8d7a953fb2
to rl_stop() accessing already freed "struct ifnet". Fixed LOR between rl mutex and some ACPI mutex in rl_detach().
1810 lines
43 KiB
C
1810 lines
43 KiB
C
/*-
|
|
* Copyright (c) 1997, 1998
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* RealTek 8129/8139 PCI NIC driver
|
|
*
|
|
* Supports several extremely cheap PCI 10/100 adapters based on
|
|
* the RealTek chipset. Datasheets can be obtained from
|
|
* www.realtek.com.tw.
|
|
*
|
|
* Written by Bill Paul <wpaul@ctr.columbia.edu>
|
|
* Electrical Engineering Department
|
|
* Columbia University, New York City
|
|
*/
|
|
/*
|
|
* The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
|
|
* probably the worst PCI ethernet controller ever made, with the possible
|
|
* exception of the FEAST chip made by SMC. The 8139 supports bus-master
|
|
* DMA, but it has a terrible interface that nullifies any performance
|
|
* gains that bus-master DMA usually offers.
|
|
*
|
|
* For transmission, the chip offers a series of four TX descriptor
|
|
* registers. Each transmit frame must be in a contiguous buffer, aligned
|
|
* on a longword (32-bit) boundary. This means we almost always have to
|
|
* do mbuf copies in order to transmit a frame, except in the unlikely
|
|
* case where a) the packet fits into a single mbuf, and b) the packet
|
|
* is 32-bit aligned within the mbuf's data area. The presence of only
|
|
* four descriptor registers means that we can never have more than four
|
|
* packets queued for transmission at any one time.
|
|
*
|
|
* Reception is not much better. The driver has to allocate a single large
|
|
* buffer area (up to 64K in size) into which the chip will DMA received
|
|
* frames. Because we don't know where within this region received packets
|
|
* will begin or end, we have no choice but to copy data from the buffer
|
|
* area into mbufs in order to pass the packets up to the higher protocol
|
|
* levels.
|
|
*
|
|
* It's impossible given this rotten design to really achieve decent
|
|
* performance at 100Mbps, unless you happen to have a 400Mhz PII or
|
|
* some equally overmuscled CPU to drive it.
|
|
*
|
|
* On the bright side, the 8139 does have a built-in PHY, although
|
|
* rather than using an MDIO serial interface like most other NICs, the
|
|
* PHY registers are directly accessible through the 8139's register
|
|
* space. The 8139 supports autonegotiation, as well as a 64-bit multicast
|
|
* filter.
|
|
*
|
|
* The 8129 chip is an older version of the 8139 that uses an external PHY
|
|
* chip. The 8129 has a serial MDIO interface for accessing the MII where
|
|
* the 8139 lets you directly access the on-board PHY registers. We need
|
|
* to select which interface to use depending on the chip type.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
MODULE_DEPEND(rl, pci, 1, 1, 1);
|
|
MODULE_DEPEND(rl, ether, 1, 1, 1);
|
|
MODULE_DEPEND(rl, miibus, 1, 1, 1);
|
|
|
|
/* "controller miibus0" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
/*
|
|
* Default to using PIO access for this driver. On SMP systems,
|
|
* there appear to be problems with memory mapped mode: it looks like
|
|
* doing too many memory mapped access back to back in rapid succession
|
|
* can hang the bus. I'm inclined to blame this on crummy design/construction
|
|
* on the part of RealTek. Memory mapped mode does appear to work on
|
|
* uniprocessor systems though.
|
|
*/
|
|
#define RL_USEIOSPACE
|
|
|
|
#include <pci/if_rlreg.h>
|
|
|
|
/*
|
|
* Various supported device vendors/types and their names.
|
|
*/
|
|
static struct rl_type rl_devs[] = {
|
|
{ RT_VENDORID, RT_DEVICEID_8129, RL_8129,
|
|
"RealTek 8129 10/100BaseTX" },
|
|
{ RT_VENDORID, RT_DEVICEID_8139, RL_8139,
|
|
"RealTek 8139 10/100BaseTX" },
|
|
{ RT_VENDORID, RT_DEVICEID_8138, RL_8139,
|
|
"RealTek 8139 10/100BaseTX CardBus" },
|
|
{ RT_VENDORID, RT_DEVICEID_8100, RL_8139,
|
|
"RealTek 8100 10/100BaseTX" },
|
|
{ ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
|
|
"Accton MPX 5030/5038 10/100BaseTX" },
|
|
{ DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
|
|
"Delta Electronics 8139 10/100BaseTX" },
|
|
{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
|
|
"Addtron Technolgy 8139 10/100BaseTX" },
|
|
{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
|
|
"D-Link DFE-530TX+ 10/100BaseTX" },
|
|
{ DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
|
|
"D-Link DFE-690TXD 10/100BaseTX" },
|
|
{ NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
|
|
"Nortel Networks 10/100BaseTX" },
|
|
{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
|
|
"Corega FEther CB-TXD" },
|
|
{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
|
|
"Corega FEtherII CB-TXD" },
|
|
{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
|
|
"Peppercon AG ROL-F" },
|
|
{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
|
|
"Planex FNW-3800-TX" },
|
|
{ CP_VENDORID, RT_DEVICEID_8139, RL_8139,
|
|
"Compaq HNE-300" },
|
|
{ LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
|
|
"LevelOne FPC-0106TX" },
|
|
{ EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
|
|
"Edimax EP-4103DL CardBus" },
|
|
{ 0, 0, 0, NULL }
|
|
};
|
|
|
|
static int rl_attach(device_t);
|
|
static int rl_detach(device_t);
|
|
static void rl_dma_map_rxbuf(void *, bus_dma_segment_t *, int, int);
|
|
static void rl_dma_map_txbuf(void *, bus_dma_segment_t *, int, int);
|
|
static void rl_eeprom_putbyte(struct rl_softc *, int);
|
|
static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
|
|
static int rl_encap(struct rl_softc *, struct mbuf * );
|
|
static int rl_list_tx_init(struct rl_softc *);
|
|
static int rl_ifmedia_upd(struct ifnet *);
|
|
static void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
static int rl_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void rl_intr(void *);
|
|
static void rl_init(void *);
|
|
static void rl_init_locked(struct rl_softc *sc);
|
|
static void rl_mii_send(struct rl_softc *, uint32_t, int);
|
|
static void rl_mii_sync(struct rl_softc *);
|
|
static int rl_mii_readreg(struct rl_softc *, struct rl_mii_frame *);
|
|
static int rl_mii_writereg(struct rl_softc *, struct rl_mii_frame *);
|
|
static int rl_miibus_readreg(device_t, int, int);
|
|
static void rl_miibus_statchg(device_t);
|
|
static int rl_miibus_writereg(device_t, int, int, int);
|
|
#ifdef DEVICE_POLLING
|
|
static void rl_poll(struct ifnet *ifp, enum poll_cmd cmd,
|
|
int count);
|
|
static void rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd,
|
|
int count);
|
|
#endif
|
|
static int rl_probe(device_t);
|
|
static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int);
|
|
static void rl_reset(struct rl_softc *);
|
|
static int rl_resume(device_t);
|
|
static void rl_rxeof(struct rl_softc *);
|
|
static void rl_setmulti(struct rl_softc *);
|
|
static void rl_shutdown(device_t);
|
|
static void rl_start(struct ifnet *);
|
|
static void rl_start_locked(struct ifnet *);
|
|
static void rl_stop(struct rl_softc *);
|
|
static int rl_suspend(device_t);
|
|
static void rl_tick(void *);
|
|
static void rl_txeof(struct rl_softc *);
|
|
static void rl_watchdog(struct ifnet *);
|
|
|
|
#ifdef RL_USEIOSPACE
|
|
#define RL_RES SYS_RES_IOPORT
|
|
#define RL_RID RL_PCI_LOIO
|
|
#else
|
|
#define RL_RES SYS_RES_MEMORY
|
|
#define RL_RID RL_PCI_LOMEM
|
|
#endif
|
|
|
|
static device_method_t rl_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, rl_probe),
|
|
DEVMETHOD(device_attach, rl_attach),
|
|
DEVMETHOD(device_detach, rl_detach),
|
|
DEVMETHOD(device_suspend, rl_suspend),
|
|
DEVMETHOD(device_resume, rl_resume),
|
|
DEVMETHOD(device_shutdown, rl_shutdown),
|
|
|
|
/* bus interface */
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, rl_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, rl_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, rl_miibus_statchg),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t rl_driver = {
|
|
"rl",
|
|
rl_methods,
|
|
sizeof(struct rl_softc)
|
|
};
|
|
|
|
static devclass_t rl_devclass;
|
|
|
|
DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0);
|
|
DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
#define EE_SET(x) \
|
|
CSR_WRITE_1(sc, RL_EECMD, \
|
|
CSR_READ_1(sc, RL_EECMD) | x)
|
|
|
|
#define EE_CLR(x) \
|
|
CSR_WRITE_1(sc, RL_EECMD, \
|
|
CSR_READ_1(sc, RL_EECMD) & ~x)
|
|
|
|
static void
|
|
rl_dma_map_rxbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct rl_softc *sc = arg;
|
|
|
|
CSR_WRITE_4(sc, RL_RXADDR, segs->ds_addr & 0xFFFFFFFF);
|
|
}
|
|
|
|
static void
|
|
rl_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct rl_softc *sc = arg;
|
|
|
|
CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), segs->ds_addr & 0xFFFFFFFF);
|
|
}
|
|
|
|
/*
|
|
* Send a read command and address to the EEPROM, check for ACK.
|
|
*/
|
|
static void
|
|
rl_eeprom_putbyte(struct rl_softc *sc, int addr)
|
|
{
|
|
register int d, i;
|
|
|
|
d = addr | sc->rl_eecmd_read;
|
|
|
|
/*
|
|
* Feed in each bit and strobe the clock.
|
|
*/
|
|
for (i = 0x400; i; i >>= 1) {
|
|
if (d & i) {
|
|
EE_SET(RL_EE_DATAIN);
|
|
} else {
|
|
EE_CLR(RL_EE_DATAIN);
|
|
}
|
|
DELAY(100);
|
|
EE_SET(RL_EE_CLK);
|
|
DELAY(150);
|
|
EE_CLR(RL_EE_CLK);
|
|
DELAY(100);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read a word of data stored in the EEPROM at address 'addr.'
|
|
*/
|
|
static void
|
|
rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
|
|
{
|
|
register int i;
|
|
uint16_t word = 0;
|
|
|
|
/* Enter EEPROM access mode. */
|
|
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
|
|
|
|
/*
|
|
* Send address of word we want to read.
|
|
*/
|
|
rl_eeprom_putbyte(sc, addr);
|
|
|
|
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
|
|
|
|
/*
|
|
* Start reading bits from EEPROM.
|
|
*/
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
EE_SET(RL_EE_CLK);
|
|
DELAY(100);
|
|
if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
|
|
word |= i;
|
|
EE_CLR(RL_EE_CLK);
|
|
DELAY(100);
|
|
}
|
|
|
|
/* Turn off EEPROM access mode. */
|
|
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
|
|
|
|
*dest = word;
|
|
}
|
|
|
|
/*
|
|
* Read a sequence of words from the EEPROM.
|
|
*/
|
|
static void
|
|
rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
|
|
{
|
|
int i;
|
|
uint16_t word = 0, *ptr;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
rl_eeprom_getword(sc, off + i, &word);
|
|
ptr = (uint16_t *)(dest + (i * 2));
|
|
if (swap)
|
|
*ptr = ntohs(word);
|
|
else
|
|
*ptr = word;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* MII access routines are provided for the 8129, which
|
|
* doesn't have a built-in PHY. For the 8139, we fake things
|
|
* up by diverting rl_phy_readreg()/rl_phy_writereg() to the
|
|
* direct access PHY registers.
|
|
*/
|
|
#define MII_SET(x) \
|
|
CSR_WRITE_1(sc, RL_MII, \
|
|
CSR_READ_1(sc, RL_MII) | (x))
|
|
|
|
#define MII_CLR(x) \
|
|
CSR_WRITE_1(sc, RL_MII, \
|
|
CSR_READ_1(sc, RL_MII) & ~(x))
|
|
|
|
/*
|
|
* Sync the PHYs by setting data bit and strobing the clock 32 times.
|
|
*/
|
|
static void
|
|
rl_mii_sync(struct rl_softc *sc)
|
|
{
|
|
register int i;
|
|
|
|
MII_SET(RL_MII_DIR|RL_MII_DATAOUT);
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
MII_SET(RL_MII_CLK);
|
|
DELAY(1);
|
|
MII_CLR(RL_MII_CLK);
|
|
DELAY(1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clock a series of bits through the MII.
|
|
*/
|
|
static void
|
|
rl_mii_send(struct rl_softc *sc, uint32_t bits, int cnt)
|
|
{
|
|
int i;
|
|
|
|
MII_CLR(RL_MII_CLK);
|
|
|
|
for (i = (0x1 << (cnt - 1)); i; i >>= 1) {
|
|
if (bits & i) {
|
|
MII_SET(RL_MII_DATAOUT);
|
|
} else {
|
|
MII_CLR(RL_MII_DATAOUT);
|
|
}
|
|
DELAY(1);
|
|
MII_CLR(RL_MII_CLK);
|
|
DELAY(1);
|
|
MII_SET(RL_MII_CLK);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read an PHY register through the MII.
|
|
*/
|
|
static int
|
|
rl_mii_readreg(struct rl_softc *sc, struct rl_mii_frame *frame)
|
|
{
|
|
int i, ack;
|
|
|
|
RL_LOCK(sc);
|
|
|
|
/* Set up frame for RX. */
|
|
frame->mii_stdelim = RL_MII_STARTDELIM;
|
|
frame->mii_opcode = RL_MII_READOP;
|
|
frame->mii_turnaround = 0;
|
|
frame->mii_data = 0;
|
|
|
|
CSR_WRITE_2(sc, RL_MII, 0);
|
|
|
|
/* Turn on data xmit. */
|
|
MII_SET(RL_MII_DIR);
|
|
|
|
rl_mii_sync(sc);
|
|
|
|
/* Send command/address info. */
|
|
rl_mii_send(sc, frame->mii_stdelim, 2);
|
|
rl_mii_send(sc, frame->mii_opcode, 2);
|
|
rl_mii_send(sc, frame->mii_phyaddr, 5);
|
|
rl_mii_send(sc, frame->mii_regaddr, 5);
|
|
|
|
/* Idle bit */
|
|
MII_CLR((RL_MII_CLK|RL_MII_DATAOUT));
|
|
DELAY(1);
|
|
MII_SET(RL_MII_CLK);
|
|
DELAY(1);
|
|
|
|
/* Turn off xmit. */
|
|
MII_CLR(RL_MII_DIR);
|
|
|
|
/* Check for ack */
|
|
MII_CLR(RL_MII_CLK);
|
|
DELAY(1);
|
|
ack = CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN;
|
|
MII_SET(RL_MII_CLK);
|
|
DELAY(1);
|
|
|
|
/*
|
|
* Now try reading data bits. If the ack failed, we still
|
|
* need to clock through 16 cycles to keep the PHY(s) in sync.
|
|
*/
|
|
if (ack) {
|
|
for(i = 0; i < 16; i++) {
|
|
MII_CLR(RL_MII_CLK);
|
|
DELAY(1);
|
|
MII_SET(RL_MII_CLK);
|
|
DELAY(1);
|
|
}
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
MII_CLR(RL_MII_CLK);
|
|
DELAY(1);
|
|
if (!ack) {
|
|
if (CSR_READ_2(sc, RL_MII) & RL_MII_DATAIN)
|
|
frame->mii_data |= i;
|
|
DELAY(1);
|
|
}
|
|
MII_SET(RL_MII_CLK);
|
|
DELAY(1);
|
|
}
|
|
|
|
fail:
|
|
MII_CLR(RL_MII_CLK);
|
|
DELAY(1);
|
|
MII_SET(RL_MII_CLK);
|
|
DELAY(1);
|
|
|
|
RL_UNLOCK(sc);
|
|
|
|
return (ack ? 1 : 0);
|
|
}
|
|
|
|
/*
|
|
* Write to a PHY register through the MII.
|
|
*/
|
|
static int
|
|
rl_mii_writereg(struct rl_softc *sc, struct rl_mii_frame *frame)
|
|
{
|
|
|
|
RL_LOCK(sc);
|
|
|
|
/* Set up frame for TX. */
|
|
frame->mii_stdelim = RL_MII_STARTDELIM;
|
|
frame->mii_opcode = RL_MII_WRITEOP;
|
|
frame->mii_turnaround = RL_MII_TURNAROUND;
|
|
|
|
/* Turn on data output. */
|
|
MII_SET(RL_MII_DIR);
|
|
|
|
rl_mii_sync(sc);
|
|
|
|
rl_mii_send(sc, frame->mii_stdelim, 2);
|
|
rl_mii_send(sc, frame->mii_opcode, 2);
|
|
rl_mii_send(sc, frame->mii_phyaddr, 5);
|
|
rl_mii_send(sc, frame->mii_regaddr, 5);
|
|
rl_mii_send(sc, frame->mii_turnaround, 2);
|
|
rl_mii_send(sc, frame->mii_data, 16);
|
|
|
|
/* Idle bit. */
|
|
MII_SET(RL_MII_CLK);
|
|
DELAY(1);
|
|
MII_CLR(RL_MII_CLK);
|
|
DELAY(1);
|
|
|
|
/* Turn off xmit. */
|
|
MII_CLR(RL_MII_DIR);
|
|
|
|
RL_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
rl_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct rl_softc *sc;
|
|
struct rl_mii_frame frame;
|
|
uint16_t rval = 0;
|
|
uint16_t rl8139_reg = 0;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
if (sc->rl_type == RL_8139) {
|
|
/* Pretend the internal PHY is only at address 0 */
|
|
if (phy) {
|
|
return (0);
|
|
}
|
|
switch (reg) {
|
|
case MII_BMCR:
|
|
rl8139_reg = RL_BMCR;
|
|
break;
|
|
case MII_BMSR:
|
|
rl8139_reg = RL_BMSR;
|
|
break;
|
|
case MII_ANAR:
|
|
rl8139_reg = RL_ANAR;
|
|
break;
|
|
case MII_ANER:
|
|
rl8139_reg = RL_ANER;
|
|
break;
|
|
case MII_ANLPAR:
|
|
rl8139_reg = RL_LPAR;
|
|
break;
|
|
case MII_PHYIDR1:
|
|
case MII_PHYIDR2:
|
|
return (0);
|
|
/*
|
|
* Allow the rlphy driver to read the media status
|
|
* register. If we have a link partner which does not
|
|
* support NWAY, this is the register which will tell
|
|
* us the results of parallel detection.
|
|
*/
|
|
case RL_MEDIASTAT:
|
|
rval = CSR_READ_1(sc, RL_MEDIASTAT);
|
|
return (rval);
|
|
default:
|
|
if_printf(sc->rl_ifp, "bad phy register\n");
|
|
return (0);
|
|
}
|
|
rval = CSR_READ_2(sc, rl8139_reg);
|
|
return (rval);
|
|
}
|
|
|
|
bzero((char *)&frame, sizeof(frame));
|
|
frame.mii_phyaddr = phy;
|
|
frame.mii_regaddr = reg;
|
|
rl_mii_readreg(sc, &frame);
|
|
|
|
return (frame.mii_data);
|
|
}
|
|
|
|
static int
|
|
rl_miibus_writereg(device_t dev, int phy, int reg, int data)
|
|
{
|
|
struct rl_softc *sc;
|
|
struct rl_mii_frame frame;
|
|
uint16_t rl8139_reg = 0;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
if (sc->rl_type == RL_8139) {
|
|
/* Pretend the internal PHY is only at address 0 */
|
|
if (phy) {
|
|
return (0);
|
|
}
|
|
switch (reg) {
|
|
case MII_BMCR:
|
|
rl8139_reg = RL_BMCR;
|
|
break;
|
|
case MII_BMSR:
|
|
rl8139_reg = RL_BMSR;
|
|
break;
|
|
case MII_ANAR:
|
|
rl8139_reg = RL_ANAR;
|
|
break;
|
|
case MII_ANER:
|
|
rl8139_reg = RL_ANER;
|
|
break;
|
|
case MII_ANLPAR:
|
|
rl8139_reg = RL_LPAR;
|
|
break;
|
|
case MII_PHYIDR1:
|
|
case MII_PHYIDR2:
|
|
return (0);
|
|
break;
|
|
default:
|
|
if_printf(sc->rl_ifp, "bad phy register\n");
|
|
return (0);
|
|
}
|
|
CSR_WRITE_2(sc, rl8139_reg, data);
|
|
return (0);
|
|
}
|
|
|
|
bzero((char *)&frame, sizeof(frame));
|
|
frame.mii_phyaddr = phy;
|
|
frame.mii_regaddr = reg;
|
|
frame.mii_data = data;
|
|
rl_mii_writereg(sc, &frame);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
rl_miibus_statchg(device_t dev)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Program the 64-bit multicast hash filter.
|
|
*/
|
|
static void
|
|
rl_setmulti(struct rl_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->rl_ifp;
|
|
int h = 0;
|
|
uint32_t hashes[2] = { 0, 0 };
|
|
struct ifmultiaddr *ifma;
|
|
uint32_t rxfilt;
|
|
int mcnt = 0;
|
|
|
|
RL_LOCK_ASSERT(sc);
|
|
|
|
rxfilt = CSR_READ_4(sc, RL_RXCFG);
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
|
|
rxfilt |= RL_RXCFG_RX_MULTI;
|
|
CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
|
|
CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
|
|
return;
|
|
}
|
|
|
|
/* first, zot all the existing hash bits */
|
|
CSR_WRITE_4(sc, RL_MAR0, 0);
|
|
CSR_WRITE_4(sc, RL_MAR4, 0);
|
|
|
|
/* now program new ones */
|
|
IF_ADDR_LOCK(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
|
|
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
mcnt++;
|
|
}
|
|
IF_ADDR_UNLOCK(ifp);
|
|
|
|
if (mcnt)
|
|
rxfilt |= RL_RXCFG_RX_MULTI;
|
|
else
|
|
rxfilt &= ~RL_RXCFG_RX_MULTI;
|
|
|
|
CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
|
|
CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
|
|
CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
|
|
}
|
|
|
|
static void
|
|
rl_reset(struct rl_softc *sc)
|
|
{
|
|
register int i;
|
|
|
|
RL_LOCK_ASSERT(sc);
|
|
|
|
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
|
|
|
|
for (i = 0; i < RL_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
|
|
break;
|
|
}
|
|
if (i == RL_TIMEOUT)
|
|
if_printf(sc->rl_ifp, "reset never completed!\n");
|
|
}
|
|
|
|
/*
|
|
* Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
*/
|
|
static int
|
|
rl_probe(device_t dev)
|
|
{
|
|
struct rl_softc *sc;
|
|
struct rl_type *t = rl_devs;
|
|
int rid;
|
|
uint32_t hwrev;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
while (t->rl_name != NULL) {
|
|
if ((pci_get_vendor(dev) == t->rl_vid) &&
|
|
(pci_get_device(dev) == t->rl_did)) {
|
|
/*
|
|
* Temporarily map the I/O space
|
|
* so we can read the chip ID register.
|
|
*/
|
|
rid = RL_RID;
|
|
sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
|
|
RF_ACTIVE);
|
|
if (sc->rl_res == NULL) {
|
|
device_printf(dev,
|
|
"couldn't map ports/memory\n");
|
|
return (ENXIO);
|
|
}
|
|
sc->rl_btag = rman_get_bustag(sc->rl_res);
|
|
sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
|
|
|
|
hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
|
|
bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
|
|
|
|
/* Don't attach to 8139C+ or 8169/8110 chips. */
|
|
if (hwrev == RL_HWREV_8139CPLUS ||
|
|
(hwrev == RL_HWREV_8169 &&
|
|
t->rl_did == RT_DEVICEID_8169) ||
|
|
hwrev == RL_HWREV_8169S ||
|
|
hwrev == RL_HWREV_8110S) {
|
|
t++;
|
|
continue;
|
|
}
|
|
|
|
device_set_desc(dev, t->rl_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static int
|
|
rl_attach(device_t dev)
|
|
{
|
|
uint8_t eaddr[ETHER_ADDR_LEN];
|
|
uint16_t as[3];
|
|
struct ifnet *ifp;
|
|
struct rl_softc *sc;
|
|
struct rl_type *t;
|
|
int error = 0, i, rid;
|
|
int unit;
|
|
uint16_t rl_did = 0;
|
|
|
|
sc = device_get_softc(dev);
|
|
unit = device_get_unit(dev);
|
|
|
|
mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
|
|
pci_enable_busmaster(dev);
|
|
|
|
/* Map control/status registers. */
|
|
rid = RL_RID;
|
|
sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, RF_ACTIVE);
|
|
|
|
if (sc->rl_res == NULL) {
|
|
device_printf(dev, "couldn't map ports/memory\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
#ifdef notdef
|
|
/*
|
|
* Detect the Realtek 8139B. For some reason, this chip is very
|
|
* unstable when left to autoselect the media
|
|
* The best workaround is to set the device to the required
|
|
* media type or to set it to the 10 Meg speed.
|
|
*/
|
|
if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
|
|
device_printf(dev,
|
|
"Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
|
|
#endif
|
|
|
|
sc->rl_btag = rman_get_bustag(sc->rl_res);
|
|
sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
|
|
|
|
/* Allocate interrupt */
|
|
rid = 0;
|
|
sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
|
|
if (sc->rl_irq == NULL) {
|
|
device_printf(dev, "couldn't map interrupt\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Reset the adapter. Only take the lock here as it's needed in
|
|
* order to call rl_reset().
|
|
*/
|
|
RL_LOCK(sc);
|
|
rl_reset(sc);
|
|
RL_UNLOCK(sc);
|
|
|
|
sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
|
|
rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
|
|
if (rl_did != 0x8129)
|
|
sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
|
|
|
|
/*
|
|
* Get station address from the EEPROM.
|
|
*/
|
|
rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
|
|
for (i = 0; i < 3; i++) {
|
|
eaddr[(i * 2) + 0] = as[i] & 0xff;
|
|
eaddr[(i * 2) + 1] = as[i] >> 8;
|
|
}
|
|
|
|
sc->rl_unit = unit;
|
|
|
|
/*
|
|
* Now read the exact device type from the EEPROM to find
|
|
* out if it's an 8129 or 8139.
|
|
*/
|
|
rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
|
|
|
|
t = rl_devs;
|
|
sc->rl_type = 0;
|
|
while(t->rl_name != NULL) {
|
|
if (rl_did == t->rl_did) {
|
|
sc->rl_type = t->rl_basetype;
|
|
break;
|
|
}
|
|
t++;
|
|
}
|
|
|
|
if (sc->rl_type == 0) {
|
|
device_printf(dev, "unknown device ID: %x\n", rl_did);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Allocate the parent bus DMA tag appropriate for PCI.
|
|
*/
|
|
#define RL_NSEG_NEW 32
|
|
error = bus_dma_tag_create(NULL, /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MAXBSIZE, RL_NSEG_NEW, /* maxsize, nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
|
|
BUS_DMA_ALLOCNOW, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->rl_parent_tag);
|
|
if (error)
|
|
goto fail;
|
|
|
|
/*
|
|
* Now allocate a tag for the DMA descriptor lists.
|
|
* All of our lists are allocated as a contiguous block
|
|
* of memory.
|
|
*/
|
|
error = bus_dma_tag_create(sc->rl_parent_tag, /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
RL_RXBUFLEN + 1518, 1, /* maxsize,nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
|
|
BUS_DMA_ALLOCNOW, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->rl_tag);
|
|
if (error)
|
|
goto fail;
|
|
|
|
/*
|
|
* Now allocate a chunk of DMA-able memory based on the
|
|
* tag we just created.
|
|
*/
|
|
error = bus_dmamem_alloc(sc->rl_tag,
|
|
(void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
|
|
&sc->rl_cdata.rl_rx_dmamap);
|
|
if (error) {
|
|
device_printf(dev, "no memory for list buffers!\n");
|
|
bus_dma_tag_destroy(sc->rl_tag);
|
|
sc->rl_tag = NULL;
|
|
goto fail;
|
|
}
|
|
|
|
/* Leave a few bytes before the start of the RX ring buffer. */
|
|
sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
|
|
sc->rl_cdata.rl_rx_buf += sizeof(uint64_t);
|
|
|
|
ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "can not if_alloc()\n");
|
|
error = ENOSPC;
|
|
goto fail;
|
|
}
|
|
|
|
/* Do MII setup */
|
|
if (mii_phy_probe(dev, &sc->rl_miibus,
|
|
rl_ifmedia_upd, rl_ifmedia_sts)) {
|
|
device_printf(dev, "MII without any phy!\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = rl_ioctl;
|
|
ifp->if_start = rl_start;
|
|
ifp->if_watchdog = rl_watchdog;
|
|
ifp->if_init = rl_init;
|
|
ifp->if_baudrate = 10000000;
|
|
ifp->if_capabilities = IFCAP_VLAN_MTU;
|
|
#ifdef DEVICE_POLLING
|
|
ifp->if_capabilities |= IFCAP_POLLING;
|
|
#endif
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
|
|
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
callout_handle_init(&sc->rl_stat_ch);
|
|
|
|
/*
|
|
* Call MI attach routine.
|
|
*/
|
|
ether_ifattach(ifp, eaddr);
|
|
|
|
/* Hook interrupt last to avoid having to lock softc */
|
|
error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE,
|
|
rl_intr, sc, &sc->rl_intrhand);
|
|
if (error) {
|
|
if_printf(ifp, "couldn't set up irq\n");
|
|
ether_ifdetach(ifp);
|
|
if_free(ifp);
|
|
}
|
|
|
|
fail:
|
|
if (error)
|
|
rl_detach(dev);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Shutdown hardware and free up resources. This can be called any
|
|
* time after the mutex has been initialized. It is called in both
|
|
* the error case in attach and the normal detach case so it needs
|
|
* to be careful about only freeing resources that have actually been
|
|
* allocated.
|
|
*/
|
|
static int
|
|
rl_detach(device_t dev)
|
|
{
|
|
struct rl_softc *sc;
|
|
struct ifnet *ifp;
|
|
int attached;
|
|
|
|
sc = device_get_softc(dev);
|
|
ifp = sc->rl_ifp;
|
|
|
|
KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
|
|
attached = device_is_attached(dev);
|
|
/* These should only be active if attach succeeded */
|
|
if (attached) {
|
|
RL_LOCK(sc);
|
|
rl_stop(sc);
|
|
RL_UNLOCK(sc);
|
|
ether_ifdetach(ifp);
|
|
if_free(ifp);
|
|
}
|
|
#if 0
|
|
sc->suspended = 1;
|
|
#endif
|
|
if (sc->rl_miibus)
|
|
device_delete_child(dev, sc->rl_miibus);
|
|
bus_generic_detach(dev);
|
|
|
|
if (sc->rl_intrhand)
|
|
bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
|
|
if (sc->rl_irq)
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
|
|
if (sc->rl_res)
|
|
bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
|
|
|
|
if (sc->rl_tag) {
|
|
bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
|
|
bus_dmamem_free(sc->rl_tag, sc->rl_cdata.rl_rx_buf,
|
|
sc->rl_cdata.rl_rx_dmamap);
|
|
bus_dma_tag_destroy(sc->rl_tag);
|
|
}
|
|
if (sc->rl_parent_tag)
|
|
bus_dma_tag_destroy(sc->rl_parent_tag);
|
|
|
|
mtx_destroy(&sc->rl_mtx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit descriptors.
|
|
*/
|
|
static int
|
|
rl_list_tx_init(struct rl_softc *sc)
|
|
{
|
|
struct rl_chain_data *cd;
|
|
int i;
|
|
|
|
RL_LOCK_ASSERT(sc);
|
|
|
|
cd = &sc->rl_cdata;
|
|
for (i = 0; i < RL_TX_LIST_CNT; i++) {
|
|
cd->rl_tx_chain[i] = NULL;
|
|
CSR_WRITE_4(sc,
|
|
RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
|
|
}
|
|
|
|
sc->rl_cdata.cur_tx = 0;
|
|
sc->rl_cdata.last_tx = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* A frame has been uploaded: pass the resulting mbuf chain up to
|
|
* the higher level protocols.
|
|
*
|
|
* You know there's something wrong with a PCI bus-master chip design
|
|
* when you have to use m_devget().
|
|
*
|
|
* The receive operation is badly documented in the datasheet, so I'll
|
|
* attempt to document it here. The driver provides a buffer area and
|
|
* places its base address in the RX buffer start address register.
|
|
* The chip then begins copying frames into the RX buffer. Each frame
|
|
* is preceded by a 32-bit RX status word which specifies the length
|
|
* of the frame and certain other status bits. Each frame (starting with
|
|
* the status word) is also 32-bit aligned. The frame length is in the
|
|
* first 16 bits of the status word; the lower 15 bits correspond with
|
|
* the 'rx status register' mentioned in the datasheet.
|
|
*
|
|
* Note: to make the Alpha happy, the frame payload needs to be aligned
|
|
* on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
|
|
* as the offset argument to m_devget().
|
|
*/
|
|
static void
|
|
rl_rxeof(struct rl_softc *sc)
|
|
{
|
|
struct mbuf *m;
|
|
struct ifnet *ifp = sc->rl_ifp;
|
|
uint8_t *rxbufpos;
|
|
int total_len = 0;
|
|
int wrap = 0;
|
|
uint32_t rxstat;
|
|
uint16_t cur_rx;
|
|
uint16_t limit;
|
|
uint16_t max_bytes, rx_bytes = 0;
|
|
|
|
RL_LOCK_ASSERT(sc);
|
|
|
|
bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
|
|
|
|
/* Do not try to read past this point. */
|
|
limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
|
|
|
|
if (limit < cur_rx)
|
|
max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
|
|
else
|
|
max_bytes = limit - cur_rx;
|
|
|
|
while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_flags & IFF_POLLING) {
|
|
if (sc->rxcycles <= 0)
|
|
break;
|
|
sc->rxcycles--;
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
|
|
rxstat = le32toh(*(uint32_t *)rxbufpos);
|
|
|
|
/*
|
|
* Here's a totally undocumented fact for you. When the
|
|
* RealTek chip is in the process of copying a packet into
|
|
* RAM for you, the length will be 0xfff0. If you spot a
|
|
* packet header with this value, you need to stop. The
|
|
* datasheet makes absolutely no mention of this and
|
|
* RealTek should be shot for this.
|
|
*/
|
|
if ((uint16_t)(rxstat >> 16) == RL_RXSTAT_UNFINISHED)
|
|
break;
|
|
|
|
if (!(rxstat & RL_RXSTAT_RXOK)) {
|
|
ifp->if_ierrors++;
|
|
rl_init_locked(sc);
|
|
return;
|
|
}
|
|
|
|
/* No errors; receive the packet. */
|
|
total_len = rxstat >> 16;
|
|
rx_bytes += total_len + 4;
|
|
|
|
/*
|
|
* XXX The RealTek chip includes the CRC with every
|
|
* received frame, and there's no way to turn this
|
|
* behavior off (at least, I can't find anything in
|
|
* the manual that explains how to do it) so we have
|
|
* to trim off the CRC manually.
|
|
*/
|
|
total_len -= ETHER_CRC_LEN;
|
|
|
|
/*
|
|
* Avoid trying to read more bytes than we know
|
|
* the chip has prepared for us.
|
|
*/
|
|
if (rx_bytes > max_bytes)
|
|
break;
|
|
|
|
rxbufpos = sc->rl_cdata.rl_rx_buf +
|
|
((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
|
|
if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
|
|
rxbufpos = sc->rl_cdata.rl_rx_buf;
|
|
|
|
wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
|
|
if (total_len > wrap) {
|
|
m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
|
|
NULL);
|
|
if (m == NULL) {
|
|
ifp->if_ierrors++;
|
|
} else {
|
|
m_copyback(m, wrap, total_len - wrap,
|
|
sc->rl_cdata.rl_rx_buf);
|
|
}
|
|
cur_rx = (total_len - wrap + ETHER_CRC_LEN);
|
|
} else {
|
|
m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
|
|
NULL);
|
|
if (m == NULL)
|
|
ifp->if_ierrors++;
|
|
cur_rx += total_len + 4 + ETHER_CRC_LEN;
|
|
}
|
|
|
|
/* Round up to 32-bit boundary. */
|
|
cur_rx = (cur_rx + 3) & ~3;
|
|
CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
|
|
|
|
if (m == NULL)
|
|
continue;
|
|
|
|
ifp->if_ipackets++;
|
|
RL_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
RL_LOCK(sc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A frame was downloaded to the chip. It's safe for us to clean up
|
|
* the list buffers.
|
|
*/
|
|
static void
|
|
rl_txeof(struct rl_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->rl_ifp;
|
|
uint32_t txstat;
|
|
|
|
RL_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* Go through our tx list and free mbufs for those
|
|
* frames that have been uploaded.
|
|
*/
|
|
do {
|
|
if (RL_LAST_TXMBUF(sc) == NULL)
|
|
break;
|
|
txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
|
|
if (!(txstat & (RL_TXSTAT_TX_OK|
|
|
RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
|
|
break;
|
|
|
|
ifp->if_collisions += (txstat & RL_TXSTAT_COLLCNT) >> 24;
|
|
|
|
bus_dmamap_unload(sc->rl_tag, RL_LAST_DMAMAP(sc));
|
|
bus_dmamap_destroy(sc->rl_tag, RL_LAST_DMAMAP(sc));
|
|
m_freem(RL_LAST_TXMBUF(sc));
|
|
RL_LAST_TXMBUF(sc) = NULL;
|
|
/*
|
|
* If there was a transmit underrun, bump the TX threshold.
|
|
* Make sure not to overflow the 63 * 32byte we can address
|
|
* with the 6 available bit.
|
|
*/
|
|
if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
|
|
(sc->rl_txthresh < 2016))
|
|
sc->rl_txthresh += 32;
|
|
if (txstat & RL_TXSTAT_TX_OK)
|
|
ifp->if_opackets++;
|
|
else {
|
|
int oldthresh;
|
|
ifp->if_oerrors++;
|
|
if ((txstat & RL_TXSTAT_TXABRT) ||
|
|
(txstat & RL_TXSTAT_OUTOFWIN))
|
|
CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
|
|
oldthresh = sc->rl_txthresh;
|
|
/* error recovery */
|
|
rl_reset(sc);
|
|
rl_init_locked(sc);
|
|
/* restore original threshold */
|
|
sc->rl_txthresh = oldthresh;
|
|
return;
|
|
}
|
|
RL_INC(sc->rl_cdata.last_tx);
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
|
|
|
|
if (RL_LAST_TXMBUF(sc) == NULL)
|
|
ifp->if_timer = 0;
|
|
else if (ifp->if_timer == 0)
|
|
ifp->if_timer = 5;
|
|
}
|
|
|
|
static void
|
|
rl_tick(void *xsc)
|
|
{
|
|
struct rl_softc *sc = xsc;
|
|
struct mii_data *mii;
|
|
|
|
RL_LOCK(sc);
|
|
mii = device_get_softc(sc->rl_miibus);
|
|
mii_tick(mii);
|
|
|
|
sc->rl_stat_ch = timeout(rl_tick, sc, hz);
|
|
RL_UNLOCK(sc);
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static void
|
|
rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct rl_softc *sc = ifp->if_softc;
|
|
|
|
RL_LOCK(sc);
|
|
rl_poll_locked(ifp, cmd, count);
|
|
RL_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct rl_softc *sc = ifp->if_softc;
|
|
|
|
RL_LOCK_ASSERT(sc);
|
|
|
|
if (!(ifp->if_capenable & IFCAP_POLLING)) {
|
|
ether_poll_deregister(ifp);
|
|
cmd = POLL_DEREGISTER;
|
|
}
|
|
|
|
if (cmd == POLL_DEREGISTER) {
|
|
/* Final call; enable interrupts. */
|
|
CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
|
|
return;
|
|
}
|
|
|
|
sc->rxcycles = count;
|
|
rl_rxeof(sc);
|
|
rl_txeof(sc);
|
|
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
rl_start_locked(ifp);
|
|
|
|
if (cmd == POLL_AND_CHECK_STATUS) {
|
|
uint16_t status;
|
|
|
|
/* We should also check the status register. */
|
|
status = CSR_READ_2(sc, RL_ISR);
|
|
if (status == 0xffff)
|
|
return;
|
|
if (status != 0)
|
|
CSR_WRITE_2(sc, RL_ISR, status);
|
|
|
|
/* XXX We should check behaviour on receiver stalls. */
|
|
|
|
if (status & RL_ISR_SYSTEM_ERR) {
|
|
rl_reset(sc);
|
|
rl_init_locked(sc);
|
|
}
|
|
}
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
static void
|
|
rl_intr(void *arg)
|
|
{
|
|
struct rl_softc *sc = arg;
|
|
struct ifnet *ifp = sc->rl_ifp;
|
|
uint16_t status;
|
|
|
|
RL_LOCK(sc);
|
|
|
|
if (sc->suspended)
|
|
goto done_locked;
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_flags & IFF_POLLING)
|
|
goto done_locked;
|
|
|
|
if ((ifp->if_capenable & IFCAP_POLLING) &&
|
|
ether_poll_register(rl_poll, ifp)) {
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_2(sc, RL_IMR, 0x0000);
|
|
rl_poll_locked(ifp, 0, 1);
|
|
goto done_locked;
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
for (;;) {
|
|
status = CSR_READ_2(sc, RL_ISR);
|
|
/* If the card has gone away, the read returns 0xffff. */
|
|
if (status == 0xffff)
|
|
break;
|
|
if (status != 0)
|
|
CSR_WRITE_2(sc, RL_ISR, status);
|
|
if ((status & RL_INTRS) == 0)
|
|
break;
|
|
if (status & RL_ISR_RX_OK)
|
|
rl_rxeof(sc);
|
|
if (status & RL_ISR_RX_ERR)
|
|
rl_rxeof(sc);
|
|
if ((status & RL_ISR_TX_OK) || (status & RL_ISR_TX_ERR))
|
|
rl_txeof(sc);
|
|
if (status & RL_ISR_SYSTEM_ERR) {
|
|
rl_reset(sc);
|
|
rl_init_locked(sc);
|
|
}
|
|
}
|
|
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
rl_start_locked(ifp);
|
|
|
|
done_locked:
|
|
RL_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
|
|
* pointers to the fragment pointers.
|
|
*/
|
|
static int
|
|
rl_encap(struct rl_softc *sc, struct mbuf *m_head)
|
|
{
|
|
struct mbuf *m_new = NULL;
|
|
|
|
RL_LOCK_ASSERT(sc);
|
|
|
|
/*
|
|
* The RealTek is brain damaged and wants longword-aligned
|
|
* TX buffers, plus we can only have one fragment buffer
|
|
* per packet. We have to copy pretty much all the time.
|
|
*/
|
|
m_new = m_defrag(m_head, M_DONTWAIT);
|
|
|
|
if (m_new == NULL) {
|
|
m_freem(m_head);
|
|
return (1);
|
|
}
|
|
m_head = m_new;
|
|
|
|
/* Pad frames to at least 60 bytes. */
|
|
if (m_head->m_pkthdr.len < RL_MIN_FRAMELEN) {
|
|
/*
|
|
* Make security concious people happy: zero out the
|
|
* bytes in the pad area, since we don't know what
|
|
* this mbuf cluster buffer's previous user might
|
|
* have left in it.
|
|
*/
|
|
bzero(mtod(m_head, char *) + m_head->m_pkthdr.len,
|
|
RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
|
|
m_head->m_pkthdr.len +=
|
|
(RL_MIN_FRAMELEN - m_head->m_pkthdr.len);
|
|
m_head->m_len = m_head->m_pkthdr.len;
|
|
}
|
|
|
|
RL_CUR_TXMBUF(sc) = m_head;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine.
|
|
*/
|
|
static void
|
|
rl_start(struct ifnet *ifp)
|
|
{
|
|
struct rl_softc *sc = ifp->if_softc;
|
|
|
|
RL_LOCK(sc);
|
|
rl_start_locked(ifp);
|
|
RL_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
rl_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct rl_softc *sc = ifp->if_softc;
|
|
struct mbuf *m_head = NULL;
|
|
|
|
RL_LOCK_ASSERT(sc);
|
|
|
|
while (RL_CUR_TXMBUF(sc) == NULL) {
|
|
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
if (rl_encap(sc, m_head))
|
|
break;
|
|
|
|
/* Pass a copy of this mbuf chain to the bpf subsystem. */
|
|
BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
|
|
|
|
/* Transmit the frame. */
|
|
bus_dmamap_create(sc->rl_tag, 0, &RL_CUR_DMAMAP(sc));
|
|
bus_dmamap_load(sc->rl_tag, RL_CUR_DMAMAP(sc),
|
|
mtod(RL_CUR_TXMBUF(sc), void *),
|
|
RL_CUR_TXMBUF(sc)->m_pkthdr.len, rl_dma_map_txbuf, sc, 0);
|
|
bus_dmamap_sync(sc->rl_tag, RL_CUR_DMAMAP(sc),
|
|
BUS_DMASYNC_PREREAD);
|
|
CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
|
|
RL_TXTHRESH(sc->rl_txthresh) |
|
|
RL_CUR_TXMBUF(sc)->m_pkthdr.len);
|
|
|
|
RL_INC(sc->rl_cdata.cur_tx);
|
|
|
|
/* Set a timeout in case the chip goes out to lunch. */
|
|
ifp->if_timer = 5;
|
|
}
|
|
|
|
/*
|
|
* We broke out of the loop because all our TX slots are
|
|
* full. Mark the NIC as busy until it drains some of the
|
|
* packets from the queue.
|
|
*/
|
|
if (RL_CUR_TXMBUF(sc) != NULL)
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
}
|
|
|
|
static void
|
|
rl_init(void *xsc)
|
|
{
|
|
struct rl_softc *sc = xsc;
|
|
|
|
RL_LOCK(sc);
|
|
rl_init_locked(sc);
|
|
RL_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
rl_init_locked(struct rl_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->rl_ifp;
|
|
struct mii_data *mii;
|
|
uint32_t rxcfg = 0;
|
|
|
|
RL_LOCK_ASSERT(sc);
|
|
|
|
mii = device_get_softc(sc->rl_miibus);
|
|
|
|
/*
|
|
* Cancel pending I/O and free all RX/TX buffers.
|
|
*/
|
|
rl_stop(sc);
|
|
|
|
/*
|
|
* Init our MAC address. Even though the chipset
|
|
* documentation doesn't mention it, we need to enter "Config
|
|
* register write enable" mode to modify the ID registers.
|
|
*/
|
|
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
|
|
CSR_WRITE_STREAM_4(sc, RL_IDR0,
|
|
*(uint32_t *)(&IFP2ENADDR(sc->rl_ifp)[0]));
|
|
CSR_WRITE_STREAM_4(sc, RL_IDR4,
|
|
*(uint32_t *)(&IFP2ENADDR(sc->rl_ifp)[4]));
|
|
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
|
|
|
|
/* Init the RX buffer pointer register. */
|
|
bus_dmamap_load(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
|
|
sc->rl_cdata.rl_rx_buf, RL_RXBUFLEN, rl_dma_map_rxbuf, sc, 0);
|
|
bus_dmamap_sync(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Init TX descriptors. */
|
|
rl_list_tx_init(sc);
|
|
|
|
/*
|
|
* Enable transmit and receive.
|
|
*/
|
|
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
|
|
|
|
/*
|
|
* Set the initial TX and RX configuration.
|
|
*/
|
|
CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
|
|
CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
|
|
|
|
/* Set the individual bit to receive frames for this host only. */
|
|
rxcfg = CSR_READ_4(sc, RL_RXCFG);
|
|
rxcfg |= RL_RXCFG_RX_INDIV;
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
rxcfg |= RL_RXCFG_RX_ALLPHYS;
|
|
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
|
|
} else {
|
|
rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
|
|
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
|
|
}
|
|
|
|
/* Set capture broadcast bit to capture broadcast frames. */
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
rxcfg |= RL_RXCFG_RX_BROAD;
|
|
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
|
|
} else {
|
|
rxcfg &= ~RL_RXCFG_RX_BROAD;
|
|
CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
|
|
}
|
|
|
|
/* Program the multicast filter, if necessary. */
|
|
rl_setmulti(sc);
|
|
|
|
#ifdef DEVICE_POLLING
|
|
/* Disable interrupts if we are polling. */
|
|
if (ifp->if_flags & IFF_POLLING)
|
|
CSR_WRITE_2(sc, RL_IMR, 0);
|
|
else
|
|
#endif /* DEVICE_POLLING */
|
|
/* Enable interrupts. */
|
|
CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
|
|
|
|
/* Set initial TX threshold */
|
|
sc->rl_txthresh = RL_TX_THRESH_INIT;
|
|
|
|
/* Start RX/TX process. */
|
|
CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
|
|
|
|
/* Enable receiver and transmitter. */
|
|
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
|
|
|
|
mii_mediachg(mii);
|
|
|
|
CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
sc->rl_stat_ch = timeout(rl_tick, sc, hz);
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int
|
|
rl_ifmedia_upd(struct ifnet *ifp)
|
|
{
|
|
struct rl_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii;
|
|
|
|
mii = device_get_softc(sc->rl_miibus);
|
|
|
|
mii_mediachg(mii);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void
|
|
rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct rl_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii;
|
|
|
|
mii = device_get_softc(sc->rl_miibus);
|
|
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
}
|
|
|
|
static int
|
|
rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
struct mii_data *mii;
|
|
struct rl_softc *sc = ifp->if_softc;
|
|
int error = 0;
|
|
|
|
switch (command) {
|
|
case SIOCSIFFLAGS:
|
|
RL_LOCK(sc);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
rl_init_locked(sc);
|
|
} else {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
rl_stop(sc);
|
|
}
|
|
RL_UNLOCK(sc);
|
|
error = 0;
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
RL_LOCK(sc);
|
|
rl_setmulti(sc);
|
|
RL_UNLOCK(sc);
|
|
error = 0;
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
mii = device_get_softc(sc->rl_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
ifp->if_capenable &= ~IFCAP_POLLING;
|
|
ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_POLLING;
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
rl_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct rl_softc *sc = ifp->if_softc;
|
|
|
|
RL_LOCK(sc);
|
|
|
|
if_printf(ifp, "watchdog timeout\n");
|
|
ifp->if_oerrors++;
|
|
|
|
rl_txeof(sc);
|
|
rl_rxeof(sc);
|
|
rl_init_locked(sc);
|
|
|
|
RL_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
static void
|
|
rl_stop(struct rl_softc *sc)
|
|
{
|
|
register int i;
|
|
struct ifnet *ifp = sc->rl_ifp;
|
|
|
|
RL_LOCK_ASSERT(sc);
|
|
|
|
ifp->if_timer = 0;
|
|
untimeout(rl_tick, sc, sc->rl_stat_ch);
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
#ifdef DEVICE_POLLING
|
|
ether_poll_deregister(ifp);
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
CSR_WRITE_1(sc, RL_COMMAND, 0x00);
|
|
CSR_WRITE_2(sc, RL_IMR, 0x0000);
|
|
bus_dmamap_unload(sc->rl_tag, sc->rl_cdata.rl_rx_dmamap);
|
|
|
|
/*
|
|
* Free the TX list buffers.
|
|
*/
|
|
for (i = 0; i < RL_TX_LIST_CNT; i++) {
|
|
if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
|
|
bus_dmamap_unload(sc->rl_tag,
|
|
sc->rl_cdata.rl_tx_dmamap[i]);
|
|
bus_dmamap_destroy(sc->rl_tag,
|
|
sc->rl_cdata.rl_tx_dmamap[i]);
|
|
m_freem(sc->rl_cdata.rl_tx_chain[i]);
|
|
sc->rl_cdata.rl_tx_chain[i] = NULL;
|
|
CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
|
|
0x0000000);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Device suspend routine. Stop the interface and save some PCI
|
|
* settings in case the BIOS doesn't restore them properly on
|
|
* resume.
|
|
*/
|
|
static int
|
|
rl_suspend(device_t dev)
|
|
{
|
|
struct rl_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
RL_LOCK(sc);
|
|
rl_stop(sc);
|
|
sc->suspended = 1;
|
|
RL_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Device resume routine. Restore some PCI settings in case the BIOS
|
|
* doesn't, re-enable busmastering, and restart the interface if
|
|
* appropriate.
|
|
*/
|
|
static int
|
|
rl_resume(device_t dev)
|
|
{
|
|
struct rl_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
ifp = sc->rl_ifp;
|
|
|
|
RL_LOCK(sc);
|
|
|
|
/* reinitialize interface if necessary */
|
|
if (ifp->if_flags & IFF_UP)
|
|
rl_init_locked(sc);
|
|
|
|
sc->suspended = 0;
|
|
|
|
RL_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
* get confused by errant DMAs when rebooting.
|
|
*/
|
|
static void
|
|
rl_shutdown(device_t dev)
|
|
{
|
|
struct rl_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
RL_LOCK(sc);
|
|
rl_stop(sc);
|
|
RL_UNLOCK(sc);
|
|
}
|