaddr != 0 && kvaddr != sl_vend) ||
(curaddr != sl_pend)) {
if (++map->sync_count > dmat->common.nsegments)
goto cleanup;
sl++;
sl->vaddr = kvaddr;
sl->paddr = curaddr;
if (kvaddr != 0) {
sl->pages = NULL;
} else {
sl->pages = PHYS_TO_VM_PAGE(curaddr);
KASSERT(sl->pages != NULL,
("%s: page at PA:0x%08lx is not "
"in vm_page_array", __func__,
curaddr));
}
sl->datacount = sgsize;
} else
sl->datacount += sgsize;
} else {
sgsize = MIN(sgsize, max_sgsize);
}
sgsize = _bus_dmamap_addseg(dmat, map, curaddr, sgsize, segs,
segp);
if (sgsize == 0)
break;
vaddr += sgsize;
buflen -= sgsize;
}
cleanup:
/*
* Did we fit?
*/
return (buflen != 0 ? EFBIG : 0); /* XXX better return value here? */
}
static void
bounce_bus_dmamap_waitok(bus_dma_tag_t dmat, bus_dmamap_t map,
struct memdesc *mem, bus_dmamap_callback_t *callback, void *callback_arg)
{
if ((map->flags & DMAMAP_COULD_BOUNCE) == 0)
return;
map->mem = *mem;
map->dmat = dmat;
map->callback = callback;
map->callback_arg = callback_arg;
}
static bus_dma_segment_t *
bounce_bus_dmamap_complete(bus_dma_tag_t dmat, bus_dmamap_t map,
bus_dma_segment_t *segs, int nsegs, int error)
{
if (segs == NULL)
segs = dmat->segments;
return (segs);
}
/*
* Release the mapping held by map.
*/
static void
bounce_bus_dmamap_unload(bus_dma_tag_t dmat, bus_dmamap_t map)
{
struct bounce_page *bpage;
while ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
STAILQ_REMOVE_HEAD(&map->bpages, links);
free_bounce_page(dmat, bpage);
}
map->sync_count = 0;
}
static void
dma_preread_safe(vm_offset_t va, vm_size_t size)
{
/*
* Write back any partial cachelines immediately before and
* after the DMA region.
*/
if (va & (dcache_line_size - 1))
cpu_dcache_wb_range(va, 1);
if ((va + size) & (dcache_line_size - 1))
cpu_dcache_wb_range(va + size, 1);
cpu_dcache_inv_range(va, size);
}
static void
dma_dcache_sync(struct sync_list *sl, bus_dmasync_op_t op)
{
uint32_t len, offset;
vm_page_t m;
vm_paddr_t pa;
vm_offset_t va, tempva;
bus_size_t size;
offset = sl->paddr & PAGE_MASK;
m = sl->pages;
size = sl->datacount;
pa = sl->paddr;
for ( ; size != 0; size -= len, pa += len, offset = 0, ++m) {
tempva = 0;
if (sl->vaddr == 0) {
len = min(PAGE_SIZE - offset, size);
tempva = pmap_quick_enter_page(m);
va = tempva | offset;
KASSERT(pa == (VM_PAGE_TO_PHYS(m) | offset),
("unexpected vm_page_t phys: 0x%16lx != 0x%16lx",
VM_PAGE_TO_PHYS(m) | offset, pa));
} else {
len = sl->datacount;
va = sl->vaddr;
}
switch (op) {
case BUS_DMASYNC_PREWRITE:
case BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD:
cpu_dcache_wb_range(va, len);
break;
case BUS_DMASYNC_PREREAD:
/*
* An mbuf may start in the middle of a cacheline. There
* will be no cpu writes to the beginning of that line
* (which contains the mbuf header) while dma is in
* progress. Handle that case by doing a writeback of
* just the first cacheline before invalidating the
* overall buffer. Any mbuf in a chain may have this
* misalignment. Buffers which are not mbufs bounce if
* they are not aligned to a cacheline.
*/
dma_preread_safe(va, len);
break;
case BUS_DMASYNC_POSTREAD:
case BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE:
cpu_dcache_inv_range(va, len);
break;
default:
panic("unsupported combination of sync operations: "
"0x%08x\n", op);
}
if (tempva != 0)
pmap_quick_remove_page(tempva);
}
}
static void
bounce_bus_dmamap_sync(bus_dma_tag_t dmat, bus_dmamap_t map,
bus_dmasync_op_t op)
{
struct bounce_page *bpage;
struct sync_list *sl, *end;
vm_offset_t datavaddr, tempvaddr;
if (op == BUS_DMASYNC_POSTWRITE)
return;
if ((op & BUS_DMASYNC_POSTREAD) != 0) {
/*
* Wait for any DMA operations to complete before the bcopy.
*/
fence();
}
if ((bpage = STAILQ_FIRST(&map->bpages)) != NULL) {
CTR4(KTR_BUSDMA, "%s: tag %p tag flags 0x%x op 0x%x "
"performing bounce", __func__, dmat, dmat->common.flags,
op);
if ((op & BUS_DMASYNC_PREWRITE) != 0) {
while (bpage != NULL) {
tempvaddr = 0;
datavaddr = bpage->datavaddr;
if (datavaddr == 0) {
tempvaddr = pmap_quick_enter_page(
bpage->datapage);
datavaddr = tempvaddr | bpage->dataoffs;
}
bcopy((void *)datavaddr,
(void *)bpage->vaddr, bpage->datacount);
if (tempvaddr != 0)
pmap_quick_remove_page(tempvaddr);
if ((dmat->bounce_flags & BF_COHERENT) == 0)
cpu_dcache_wb_range(bpage->vaddr,
bpage->datacount);
bpage = STAILQ_NEXT(bpage, links);
}
dmat->bounce_zone->total_bounced++;
} else if ((op & BUS_DMASYNC_PREREAD) != 0) {
while (bpage != NULL) {
if ((dmat->bounce_flags & BF_COHERENT) == 0)
cpu_dcache_wbinv_range(bpage->vaddr,
bpage->datacount);
bpage = STAILQ_NEXT(bpage, links);
}
}
if ((op & BUS_DMASYNC_POSTREAD) != 0) {
while (bpage != NULL) {
if ((dmat->bounce_flags & BF_COHERENT) == 0)
cpu_dcache_inv_range(bpage->vaddr,
bpage->datacount);
tempvaddr = 0;
datavaddr = bpage->datavaddr;
if (datavaddr == 0) {
tempvaddr = pmap_quick_enter_page(
bpage->datapage);
datavaddr = tempvaddr | bpage->dataoffs;
}
bcopy((void *)bpage->vaddr,
(void *)datavaddr, bpage->datacount);
if (tempvaddr != 0)
pmap_quick_remove_page(tempvaddr);
bpage = STAILQ_NEXT(bpage, links);
}
dmat->bounce_zone->total_bounced++;
}
}
/*
* Cache maintenance for normal (non-COHERENT non-bounce) buffers.
*/
if (map->sync_count != 0) {
sl = &map->slist[0];
end = &map->slist[map->sync_count];
CTR3(KTR_BUSDMA, "%s: tag %p op 0x%x "
"performing sync", __func__, dmat, op);
for ( ; sl != end; ++sl)
dma_dcache_sync(sl, op);
}
if ((op & (BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)) != 0) {
/*
* Wait for the bcopy to complete before any DMA operations.
*/
fence();
}
}
static void
init_bounce_pages(void *dummy __unused)
{
total_bpages = 0;
STAILQ_INIT(&bounce_zone_list);
STAILQ_INIT(&bounce_map_waitinglist);
STAILQ_INIT(&bounce_map_callbacklist);
mtx_init(&bounce_lock, "bounce pages lock", NULL, MTX_DEF);
}
SYSINIT(bpages, SI_SUB_LOCK, SI_ORDER_ANY, init_bounce_pages, NULL);
static struct sysctl_ctx_list *
busdma_sysctl_tree(struct bounce_zone *bz)
{
return (&bz->sysctl_tree);
}
static struct sysctl_oid *
busdma_sysctl_tree_top(struct bounce_zone *bz)
{
return (bz->sysctl_tree_top);
}
static int
alloc_bounce_zone(bus_dma_tag_t dmat)
{
struct bounce_zone *bz;
/* Check to see if we already have a suitable zone */
STAILQ_FOREACH(bz, &bounce_zone_list, links) {
if ((dmat->common.alignment <= bz->alignment) &&
(dmat->common.lowaddr >= bz->lowaddr)) {
dmat->bounce_zone = bz;
return (0);
}
}
if ((bz = (struct bounce_zone *)malloc(sizeof(*bz), M_DEVBUF,
M_NOWAIT | M_ZERO)) == NULL)
return (ENOMEM);
STAILQ_INIT(&bz->bounce_page_list);
bz->free_bpages = 0;
bz->reserved_bpages = 0;
bz->active_bpages = 0;
bz->lowaddr = dmat->common.lowaddr;
bz->alignment = MAX(dmat->common.alignment, PAGE_SIZE);
bz->map_count = 0;
snprintf(bz->zoneid, 8, "zone%d", busdma_zonecount);
busdma_zonecount++;
snprintf(bz->lowaddrid, 18, "%#jx", (uintmax_t)bz->lowaddr);
STAILQ_INSERT_TAIL(&bounce_zone_list, bz, links);
dmat->bounce_zone = bz;
sysctl_ctx_init(&bz->sysctl_tree);
bz->sysctl_tree_top = SYSCTL_ADD_NODE(&bz->sysctl_tree,
SYSCTL_STATIC_CHILDREN(_hw_busdma), OID_AUTO, bz->zoneid,
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
if (bz->sysctl_tree_top == NULL) {
sysctl_ctx_free(&bz->sysctl_tree);
return (0); /* XXX error code? */
}
SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
"total_bpages", CTLFLAG_RD, &bz->total_bpages, 0,
"Total bounce pages");
SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
"free_bpages", CTLFLAG_RD, &bz->free_bpages, 0,
"Free bounce pages");
SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
"reserved_bpages", CTLFLAG_RD, &bz->reserved_bpages, 0,
"Reserved bounce pages");
SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
"active_bpages", CTLFLAG_RD, &bz->active_bpages, 0,
"Active bounce pages");
SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
"total_bounced", CTLFLAG_RD, &bz->total_bounced, 0,
"Total bounce requests");
SYSCTL_ADD_INT(busdma_sysctl_tree(bz),
SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
"total_deferred", CTLFLAG_RD, &bz->total_deferred, 0,
"Total bounce requests that were deferred");
SYSCTL_ADD_STRING(busdma_sysctl_tree(bz),
SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
"lowaddr", CTLFLAG_RD, bz->lowaddrid, 0, "");
SYSCTL_ADD_UAUTO(busdma_sysctl_tree(bz),
SYSCTL_CHILDREN(busdma_sysctl_tree_top(bz)), OID_AUTO,
"alignment", CTLFLAG_RD, &bz->alignment, "");
return (0);
}
static int
alloc_bounce_pages(bus_dma_tag_t dmat, u_int numpages)
{
struct bounce_zone *bz;
int count;
bz = dmat->bounce_zone;
count = 0;
while (numpages > 0) {
struct bounce_page *bpage;
bpage = (struct bounce_page *)malloc(sizeof(*bpage), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (bpage == NULL)
break;
bpage->vaddr = (vm_offset_t)contigmalloc(PAGE_SIZE, M_DEVBUF,
M_NOWAIT, 0ul, bz->lowaddr, PAGE_SIZE, 0);
if (bpage->vaddr == 0) {
free(bpage, M_DEVBUF);
break;
}
bpage->busaddr = pmap_kextract(bpage->vaddr);
mtx_lock(&bounce_lock);
STAILQ_INSERT_TAIL(&bz->bounce_page_list, bpage, links);
total_bpages++;
bz->total_bpages++;
bz->free_bpages++;
mtx_unlock(&bounce_lock);
count++;
numpages--;
}
return (count);
}
static int
reserve_bounce_pages(bus_dma_tag_t dmat, bus_dmamap_t map, int commit)
{
struct bounce_zone *bz;
int pages;
mtx_assert(&bounce_lock, MA_OWNED);
bz = dmat->bounce_zone;
pages = MIN(bz->free_bpages, map->pagesneeded - map->pagesreserved);
if (commit == 0 && map->pagesneeded > (map->pagesreserved + pages))
return (map->pagesneeded - (map->pagesreserved + pages));
bz->free_bpages -= pages;
bz->reserved_bpages += pages;
map->pagesreserved += pages;
pages = map->pagesneeded - map->pagesreserved;
return (pages);
}
static bus_addr_t
add_bounce_page(bus_dma_tag_t dmat, bus_dmamap_t map, vm_offset_t vaddr,
bus_addr_t addr, bus_size_t size)
{
struct bounce_zone *bz;
struct bounce_page *bpage;
KASSERT(dmat->bounce_zone != NULL, ("no bounce zone in dma tag"));
KASSERT((map->flags & DMAMAP_COULD_BOUNCE) != 0,
("add_bounce_page: bad map %p", map));
bz = dmat->bounce_zone;
if (map->pagesneeded == 0)
panic("add_bounce_page: map doesn't need any pages");
map->pagesneeded--;
if (map->pagesreserved == 0)
panic("add_bounce_page: map doesn't need any pages");
map->pagesreserved--;
mtx_lock(&bounce_lock);
bpage = STAILQ_FIRST(&bz->bounce_page_list);
if (bpage == NULL)
panic("add_bounce_page: free page list is empty");
STAILQ_REMOVE_HEAD(&bz->bounce_page_list, links);
bz->reserved_bpages--;
bz->active_bpages++;
mtx_unlock(&bounce_lock);
if (dmat->common.flags & BUS_DMA_KEEP_PG_OFFSET) {
/* Page offset needs to be preserved. */
bpage->vaddr |= addr & PAGE_MASK;
bpage->busaddr |= addr & PAGE_MASK;
}
bpage->datavaddr = vaddr;
bpage->datapage = PHYS_TO_VM_PAGE(addr);
bpage->dataoffs = addr & PAGE_MASK;
bpage->datacount = size;
STAILQ_INSERT_TAIL(&(map->bpages), bpage, links);
return (bpage->busaddr);
}
static void
free_bounce_page(bus_dma_tag_t dmat, struct bounce_page *bpage)
{
struct bus_dmamap *map;
struct bounce_zone *bz;
bz = dmat->bounce_zone;
bpage->datavaddr = 0;
bpage->datacount = 0;
if (dmat->common.flags & BUS_DMA_KEEP_PG_OFFSET) {
/*
* Reset the bounce page to start at offset 0. Other uses
* of this bounce page may need to store a full page of
* data and/or assume it starts on a page boundary.
*/
bpage->vaddr &= ~PAGE_MASK;
bpage->busaddr &= ~PAGE_MASK;
}
mtx_lock(&bounce_lock);
STAILQ_INSERT_HEAD(&bz->bounce_page_list, bpage, links);
bz->free_bpages++;
bz->active_bpages--;
if ((map = STAILQ_FIRST(&bounce_map_waitinglist)) != NULL) {
if (reserve_bounce_pages(map->dmat, map, 1) == 0) {
STAILQ_REMOVE_HEAD(&bounce_map_waitinglist, links);
STAILQ_INSERT_TAIL(&bounce_map_callbacklist,
map, links);
busdma_swi_pending = 1;
bz->total_deferred++;
swi_sched(vm_ih, 0);
}
}
mtx_unlock(&bounce_lock);
}
void
busdma_swi(void)
{
bus_dma_tag_t dmat;
struct bus_dmamap *map;
mtx_lock(&bounce_lock);
while ((map = STAILQ_FIRST(&bounce_map_callbacklist)) != NULL) {
STAILQ_REMOVE_HEAD(&bounce_map_callbacklist, links);
mtx_unlock(&bounce_lock);
dmat = map->dmat;
(dmat->common.lockfunc)(dmat->common.lockfuncarg, BUS_DMA_LOCK);
bus_dmamap_load_mem(map->dmat, map, &map->mem,
map->callback, map->callback_arg, BUS_DMA_WAITOK);
(dmat->common.lockfunc)(dmat->common.lockfuncarg,
BUS_DMA_UNLOCK);
mtx_lock(&bounce_lock);
}
mtx_unlock(&bounce_lock);
}
struct bus_dma_impl bus_dma_bounce_impl = {
.tag_create = bounce_bus_dma_tag_create,
.tag_destroy = bounce_bus_dma_tag_destroy,
.map_create = bounce_bus_dmamap_create,
.map_destroy = bounce_bus_dmamap_destroy,
.mem_alloc = bounce_bus_dmamem_alloc,
.mem_free = bounce_bus_dmamem_free,
.load_phys = bounce_bus_dmamap_load_phys,
.load_buffer = bounce_bus_dmamap_load_buffer,
.load_ma = bus_dmamap_load_ma_triv,
.map_waitok = bounce_bus_dmamap_waitok,
.map_complete = bounce_bus_dmamap_complete,
.map_unload = bounce_bus_dmamap_unload,
.map_sync = bounce_bus_dmamap_sync
};