freebsd-skq/sys/dev/jedec_dimm/jedec_dimm.c
Eric van Gyzen 641b7baa5b jedec_dimm: fix array overrun
Coverity detected the overrunning of sc->part_str.

Submitted by:	bret_ketchum@dell.com
Reported by:	Coverity
MFC after:	2 weeks
Sponsored by:	Dell EMC Isilon
Differential Revision:	https://reviews.freebsd.org/D26145
2020-08-31 15:03:23 +00:00

1017 lines
28 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Authors: Ravi Pokala (rpokala@freebsd.org), Andriy Gapon (avg@FreeBSD.org)
*
* Copyright (c) 2016 Andriy Gapon <avg@FreeBSD.org>
* Copyright (c) 2018 Panasas
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* This driver is a super-set of the now-deleted jedec_ts(4), and most of the
* code for reading and reporting the temperature is either based on that driver,
* or copied from it verbatim.
*/
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <dev/jedec_dimm/jedec_dimm.h>
#include <dev/smbus/smbconf.h>
#include <dev/smbus/smbus.h>
#include "smbus_if.h"
struct jedec_dimm_softc {
device_t dev;
device_t smbus;
uint8_t spd_addr; /* SMBus address of the SPD EEPROM. */
uint8_t tsod_addr; /* Address of the Thermal Sensor On DIMM */
uint32_t capacity_mb;
char type_str[5];
char part_str[21]; /* 18 (DDR3) or 20 (DDR4) chars, plus terminator */
char serial_str[9]; /* 4 bytes = 8 nybble characters, plus terminator */
char *slotid_str; /* Optional DIMM slot identifier (silkscreen) */
};
/* General Thermal Sensor on DIMM (TSOD) identification notes.
*
* The JEDEC TSE2004av specification defines the device ID that all compliant
* devices should use, but very few do in practice. Maybe that's because the
* earlier TSE2002av specification was rather vague about that.
* Rare examples are IDT TSE2004GB2B0 and Atmel AT30TSE004A, not sure if
* they are TSE2004av compliant by design or by accident.
* Also, the specification mandates that PCI SIG manufacturer IDs are to be
* used, but in practice the JEDEC manufacturer IDs are often used.
*/
const struct jedec_dimm_tsod_dev {
uint16_t vendor_id;
uint8_t device_id;
const char *description;
} known_tsod_devices[] = {
/* Analog Devices ADT7408.
* http://www.analog.com/media/en/technical-documentation/data-sheets/ADT7408.pdf
*/
{ 0x11d4, 0x08, "Analog Devices TSOD" },
/* Atmel AT30TSE002B, AT30TSE004A.
* http://www.atmel.com/images/doc8711.pdf
* http://www.atmel.com/images/atmel-8868-dts-at30tse004a-datasheet.pdf
* Note how one chip uses the JEDEC Manufacturer ID while the other
* uses the PCI SIG one.
*/
{ 0x001f, 0x82, "Atmel TSOD" },
{ 0x1114, 0x22, "Atmel TSOD" },
/* Integrated Device Technology (IDT) TS3000B3A, TSE2002B3C,
* TSE2004GB2B0 chips and their variants.
* http://www.idt.com/sites/default/files/documents/IDT_TSE2002B3C_DST_20100512_120303152056.pdf
* http://www.idt.com/sites/default/files/documents/IDT_TS3000B3A_DST_20101129_120303152013.pdf
* https://www.idt.com/document/dst/tse2004gb2b0-datasheet
*/
{ 0x00b3, 0x29, "IDT TSOD" },
{ 0x00b3, 0x22, "IDT TSOD" },
/* Maxim Integrated MAX6604.
* Different document revisions specify different Device IDs.
* Document 19-3837; Rev 0; 10/05 has 0x3e00 while
* 19-3837; Rev 3; 10/11 has 0x5400.
* http://datasheets.maximintegrated.com/en/ds/MAX6604.pdf
*/
{ 0x004d, 0x3e, "Maxim Integrated TSOD" },
{ 0x004d, 0x54, "Maxim Integrated TSOD" },
/* Microchip Technology MCP9805, MCP9843, MCP98242, MCP98243
* and their variants.
* http://ww1.microchip.com/downloads/en/DeviceDoc/21977b.pdf
* Microchip Technology EMC1501.
* http://ww1.microchip.com/downloads/en/DeviceDoc/00001605A.pdf
*/
{ 0x0054, 0x00, "Microchip TSOD" },
{ 0x0054, 0x20, "Microchip TSOD" },
{ 0x0054, 0x21, "Microchip TSOD" },
{ 0x1055, 0x08, "Microchip TSOD" },
/* NXP Semiconductors SE97 and SE98.
* http://www.nxp.com/docs/en/data-sheet/SE97B.pdf
*/
{ 0x1131, 0xa1, "NXP TSOD" },
{ 0x1131, 0xa2, "NXP TSOD" },
/* ON Semiconductor CAT34TS02 revisions B and C, CAT6095 and compatible.
* https://www.onsemi.com/pub/Collateral/CAT34TS02-D.PDF
* http://www.onsemi.com/pub/Collateral/CAT6095-D.PDF
*/
{ 0x1b09, 0x08, "ON Semiconductor TSOD" },
{ 0x1b09, 0x0a, "ON Semiconductor TSOD" },
/* ST[Microelectronics] STTS424E02, STTS2002 and others.
* http://www.st.com/resource/en/datasheet/cd00157558.pdf
* http://www.st.com/resource/en/datasheet/stts2002.pdf
*/
{ 0x104a, 0x00, "ST Microelectronics TSOD" },
{ 0x104a, 0x03, "ST Microelectronics TSOD" },
};
static int jedec_dimm_attach(device_t dev);
static int jedec_dimm_capacity(struct jedec_dimm_softc *sc, enum dram_type type,
uint32_t *capacity_mb);
static int jedec_dimm_detach(device_t dev);
static int jedec_dimm_dump(struct jedec_dimm_softc *sc, enum dram_type type);
static int jedec_dimm_field_to_str(struct jedec_dimm_softc *sc, char *dst,
size_t dstsz, uint16_t offset, uint16_t len, bool ascii);
static int jedec_dimm_probe(device_t dev);
static int jedec_dimm_readw_be(struct jedec_dimm_softc *sc, uint8_t reg,
uint16_t *val);
static int jedec_dimm_temp_sysctl(SYSCTL_HANDLER_ARGS);
static const char *jedec_dimm_tsod_match(uint16_t vid, uint16_t did);
/**
* device_attach() method. Read the DRAM type, use that to determine the offsets
* and lengths of the asset string fields. Calculate the capacity. If a TSOD is
* present, figure out exactly what it is, and update the device description.
* If all of that was successful, create the sysctls for the DIMM. If an
* optional slotid has been hinted, create a sysctl for that too.
*
* @author rpokala
*
* @param[in,out] dev
* Device being attached.
*/
static int
jedec_dimm_attach(device_t dev)
{
uint8_t byte;
uint16_t devid;
uint16_t partnum_len;
uint16_t partnum_offset;
uint16_t serial_len;
uint16_t serial_offset;
uint16_t tsod_present_offset;
uint16_t vendorid;
bool tsod_present;
int rc;
int new_desc_len;
enum dram_type type;
struct jedec_dimm_softc *sc;
struct sysctl_ctx_list *ctx;
struct sysctl_oid *oid;
struct sysctl_oid_list *children;
const char *tsod_match;
const char *slotid_str;
char *new_desc;
sc = device_get_softc(dev);
ctx = device_get_sysctl_ctx(dev);
oid = device_get_sysctl_tree(dev);
children = SYSCTL_CHILDREN(oid);
bzero(sc, sizeof(*sc));
sc->dev = dev;
sc->smbus = device_get_parent(dev);
sc->spd_addr = smbus_get_addr(dev);
/* The TSOD address has a different DTI from the SPD address, but shares
* the LSA bits.
*/
sc->tsod_addr = JEDEC_DTI_TSOD | (sc->spd_addr & 0x0f);
/* Read the DRAM type, and set the various offsets and lengths. */
rc = smbus_readb(sc->smbus, sc->spd_addr, SPD_OFFSET_DRAM_TYPE, &byte);
if (rc != 0) {
device_printf(dev, "failed to read dram_type: %d\n", rc);
goto out;
}
type = (enum dram_type) byte;
switch (type) {
case DRAM_TYPE_DDR3_SDRAM:
(void) snprintf(sc->type_str, sizeof(sc->type_str), "DDR3");
partnum_len = SPD_LEN_DDR3_PARTNUM;
partnum_offset = SPD_OFFSET_DDR3_PARTNUM;
serial_len = SPD_LEN_DDR3_SERIAL;
serial_offset = SPD_OFFSET_DDR3_SERIAL;
tsod_present_offset = SPD_OFFSET_DDR3_TSOD_PRESENT;
break;
case DRAM_TYPE_DDR4_SDRAM:
(void) snprintf(sc->type_str, sizeof(sc->type_str), "DDR4");
partnum_len = SPD_LEN_DDR4_PARTNUM;
partnum_offset = SPD_OFFSET_DDR4_PARTNUM;
serial_len = SPD_LEN_DDR4_SERIAL;
serial_offset = SPD_OFFSET_DDR4_SERIAL;
tsod_present_offset = SPD_OFFSET_DDR4_TSOD_PRESENT;
break;
default:
device_printf(dev, "unsupported dram_type 0x%02x\n", type);
rc = EINVAL;
goto out;
}
if (bootverbose) {
/* bootverbose debuggery is best-effort, so ignore the rc. */
(void) jedec_dimm_dump(sc, type);
}
/* Read all the required info from the SPD. If any of it fails, error
* out without creating the sysctls.
*/
rc = jedec_dimm_capacity(sc, type, &sc->capacity_mb);
if (rc != 0) {
goto out;
}
rc = jedec_dimm_field_to_str(sc, sc->part_str, sizeof(sc->part_str),
partnum_offset, partnum_len, true);
if (rc != 0) {
goto out;
}
rc = jedec_dimm_field_to_str(sc, sc->serial_str, sizeof(sc->serial_str),
serial_offset, serial_len, false);
if (rc != 0) {
goto out;
}
/* The MSBit of the TSOD-presence byte reports whether or not the TSOD
* is in fact present. (While DDR3 and DDR4 don't explicitly require a
* TSOD, essentially all DDR3 and DDR4 DIMMs include one.) But, as
* discussed in [PR 235944], it turns out that some DIMMs claim to have
* a TSOD when they actually don't. (Or maybe the firmware blocks it?)
* <sigh>
* If the SPD data says the TSOD is present, try to read manufacturer
* and device info from it to confirm that it's a valid TSOD device.
* If the data is unreadable, just continue as if the TSOD isn't there.
* If the data was read successfully, see if it is a known TSOD device;
* it's okay if it isn't (tsod_match == NULL).
*/
rc = smbus_readb(sc->smbus, sc->spd_addr, tsod_present_offset, &byte);
if (rc != 0) {
device_printf(dev, "failed to read TSOD-present byte: %d\n",
rc);
goto out;
}
if (byte & 0x80) {
tsod_present = true;
rc = jedec_dimm_readw_be(sc, TSOD_REG_MANUFACTURER, &vendorid);
if (rc != 0) {
device_printf(dev,
"failed to read TSOD Manufacturer ID\n");
rc = 0;
goto no_tsod;
}
rc = jedec_dimm_readw_be(sc, TSOD_REG_DEV_REV, &devid);
if (rc != 0) {
device_printf(dev, "failed to read TSOD Device ID\n");
rc = 0;
goto no_tsod;
}
tsod_match = jedec_dimm_tsod_match(vendorid, devid);
if (bootverbose) {
if (tsod_match == NULL) {
device_printf(dev,
"Unknown TSOD Manufacturer and Device IDs,"
" 0x%x and 0x%x\n", vendorid, devid);
} else {
device_printf(dev,
"TSOD: %s\n", tsod_match);
}
}
} else {
no_tsod:
tsod_match = NULL;
tsod_present = false;
}
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "type",
CTLFLAG_RD | CTLFLAG_MPSAFE, sc->type_str, 0,
"DIMM type");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "capacity",
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, sc->capacity_mb,
"DIMM capacity (MB)");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "part",
CTLFLAG_RD | CTLFLAG_MPSAFE, sc->part_str, 0,
"DIMM Part Number");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "serial",
CTLFLAG_RD | CTLFLAG_MPSAFE, sc->serial_str, 0,
"DIMM Serial Number");
/* Create the temperature sysctl IFF the TSOD is present and valid */
if (tsod_present && (tsod_match != NULL)) {
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temp",
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, dev, 0,
jedec_dimm_temp_sysctl, "IK", "DIMM temperature (deg C)");
}
/* If a "slotid" was hinted, add the sysctl for it. */
if (resource_string_value(device_get_name(dev), device_get_unit(dev),
"slotid", &slotid_str) == 0) {
if (slotid_str != NULL) {
sc->slotid_str = strdup(slotid_str, M_DEVBUF);
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "slotid",
CTLFLAG_RD | CTLFLAG_MPSAFE, sc->slotid_str, 0,
"DIMM Slot Identifier");
}
}
/* If a TSOD type string or a slotid are present, add them to the
* device description.
*/
if ((tsod_match != NULL) || (sc->slotid_str != NULL)) {
new_desc_len = strlen(device_get_desc(dev));
if (tsod_match != NULL) {
new_desc_len += strlen(tsod_match);
new_desc_len += 4; /* " w/ " */
}
if (sc->slotid_str != NULL) {
new_desc_len += strlen(sc->slotid_str);
new_desc_len += 3; /* space + parens */
}
new_desc_len++; /* terminator */
new_desc = malloc(new_desc_len, M_TEMP, (M_WAITOK | M_ZERO));
(void) snprintf(new_desc, new_desc_len, "%s%s%s%s%s%s",
device_get_desc(dev),
(tsod_match ? " w/ " : ""),
(tsod_match ? tsod_match : ""),
(sc->slotid_str ? " (" : ""),
(sc->slotid_str ? sc->slotid_str : ""),
(sc->slotid_str ? ")" : ""));
device_set_desc_copy(dev, new_desc);
free(new_desc, M_TEMP);
}
out:
return (rc);
}
/**
* Calculate the capacity of a DIMM. Both DDR3 and DDR4 encode "geometry"
* information in various SPD bytes. The standards documents codify everything
* in look-up tables, but it's trivial to reverse-engineer the the formulas for
* most of them. Unless otherwise noted, the same formulas apply for both DDR3
* and DDR4. The SPD offsets of where the data comes from are different between
* the two types, because having them be the same would be too easy.
*
* @author rpokala
*
* @param[in] sc
* Instance-specific context data
*
* @param[in] dram_type
* The locations of the data used to calculate the capacity depends on the
* type of the DIMM.
*
* @param[out] capacity_mb
* The calculated capacity, in MB
*/
static int
jedec_dimm_capacity(struct jedec_dimm_softc *sc, enum dram_type type,
uint32_t *capacity_mb)
{
uint8_t bus_width_byte;
uint8_t bus_width_offset;
uint8_t dimm_ranks_byte;
uint8_t dimm_ranks_offset;
uint8_t sdram_capacity_byte;
uint8_t sdram_capacity_offset;
uint8_t sdram_pkg_type_byte;
uint8_t sdram_pkg_type_offset;
uint8_t sdram_width_byte;
uint8_t sdram_width_offset;
uint32_t bus_width;
uint32_t dimm_ranks;
uint32_t sdram_capacity;
uint32_t sdram_pkg_type;
uint32_t sdram_width;
int rc;
switch (type) {
case DRAM_TYPE_DDR3_SDRAM:
bus_width_offset = SPD_OFFSET_DDR3_BUS_WIDTH;
dimm_ranks_offset = SPD_OFFSET_DDR3_DIMM_RANKS;
sdram_capacity_offset = SPD_OFFSET_DDR3_SDRAM_CAPACITY;
sdram_width_offset = SPD_OFFSET_DDR3_SDRAM_WIDTH;
break;
case DRAM_TYPE_DDR4_SDRAM:
bus_width_offset = SPD_OFFSET_DDR4_BUS_WIDTH;
dimm_ranks_offset = SPD_OFFSET_DDR4_DIMM_RANKS;
sdram_capacity_offset = SPD_OFFSET_DDR4_SDRAM_CAPACITY;
sdram_pkg_type_offset = SPD_OFFSET_DDR4_SDRAM_PKG_TYPE;
sdram_width_offset = SPD_OFFSET_DDR4_SDRAM_WIDTH;
break;
default:
device_printf(sc->dev, "unsupported dram_type 0x%02x\n", type);
rc = EINVAL;
goto out;
}
rc = smbus_readb(sc->smbus, sc->spd_addr, bus_width_offset,
&bus_width_byte);
if (rc != 0) {
device_printf(sc->dev, "failed to read bus_width: %d\n", rc);
goto out;
}
rc = smbus_readb(sc->smbus, sc->spd_addr, dimm_ranks_offset,
&dimm_ranks_byte);
if (rc != 0) {
device_printf(sc->dev, "failed to read dimm_ranks: %d\n", rc);
goto out;
}
rc = smbus_readb(sc->smbus, sc->spd_addr, sdram_capacity_offset,
&sdram_capacity_byte);
if (rc != 0) {
device_printf(sc->dev, "failed to read sdram_capacity: %d\n",
rc);
goto out;
}
rc = smbus_readb(sc->smbus, sc->spd_addr, sdram_width_offset,
&sdram_width_byte);
if (rc != 0) {
device_printf(sc->dev, "failed to read sdram_width: %d\n", rc);
goto out;
}
/* The "SDRAM Package Type" is only needed for DDR4 DIMMs. */
if (type == DRAM_TYPE_DDR4_SDRAM) {
rc = smbus_readb(sc->smbus, sc->spd_addr, sdram_pkg_type_offset,
&sdram_pkg_type_byte);
if (rc != 0) {
device_printf(sc->dev,
"failed to read sdram_pkg_type: %d\n", rc);
goto out;
}
}
/* "Primary bus width, in bits" is in bits [2:0]. */
bus_width_byte &= 0x07;
if (bus_width_byte <= 3) {
bus_width = 1 << bus_width_byte;
bus_width *= 8;
} else {
device_printf(sc->dev, "invalid bus width info\n");
rc = EINVAL;
goto out;
}
/* "Number of ranks per DIMM" is in bits [5:3]. Values 4-7 are only
* valid for DDR4.
*/
dimm_ranks_byte >>= 3;
dimm_ranks_byte &= 0x07;
if (dimm_ranks_byte <= 7) {
dimm_ranks = dimm_ranks_byte + 1;
} else {
device_printf(sc->dev, "invalid DIMM Rank info\n");
rc = EINVAL;
goto out;
}
if ((dimm_ranks_byte >= 4) && (type != DRAM_TYPE_DDR4_SDRAM)) {
device_printf(sc->dev, "invalid DIMM Rank info\n");
rc = EINVAL;
goto out;
}
/* "Total SDRAM capacity per die, in Mb" is in bits [3:0]. There are two
* different formulas, for values 0-7 and for values 8-9. Also, values
* 7-9 are only valid for DDR4.
*/
sdram_capacity_byte &= 0x0f;
if (sdram_capacity_byte <= 7) {
sdram_capacity = 1 << sdram_capacity_byte;
sdram_capacity *= 256;
} else if (sdram_capacity_byte <= 9) {
sdram_capacity = 12 << (sdram_capacity_byte - 8);
sdram_capacity *= 1024;
} else {
device_printf(sc->dev, "invalid SDRAM capacity info\n");
rc = EINVAL;
goto out;
}
if ((sdram_capacity_byte >= 7) && (type != DRAM_TYPE_DDR4_SDRAM)) {
device_printf(sc->dev, "invalid SDRAM capacity info\n");
rc = EINVAL;
goto out;
}
/* "SDRAM device width" is in bits [2:0]. */
sdram_width_byte &= 0x7;
if (sdram_width_byte <= 3) {
sdram_width = 1 << sdram_width_byte;
sdram_width *= 4;
} else {
device_printf(sc->dev, "invalid SDRAM width info\n");
rc = EINVAL;
goto out;
}
/* DDR4 has something called "3DS", which is indicated by [1:0] = 2;
* when that is the case, the die count is encoded in [6:4], and
* dimm_ranks is multiplied by it.
*/
if ((type == DRAM_TYPE_DDR4_SDRAM) &&
((sdram_pkg_type_byte & 0x3) == 2)) {
sdram_pkg_type_byte >>= 4;
sdram_pkg_type_byte &= 0x07;
sdram_pkg_type = sdram_pkg_type_byte + 1;
dimm_ranks *= sdram_pkg_type;
}
/* Finally, assemble the actual capacity. The formula is the same for
* both DDR3 and DDR4.
*/
*capacity_mb = sdram_capacity / 8 * bus_width / sdram_width *
dimm_ranks;
out:
return (rc);
}
/**
* device_detach() method. If we allocated sc->slotid_str, free it. Even if we
* didn't allocate, free it anyway; free(NULL) is safe.
*
* @author rpokala
*
* @param[in,out] dev
* Device being detached.
*/
static int
jedec_dimm_detach(device_t dev)
{
struct jedec_dimm_softc *sc;
sc = device_get_softc(dev);
free(sc->slotid_str, M_DEVBUF);
return (0);
}
/**
* Read and dump the entire SPD contents.
*
* @author rpokala
*
* @param[in] sc
* Instance-specific context data
*
* @param[in] dram_type
* The length of data which needs to be read and dumped differs based on
* the type of the DIMM.
*/
static int
jedec_dimm_dump(struct jedec_dimm_softc *sc, enum dram_type type)
{
int i;
int rc;
bool page_changed;
uint8_t bytes[512];
page_changed = false;
for (i = 0; i < 256; i++) {
rc = smbus_readb(sc->smbus, sc->spd_addr, i, &bytes[i]);
if (rc != 0) {
device_printf(sc->dev,
"unable to read page0:0x%02x: %d\n", i, rc);
goto out;
}
}
/* The DDR4 SPD is 512 bytes, but SMBus only allows for 8-bit offsets.
* JEDEC gets around this by defining the "PAGE" DTI and LSAs.
*/
if (type == DRAM_TYPE_DDR4_SDRAM) {
page_changed = true;
rc = smbus_writeb(sc->smbus,
(JEDEC_DTI_PAGE | JEDEC_LSA_PAGE_SET1), 0, 0);
if (rc != 0) {
/* Some SPD devices (or SMBus controllers?) claim the
* page-change command failed when it actually
* succeeded. Log a message but soldier on.
*/
device_printf(sc->dev, "unable to change page: %d\n",
rc);
}
/* Add 256 to the store location, because we're in the second
* page.
*/
for (i = 0; i < 256; i++) {
rc = smbus_readb(sc->smbus, sc->spd_addr, i,
&bytes[256 + i]);
if (rc != 0) {
device_printf(sc->dev,
"unable to read page1:0x%02x: %d\n", i, rc);
goto out;
}
}
}
/* Display the data in a nice hexdump format, with byte offsets. */
hexdump(bytes, (page_changed ? 512 : 256), NULL, 0);
out:
if (page_changed) {
int rc2;
/* Switch back to page0 before returning. */
rc2 = smbus_writeb(sc->smbus,
(JEDEC_DTI_PAGE | JEDEC_LSA_PAGE_SET0), 0, 0);
if (rc2 != 0) {
device_printf(sc->dev, "unable to restore page: %d\n",
rc2);
}
}
return (rc);
}
/**
* Read a specified range of bytes from the SPD, convert them to a string, and
* store them in the provided buffer. Some SPD fields are space-padded ASCII,
* and some are just a string of bits that we want to convert to a hex string.
*
* @author rpokala
*
* @param[in] sc
* Instance-specific context data
*
* @param[out] dst
* The output buffer to populate
*
* @param[in] dstsz
* The size of the output buffer
*
* @param[in] offset
* The starting offset of the field within the SPD
*
* @param[in] len
* The length in bytes of the field within the SPD
*
* @param[in] ascii
* Is the field a sequence of ASCII characters? If not, it is binary data
* which should be converted to characters.
*/
static int
jedec_dimm_field_to_str(struct jedec_dimm_softc *sc, char *dst, size_t dstsz,
uint16_t offset, uint16_t len, bool ascii)
{
uint8_t byte;
int i;
int rc;
bool page_changed;
/* Change to the proper page. Offsets [0, 255] are in page0; offsets
* [256, 512] are in page1.
*
* *The page must be reset to page0 before returning.*
*
* For the page-change operation, only the DTI and LSA matter; the
* offset and write-value are ignored, so use just 0.
*
* Mercifully, JEDEC defined the fields such that none of them cross
* pages, so we don't need to worry about that complication.
*/
if (offset < JEDEC_SPD_PAGE_SIZE) {
page_changed = false;
} else if (offset < (2 * JEDEC_SPD_PAGE_SIZE)) {
page_changed = true;
rc = smbus_writeb(sc->smbus,
(JEDEC_DTI_PAGE | JEDEC_LSA_PAGE_SET1), 0, 0);
if (rc != 0) {
device_printf(sc->dev,
"unable to change page for offset 0x%04x: %d\n",
offset, rc);
}
/* Adjust the offset to account for the page change. */
offset -= JEDEC_SPD_PAGE_SIZE;
} else {
page_changed = false;
rc = EINVAL;
device_printf(sc->dev, "invalid offset 0x%04x\n", offset);
goto out;
}
/* Sanity-check (adjusted) offset and length; everything must be within
* the same page.
*/
if (offset >= JEDEC_SPD_PAGE_SIZE) {
rc = EINVAL;
device_printf(sc->dev, "invalid offset 0x%04x\n", offset);
goto out;
}
if ((offset + len) >= JEDEC_SPD_PAGE_SIZE) {
rc = EINVAL;
device_printf(sc->dev,
"(offset + len) would cross page (0x%04x + 0x%04x)\n",
offset, len);
goto out;
}
/* Sanity-check the destination string length. If we're dealing with
* ASCII chars, then the destination must be at least the same length;
* otherwise, it must be *twice* the length, because each byte must
* be converted into two nybble characters.
*
* And, of course, there needs to be an extra byte for the terminator.
*/
if (ascii) {
if (dstsz < (len + 1)) {
rc = EINVAL;
device_printf(sc->dev,
"destination too short (%u < %u)\n",
(uint16_t) dstsz, (len + 1));
goto out;
}
} else {
if (dstsz < ((2 * len) + 1)) {
rc = EINVAL;
device_printf(sc->dev,
"destination too short (%u < %u)\n",
(uint16_t) dstsz, ((2 * len) + 1));
goto out;
}
}
/* Read a byte at a time. */
for (i = 0; i < len; i++) {
rc = smbus_readb(sc->smbus, sc->spd_addr, (offset + i), &byte);
if (rc != 0) {
device_printf(sc->dev,
"failed to read byte at 0x%02x: %d\n",
(offset + i), rc);
goto out;
}
if (ascii) {
/* chars can be copied directly. */
dst[i] = byte;
} else {
/* Raw bytes need to be converted to a two-byte hex
* string, plus the terminator.
*/
(void) snprintf(&dst[(2 * i)], 3, "%02x", byte);
}
}
/* If we're dealing with ASCII, convert trailing spaces to NULs. */
if (ascii) {
for (i = dstsz - 1; i > 0; i--) {
if (dst[i] == ' ') {
dst[i] = 0;
} else if (dst[i] == 0) {
continue;
} else {
break;
}
}
}
out:
if (page_changed) {
int rc2;
/* Switch back to page0 before returning. */
rc2 = smbus_writeb(sc->smbus,
(JEDEC_DTI_PAGE | JEDEC_LSA_PAGE_SET0), 0, 0);
if (rc2 != 0) {
device_printf(sc->dev,
"unable to restore page for offset 0x%04x: %d\n",
offset, rc2);
}
}
return (rc);
}
/**
* device_probe() method. Validate the address that was given as a hint, and
* display an error if it's bogus. Make sure that we're dealing with one of the
* SPD versions that we can handle.
*
* @author rpokala
*
* @param[in] dev
* Device being probed.
*/
static int
jedec_dimm_probe(device_t dev)
{
uint8_t addr;
uint8_t byte;
int rc;
enum dram_type type;
device_t smbus;
smbus = device_get_parent(dev);
addr = smbus_get_addr(dev);
/* Don't bother if this isn't an SPD address, or if the LSBit is set. */
if (((addr & 0xf0) != JEDEC_DTI_SPD) ||
((addr & 0x01) != 0)) {
device_printf(dev,
"invalid \"addr\" hint; address must start with \"0x%x\","
" and the least-significant bit must be 0\n",
JEDEC_DTI_SPD);
rc = ENXIO;
goto out;
}
/* Try to read the DRAM_TYPE from the SPD. */
rc = smbus_readb(smbus, addr, SPD_OFFSET_DRAM_TYPE, &byte);
if (rc != 0) {
device_printf(dev, "failed to read dram_type\n");
goto out;
}
/* This driver currently only supports DDR3 and DDR4 SPDs. */
type = (enum dram_type) byte;
switch (type) {
case DRAM_TYPE_DDR3_SDRAM:
rc = BUS_PROBE_DEFAULT;
device_set_desc(dev, "DDR3 DIMM");
break;
case DRAM_TYPE_DDR4_SDRAM:
rc = BUS_PROBE_DEFAULT;
device_set_desc(dev, "DDR4 DIMM");
break;
default:
rc = ENXIO;
break;
}
out:
return (rc);
}
/**
* SMBus specifies little-endian byte order, but it looks like the TSODs use
* big-endian. Read and convert.
*
* @author avg
*
* @param[in] sc
* Instance-specific context data
*
* @param[in] reg
* The register number to read.
*
* @param[out] val
* Pointer to populate with the value read.
*/
static int
jedec_dimm_readw_be(struct jedec_dimm_softc *sc, uint8_t reg, uint16_t *val)
{
int rc;
rc = smbus_readw(sc->smbus, sc->tsod_addr, reg, val);
if (rc != 0) {
goto out;
}
*val = be16toh(*val);
out:
return (rc);
}
/**
* Read the temperature data from the TSOD and convert it to the deciKelvin
* value that the sysctl expects.
*
* @author avg
*/
static int
jedec_dimm_temp_sysctl(SYSCTL_HANDLER_ARGS)
{
uint16_t val;
int rc;
int temp;
device_t dev = arg1;
struct jedec_dimm_softc *sc;
sc = device_get_softc(dev);
rc = jedec_dimm_readw_be(sc, TSOD_REG_TEMPERATURE, &val);
if (rc != 0) {
goto out;
}
/* The three MSBits are flags, and the next bit is a sign bit. */
temp = val & 0xfff;
if ((val & 0x1000) != 0)
temp = -temp;
/* Each step is 0.0625 degrees, so convert to 1000ths of a degree C. */
temp *= 625;
/* ... and then convert to 1000ths of a Kelvin */
temp += 2731500;
/* As a practical matter, few (if any) TSODs are more accurate than
* about a tenth of a degree, so round accordingly. This correlates with
* the "IK" formatting used for this sysctl.
*/
temp = (temp + 500) / 1000;
rc = sysctl_handle_int(oidp, &temp, 0, req);
out:
return (rc);
}
/**
* Check the TSOD's Vendor ID and Device ID against the list of known TSOD
* devices. Return the description, or NULL if this doesn't look like a valid
* TSOD.
*
* @author avg
*
* @param[in] vid
* The Vendor ID of the TSOD device
*
* @param[in] did
* The Device ID of the TSOD device
*
* @return
* The description string, or NULL for a failure to match.
*/
static const char *
jedec_dimm_tsod_match(uint16_t vid, uint16_t did)
{
const struct jedec_dimm_tsod_dev *d;
int i;
for (i = 0; i < nitems(known_tsod_devices); i++) {
d = &known_tsod_devices[i];
if ((vid == d->vendor_id) && ((did >> 8) == d->device_id)) {
return (d->description);
}
}
/* If no matches for a specific device, then check for a generic
* TSE2004av-compliant device.
*/
if ((did >> 8) == 0x22) {
return ("TSE2004av compliant TSOD");
}
return (NULL);
}
static device_method_t jedec_dimm_methods[] = {
/* Methods from the device interface */
DEVMETHOD(device_probe, jedec_dimm_probe),
DEVMETHOD(device_attach, jedec_dimm_attach),
DEVMETHOD(device_detach, jedec_dimm_detach),
DEVMETHOD_END
};
static driver_t jedec_dimm_driver = {
.name = "jedec_dimm",
.methods = jedec_dimm_methods,
.size = sizeof(struct jedec_dimm_softc),
};
static devclass_t jedec_dimm_devclass;
DRIVER_MODULE(jedec_dimm, smbus, jedec_dimm_driver, jedec_dimm_devclass, 0, 0);
MODULE_DEPEND(jedec_dimm, smbus, SMBUS_MINVER, SMBUS_PREFVER, SMBUS_MAXVER);
MODULE_VERSION(jedec_dimm, 1);
/* vi: set ts=8 sw=4 sts=8 noet: */