e1b17582f4
if_watchdog/if_timer to NULL/0 when initializing an ifnet. if_alloc() sets those members to NULL/0 already.
7310 lines
209 KiB
C
7310 lines
209 KiB
C
/*-
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer,
|
|
* without modification.
|
|
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
|
|
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
|
|
* redistribution must be conditioned upon including a substantially
|
|
* similar Disclaimer requirement for further binary redistribution.
|
|
*
|
|
* NO WARRANTY
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
|
|
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGES.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* Driver for the Atheros Wireless LAN controller.
|
|
*
|
|
* This software is derived from work of Atsushi Onoe; his contribution
|
|
* is greatly appreciated.
|
|
*/
|
|
|
|
#include "opt_inet.h"
|
|
#include "opt_ath.h"
|
|
#include "opt_wlan.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/taskqueue.h>
|
|
#include <sys/priv.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_llc.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_regdomain.h>
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
#include <net80211/ieee80211_superg.h>
|
|
#endif
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
#include <net80211/ieee80211_tdma.h>
|
|
#endif
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#include <dev/ath/if_athvar.h>
|
|
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
|
|
|
|
#ifdef ATH_TX99_DIAG
|
|
#include <dev/ath/ath_tx99/ath_tx99.h>
|
|
#endif
|
|
|
|
/*
|
|
* ATH_BCBUF determines the number of vap's that can transmit
|
|
* beacons and also (currently) the number of vap's that can
|
|
* have unique mac addresses/bssid. When staggering beacons
|
|
* 4 is probably a good max as otherwise the beacons become
|
|
* very closely spaced and there is limited time for cab q traffic
|
|
* to go out. You can burst beacons instead but that is not good
|
|
* for stations in power save and at some point you really want
|
|
* another radio (and channel).
|
|
*
|
|
* The limit on the number of mac addresses is tied to our use of
|
|
* the U/L bit and tracking addresses in a byte; it would be
|
|
* worthwhile to allow more for applications like proxy sta.
|
|
*/
|
|
CTASSERT(ATH_BCBUF <= 8);
|
|
|
|
/* unaligned little endian access */
|
|
#define LE_READ_2(p) \
|
|
((u_int16_t) \
|
|
((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8)))
|
|
#define LE_READ_4(p) \
|
|
((u_int32_t) \
|
|
((((u_int8_t *)(p))[0] ) | (((u_int8_t *)(p))[1] << 8) | \
|
|
(((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
|
|
|
|
static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
|
|
const char name[IFNAMSIZ], int unit, int opmode,
|
|
int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
|
|
const uint8_t mac[IEEE80211_ADDR_LEN]);
|
|
static void ath_vap_delete(struct ieee80211vap *);
|
|
static void ath_init(void *);
|
|
static void ath_stop_locked(struct ifnet *);
|
|
static void ath_stop(struct ifnet *);
|
|
static void ath_start(struct ifnet *);
|
|
static int ath_reset(struct ifnet *);
|
|
static int ath_reset_vap(struct ieee80211vap *, u_long);
|
|
static int ath_media_change(struct ifnet *);
|
|
static void ath_watchdog(void *);
|
|
static int ath_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void ath_fatal_proc(void *, int);
|
|
static void ath_bmiss_vap(struct ieee80211vap *);
|
|
static void ath_bmiss_proc(void *, int);
|
|
static int ath_keyset(struct ath_softc *, const struct ieee80211_key *,
|
|
struct ieee80211_node *);
|
|
static int ath_key_alloc(struct ieee80211vap *,
|
|
struct ieee80211_key *,
|
|
ieee80211_keyix *, ieee80211_keyix *);
|
|
static int ath_key_delete(struct ieee80211vap *,
|
|
const struct ieee80211_key *);
|
|
static int ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
|
|
const u_int8_t mac[IEEE80211_ADDR_LEN]);
|
|
static void ath_key_update_begin(struct ieee80211vap *);
|
|
static void ath_key_update_end(struct ieee80211vap *);
|
|
static void ath_update_mcast(struct ifnet *);
|
|
static void ath_update_promisc(struct ifnet *);
|
|
static void ath_mode_init(struct ath_softc *);
|
|
static void ath_setslottime(struct ath_softc *);
|
|
static void ath_updateslot(struct ifnet *);
|
|
static int ath_beaconq_setup(struct ath_hal *);
|
|
static int ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
|
|
static void ath_beacon_update(struct ieee80211vap *, int item);
|
|
static void ath_beacon_setup(struct ath_softc *, struct ath_buf *);
|
|
static void ath_beacon_proc(void *, int);
|
|
static struct ath_buf *ath_beacon_generate(struct ath_softc *,
|
|
struct ieee80211vap *);
|
|
static void ath_bstuck_proc(void *, int);
|
|
static void ath_beacon_return(struct ath_softc *, struct ath_buf *);
|
|
static void ath_beacon_free(struct ath_softc *);
|
|
static void ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
|
|
static void ath_descdma_cleanup(struct ath_softc *sc,
|
|
struct ath_descdma *, ath_bufhead *);
|
|
static int ath_desc_alloc(struct ath_softc *);
|
|
static void ath_desc_free(struct ath_softc *);
|
|
static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
|
|
const uint8_t [IEEE80211_ADDR_LEN]);
|
|
static void ath_node_free(struct ieee80211_node *);
|
|
static void ath_node_getsignal(const struct ieee80211_node *,
|
|
int8_t *, int8_t *);
|
|
static int ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
|
|
static void ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
|
|
int subtype, int rssi, int nf);
|
|
static void ath_setdefantenna(struct ath_softc *, u_int);
|
|
static void ath_rx_proc(void *, int);
|
|
static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
|
|
static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
|
|
static int ath_tx_setup(struct ath_softc *, int, int);
|
|
static int ath_wme_update(struct ieee80211com *);
|
|
static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
|
|
static void ath_tx_cleanup(struct ath_softc *);
|
|
static void ath_freetx(struct mbuf *);
|
|
static int ath_tx_start(struct ath_softc *, struct ieee80211_node *,
|
|
struct ath_buf *, struct mbuf *);
|
|
static void ath_tx_proc_q0(void *, int);
|
|
static void ath_tx_proc_q0123(void *, int);
|
|
static void ath_tx_proc(void *, int);
|
|
static void ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
|
|
static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
|
|
static void ath_draintxq(struct ath_softc *);
|
|
static void ath_stoprecv(struct ath_softc *);
|
|
static int ath_startrecv(struct ath_softc *);
|
|
static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
|
|
static void ath_scan_start(struct ieee80211com *);
|
|
static void ath_scan_end(struct ieee80211com *);
|
|
static void ath_set_channel(struct ieee80211com *);
|
|
static void ath_calibrate(void *);
|
|
static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
|
|
static void ath_setup_stationkey(struct ieee80211_node *);
|
|
static void ath_newassoc(struct ieee80211_node *, int);
|
|
static int ath_setregdomain(struct ieee80211com *,
|
|
struct ieee80211_regdomain *, int,
|
|
struct ieee80211_channel []);
|
|
static void ath_getradiocaps(struct ieee80211com *, int, int *,
|
|
struct ieee80211_channel []);
|
|
static int ath_getchannels(struct ath_softc *);
|
|
static void ath_led_event(struct ath_softc *, int);
|
|
|
|
static int ath_rate_setup(struct ath_softc *, u_int mode);
|
|
static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
|
|
|
|
static void ath_sysctlattach(struct ath_softc *);
|
|
static int ath_raw_xmit(struct ieee80211_node *,
|
|
struct mbuf *, const struct ieee80211_bpf_params *);
|
|
static void ath_announce(struct ath_softc *);
|
|
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
|
|
u_int32_t bintval);
|
|
static void ath_tdma_bintvalsetup(struct ath_softc *sc,
|
|
const struct ieee80211_tdma_state *tdma);
|
|
static void ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
|
|
static void ath_tdma_update(struct ieee80211_node *ni,
|
|
const struct ieee80211_tdma_param *tdma, int);
|
|
static void ath_tdma_beacon_send(struct ath_softc *sc,
|
|
struct ieee80211vap *vap);
|
|
|
|
static __inline void
|
|
ath_hal_setcca(struct ath_hal *ah, int ena)
|
|
{
|
|
/*
|
|
* NB: fill me in; this is not provided by default because disabling
|
|
* CCA in most locales violates regulatory.
|
|
*/
|
|
}
|
|
|
|
static __inline int
|
|
ath_hal_getcca(struct ath_hal *ah)
|
|
{
|
|
u_int32_t diag;
|
|
if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
|
|
return 1;
|
|
return ((diag & 0x500000) == 0);
|
|
}
|
|
|
|
#define TDMA_EP_MULTIPLIER (1<<10) /* pow2 to optimize out * and / */
|
|
#define TDMA_LPF_LEN 6
|
|
#define TDMA_DUMMY_MARKER 0x127
|
|
#define TDMA_EP_MUL(x, mul) ((x) * (mul))
|
|
#define TDMA_IN(x) (TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
|
|
#define TDMA_LPF(x, y, len) \
|
|
((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
|
|
#define TDMA_SAMPLE(x, y) do { \
|
|
x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN); \
|
|
} while (0)
|
|
#define TDMA_EP_RND(x,mul) \
|
|
((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
|
|
#define TDMA_AVG(x) TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
|
|
#endif /* IEEE80211_SUPPORT_TDMA */
|
|
|
|
SYSCTL_DECL(_hw_ath);
|
|
|
|
/* XXX validate sysctl values */
|
|
static int ath_longcalinterval = 30; /* long cals every 30 secs */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
|
|
0, "long chip calibration interval (secs)");
|
|
static int ath_shortcalinterval = 100; /* short cals every 100 ms */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
|
|
0, "short chip calibration interval (msecs)");
|
|
static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
|
|
0, "reset chip calibration results (secs)");
|
|
|
|
static int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
|
|
0, "rx buffers allocated");
|
|
TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
|
|
static int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
|
|
0, "tx buffers allocated");
|
|
TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
|
|
|
|
static int ath_bstuck_threshold = 4; /* max missed beacons */
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
|
|
0, "max missed beacon xmits before chip reset");
|
|
|
|
#ifdef ATH_DEBUG
|
|
enum {
|
|
ATH_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
|
|
ATH_DEBUG_XMIT_DESC = 0x00000002, /* xmit descriptors */
|
|
ATH_DEBUG_RECV = 0x00000004, /* basic recv operation */
|
|
ATH_DEBUG_RECV_DESC = 0x00000008, /* recv descriptors */
|
|
ATH_DEBUG_RATE = 0x00000010, /* rate control */
|
|
ATH_DEBUG_RESET = 0x00000020, /* reset processing */
|
|
ATH_DEBUG_MODE = 0x00000040, /* mode init/setup */
|
|
ATH_DEBUG_BEACON = 0x00000080, /* beacon handling */
|
|
ATH_DEBUG_WATCHDOG = 0x00000100, /* watchdog timeout */
|
|
ATH_DEBUG_INTR = 0x00001000, /* ISR */
|
|
ATH_DEBUG_TX_PROC = 0x00002000, /* tx ISR proc */
|
|
ATH_DEBUG_RX_PROC = 0x00004000, /* rx ISR proc */
|
|
ATH_DEBUG_BEACON_PROC = 0x00008000, /* beacon ISR proc */
|
|
ATH_DEBUG_CALIBRATE = 0x00010000, /* periodic calibration */
|
|
ATH_DEBUG_KEYCACHE = 0x00020000, /* key cache management */
|
|
ATH_DEBUG_STATE = 0x00040000, /* 802.11 state transitions */
|
|
ATH_DEBUG_NODE = 0x00080000, /* node management */
|
|
ATH_DEBUG_LED = 0x00100000, /* led management */
|
|
ATH_DEBUG_FF = 0x00200000, /* fast frames */
|
|
ATH_DEBUG_DFS = 0x00400000, /* DFS processing */
|
|
ATH_DEBUG_TDMA = 0x00800000, /* TDMA processing */
|
|
ATH_DEBUG_TDMA_TIMER = 0x01000000, /* TDMA timer processing */
|
|
ATH_DEBUG_REGDOMAIN = 0x02000000, /* regulatory processing */
|
|
ATH_DEBUG_FATAL = 0x80000000, /* fatal errors */
|
|
ATH_DEBUG_ANY = 0xffffffff
|
|
};
|
|
static int ath_debug = 0;
|
|
SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
|
|
0, "control debugging printfs");
|
|
TUNABLE_INT("hw.ath.debug", &ath_debug);
|
|
|
|
#define IFF_DUMPPKTS(sc, m) \
|
|
((sc->sc_debug & (m)) || \
|
|
(sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
|
|
#define DPRINTF(sc, m, fmt, ...) do { \
|
|
if (sc->sc_debug & (m)) \
|
|
printf(fmt, __VA_ARGS__); \
|
|
} while (0)
|
|
#define KEYPRINTF(sc, ix, hk, mac) do { \
|
|
if (sc->sc_debug & ATH_DEBUG_KEYCACHE) \
|
|
ath_keyprint(sc, __func__, ix, hk, mac); \
|
|
} while (0)
|
|
static void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf,
|
|
u_int ix, int);
|
|
static void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf,
|
|
u_int qnum, u_int ix, int done);
|
|
#else
|
|
#define IFF_DUMPPKTS(sc, m) \
|
|
((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
|
|
#define DPRINTF(sc, m, fmt, ...) do { \
|
|
(void) sc; \
|
|
} while (0)
|
|
#define KEYPRINTF(sc, k, ix, mac) do { \
|
|
(void) sc; \
|
|
} while (0)
|
|
#endif
|
|
|
|
MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
|
|
|
|
int
|
|
ath_attach(u_int16_t devid, struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ieee80211com *ic;
|
|
struct ath_hal *ah = NULL;
|
|
HAL_STATUS status;
|
|
int error = 0, i;
|
|
u_int wmodes;
|
|
uint8_t macaddr[IEEE80211_ADDR_LEN];
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
|
|
|
|
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
|
|
if (ifp == NULL) {
|
|
device_printf(sc->sc_dev, "can not if_alloc()\n");
|
|
error = ENOSPC;
|
|
goto bad;
|
|
}
|
|
ic = ifp->if_l2com;
|
|
|
|
/* set these up early for if_printf use */
|
|
if_initname(ifp, device_get_name(sc->sc_dev),
|
|
device_get_unit(sc->sc_dev));
|
|
|
|
ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
|
|
if (ah == NULL) {
|
|
if_printf(ifp, "unable to attach hardware; HAL status %u\n",
|
|
status);
|
|
error = ENXIO;
|
|
goto bad;
|
|
}
|
|
sc->sc_ah = ah;
|
|
sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
|
|
#ifdef ATH_DEBUG
|
|
sc->sc_debug = ath_debug;
|
|
#endif
|
|
|
|
/*
|
|
* Check if the MAC has multi-rate retry support.
|
|
* We do this by trying to setup a fake extended
|
|
* descriptor. MAC's that don't have support will
|
|
* return false w/o doing anything. MAC's that do
|
|
* support it will return true w/o doing anything.
|
|
*/
|
|
sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
|
|
|
|
/*
|
|
* Check if the device has hardware counters for PHY
|
|
* errors. If so we need to enable the MIB interrupt
|
|
* so we can act on stat triggers.
|
|
*/
|
|
if (ath_hal_hwphycounters(ah))
|
|
sc->sc_needmib = 1;
|
|
|
|
/*
|
|
* Get the hardware key cache size.
|
|
*/
|
|
sc->sc_keymax = ath_hal_keycachesize(ah);
|
|
if (sc->sc_keymax > ATH_KEYMAX) {
|
|
if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
|
|
ATH_KEYMAX, sc->sc_keymax);
|
|
sc->sc_keymax = ATH_KEYMAX;
|
|
}
|
|
/*
|
|
* Reset the key cache since some parts do not
|
|
* reset the contents on initial power up.
|
|
*/
|
|
for (i = 0; i < sc->sc_keymax; i++)
|
|
ath_hal_keyreset(ah, i);
|
|
|
|
/*
|
|
* Collect the default channel list.
|
|
*/
|
|
error = ath_getchannels(sc);
|
|
if (error != 0)
|
|
goto bad;
|
|
|
|
/*
|
|
* Setup rate tables for all potential media types.
|
|
*/
|
|
ath_rate_setup(sc, IEEE80211_MODE_11A);
|
|
ath_rate_setup(sc, IEEE80211_MODE_11B);
|
|
ath_rate_setup(sc, IEEE80211_MODE_11G);
|
|
ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
|
|
ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
|
|
ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
|
|
ath_rate_setup(sc, IEEE80211_MODE_11NA);
|
|
ath_rate_setup(sc, IEEE80211_MODE_11NG);
|
|
ath_rate_setup(sc, IEEE80211_MODE_HALF);
|
|
ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
|
|
|
|
/* NB: setup here so ath_rate_update is happy */
|
|
ath_setcurmode(sc, IEEE80211_MODE_11A);
|
|
|
|
/*
|
|
* Allocate tx+rx descriptors and populate the lists.
|
|
*/
|
|
error = ath_desc_alloc(sc);
|
|
if (error != 0) {
|
|
if_printf(ifp, "failed to allocate descriptors: %d\n", error);
|
|
goto bad;
|
|
}
|
|
callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
|
|
callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
|
|
|
|
ATH_TXBUF_LOCK_INIT(sc);
|
|
|
|
sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
|
|
taskqueue_thread_enqueue, &sc->sc_tq);
|
|
taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
|
|
"%s taskq", ifp->if_xname);
|
|
|
|
TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
|
|
TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
|
|
TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
|
|
|
|
/*
|
|
* Allocate hardware transmit queues: one queue for
|
|
* beacon frames and one data queue for each QoS
|
|
* priority. Note that the hal handles reseting
|
|
* these queues at the needed time.
|
|
*
|
|
* XXX PS-Poll
|
|
*/
|
|
sc->sc_bhalq = ath_beaconq_setup(ah);
|
|
if (sc->sc_bhalq == (u_int) -1) {
|
|
if_printf(ifp, "unable to setup a beacon xmit queue!\n");
|
|
error = EIO;
|
|
goto bad2;
|
|
}
|
|
sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
|
|
if (sc->sc_cabq == NULL) {
|
|
if_printf(ifp, "unable to setup CAB xmit queue!\n");
|
|
error = EIO;
|
|
goto bad2;
|
|
}
|
|
/* NB: insure BK queue is the lowest priority h/w queue */
|
|
if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
|
|
if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
|
|
ieee80211_wme_acnames[WME_AC_BK]);
|
|
error = EIO;
|
|
goto bad2;
|
|
}
|
|
if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
|
|
!ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
|
|
!ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
|
|
/*
|
|
* Not enough hardware tx queues to properly do WME;
|
|
* just punt and assign them all to the same h/w queue.
|
|
* We could do a better job of this if, for example,
|
|
* we allocate queues when we switch from station to
|
|
* AP mode.
|
|
*/
|
|
if (sc->sc_ac2q[WME_AC_VI] != NULL)
|
|
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
|
|
if (sc->sc_ac2q[WME_AC_BE] != NULL)
|
|
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
|
|
sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
|
|
sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
|
|
sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
|
|
}
|
|
|
|
/*
|
|
* Special case certain configurations. Note the
|
|
* CAB queue is handled by these specially so don't
|
|
* include them when checking the txq setup mask.
|
|
*/
|
|
switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
|
|
case 0x01:
|
|
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
|
|
break;
|
|
case 0x0f:
|
|
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
|
|
break;
|
|
default:
|
|
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Setup rate control. Some rate control modules
|
|
* call back to change the anntena state so expose
|
|
* the necessary entry points.
|
|
* XXX maybe belongs in struct ath_ratectrl?
|
|
*/
|
|
sc->sc_setdefantenna = ath_setdefantenna;
|
|
sc->sc_rc = ath_rate_attach(sc);
|
|
if (sc->sc_rc == NULL) {
|
|
error = EIO;
|
|
goto bad2;
|
|
}
|
|
|
|
sc->sc_blinking = 0;
|
|
sc->sc_ledstate = 1;
|
|
sc->sc_ledon = 0; /* low true */
|
|
sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
|
|
callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
|
|
/*
|
|
* Auto-enable soft led processing for IBM cards and for
|
|
* 5211 minipci cards. Users can also manually enable/disable
|
|
* support with a sysctl.
|
|
*/
|
|
sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
|
|
if (sc->sc_softled) {
|
|
ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
|
|
HAL_GPIO_MUX_MAC_NETWORK_LED);
|
|
ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
|
|
}
|
|
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
|
|
ifp->if_start = ath_start;
|
|
ifp->if_ioctl = ath_ioctl;
|
|
ifp->if_init = ath_init;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
|
|
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
ic->ic_ifp = ifp;
|
|
/* XXX not right but it's not used anywhere important */
|
|
ic->ic_phytype = IEEE80211_T_OFDM;
|
|
ic->ic_opmode = IEEE80211_M_STA;
|
|
ic->ic_caps =
|
|
IEEE80211_C_STA /* station mode */
|
|
| IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
|
|
| IEEE80211_C_HOSTAP /* hostap mode */
|
|
| IEEE80211_C_MONITOR /* monitor mode */
|
|
| IEEE80211_C_AHDEMO /* adhoc demo mode */
|
|
| IEEE80211_C_WDS /* 4-address traffic works */
|
|
| IEEE80211_C_MBSS /* mesh point link mode */
|
|
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
|
|
| IEEE80211_C_SHSLOT /* short slot time supported */
|
|
| IEEE80211_C_WPA /* capable of WPA1+WPA2 */
|
|
| IEEE80211_C_BGSCAN /* capable of bg scanning */
|
|
| IEEE80211_C_TXFRAG /* handle tx frags */
|
|
;
|
|
/*
|
|
* Query the hal to figure out h/w crypto support.
|
|
*/
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
|
|
ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
|
|
ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
|
|
ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
|
|
ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
|
|
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
|
|
/*
|
|
* Check if h/w does the MIC and/or whether the
|
|
* separate key cache entries are required to
|
|
* handle both tx+rx MIC keys.
|
|
*/
|
|
if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
|
|
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
|
|
/*
|
|
* If the h/w supports storing tx+rx MIC keys
|
|
* in one cache slot automatically enable use.
|
|
*/
|
|
if (ath_hal_hastkipsplit(ah) ||
|
|
!ath_hal_settkipsplit(ah, AH_FALSE))
|
|
sc->sc_splitmic = 1;
|
|
/*
|
|
* If the h/w can do TKIP MIC together with WME then
|
|
* we use it; otherwise we force the MIC to be done
|
|
* in software by the net80211 layer.
|
|
*/
|
|
if (ath_hal_haswmetkipmic(ah))
|
|
sc->sc_wmetkipmic = 1;
|
|
}
|
|
sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
|
|
sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
|
|
/*
|
|
* Mark key cache slots associated with global keys
|
|
* as in use. If we knew TKIP was not to be used we
|
|
* could leave the +32, +64, and +32+64 slots free.
|
|
*/
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
|
|
setbit(sc->sc_keymap, i);
|
|
setbit(sc->sc_keymap, i+64);
|
|
if (sc->sc_splitmic) {
|
|
setbit(sc->sc_keymap, i+32);
|
|
setbit(sc->sc_keymap, i+32+64);
|
|
}
|
|
}
|
|
/*
|
|
* TPC support can be done either with a global cap or
|
|
* per-packet support. The latter is not available on
|
|
* all parts. We're a bit pedantic here as all parts
|
|
* support a global cap.
|
|
*/
|
|
if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
|
|
ic->ic_caps |= IEEE80211_C_TXPMGT;
|
|
|
|
/*
|
|
* Mark WME capability only if we have sufficient
|
|
* hardware queues to do proper priority scheduling.
|
|
*/
|
|
if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
|
|
ic->ic_caps |= IEEE80211_C_WME;
|
|
/*
|
|
* Check for misc other capabilities.
|
|
*/
|
|
if (ath_hal_hasbursting(ah))
|
|
ic->ic_caps |= IEEE80211_C_BURST;
|
|
sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
|
|
sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
|
|
sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
|
|
if (ath_hal_hasfastframes(ah))
|
|
ic->ic_caps |= IEEE80211_C_FF;
|
|
wmodes = ath_hal_getwirelessmodes(ah);
|
|
if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
|
|
ic->ic_caps |= IEEE80211_C_TURBOP;
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (ath_hal_macversion(ah) > 0x78) {
|
|
ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
|
|
ic->ic_tdma_update = ath_tdma_update;
|
|
}
|
|
#endif
|
|
/*
|
|
* Indicate we need the 802.11 header padded to a
|
|
* 32-bit boundary for 4-address and QoS frames.
|
|
*/
|
|
ic->ic_flags |= IEEE80211_F_DATAPAD;
|
|
|
|
/*
|
|
* Query the hal about antenna support.
|
|
*/
|
|
sc->sc_defant = ath_hal_getdefantenna(ah);
|
|
|
|
/*
|
|
* Not all chips have the VEOL support we want to
|
|
* use with IBSS beacons; check here for it.
|
|
*/
|
|
sc->sc_hasveol = ath_hal_hasveol(ah);
|
|
|
|
/* get mac address from hardware */
|
|
ath_hal_getmac(ah, macaddr);
|
|
if (sc->sc_hasbmask)
|
|
ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
|
|
|
|
/* NB: used to size node table key mapping array */
|
|
ic->ic_max_keyix = sc->sc_keymax;
|
|
/* call MI attach routine. */
|
|
ieee80211_ifattach(ic, macaddr);
|
|
ic->ic_setregdomain = ath_setregdomain;
|
|
ic->ic_getradiocaps = ath_getradiocaps;
|
|
sc->sc_opmode = HAL_M_STA;
|
|
|
|
/* override default methods */
|
|
ic->ic_newassoc = ath_newassoc;
|
|
ic->ic_updateslot = ath_updateslot;
|
|
ic->ic_wme.wme_update = ath_wme_update;
|
|
ic->ic_vap_create = ath_vap_create;
|
|
ic->ic_vap_delete = ath_vap_delete;
|
|
ic->ic_raw_xmit = ath_raw_xmit;
|
|
ic->ic_update_mcast = ath_update_mcast;
|
|
ic->ic_update_promisc = ath_update_promisc;
|
|
ic->ic_node_alloc = ath_node_alloc;
|
|
sc->sc_node_free = ic->ic_node_free;
|
|
ic->ic_node_free = ath_node_free;
|
|
ic->ic_node_getsignal = ath_node_getsignal;
|
|
ic->ic_scan_start = ath_scan_start;
|
|
ic->ic_scan_end = ath_scan_end;
|
|
ic->ic_set_channel = ath_set_channel;
|
|
|
|
ieee80211_radiotap_attach(ic,
|
|
&sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
|
|
ATH_TX_RADIOTAP_PRESENT,
|
|
&sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
|
|
ATH_RX_RADIOTAP_PRESENT);
|
|
|
|
/*
|
|
* Setup dynamic sysctl's now that country code and
|
|
* regdomain are available from the hal.
|
|
*/
|
|
ath_sysctlattach(sc);
|
|
|
|
if (bootverbose)
|
|
ieee80211_announce(ic);
|
|
ath_announce(sc);
|
|
return 0;
|
|
bad2:
|
|
ath_tx_cleanup(sc);
|
|
ath_desc_free(sc);
|
|
bad:
|
|
if (ah)
|
|
ath_hal_detach(ah);
|
|
if (ifp != NULL)
|
|
if_free(ifp);
|
|
sc->sc_invalid = 1;
|
|
return error;
|
|
}
|
|
|
|
int
|
|
ath_detach(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
|
|
__func__, ifp->if_flags);
|
|
|
|
/*
|
|
* NB: the order of these is important:
|
|
* o stop the chip so no more interrupts will fire
|
|
* o call the 802.11 layer before detaching the hal to
|
|
* insure callbacks into the driver to delete global
|
|
* key cache entries can be handled
|
|
* o free the taskqueue which drains any pending tasks
|
|
* o reclaim the tx queue data structures after calling
|
|
* the 802.11 layer as we'll get called back to reclaim
|
|
* node state and potentially want to use them
|
|
* o to cleanup the tx queues the hal is called, so detach
|
|
* it last
|
|
* Other than that, it's straightforward...
|
|
*/
|
|
ath_stop(ifp);
|
|
ieee80211_ifdetach(ifp->if_l2com);
|
|
taskqueue_free(sc->sc_tq);
|
|
#ifdef ATH_TX99_DIAG
|
|
if (sc->sc_tx99 != NULL)
|
|
sc->sc_tx99->detach(sc->sc_tx99);
|
|
#endif
|
|
ath_rate_detach(sc->sc_rc);
|
|
ath_desc_free(sc);
|
|
ath_tx_cleanup(sc);
|
|
ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */
|
|
if_free(ifp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* MAC address handling for multiple BSS on the same radio.
|
|
* The first vap uses the MAC address from the EEPROM. For
|
|
* subsequent vap's we set the U/L bit (bit 1) in the MAC
|
|
* address and use the next six bits as an index.
|
|
*/
|
|
static void
|
|
assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
|
|
{
|
|
int i;
|
|
|
|
if (clone && sc->sc_hasbmask) {
|
|
/* NB: we only do this if h/w supports multiple bssid */
|
|
for (i = 0; i < 8; i++)
|
|
if ((sc->sc_bssidmask & (1<<i)) == 0)
|
|
break;
|
|
if (i != 0)
|
|
mac[0] |= (i << 2)|0x2;
|
|
} else
|
|
i = 0;
|
|
sc->sc_bssidmask |= 1<<i;
|
|
sc->sc_hwbssidmask[0] &= ~mac[0];
|
|
if (i == 0)
|
|
sc->sc_nbssid0++;
|
|
}
|
|
|
|
static void
|
|
reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
int i = mac[0] >> 2;
|
|
uint8_t mask;
|
|
|
|
if (i != 0 || --sc->sc_nbssid0 == 0) {
|
|
sc->sc_bssidmask &= ~(1<<i);
|
|
/* recalculate bssid mask from remaining addresses */
|
|
mask = 0xff;
|
|
for (i = 1; i < 8; i++)
|
|
if (sc->sc_bssidmask & (1<<i))
|
|
mask &= ~((i<<2)|0x2);
|
|
sc->sc_hwbssidmask[0] |= mask;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Assign a beacon xmit slot. We try to space out
|
|
* assignments so when beacons are staggered the
|
|
* traffic coming out of the cab q has maximal time
|
|
* to go out before the next beacon is scheduled.
|
|
*/
|
|
static int
|
|
assign_bslot(struct ath_softc *sc)
|
|
{
|
|
u_int slot, free;
|
|
|
|
free = 0;
|
|
for (slot = 0; slot < ATH_BCBUF; slot++)
|
|
if (sc->sc_bslot[slot] == NULL) {
|
|
if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
|
|
sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
|
|
return slot;
|
|
free = slot;
|
|
/* NB: keep looking for a double slot */
|
|
}
|
|
return free;
|
|
}
|
|
|
|
static struct ieee80211vap *
|
|
ath_vap_create(struct ieee80211com *ic,
|
|
const char name[IFNAMSIZ], int unit, int opmode, int flags,
|
|
const uint8_t bssid[IEEE80211_ADDR_LEN],
|
|
const uint8_t mac0[IEEE80211_ADDR_LEN])
|
|
{
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
struct ath_vap *avp;
|
|
struct ieee80211vap *vap;
|
|
uint8_t mac[IEEE80211_ADDR_LEN];
|
|
int ic_opmode, needbeacon, error;
|
|
|
|
avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
|
|
M_80211_VAP, M_WAITOK | M_ZERO);
|
|
needbeacon = 0;
|
|
IEEE80211_ADDR_COPY(mac, mac0);
|
|
|
|
ATH_LOCK(sc);
|
|
ic_opmode = opmode; /* default to opmode of new vap */
|
|
switch (opmode) {
|
|
case IEEE80211_M_STA:
|
|
if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */
|
|
device_printf(sc->sc_dev, "only 1 sta vap supported\n");
|
|
goto bad;
|
|
}
|
|
if (sc->sc_nvaps) {
|
|
/*
|
|
* With multiple vaps we must fall back
|
|
* to s/w beacon miss handling.
|
|
*/
|
|
flags |= IEEE80211_CLONE_NOBEACONS;
|
|
}
|
|
if (flags & IEEE80211_CLONE_NOBEACONS) {
|
|
/*
|
|
* Station mode w/o beacons are implemented w/ AP mode.
|
|
*/
|
|
ic_opmode = IEEE80211_M_HOSTAP;
|
|
}
|
|
break;
|
|
case IEEE80211_M_IBSS:
|
|
if (sc->sc_nvaps != 0) { /* XXX only 1 for now */
|
|
device_printf(sc->sc_dev,
|
|
"only 1 ibss vap supported\n");
|
|
goto bad;
|
|
}
|
|
needbeacon = 1;
|
|
break;
|
|
case IEEE80211_M_AHDEMO:
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (flags & IEEE80211_CLONE_TDMA) {
|
|
if (sc->sc_nvaps != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"only 1 tdma vap supported\n");
|
|
goto bad;
|
|
}
|
|
needbeacon = 1;
|
|
flags |= IEEE80211_CLONE_NOBEACONS;
|
|
}
|
|
/* fall thru... */
|
|
#endif
|
|
case IEEE80211_M_MONITOR:
|
|
if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
|
|
/*
|
|
* Adopt existing mode. Adding a monitor or ahdemo
|
|
* vap to an existing configuration is of dubious
|
|
* value but should be ok.
|
|
*/
|
|
/* XXX not right for monitor mode */
|
|
ic_opmode = ic->ic_opmode;
|
|
}
|
|
break;
|
|
case IEEE80211_M_HOSTAP:
|
|
case IEEE80211_M_MBSS:
|
|
needbeacon = 1;
|
|
break;
|
|
case IEEE80211_M_WDS:
|
|
if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
|
|
device_printf(sc->sc_dev,
|
|
"wds not supported in sta mode\n");
|
|
goto bad;
|
|
}
|
|
/*
|
|
* Silently remove any request for a unique
|
|
* bssid; WDS vap's always share the local
|
|
* mac address.
|
|
*/
|
|
flags &= ~IEEE80211_CLONE_BSSID;
|
|
if (sc->sc_nvaps == 0)
|
|
ic_opmode = IEEE80211_M_HOSTAP;
|
|
else
|
|
ic_opmode = ic->ic_opmode;
|
|
break;
|
|
default:
|
|
device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
|
|
goto bad;
|
|
}
|
|
/*
|
|
* Check that a beacon buffer is available; the code below assumes it.
|
|
*/
|
|
if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
|
|
device_printf(sc->sc_dev, "no beacon buffer available\n");
|
|
goto bad;
|
|
}
|
|
|
|
/* STA, AHDEMO? */
|
|
if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
|
|
assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
|
|
ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
|
|
}
|
|
|
|
vap = &avp->av_vap;
|
|
/* XXX can't hold mutex across if_alloc */
|
|
ATH_UNLOCK(sc);
|
|
error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
|
|
bssid, mac);
|
|
ATH_LOCK(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev, "%s: error %d creating vap\n",
|
|
__func__, error);
|
|
goto bad2;
|
|
}
|
|
|
|
/* h/w crypto support */
|
|
vap->iv_key_alloc = ath_key_alloc;
|
|
vap->iv_key_delete = ath_key_delete;
|
|
vap->iv_key_set = ath_key_set;
|
|
vap->iv_key_update_begin = ath_key_update_begin;
|
|
vap->iv_key_update_end = ath_key_update_end;
|
|
|
|
/* override various methods */
|
|
avp->av_recv_mgmt = vap->iv_recv_mgmt;
|
|
vap->iv_recv_mgmt = ath_recv_mgmt;
|
|
vap->iv_reset = ath_reset_vap;
|
|
vap->iv_update_beacon = ath_beacon_update;
|
|
avp->av_newstate = vap->iv_newstate;
|
|
vap->iv_newstate = ath_newstate;
|
|
avp->av_bmiss = vap->iv_bmiss;
|
|
vap->iv_bmiss = ath_bmiss_vap;
|
|
|
|
avp->av_bslot = -1;
|
|
if (needbeacon) {
|
|
/*
|
|
* Allocate beacon state and setup the q for buffered
|
|
* multicast frames. We know a beacon buffer is
|
|
* available because we checked above.
|
|
*/
|
|
avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
|
|
STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
|
|
if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
|
|
/*
|
|
* Assign the vap to a beacon xmit slot. As above
|
|
* this cannot fail to find a free one.
|
|
*/
|
|
avp->av_bslot = assign_bslot(sc);
|
|
KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
|
|
("beacon slot %u not empty", avp->av_bslot));
|
|
sc->sc_bslot[avp->av_bslot] = vap;
|
|
sc->sc_nbcnvaps++;
|
|
}
|
|
if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
|
|
/*
|
|
* Multple vaps are to transmit beacons and we
|
|
* have h/w support for TSF adjusting; enable
|
|
* use of staggered beacons.
|
|
*/
|
|
sc->sc_stagbeacons = 1;
|
|
}
|
|
ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
|
|
}
|
|
|
|
ic->ic_opmode = ic_opmode;
|
|
if (opmode != IEEE80211_M_WDS) {
|
|
sc->sc_nvaps++;
|
|
if (opmode == IEEE80211_M_STA)
|
|
sc->sc_nstavaps++;
|
|
if (opmode == IEEE80211_M_MBSS)
|
|
sc->sc_nmeshvaps++;
|
|
}
|
|
switch (ic_opmode) {
|
|
case IEEE80211_M_IBSS:
|
|
sc->sc_opmode = HAL_M_IBSS;
|
|
break;
|
|
case IEEE80211_M_STA:
|
|
sc->sc_opmode = HAL_M_STA;
|
|
break;
|
|
case IEEE80211_M_AHDEMO:
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (vap->iv_caps & IEEE80211_C_TDMA) {
|
|
sc->sc_tdma = 1;
|
|
/* NB: disable tsf adjust */
|
|
sc->sc_stagbeacons = 0;
|
|
}
|
|
/*
|
|
* NB: adhoc demo mode is a pseudo mode; to the hal it's
|
|
* just ap mode.
|
|
*/
|
|
/* fall thru... */
|
|
#endif
|
|
case IEEE80211_M_HOSTAP:
|
|
case IEEE80211_M_MBSS:
|
|
sc->sc_opmode = HAL_M_HOSTAP;
|
|
break;
|
|
case IEEE80211_M_MONITOR:
|
|
sc->sc_opmode = HAL_M_MONITOR;
|
|
break;
|
|
default:
|
|
/* XXX should not happen */
|
|
break;
|
|
}
|
|
if (sc->sc_hastsfadd) {
|
|
/*
|
|
* Configure whether or not TSF adjust should be done.
|
|
*/
|
|
ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
|
|
}
|
|
if (flags & IEEE80211_CLONE_NOBEACONS) {
|
|
/*
|
|
* Enable s/w beacon miss handling.
|
|
*/
|
|
sc->sc_swbmiss = 1;
|
|
}
|
|
ATH_UNLOCK(sc);
|
|
|
|
/* complete setup */
|
|
ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
|
|
return vap;
|
|
bad2:
|
|
reclaim_address(sc, mac);
|
|
ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
|
|
bad:
|
|
free(avp, M_80211_VAP);
|
|
ATH_UNLOCK(sc);
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
ath_vap_delete(struct ieee80211vap *vap)
|
|
{
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_vap *avp = ATH_VAP(vap);
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
/*
|
|
* Quiesce the hardware while we remove the vap. In
|
|
* particular we need to reclaim all references to
|
|
* the vap state by any frames pending on the tx queues.
|
|
*/
|
|
ath_hal_intrset(ah, 0); /* disable interrupts */
|
|
ath_draintxq(sc); /* stop xmit side */
|
|
ath_stoprecv(sc); /* stop recv side */
|
|
}
|
|
|
|
ieee80211_vap_detach(vap);
|
|
ATH_LOCK(sc);
|
|
/*
|
|
* Reclaim beacon state. Note this must be done before
|
|
* the vap instance is reclaimed as we may have a reference
|
|
* to it in the buffer for the beacon frame.
|
|
*/
|
|
if (avp->av_bcbuf != NULL) {
|
|
if (avp->av_bslot != -1) {
|
|
sc->sc_bslot[avp->av_bslot] = NULL;
|
|
sc->sc_nbcnvaps--;
|
|
}
|
|
ath_beacon_return(sc, avp->av_bcbuf);
|
|
avp->av_bcbuf = NULL;
|
|
if (sc->sc_nbcnvaps == 0) {
|
|
sc->sc_stagbeacons = 0;
|
|
if (sc->sc_hastsfadd)
|
|
ath_hal_settsfadjust(sc->sc_ah, 0);
|
|
}
|
|
/*
|
|
* Reclaim any pending mcast frames for the vap.
|
|
*/
|
|
ath_tx_draintxq(sc, &avp->av_mcastq);
|
|
ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
|
|
}
|
|
/*
|
|
* Update bookkeeping.
|
|
*/
|
|
if (vap->iv_opmode == IEEE80211_M_STA) {
|
|
sc->sc_nstavaps--;
|
|
if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
|
|
sc->sc_swbmiss = 0;
|
|
} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
|
|
vap->iv_opmode == IEEE80211_M_MBSS) {
|
|
reclaim_address(sc, vap->iv_myaddr);
|
|
ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
|
|
if (vap->iv_opmode == IEEE80211_M_MBSS)
|
|
sc->sc_nmeshvaps--;
|
|
}
|
|
if (vap->iv_opmode != IEEE80211_M_WDS)
|
|
sc->sc_nvaps--;
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
/* TDMA operation ceases when the last vap is destroyed */
|
|
if (sc->sc_tdma && sc->sc_nvaps == 0) {
|
|
sc->sc_tdma = 0;
|
|
sc->sc_swbmiss = 0;
|
|
}
|
|
#endif
|
|
ATH_UNLOCK(sc);
|
|
free(avp, M_80211_VAP);
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
/*
|
|
* Restart rx+tx machines if still running (RUNNING will
|
|
* be reset if we just destroyed the last vap).
|
|
*/
|
|
if (ath_startrecv(sc) != 0)
|
|
if_printf(ifp, "%s: unable to restart recv logic\n",
|
|
__func__);
|
|
if (sc->sc_beacons) { /* restart beacons */
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (sc->sc_tdma)
|
|
ath_tdma_config(sc, NULL);
|
|
else
|
|
#endif
|
|
ath_beacon_config(sc, NULL);
|
|
}
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
}
|
|
}
|
|
|
|
void
|
|
ath_suspend(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
|
|
__func__, ifp->if_flags);
|
|
|
|
sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
|
|
if (ic->ic_opmode == IEEE80211_M_STA)
|
|
ath_stop(ifp);
|
|
else
|
|
ieee80211_suspend_all(ic);
|
|
/*
|
|
* NB: don't worry about putting the chip in low power
|
|
* mode; pci will power off our socket on suspend and
|
|
* cardbus detaches the device.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Reset the key cache since some parts do not reset the
|
|
* contents on resume. First we clear all entries, then
|
|
* re-load keys that the 802.11 layer assumes are setup
|
|
* in h/w.
|
|
*/
|
|
static void
|
|
ath_reset_keycache(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int i;
|
|
|
|
for (i = 0; i < sc->sc_keymax; i++)
|
|
ath_hal_keyreset(ah, i);
|
|
ieee80211_crypto_reload_keys(ic);
|
|
}
|
|
|
|
void
|
|
ath_resume(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_STATUS status;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
|
|
__func__, ifp->if_flags);
|
|
|
|
/*
|
|
* Must reset the chip before we reload the
|
|
* keycache as we were powered down on suspend.
|
|
*/
|
|
ath_hal_reset(ah, sc->sc_opmode,
|
|
sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
|
|
AH_FALSE, &status);
|
|
ath_reset_keycache(sc);
|
|
if (sc->sc_resume_up) {
|
|
if (ic->ic_opmode == IEEE80211_M_STA) {
|
|
ath_init(sc);
|
|
/*
|
|
* Program the beacon registers using the last rx'd
|
|
* beacon frame and enable sync on the next beacon
|
|
* we see. This should handle the case where we
|
|
* wakeup and find the same AP and also the case where
|
|
* we wakeup and need to roam. For the latter we
|
|
* should get bmiss events that trigger a roam.
|
|
*/
|
|
ath_beacon_config(sc, NULL);
|
|
sc->sc_syncbeacon = 1;
|
|
} else
|
|
ieee80211_resume_all(ic);
|
|
}
|
|
if (sc->sc_softled) {
|
|
ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
|
|
HAL_GPIO_MUX_MAC_NETWORK_LED);
|
|
ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
|
|
}
|
|
}
|
|
|
|
void
|
|
ath_shutdown(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
|
|
__func__, ifp->if_flags);
|
|
|
|
ath_stop(ifp);
|
|
/* NB: no point powering down chip as we're about to reboot */
|
|
}
|
|
|
|
/*
|
|
* Interrupt handler. Most of the actual processing is deferred.
|
|
*/
|
|
void
|
|
ath_intr(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_INT status;
|
|
|
|
if (sc->sc_invalid) {
|
|
/*
|
|
* The hardware is not ready/present, don't touch anything.
|
|
* Note this can happen early on if the IRQ is shared.
|
|
*/
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
|
|
return;
|
|
}
|
|
if (!ath_hal_intrpend(ah)) /* shared irq, not for us */
|
|
return;
|
|
if ((ifp->if_flags & IFF_UP) == 0 ||
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
HAL_INT status;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
|
|
__func__, ifp->if_flags);
|
|
ath_hal_getisr(ah, &status); /* clear ISR */
|
|
ath_hal_intrset(ah, 0); /* disable further intr's */
|
|
return;
|
|
}
|
|
/*
|
|
* Figure out the reason(s) for the interrupt. Note
|
|
* that the hal returns a pseudo-ISR that may include
|
|
* bits we haven't explicitly enabled so we mask the
|
|
* value to insure we only process bits we requested.
|
|
*/
|
|
ath_hal_getisr(ah, &status); /* NB: clears ISR too */
|
|
DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
|
|
status &= sc->sc_imask; /* discard unasked for bits */
|
|
if (status & HAL_INT_FATAL) {
|
|
sc->sc_stats.ast_hardware++;
|
|
ath_hal_intrset(ah, 0); /* disable intr's until reset */
|
|
ath_fatal_proc(sc, 0);
|
|
} else {
|
|
if (status & HAL_INT_SWBA) {
|
|
/*
|
|
* Software beacon alert--time to send a beacon.
|
|
* Handle beacon transmission directly; deferring
|
|
* this is too slow to meet timing constraints
|
|
* under load.
|
|
*/
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (sc->sc_tdma) {
|
|
if (sc->sc_tdmaswba == 0) {
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ieee80211vap *vap =
|
|
TAILQ_FIRST(&ic->ic_vaps);
|
|
ath_tdma_beacon_send(sc, vap);
|
|
sc->sc_tdmaswba =
|
|
vap->iv_tdma->tdma_bintval;
|
|
} else
|
|
sc->sc_tdmaswba--;
|
|
} else
|
|
#endif
|
|
{
|
|
ath_beacon_proc(sc, 0);
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
/*
|
|
* Schedule the rx taskq in case there's no
|
|
* traffic so any frames held on the staging
|
|
* queue are aged and potentially flushed.
|
|
*/
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
|
|
#endif
|
|
}
|
|
}
|
|
if (status & HAL_INT_RXEOL) {
|
|
/*
|
|
* NB: the hardware should re-read the link when
|
|
* RXE bit is written, but it doesn't work at
|
|
* least on older hardware revs.
|
|
*/
|
|
sc->sc_stats.ast_rxeol++;
|
|
sc->sc_rxlink = NULL;
|
|
}
|
|
if (status & HAL_INT_TXURN) {
|
|
sc->sc_stats.ast_txurn++;
|
|
/* bump tx trigger level */
|
|
ath_hal_updatetxtriglevel(ah, AH_TRUE);
|
|
}
|
|
if (status & HAL_INT_RX)
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
|
|
if (status & HAL_INT_TX)
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
|
|
if (status & HAL_INT_BMISS) {
|
|
sc->sc_stats.ast_bmiss++;
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
|
|
}
|
|
if (status & HAL_INT_MIB) {
|
|
sc->sc_stats.ast_mib++;
|
|
/*
|
|
* Disable interrupts until we service the MIB
|
|
* interrupt; otherwise it will continue to fire.
|
|
*/
|
|
ath_hal_intrset(ah, 0);
|
|
/*
|
|
* Let the hal handle the event. We assume it will
|
|
* clear whatever condition caused the interrupt.
|
|
*/
|
|
ath_hal_mibevent(ah, &sc->sc_halstats);
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
}
|
|
if (status & HAL_INT_RXORN) {
|
|
/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
|
|
sc->sc_stats.ast_rxorn++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_fatal_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
u_int32_t *state;
|
|
u_int32_t len;
|
|
void *sp;
|
|
|
|
if_printf(ifp, "hardware error; resetting\n");
|
|
/*
|
|
* Fatal errors are unrecoverable. Typically these
|
|
* are caused by DMA errors. Collect h/w state from
|
|
* the hal so we can diagnose what's going on.
|
|
*/
|
|
if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
|
|
KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
|
|
state = sp;
|
|
if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
|
|
state[0], state[1] , state[2], state[3],
|
|
state[4], state[5]);
|
|
}
|
|
ath_reset(ifp);
|
|
}
|
|
|
|
static void
|
|
ath_bmiss_vap(struct ieee80211vap *vap)
|
|
{
|
|
/*
|
|
* Workaround phantom bmiss interrupts by sanity-checking
|
|
* the time of our last rx'd frame. If it is within the
|
|
* beacon miss interval then ignore the interrupt. If it's
|
|
* truly a bmiss we'll get another interrupt soon and that'll
|
|
* be dispatched up for processing. Note this applies only
|
|
* for h/w beacon miss events.
|
|
*/
|
|
if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
|
|
struct ifnet *ifp = vap->iv_ic->ic_ifp;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
u_int64_t lastrx = sc->sc_lastrx;
|
|
u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
|
|
u_int bmisstimeout =
|
|
vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
|
|
__func__, (unsigned long long) tsf,
|
|
(unsigned long long)(tsf - lastrx),
|
|
(unsigned long long) lastrx, bmisstimeout);
|
|
|
|
if (tsf - lastrx <= bmisstimeout) {
|
|
sc->sc_stats.ast_bmiss_phantom++;
|
|
return;
|
|
}
|
|
}
|
|
ATH_VAP(vap)->av_bmiss(vap);
|
|
}
|
|
|
|
static int
|
|
ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
|
|
{
|
|
uint32_t rsize;
|
|
void *sp;
|
|
|
|
if (!ath_hal_getdiagstate(ah, 32, &mask, sizeof(mask), &sp, &rsize))
|
|
return 0;
|
|
KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
|
|
*hangs = *(uint32_t *)sp;
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
ath_bmiss_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
uint32_t hangs;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
|
|
|
|
if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
|
|
if_printf(ifp, "bb hang detected (0x%x), reseting\n", hangs);
|
|
ath_reset(ifp);
|
|
} else
|
|
ieee80211_beacon_miss(ifp->if_l2com);
|
|
}
|
|
|
|
/*
|
|
* Handle TKIP MIC setup to deal hardware that doesn't do MIC
|
|
* calcs together with WME. If necessary disable the crypto
|
|
* hardware and mark the 802.11 state so keys will be setup
|
|
* with the MIC work done in software.
|
|
*/
|
|
static void
|
|
ath_settkipmic(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
|
|
if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
|
|
if (ic->ic_flags & IEEE80211_F_WME) {
|
|
ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
|
|
ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
|
|
} else {
|
|
ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
|
|
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_init(void *arg)
|
|
{
|
|
struct ath_softc *sc = (struct ath_softc *) arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_STATUS status;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
|
|
__func__, ifp->if_flags);
|
|
|
|
ATH_LOCK(sc);
|
|
/*
|
|
* Stop anything previously setup. This is safe
|
|
* whether this is the first time through or not.
|
|
*/
|
|
ath_stop_locked(ifp);
|
|
|
|
/*
|
|
* The basic interface to setting the hardware in a good
|
|
* state is ``reset''. On return the hardware is known to
|
|
* be powered up and with interrupts disabled. This must
|
|
* be followed by initialization of the appropriate bits
|
|
* and then setup of the interrupt mask.
|
|
*/
|
|
ath_settkipmic(sc);
|
|
if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
|
|
if_printf(ifp, "unable to reset hardware; hal status %u\n",
|
|
status);
|
|
ATH_UNLOCK(sc);
|
|
return;
|
|
}
|
|
ath_chan_change(sc, ic->ic_curchan);
|
|
|
|
/*
|
|
* Likewise this is set during reset so update
|
|
* state cached in the driver.
|
|
*/
|
|
sc->sc_diversity = ath_hal_getdiversity(ah);
|
|
sc->sc_lastlongcal = 0;
|
|
sc->sc_resetcal = 1;
|
|
sc->sc_lastcalreset = 0;
|
|
|
|
/*
|
|
* Setup the hardware after reset: the key cache
|
|
* is filled as needed and the receive engine is
|
|
* set going. Frame transmit is handled entirely
|
|
* in the frame output path; there's nothing to do
|
|
* here except setup the interrupt mask.
|
|
*/
|
|
if (ath_startrecv(sc) != 0) {
|
|
if_printf(ifp, "unable to start recv logic\n");
|
|
ATH_UNLOCK(sc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
sc->sc_imask = HAL_INT_RX | HAL_INT_TX
|
|
| HAL_INT_RXEOL | HAL_INT_RXORN
|
|
| HAL_INT_FATAL | HAL_INT_GLOBAL;
|
|
/*
|
|
* Enable MIB interrupts when there are hardware phy counters.
|
|
* Note we only do this (at the moment) for station mode.
|
|
*/
|
|
if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
|
|
sc->sc_imask |= HAL_INT_MIB;
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
|
|
ATH_UNLOCK(sc);
|
|
|
|
#ifdef ATH_TX99_DIAG
|
|
if (sc->sc_tx99 != NULL)
|
|
sc->sc_tx99->start(sc->sc_tx99);
|
|
else
|
|
#endif
|
|
ieee80211_start_all(ic); /* start all vap's */
|
|
}
|
|
|
|
static void
|
|
ath_stop_locked(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
|
|
__func__, sc->sc_invalid, ifp->if_flags);
|
|
|
|
ATH_LOCK_ASSERT(sc);
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
/*
|
|
* Shutdown the hardware and driver:
|
|
* reset 802.11 state machine
|
|
* turn off timers
|
|
* disable interrupts
|
|
* turn off the radio
|
|
* clear transmit machinery
|
|
* clear receive machinery
|
|
* drain and release tx queues
|
|
* reclaim beacon resources
|
|
* power down hardware
|
|
*
|
|
* Note that some of this work is not possible if the
|
|
* hardware is gone (invalid).
|
|
*/
|
|
#ifdef ATH_TX99_DIAG
|
|
if (sc->sc_tx99 != NULL)
|
|
sc->sc_tx99->stop(sc->sc_tx99);
|
|
#endif
|
|
callout_stop(&sc->sc_wd_ch);
|
|
sc->sc_wd_timer = 0;
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
if (!sc->sc_invalid) {
|
|
if (sc->sc_softled) {
|
|
callout_stop(&sc->sc_ledtimer);
|
|
ath_hal_gpioset(ah, sc->sc_ledpin,
|
|
!sc->sc_ledon);
|
|
sc->sc_blinking = 0;
|
|
}
|
|
ath_hal_intrset(ah, 0);
|
|
}
|
|
ath_draintxq(sc);
|
|
if (!sc->sc_invalid) {
|
|
ath_stoprecv(sc);
|
|
ath_hal_phydisable(ah);
|
|
} else
|
|
sc->sc_rxlink = NULL;
|
|
ath_beacon_free(sc); /* XXX not needed */
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_stop(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
|
|
ATH_LOCK(sc);
|
|
ath_stop_locked(ifp);
|
|
ATH_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Reset the hardware w/o losing operational state. This is
|
|
* basically a more efficient way of doing ath_stop, ath_init,
|
|
* followed by state transitions to the current 802.11
|
|
* operational state. Used to recover from various errors and
|
|
* to reset or reload hardware state.
|
|
*/
|
|
static int
|
|
ath_reset(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_STATUS status;
|
|
|
|
ath_hal_intrset(ah, 0); /* disable interrupts */
|
|
ath_draintxq(sc); /* stop xmit side */
|
|
ath_stoprecv(sc); /* stop recv side */
|
|
ath_settkipmic(sc); /* configure TKIP MIC handling */
|
|
/* NB: indicate channel change so we do a full reset */
|
|
if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
|
|
if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
|
|
__func__, status);
|
|
sc->sc_diversity = ath_hal_getdiversity(ah);
|
|
if (ath_startrecv(sc) != 0) /* restart recv */
|
|
if_printf(ifp, "%s: unable to start recv logic\n", __func__);
|
|
/*
|
|
* We may be doing a reset in response to an ioctl
|
|
* that changes the channel so update any state that
|
|
* might change as a result.
|
|
*/
|
|
ath_chan_change(sc, ic->ic_curchan);
|
|
if (sc->sc_beacons) { /* restart beacons */
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (sc->sc_tdma)
|
|
ath_tdma_config(sc, NULL);
|
|
else
|
|
#endif
|
|
ath_beacon_config(sc, NULL);
|
|
}
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
|
|
ath_start(ifp); /* restart xmit */
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
|
|
{
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
switch (cmd) {
|
|
case IEEE80211_IOC_TXPOWER:
|
|
/*
|
|
* If per-packet TPC is enabled, then we have nothing
|
|
* to do; otherwise we need to force the global limit.
|
|
* All this can happen directly; no need to reset.
|
|
*/
|
|
if (!ath_hal_gettpc(ah))
|
|
ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
|
|
return 0;
|
|
}
|
|
return ath_reset(ifp);
|
|
}
|
|
|
|
static struct ath_buf *
|
|
_ath_getbuf_locked(struct ath_softc *sc)
|
|
{
|
|
struct ath_buf *bf;
|
|
|
|
ATH_TXBUF_LOCK_ASSERT(sc);
|
|
|
|
bf = STAILQ_FIRST(&sc->sc_txbuf);
|
|
if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
|
|
STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
|
|
else
|
|
bf = NULL;
|
|
if (bf == NULL) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
|
|
STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
|
|
"out of xmit buffers" : "xmit buffer busy");
|
|
}
|
|
return bf;
|
|
}
|
|
|
|
static struct ath_buf *
|
|
ath_getbuf(struct ath_softc *sc)
|
|
{
|
|
struct ath_buf *bf;
|
|
|
|
ATH_TXBUF_LOCK(sc);
|
|
bf = _ath_getbuf_locked(sc);
|
|
if (bf == NULL) {
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
|
|
sc->sc_stats.ast_tx_qstop++;
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
}
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
return bf;
|
|
}
|
|
|
|
/*
|
|
* Cleanup driver resources when we run out of buffers
|
|
* while processing fragments; return the tx buffers
|
|
* allocated and drop node references.
|
|
*/
|
|
static void
|
|
ath_txfrag_cleanup(struct ath_softc *sc,
|
|
ath_bufhead *frags, struct ieee80211_node *ni)
|
|
{
|
|
struct ath_buf *bf, *next;
|
|
|
|
ATH_TXBUF_LOCK_ASSERT(sc);
|
|
|
|
STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
|
|
/* NB: bf assumed clean */
|
|
STAILQ_REMOVE_HEAD(frags, bf_list);
|
|
STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
|
|
ieee80211_node_decref(ni);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup xmit of a fragmented frame. Allocate a buffer
|
|
* for each frag and bump the node reference count to
|
|
* reflect the held reference to be setup by ath_tx_start.
|
|
*/
|
|
static int
|
|
ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
|
|
struct mbuf *m0, struct ieee80211_node *ni)
|
|
{
|
|
struct mbuf *m;
|
|
struct ath_buf *bf;
|
|
|
|
ATH_TXBUF_LOCK(sc);
|
|
for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
|
|
bf = _ath_getbuf_locked(sc);
|
|
if (bf == NULL) { /* out of buffers, cleanup */
|
|
ath_txfrag_cleanup(sc, frags, ni);
|
|
break;
|
|
}
|
|
ieee80211_node_incref(ni);
|
|
STAILQ_INSERT_TAIL(frags, bf, bf_list);
|
|
}
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
|
|
return !STAILQ_EMPTY(frags);
|
|
}
|
|
|
|
static void
|
|
ath_start(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ieee80211_node *ni;
|
|
struct ath_buf *bf;
|
|
struct mbuf *m, *next;
|
|
ath_bufhead frags;
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
|
|
return;
|
|
for (;;) {
|
|
/*
|
|
* Grab a TX buffer and associated resources.
|
|
*/
|
|
bf = ath_getbuf(sc);
|
|
if (bf == NULL)
|
|
break;
|
|
|
|
IFQ_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == NULL) {
|
|
ATH_TXBUF_LOCK(sc);
|
|
STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
break;
|
|
}
|
|
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
|
|
/*
|
|
* Check for fragmentation. If this frame
|
|
* has been broken up verify we have enough
|
|
* buffers to send all the fragments so all
|
|
* go out or none...
|
|
*/
|
|
STAILQ_INIT(&frags);
|
|
if ((m->m_flags & M_FRAG) &&
|
|
!ath_txfrag_setup(sc, &frags, m, ni)) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: out of txfrag buffers\n", __func__);
|
|
sc->sc_stats.ast_tx_nofrag++;
|
|
ifp->if_oerrors++;
|
|
ath_freetx(m);
|
|
goto bad;
|
|
}
|
|
ifp->if_opackets++;
|
|
nextfrag:
|
|
/*
|
|
* Pass the frame to the h/w for transmission.
|
|
* Fragmented frames have each frag chained together
|
|
* with m_nextpkt. We know there are sufficient ath_buf's
|
|
* to send all the frags because of work done by
|
|
* ath_txfrag_setup. We leave m_nextpkt set while
|
|
* calling ath_tx_start so it can use it to extend the
|
|
* the tx duration to cover the subsequent frag and
|
|
* so it can reclaim all the mbufs in case of an error;
|
|
* ath_tx_start clears m_nextpkt once it commits to
|
|
* handing the frame to the hardware.
|
|
*/
|
|
next = m->m_nextpkt;
|
|
if (ath_tx_start(sc, ni, bf, m)) {
|
|
bad:
|
|
ifp->if_oerrors++;
|
|
reclaim:
|
|
bf->bf_m = NULL;
|
|
bf->bf_node = NULL;
|
|
ATH_TXBUF_LOCK(sc);
|
|
STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
|
|
ath_txfrag_cleanup(sc, &frags, ni);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
if (ni != NULL)
|
|
ieee80211_free_node(ni);
|
|
continue;
|
|
}
|
|
if (next != NULL) {
|
|
/*
|
|
* Beware of state changing between frags.
|
|
* XXX check sta power-save state?
|
|
*/
|
|
if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: flush fragmented packet, state %s\n",
|
|
__func__,
|
|
ieee80211_state_name[ni->ni_vap->iv_state]);
|
|
ath_freetx(next);
|
|
goto reclaim;
|
|
}
|
|
m = next;
|
|
bf = STAILQ_FIRST(&frags);
|
|
KASSERT(bf != NULL, ("no buf for txfrag"));
|
|
STAILQ_REMOVE_HEAD(&frags, bf_list);
|
|
goto nextfrag;
|
|
}
|
|
|
|
sc->sc_wd_timer = 5;
|
|
}
|
|
}
|
|
|
|
static int
|
|
ath_media_change(struct ifnet *ifp)
|
|
{
|
|
int error = ieee80211_media_change(ifp);
|
|
/* NB: only the fixed rate can change and that doesn't need a reset */
|
|
return (error == ENETRESET ? 0 : error);
|
|
}
|
|
|
|
#ifdef ATH_DEBUG
|
|
static void
|
|
ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
|
|
const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
static const char *ciphers[] = {
|
|
"WEP",
|
|
"AES-OCB",
|
|
"AES-CCM",
|
|
"CKIP",
|
|
"TKIP",
|
|
"CLR",
|
|
};
|
|
int i, n;
|
|
|
|
printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
|
|
for (i = 0, n = hk->kv_len; i < n; i++)
|
|
printf("%02x", hk->kv_val[i]);
|
|
printf(" mac %s", ether_sprintf(mac));
|
|
if (hk->kv_type == HAL_CIPHER_TKIP) {
|
|
printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
|
|
for (i = 0; i < sizeof(hk->kv_mic); i++)
|
|
printf("%02x", hk->kv_mic[i]);
|
|
if (!sc->sc_splitmic) {
|
|
printf(" txmic ");
|
|
for (i = 0; i < sizeof(hk->kv_txmic); i++)
|
|
printf("%02x", hk->kv_txmic[i]);
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Set a TKIP key into the hardware. This handles the
|
|
* potential distribution of key state to multiple key
|
|
* cache slots for TKIP.
|
|
*/
|
|
static int
|
|
ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
|
|
HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
#define IEEE80211_KEY_XR (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
|
|
static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
|
|
("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
|
|
if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
|
|
if (sc->sc_splitmic) {
|
|
/*
|
|
* TX key goes at first index, RX key at the rx index.
|
|
* The hal handles the MIC keys at index+64.
|
|
*/
|
|
memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
|
|
KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
|
|
if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
|
|
return 0;
|
|
|
|
memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
|
|
KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
|
|
/* XXX delete tx key on failure? */
|
|
return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
|
|
} else {
|
|
/*
|
|
* Room for both TX+RX MIC keys in one key cache
|
|
* slot, just set key at the first index; the hal
|
|
* will handle the rest.
|
|
*/
|
|
memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
|
|
memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
|
|
KEYPRINTF(sc, k->wk_keyix, hk, mac);
|
|
return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
|
|
}
|
|
} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
|
|
if (sc->sc_splitmic) {
|
|
/*
|
|
* NB: must pass MIC key in expected location when
|
|
* the keycache only holds one MIC key per entry.
|
|
*/
|
|
memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
|
|
} else
|
|
memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
|
|
KEYPRINTF(sc, k->wk_keyix, hk, mac);
|
|
return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
|
|
} else if (k->wk_flags & IEEE80211_KEY_RECV) {
|
|
memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
|
|
KEYPRINTF(sc, k->wk_keyix, hk, mac);
|
|
return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
|
|
}
|
|
return 0;
|
|
#undef IEEE80211_KEY_XR
|
|
}
|
|
|
|
/*
|
|
* Set a net80211 key into the hardware. This handles the
|
|
* potential distribution of key state to multiple key
|
|
* cache slots for TKIP with hardware MIC support.
|
|
*/
|
|
static int
|
|
ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
|
|
struct ieee80211_node *bss)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
static const u_int8_t ciphermap[] = {
|
|
HAL_CIPHER_WEP, /* IEEE80211_CIPHER_WEP */
|
|
HAL_CIPHER_TKIP, /* IEEE80211_CIPHER_TKIP */
|
|
HAL_CIPHER_AES_OCB, /* IEEE80211_CIPHER_AES_OCB */
|
|
HAL_CIPHER_AES_CCM, /* IEEE80211_CIPHER_AES_CCM */
|
|
(u_int8_t) -1, /* 4 is not allocated */
|
|
HAL_CIPHER_CKIP, /* IEEE80211_CIPHER_CKIP */
|
|
HAL_CIPHER_CLR, /* IEEE80211_CIPHER_NONE */
|
|
};
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
const struct ieee80211_cipher *cip = k->wk_cipher;
|
|
u_int8_t gmac[IEEE80211_ADDR_LEN];
|
|
const u_int8_t *mac;
|
|
HAL_KEYVAL hk;
|
|
|
|
memset(&hk, 0, sizeof(hk));
|
|
/*
|
|
* Software crypto uses a "clear key" so non-crypto
|
|
* state kept in the key cache are maintained and
|
|
* so that rx frames have an entry to match.
|
|
*/
|
|
if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
|
|
KASSERT(cip->ic_cipher < N(ciphermap),
|
|
("invalid cipher type %u", cip->ic_cipher));
|
|
hk.kv_type = ciphermap[cip->ic_cipher];
|
|
hk.kv_len = k->wk_keylen;
|
|
memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
|
|
} else
|
|
hk.kv_type = HAL_CIPHER_CLR;
|
|
|
|
if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
|
|
/*
|
|
* Group keys on hardware that supports multicast frame
|
|
* key search use a mac that is the sender's address with
|
|
* the high bit set instead of the app-specified address.
|
|
*/
|
|
IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
|
|
gmac[0] |= 0x80;
|
|
mac = gmac;
|
|
} else
|
|
mac = k->wk_macaddr;
|
|
|
|
if (hk.kv_type == HAL_CIPHER_TKIP &&
|
|
(k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
|
|
return ath_keyset_tkip(sc, k, &hk, mac);
|
|
} else {
|
|
KEYPRINTF(sc, k->wk_keyix, &hk, mac);
|
|
return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
|
|
}
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Allocate tx/rx key slots for TKIP. We allocate two slots for
|
|
* each key, one for decrypt/encrypt and the other for the MIC.
|
|
*/
|
|
static u_int16_t
|
|
key_alloc_2pair(struct ath_softc *sc,
|
|
ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
u_int i, keyix;
|
|
|
|
KASSERT(sc->sc_splitmic, ("key cache !split"));
|
|
/* XXX could optimize */
|
|
for (i = 0; i < N(sc->sc_keymap)/4; i++) {
|
|
u_int8_t b = sc->sc_keymap[i];
|
|
if (b != 0xff) {
|
|
/*
|
|
* One or more slots in this byte are free.
|
|
*/
|
|
keyix = i*NBBY;
|
|
while (b & 1) {
|
|
again:
|
|
keyix++;
|
|
b >>= 1;
|
|
}
|
|
/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
|
|
if (isset(sc->sc_keymap, keyix+32) ||
|
|
isset(sc->sc_keymap, keyix+64) ||
|
|
isset(sc->sc_keymap, keyix+32+64)) {
|
|
/* full pair unavailable */
|
|
/* XXX statistic */
|
|
if (keyix == (i+1)*NBBY) {
|
|
/* no slots were appropriate, advance */
|
|
continue;
|
|
}
|
|
goto again;
|
|
}
|
|
setbit(sc->sc_keymap, keyix);
|
|
setbit(sc->sc_keymap, keyix+64);
|
|
setbit(sc->sc_keymap, keyix+32);
|
|
setbit(sc->sc_keymap, keyix+32+64);
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE,
|
|
"%s: key pair %u,%u %u,%u\n",
|
|
__func__, keyix, keyix+64,
|
|
keyix+32, keyix+32+64);
|
|
*txkeyix = keyix;
|
|
*rxkeyix = keyix+32;
|
|
return 1;
|
|
}
|
|
}
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
|
|
return 0;
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Allocate tx/rx key slots for TKIP. We allocate two slots for
|
|
* each key, one for decrypt/encrypt and the other for the MIC.
|
|
*/
|
|
static u_int16_t
|
|
key_alloc_pair(struct ath_softc *sc,
|
|
ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
u_int i, keyix;
|
|
|
|
KASSERT(!sc->sc_splitmic, ("key cache split"));
|
|
/* XXX could optimize */
|
|
for (i = 0; i < N(sc->sc_keymap)/4; i++) {
|
|
u_int8_t b = sc->sc_keymap[i];
|
|
if (b != 0xff) {
|
|
/*
|
|
* One or more slots in this byte are free.
|
|
*/
|
|
keyix = i*NBBY;
|
|
while (b & 1) {
|
|
again:
|
|
keyix++;
|
|
b >>= 1;
|
|
}
|
|
if (isset(sc->sc_keymap, keyix+64)) {
|
|
/* full pair unavailable */
|
|
/* XXX statistic */
|
|
if (keyix == (i+1)*NBBY) {
|
|
/* no slots were appropriate, advance */
|
|
continue;
|
|
}
|
|
goto again;
|
|
}
|
|
setbit(sc->sc_keymap, keyix);
|
|
setbit(sc->sc_keymap, keyix+64);
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE,
|
|
"%s: key pair %u,%u\n",
|
|
__func__, keyix, keyix+64);
|
|
*txkeyix = *rxkeyix = keyix;
|
|
return 1;
|
|
}
|
|
}
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
|
|
return 0;
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Allocate a single key cache slot.
|
|
*/
|
|
static int
|
|
key_alloc_single(struct ath_softc *sc,
|
|
ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
u_int i, keyix;
|
|
|
|
/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
|
|
for (i = 0; i < N(sc->sc_keymap); i++) {
|
|
u_int8_t b = sc->sc_keymap[i];
|
|
if (b != 0xff) {
|
|
/*
|
|
* One or more slots are free.
|
|
*/
|
|
keyix = i*NBBY;
|
|
while (b & 1)
|
|
keyix++, b >>= 1;
|
|
setbit(sc->sc_keymap, keyix);
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
|
|
__func__, keyix);
|
|
*txkeyix = *rxkeyix = keyix;
|
|
return 1;
|
|
}
|
|
}
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
|
|
return 0;
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Allocate one or more key cache slots for a uniacst key. The
|
|
* key itself is needed only to identify the cipher. For hardware
|
|
* TKIP with split cipher+MIC keys we allocate two key cache slot
|
|
* pairs so that we can setup separate TX and RX MIC keys. Note
|
|
* that the MIC key for a TKIP key at slot i is assumed by the
|
|
* hardware to be at slot i+64. This limits TKIP keys to the first
|
|
* 64 entries.
|
|
*/
|
|
static int
|
|
ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
|
|
ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
|
|
{
|
|
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
|
|
|
|
/*
|
|
* Group key allocation must be handled specially for
|
|
* parts that do not support multicast key cache search
|
|
* functionality. For those parts the key id must match
|
|
* the h/w key index so lookups find the right key. On
|
|
* parts w/ the key search facility we install the sender's
|
|
* mac address (with the high bit set) and let the hardware
|
|
* find the key w/o using the key id. This is preferred as
|
|
* it permits us to support multiple users for adhoc and/or
|
|
* multi-station operation.
|
|
*/
|
|
if (k->wk_keyix != IEEE80211_KEYIX_NONE || /* global key */
|
|
((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey)) {
|
|
if (!(&vap->iv_nw_keys[0] <= k &&
|
|
k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
|
|
/* should not happen */
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE,
|
|
"%s: bogus group key\n", __func__);
|
|
return 0;
|
|
}
|
|
/*
|
|
* XXX we pre-allocate the global keys so
|
|
* have no way to check if they've already been allocated.
|
|
*/
|
|
*keyix = *rxkeyix = k - vap->iv_nw_keys;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* We allocate two pair for TKIP when using the h/w to do
|
|
* the MIC. For everything else, including software crypto,
|
|
* we allocate a single entry. Note that s/w crypto requires
|
|
* a pass-through slot on the 5211 and 5212. The 5210 does
|
|
* not support pass-through cache entries and we map all
|
|
* those requests to slot 0.
|
|
*/
|
|
if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
|
|
return key_alloc_single(sc, keyix, rxkeyix);
|
|
} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
|
|
(k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
|
|
if (sc->sc_splitmic)
|
|
return key_alloc_2pair(sc, keyix, rxkeyix);
|
|
else
|
|
return key_alloc_pair(sc, keyix, rxkeyix);
|
|
} else {
|
|
return key_alloc_single(sc, keyix, rxkeyix);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Delete an entry in the key cache allocated by ath_key_alloc.
|
|
*/
|
|
static int
|
|
ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
|
|
{
|
|
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
const struct ieee80211_cipher *cip = k->wk_cipher;
|
|
u_int keyix = k->wk_keyix;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
|
|
|
|
ath_hal_keyreset(ah, keyix);
|
|
/*
|
|
* Handle split tx/rx keying required for TKIP with h/w MIC.
|
|
*/
|
|
if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
|
|
(k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
|
|
ath_hal_keyreset(ah, keyix+32); /* RX key */
|
|
if (keyix >= IEEE80211_WEP_NKID) {
|
|
/*
|
|
* Don't touch keymap entries for global keys so
|
|
* they are never considered for dynamic allocation.
|
|
*/
|
|
clrbit(sc->sc_keymap, keyix);
|
|
if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
|
|
(k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
|
|
clrbit(sc->sc_keymap, keyix+64); /* TX key MIC */
|
|
if (sc->sc_splitmic) {
|
|
/* +32 for RX key, +32+64 for RX key MIC */
|
|
clrbit(sc->sc_keymap, keyix+32);
|
|
clrbit(sc->sc_keymap, keyix+32+64);
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Set the key cache contents for the specified key. Key cache
|
|
* slot(s) must already have been allocated by ath_key_alloc.
|
|
*/
|
|
static int
|
|
ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
|
|
const u_int8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
|
|
|
|
return ath_keyset(sc, k, vap->iv_bss);
|
|
}
|
|
|
|
/*
|
|
* Block/unblock tx+rx processing while a key change is done.
|
|
* We assume the caller serializes key management operations
|
|
* so we only need to worry about synchronization with other
|
|
* uses that originate in the driver.
|
|
*/
|
|
static void
|
|
ath_key_update_begin(struct ieee80211vap *vap)
|
|
{
|
|
struct ifnet *ifp = vap->iv_ic->ic_ifp;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
|
|
taskqueue_block(sc->sc_tq);
|
|
IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */
|
|
}
|
|
|
|
static void
|
|
ath_key_update_end(struct ieee80211vap *vap)
|
|
{
|
|
struct ifnet *ifp = vap->iv_ic->ic_ifp;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
|
|
IF_UNLOCK(&ifp->if_snd);
|
|
taskqueue_unblock(sc->sc_tq);
|
|
}
|
|
|
|
/*
|
|
* Calculate the receive filter according to the
|
|
* operating mode and state:
|
|
*
|
|
* o always accept unicast, broadcast, and multicast traffic
|
|
* o accept PHY error frames when hardware doesn't have MIB support
|
|
* to count and we need them for ANI (sta mode only until recently)
|
|
* and we are not scanning (ANI is disabled)
|
|
* NB: older hal's add rx filter bits out of sight and we need to
|
|
* blindly preserve them
|
|
* o probe request frames are accepted only when operating in
|
|
* hostap, adhoc, mesh, or monitor modes
|
|
* o enable promiscuous mode
|
|
* - when in monitor mode
|
|
* - if interface marked PROMISC (assumes bridge setting is filtered)
|
|
* o accept beacons:
|
|
* - when operating in station mode for collecting rssi data when
|
|
* the station is otherwise quiet, or
|
|
* - when operating in adhoc mode so the 802.11 layer creates
|
|
* node table entries for peers,
|
|
* - when scanning
|
|
* - when doing s/w beacon miss (e.g. for ap+sta)
|
|
* - when operating in ap mode in 11g to detect overlapping bss that
|
|
* require protection
|
|
* - when operating in mesh mode to detect neighbors
|
|
* o accept control frames:
|
|
* - when in monitor mode
|
|
* XXX BAR frames for 11n
|
|
* XXX HT protection for 11n
|
|
*/
|
|
static u_int32_t
|
|
ath_calcrxfilter(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
u_int32_t rfilt;
|
|
|
|
rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
|
|
if (!sc->sc_needmib && !sc->sc_scanning)
|
|
rfilt |= HAL_RX_FILTER_PHYERR;
|
|
if (ic->ic_opmode != IEEE80211_M_STA)
|
|
rfilt |= HAL_RX_FILTER_PROBEREQ;
|
|
/* XXX ic->ic_monvaps != 0? */
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
|
|
rfilt |= HAL_RX_FILTER_PROM;
|
|
if (ic->ic_opmode == IEEE80211_M_STA ||
|
|
ic->ic_opmode == IEEE80211_M_IBSS ||
|
|
sc->sc_swbmiss || sc->sc_scanning)
|
|
rfilt |= HAL_RX_FILTER_BEACON;
|
|
/*
|
|
* NB: We don't recalculate the rx filter when
|
|
* ic_protmode changes; otherwise we could do
|
|
* this only when ic_protmode != NONE.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
|
|
IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
|
|
rfilt |= HAL_RX_FILTER_BEACON;
|
|
if (sc->sc_nmeshvaps) {
|
|
rfilt |= HAL_RX_FILTER_BEACON;
|
|
if (sc->sc_hasbmatch)
|
|
rfilt |= HAL_RX_FILTER_BSSID;
|
|
else
|
|
rfilt |= HAL_RX_FILTER_PROM;
|
|
}
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR)
|
|
rfilt |= HAL_RX_FILTER_CONTROL;
|
|
DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
|
|
__func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
|
|
return rfilt;
|
|
}
|
|
|
|
static void
|
|
ath_update_promisc(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
u_int32_t rfilt;
|
|
|
|
/* configure rx filter */
|
|
rfilt = ath_calcrxfilter(sc);
|
|
ath_hal_setrxfilter(sc->sc_ah, rfilt);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
|
|
}
|
|
|
|
static void
|
|
ath_update_mcast(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
u_int32_t mfilt[2];
|
|
|
|
/* calculate and install multicast filter */
|
|
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
|
|
struct ifmultiaddr *ifma;
|
|
/*
|
|
* Merge multicast addresses to form the hardware filter.
|
|
*/
|
|
mfilt[0] = mfilt[1] = 0;
|
|
if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
caddr_t dl;
|
|
u_int32_t val;
|
|
u_int8_t pos;
|
|
|
|
/* calculate XOR of eight 6bit values */
|
|
dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
|
|
val = LE_READ_4(dl + 0);
|
|
pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
|
|
val = LE_READ_4(dl + 3);
|
|
pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
|
|
pos &= 0x3f;
|
|
mfilt[pos / 32] |= (1 << (pos % 32));
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
} else
|
|
mfilt[0] = mfilt[1] = ~0;
|
|
ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
|
|
DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
|
|
__func__, mfilt[0], mfilt[1]);
|
|
}
|
|
|
|
static void
|
|
ath_mode_init(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u_int32_t rfilt;
|
|
|
|
/* configure rx filter */
|
|
rfilt = ath_calcrxfilter(sc);
|
|
ath_hal_setrxfilter(ah, rfilt);
|
|
|
|
/* configure operational mode */
|
|
ath_hal_setopmode(ah);
|
|
|
|
/* handle any link-level address change */
|
|
ath_hal_setmac(ah, IF_LLADDR(ifp));
|
|
|
|
/* calculate and install multicast filter */
|
|
ath_update_mcast(ifp);
|
|
}
|
|
|
|
/*
|
|
* Set the slot time based on the current setting.
|
|
*/
|
|
static void
|
|
ath_setslottime(struct ath_softc *sc)
|
|
{
|
|
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u_int usec;
|
|
|
|
if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
|
|
usec = 13;
|
|
else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
|
|
usec = 21;
|
|
else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
|
|
/* honor short/long slot time only in 11g */
|
|
/* XXX shouldn't honor on pure g or turbo g channel */
|
|
if (ic->ic_flags & IEEE80211_F_SHSLOT)
|
|
usec = HAL_SLOT_TIME_9;
|
|
else
|
|
usec = HAL_SLOT_TIME_20;
|
|
} else
|
|
usec = HAL_SLOT_TIME_9;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET,
|
|
"%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
|
|
__func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
|
|
ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
|
|
|
|
ath_hal_setslottime(ah, usec);
|
|
sc->sc_updateslot = OK;
|
|
}
|
|
|
|
/*
|
|
* Callback from the 802.11 layer to update the
|
|
* slot time based on the current setting.
|
|
*/
|
|
static void
|
|
ath_updateslot(struct ifnet *ifp)
|
|
{
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
|
|
/*
|
|
* When not coordinating the BSS, change the hardware
|
|
* immediately. For other operation we defer the change
|
|
* until beacon updates have propagated to the stations.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
|
|
ic->ic_opmode == IEEE80211_M_MBSS)
|
|
sc->sc_updateslot = UPDATE;
|
|
else
|
|
ath_setslottime(sc);
|
|
}
|
|
|
|
/*
|
|
* Setup a h/w transmit queue for beacons.
|
|
*/
|
|
static int
|
|
ath_beaconq_setup(struct ath_hal *ah)
|
|
{
|
|
HAL_TXQ_INFO qi;
|
|
|
|
memset(&qi, 0, sizeof(qi));
|
|
qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
|
|
qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
|
|
qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
|
|
/* NB: for dynamic turbo, don't enable any other interrupts */
|
|
qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
|
|
return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
|
|
}
|
|
|
|
/*
|
|
* Setup the transmit queue parameters for the beacon queue.
|
|
*/
|
|
static int
|
|
ath_beaconq_config(struct ath_softc *sc)
|
|
{
|
|
#define ATH_EXPONENT_TO_VALUE(v) ((1<<(v))-1)
|
|
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_TXQ_INFO qi;
|
|
|
|
ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
|
|
ic->ic_opmode == IEEE80211_M_MBSS) {
|
|
/*
|
|
* Always burst out beacon and CAB traffic.
|
|
*/
|
|
qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
|
|
qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
|
|
qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
|
|
} else {
|
|
struct wmeParams *wmep =
|
|
&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
|
|
/*
|
|
* Adhoc mode; important thing is to use 2x cwmin.
|
|
*/
|
|
qi.tqi_aifs = wmep->wmep_aifsn;
|
|
qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
|
|
qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
|
|
}
|
|
|
|
if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
|
|
device_printf(sc->sc_dev, "unable to update parameters for "
|
|
"beacon hardware queue!\n");
|
|
return 0;
|
|
} else {
|
|
ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
|
|
return 1;
|
|
}
|
|
#undef ATH_EXPONENT_TO_VALUE
|
|
}
|
|
|
|
/*
|
|
* Allocate and setup an initial beacon frame.
|
|
*/
|
|
static int
|
|
ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ath_vap *avp = ATH_VAP(vap);
|
|
struct ath_buf *bf;
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
bf = avp->av_bcbuf;
|
|
if (bf->bf_m != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
}
|
|
if (bf->bf_node != NULL) {
|
|
ieee80211_free_node(bf->bf_node);
|
|
bf->bf_node = NULL;
|
|
}
|
|
|
|
/*
|
|
* NB: the beacon data buffer must be 32-bit aligned;
|
|
* we assume the mbuf routines will return us something
|
|
* with this alignment (perhaps should assert).
|
|
*/
|
|
m = ieee80211_beacon_alloc(ni, &avp->av_boff);
|
|
if (m == NULL) {
|
|
device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
|
|
sc->sc_stats.ast_be_nombuf++;
|
|
return ENOMEM;
|
|
}
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
|
|
__func__, error);
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Calculate a TSF adjustment factor required for staggered
|
|
* beacons. Note that we assume the format of the beacon
|
|
* frame leaves the tstamp field immediately following the
|
|
* header.
|
|
*/
|
|
if (sc->sc_stagbeacons && avp->av_bslot > 0) {
|
|
uint64_t tsfadjust;
|
|
struct ieee80211_frame *wh;
|
|
|
|
/*
|
|
* The beacon interval is in TU's; the TSF is in usecs.
|
|
* We figure out how many TU's to add to align the timestamp
|
|
* then convert to TSF units and handle byte swapping before
|
|
* inserting it in the frame. The hardware will then add this
|
|
* each time a beacon frame is sent. Note that we align vap's
|
|
* 1..N and leave vap 0 untouched. This means vap 0 has a
|
|
* timestamp in one beacon interval while the others get a
|
|
* timstamp aligned to the next interval.
|
|
*/
|
|
tsfadjust = ni->ni_intval *
|
|
(ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
|
|
tsfadjust = htole64(tsfadjust << 10); /* TU -> TSF */
|
|
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
|
|
__func__, sc->sc_stagbeacons ? "stagger" : "burst",
|
|
avp->av_bslot, ni->ni_intval,
|
|
(long long unsigned) le64toh(tsfadjust));
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
|
|
}
|
|
bf->bf_m = m;
|
|
bf->bf_node = ieee80211_ref_node(ni);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Setup the beacon frame for transmit.
|
|
*/
|
|
static void
|
|
ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
#define USE_SHPREAMBLE(_ic) \
|
|
(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
|
|
== IEEE80211_F_SHPREAMBLE)
|
|
struct ieee80211_node *ni = bf->bf_node;
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct mbuf *m = bf->bf_m;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_desc *ds;
|
|
int flags, antenna;
|
|
const HAL_RATE_TABLE *rt;
|
|
u_int8_t rix, rate;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
|
|
__func__, m, m->m_len);
|
|
|
|
/* setup descriptors */
|
|
ds = bf->bf_desc;
|
|
|
|
flags = HAL_TXDESC_NOACK;
|
|
if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
|
|
ds->ds_link = bf->bf_daddr; /* self-linked */
|
|
flags |= HAL_TXDESC_VEOL;
|
|
/*
|
|
* Let hardware handle antenna switching.
|
|
*/
|
|
antenna = sc->sc_txantenna;
|
|
} else {
|
|
ds->ds_link = 0;
|
|
/*
|
|
* Switch antenna every 4 beacons.
|
|
* XXX assumes two antenna
|
|
*/
|
|
if (sc->sc_txantenna != 0)
|
|
antenna = sc->sc_txantenna;
|
|
else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
|
|
antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
|
|
else
|
|
antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
|
|
}
|
|
|
|
KASSERT(bf->bf_nseg == 1,
|
|
("multi-segment beacon frame; nseg %u", bf->bf_nseg));
|
|
ds->ds_data = bf->bf_segs[0].ds_addr;
|
|
/*
|
|
* Calculate rate code.
|
|
* XXX everything at min xmit rate
|
|
*/
|
|
rix = 0;
|
|
rt = sc->sc_currates;
|
|
rate = rt->info[rix].rateCode;
|
|
if (USE_SHPREAMBLE(ic))
|
|
rate |= rt->info[rix].shortPreamble;
|
|
ath_hal_setuptxdesc(ah, ds
|
|
, m->m_len + IEEE80211_CRC_LEN /* frame length */
|
|
, sizeof(struct ieee80211_frame)/* header length */
|
|
, HAL_PKT_TYPE_BEACON /* Atheros packet type */
|
|
, ni->ni_txpower /* txpower XXX */
|
|
, rate, 1 /* series 0 rate/tries */
|
|
, HAL_TXKEYIX_INVALID /* no encryption */
|
|
, antenna /* antenna mode */
|
|
, flags /* no ack, veol for beacons */
|
|
, 0 /* rts/cts rate */
|
|
, 0 /* rts/cts duration */
|
|
);
|
|
/* NB: beacon's BufLen must be a multiple of 4 bytes */
|
|
ath_hal_filltxdesc(ah, ds
|
|
, roundup(m->m_len, 4) /* buffer length */
|
|
, AH_TRUE /* first segment */
|
|
, AH_TRUE /* last segment */
|
|
, ds /* first descriptor */
|
|
);
|
|
#if 0
|
|
ath_desc_swap(ds);
|
|
#endif
|
|
#undef USE_SHPREAMBLE
|
|
}
|
|
|
|
static void
|
|
ath_beacon_update(struct ieee80211vap *vap, int item)
|
|
{
|
|
struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
|
|
|
|
setbit(bo->bo_flags, item);
|
|
}
|
|
|
|
/*
|
|
* Append the contents of src to dst; both queues
|
|
* are assumed to be locked.
|
|
*/
|
|
static void
|
|
ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
|
|
{
|
|
STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
|
|
dst->axq_link = src->axq_link;
|
|
src->axq_link = NULL;
|
|
dst->axq_depth += src->axq_depth;
|
|
src->axq_depth = 0;
|
|
}
|
|
|
|
/*
|
|
* Transmit a beacon frame at SWBA. Dynamic updates to the
|
|
* frame contents are done as needed and the slot time is
|
|
* also adjusted based on current state.
|
|
*/
|
|
static void
|
|
ath_beacon_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211vap *vap;
|
|
struct ath_buf *bf;
|
|
int slot, otherant;
|
|
uint32_t bfaddr;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
|
|
__func__, pending);
|
|
/*
|
|
* Check if the previous beacon has gone out. If
|
|
* not don't try to post another, skip this period
|
|
* and wait for the next. Missed beacons indicate
|
|
* a problem and should not occur. If we miss too
|
|
* many consecutive beacons reset the device.
|
|
*/
|
|
if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
|
|
sc->sc_bmisscount++;
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: missed %u consecutive beacons\n",
|
|
__func__, sc->sc_bmisscount);
|
|
if (sc->sc_bmisscount >= ath_bstuck_threshold)
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
|
|
return;
|
|
}
|
|
if (sc->sc_bmisscount != 0) {
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: resume beacon xmit after %u misses\n",
|
|
__func__, sc->sc_bmisscount);
|
|
sc->sc_bmisscount = 0;
|
|
}
|
|
|
|
if (sc->sc_stagbeacons) { /* staggered beacons */
|
|
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
|
|
uint32_t tsftu;
|
|
|
|
tsftu = ath_hal_gettsf32(ah) >> 10;
|
|
/* XXX lintval */
|
|
slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
|
|
vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
|
|
bfaddr = 0;
|
|
if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
|
|
bf = ath_beacon_generate(sc, vap);
|
|
if (bf != NULL)
|
|
bfaddr = bf->bf_daddr;
|
|
}
|
|
} else { /* burst'd beacons */
|
|
uint32_t *bflink = &bfaddr;
|
|
|
|
for (slot = 0; slot < ATH_BCBUF; slot++) {
|
|
vap = sc->sc_bslot[slot];
|
|
if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
|
|
bf = ath_beacon_generate(sc, vap);
|
|
if (bf != NULL) {
|
|
*bflink = bf->bf_daddr;
|
|
bflink = &bf->bf_desc->ds_link;
|
|
}
|
|
}
|
|
}
|
|
*bflink = 0; /* terminate list */
|
|
}
|
|
|
|
/*
|
|
* Handle slot time change when a non-ERP station joins/leaves
|
|
* an 11g network. The 802.11 layer notifies us via callback,
|
|
* we mark updateslot, then wait one beacon before effecting
|
|
* the change. This gives associated stations at least one
|
|
* beacon interval to note the state change.
|
|
*/
|
|
/* XXX locking */
|
|
if (sc->sc_updateslot == UPDATE) {
|
|
sc->sc_updateslot = COMMIT; /* commit next beacon */
|
|
sc->sc_slotupdate = slot;
|
|
} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
|
|
ath_setslottime(sc); /* commit change to h/w */
|
|
|
|
/*
|
|
* Check recent per-antenna transmit statistics and flip
|
|
* the default antenna if noticeably more frames went out
|
|
* on the non-default antenna.
|
|
* XXX assumes 2 anntenae
|
|
*/
|
|
if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
|
|
otherant = sc->sc_defant & 1 ? 2 : 1;
|
|
if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
|
|
ath_setdefantenna(sc, otherant);
|
|
sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
|
|
}
|
|
|
|
if (bfaddr != 0) {
|
|
/*
|
|
* Stop any current dma and put the new frame on the queue.
|
|
* This should never fail since we check above that no frames
|
|
* are still pending on the queue.
|
|
*/
|
|
if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
|
|
DPRINTF(sc, ATH_DEBUG_ANY,
|
|
"%s: beacon queue %u did not stop?\n",
|
|
__func__, sc->sc_bhalq);
|
|
}
|
|
/* NB: cabq traffic should already be queued and primed */
|
|
ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
|
|
ath_hal_txstart(ah, sc->sc_bhalq);
|
|
|
|
sc->sc_stats.ast_be_xmit++;
|
|
}
|
|
}
|
|
|
|
static struct ath_buf *
|
|
ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
|
|
{
|
|
struct ath_vap *avp = ATH_VAP(vap);
|
|
struct ath_txq *cabq = sc->sc_cabq;
|
|
struct ath_buf *bf;
|
|
struct mbuf *m;
|
|
int nmcastq, error;
|
|
|
|
KASSERT(vap->iv_state >= IEEE80211_S_RUN,
|
|
("not running, state %d", vap->iv_state));
|
|
KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
|
|
|
|
/*
|
|
* Update dynamic beacon contents. If this returns
|
|
* non-zero then we need to remap the memory because
|
|
* the beacon frame changed size (probably because
|
|
* of the TIM bitmap).
|
|
*/
|
|
bf = avp->av_bcbuf;
|
|
m = bf->bf_m;
|
|
nmcastq = avp->av_mcastq.axq_depth;
|
|
if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
|
|
/* XXX too conservative? */
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
if_printf(vap->iv_ifp,
|
|
"%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
|
|
__func__, error);
|
|
return NULL;
|
|
}
|
|
}
|
|
if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: cabq did not drain, mcastq %u cabq %u\n",
|
|
__func__, nmcastq, cabq->axq_depth);
|
|
sc->sc_stats.ast_cabq_busy++;
|
|
if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
|
|
/*
|
|
* CABQ traffic from a previous vap is still pending.
|
|
* We must drain the q before this beacon frame goes
|
|
* out as otherwise this vap's stations will get cab
|
|
* frames from a different vap.
|
|
* XXX could be slow causing us to miss DBA
|
|
*/
|
|
ath_tx_draintxq(sc, cabq);
|
|
}
|
|
}
|
|
ath_beacon_setup(sc, bf);
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Enable the CAB queue before the beacon queue to
|
|
* insure cab frames are triggered by this beacon.
|
|
*/
|
|
if (avp->av_boff.bo_tim[4] & 1) {
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
/* NB: only at DTIM */
|
|
ATH_TXQ_LOCK(cabq);
|
|
ATH_TXQ_LOCK(&avp->av_mcastq);
|
|
if (nmcastq) {
|
|
struct ath_buf *bfm;
|
|
|
|
/*
|
|
* Move frames from the s/w mcast q to the h/w cab q.
|
|
* XXX MORE_DATA bit
|
|
*/
|
|
bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
|
|
if (cabq->axq_link != NULL) {
|
|
*cabq->axq_link = bfm->bf_daddr;
|
|
} else
|
|
ath_hal_puttxbuf(ah, cabq->axq_qnum,
|
|
bfm->bf_daddr);
|
|
ath_txqmove(cabq, &avp->av_mcastq);
|
|
|
|
sc->sc_stats.ast_cabq_xmit += nmcastq;
|
|
}
|
|
/* NB: gated by beacon so safe to start here */
|
|
ath_hal_txstart(ah, cabq->axq_qnum);
|
|
ATH_TXQ_UNLOCK(cabq);
|
|
ATH_TXQ_UNLOCK(&avp->av_mcastq);
|
|
}
|
|
return bf;
|
|
}
|
|
|
|
static void
|
|
ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
|
|
{
|
|
struct ath_vap *avp = ATH_VAP(vap);
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf;
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
|
|
|
|
/*
|
|
* Update dynamic beacon contents. If this returns
|
|
* non-zero then we need to remap the memory because
|
|
* the beacon frame changed size (probably because
|
|
* of the TIM bitmap).
|
|
*/
|
|
bf = avp->av_bcbuf;
|
|
m = bf->bf_m;
|
|
if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
|
|
/* XXX too conservative? */
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
if_printf(vap->iv_ifp,
|
|
"%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
|
|
__func__, error);
|
|
return;
|
|
}
|
|
}
|
|
ath_beacon_setup(sc, bf);
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
|
|
|
|
/* NB: caller is known to have already stopped tx dma */
|
|
ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
|
|
ath_hal_txstart(ah, sc->sc_bhalq);
|
|
}
|
|
|
|
/*
|
|
* Reset the hardware after detecting beacons have stopped.
|
|
*/
|
|
static void
|
|
ath_bstuck_proc(void *arg, int pending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
|
|
sc->sc_bmisscount);
|
|
sc->sc_stats.ast_bstuck++;
|
|
ath_reset(ifp);
|
|
}
|
|
|
|
/*
|
|
* Reclaim beacon resources and return buffer to the pool.
|
|
*/
|
|
static void
|
|
ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
|
|
if (bf->bf_m != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
}
|
|
if (bf->bf_node != NULL) {
|
|
ieee80211_free_node(bf->bf_node);
|
|
bf->bf_node = NULL;
|
|
}
|
|
STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
|
|
}
|
|
|
|
/*
|
|
* Reclaim beacon resources.
|
|
*/
|
|
static void
|
|
ath_beacon_free(struct ath_softc *sc)
|
|
{
|
|
struct ath_buf *bf;
|
|
|
|
STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
|
|
if (bf->bf_m != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
}
|
|
if (bf->bf_node != NULL) {
|
|
ieee80211_free_node(bf->bf_node);
|
|
bf->bf_node = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Configure the beacon and sleep timers.
|
|
*
|
|
* When operating as an AP this resets the TSF and sets
|
|
* up the hardware to notify us when we need to issue beacons.
|
|
*
|
|
* When operating in station mode this sets up the beacon
|
|
* timers according to the timestamp of the last received
|
|
* beacon and the current TSF, configures PCF and DTIM
|
|
* handling, programs the sleep registers so the hardware
|
|
* will wakeup in time to receive beacons, and configures
|
|
* the beacon miss handling so we'll receive a BMISS
|
|
* interrupt when we stop seeing beacons from the AP
|
|
* we've associated with.
|
|
*/
|
|
static void
|
|
ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
|
|
{
|
|
#define TSF_TO_TU(_h,_l) \
|
|
((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
|
|
#define FUDGE 2
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
|
|
struct ieee80211_node *ni;
|
|
u_int32_t nexttbtt, intval, tsftu;
|
|
u_int64_t tsf;
|
|
|
|
if (vap == NULL)
|
|
vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */
|
|
ni = vap->iv_bss;
|
|
|
|
/* extract tstamp from last beacon and convert to TU */
|
|
nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
|
|
LE_READ_4(ni->ni_tstamp.data));
|
|
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
|
|
ic->ic_opmode == IEEE80211_M_MBSS) {
|
|
/*
|
|
* For multi-bss ap/mesh support beacons are either staggered
|
|
* evenly over N slots or burst together. For the former
|
|
* arrange for the SWBA to be delivered for each slot.
|
|
* Slots that are not occupied will generate nothing.
|
|
*/
|
|
/* NB: the beacon interval is kept internally in TU's */
|
|
intval = ni->ni_intval & HAL_BEACON_PERIOD;
|
|
if (sc->sc_stagbeacons)
|
|
intval /= ATH_BCBUF;
|
|
} else {
|
|
/* NB: the beacon interval is kept internally in TU's */
|
|
intval = ni->ni_intval & HAL_BEACON_PERIOD;
|
|
}
|
|
if (nexttbtt == 0) /* e.g. for ap mode */
|
|
nexttbtt = intval;
|
|
else if (intval) /* NB: can be 0 for monitor mode */
|
|
nexttbtt = roundup(nexttbtt, intval);
|
|
DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
|
|
__func__, nexttbtt, intval, ni->ni_intval);
|
|
if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
|
|
HAL_BEACON_STATE bs;
|
|
int dtimperiod, dtimcount;
|
|
int cfpperiod, cfpcount;
|
|
|
|
/*
|
|
* Setup dtim and cfp parameters according to
|
|
* last beacon we received (which may be none).
|
|
*/
|
|
dtimperiod = ni->ni_dtim_period;
|
|
if (dtimperiod <= 0) /* NB: 0 if not known */
|
|
dtimperiod = 1;
|
|
dtimcount = ni->ni_dtim_count;
|
|
if (dtimcount >= dtimperiod) /* NB: sanity check */
|
|
dtimcount = 0; /* XXX? */
|
|
cfpperiod = 1; /* NB: no PCF support yet */
|
|
cfpcount = 0;
|
|
/*
|
|
* Pull nexttbtt forward to reflect the current
|
|
* TSF and calculate dtim+cfp state for the result.
|
|
*/
|
|
tsf = ath_hal_gettsf64(ah);
|
|
tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
|
|
do {
|
|
nexttbtt += intval;
|
|
if (--dtimcount < 0) {
|
|
dtimcount = dtimperiod - 1;
|
|
if (--cfpcount < 0)
|
|
cfpcount = cfpperiod - 1;
|
|
}
|
|
} while (nexttbtt < tsftu);
|
|
memset(&bs, 0, sizeof(bs));
|
|
bs.bs_intval = intval;
|
|
bs.bs_nexttbtt = nexttbtt;
|
|
bs.bs_dtimperiod = dtimperiod*intval;
|
|
bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
|
|
bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
|
|
bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
|
|
bs.bs_cfpmaxduration = 0;
|
|
#if 0
|
|
/*
|
|
* The 802.11 layer records the offset to the DTIM
|
|
* bitmap while receiving beacons; use it here to
|
|
* enable h/w detection of our AID being marked in
|
|
* the bitmap vector (to indicate frames for us are
|
|
* pending at the AP).
|
|
* XXX do DTIM handling in s/w to WAR old h/w bugs
|
|
* XXX enable based on h/w rev for newer chips
|
|
*/
|
|
bs.bs_timoffset = ni->ni_timoff;
|
|
#endif
|
|
/*
|
|
* Calculate the number of consecutive beacons to miss
|
|
* before taking a BMISS interrupt.
|
|
* Note that we clamp the result to at most 10 beacons.
|
|
*/
|
|
bs.bs_bmissthreshold = vap->iv_bmissthreshold;
|
|
if (bs.bs_bmissthreshold > 10)
|
|
bs.bs_bmissthreshold = 10;
|
|
else if (bs.bs_bmissthreshold <= 0)
|
|
bs.bs_bmissthreshold = 1;
|
|
|
|
/*
|
|
* Calculate sleep duration. The configuration is
|
|
* given in ms. We insure a multiple of the beacon
|
|
* period is used. Also, if the sleep duration is
|
|
* greater than the DTIM period then it makes senses
|
|
* to make it a multiple of that.
|
|
*
|
|
* XXX fixed at 100ms
|
|
*/
|
|
bs.bs_sleepduration =
|
|
roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
|
|
if (bs.bs_sleepduration > bs.bs_dtimperiod)
|
|
bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
|
|
, __func__
|
|
, tsf, tsftu
|
|
, bs.bs_intval
|
|
, bs.bs_nexttbtt
|
|
, bs.bs_dtimperiod
|
|
, bs.bs_nextdtim
|
|
, bs.bs_bmissthreshold
|
|
, bs.bs_sleepduration
|
|
, bs.bs_cfpperiod
|
|
, bs.bs_cfpmaxduration
|
|
, bs.bs_cfpnext
|
|
, bs.bs_timoffset
|
|
);
|
|
ath_hal_intrset(ah, 0);
|
|
ath_hal_beacontimers(ah, &bs);
|
|
sc->sc_imask |= HAL_INT_BMISS;
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
} else {
|
|
ath_hal_intrset(ah, 0);
|
|
if (nexttbtt == intval)
|
|
intval |= HAL_BEACON_RESET_TSF;
|
|
if (ic->ic_opmode == IEEE80211_M_IBSS) {
|
|
/*
|
|
* In IBSS mode enable the beacon timers but only
|
|
* enable SWBA interrupts if we need to manually
|
|
* prepare beacon frames. Otherwise we use a
|
|
* self-linked tx descriptor and let the hardware
|
|
* deal with things.
|
|
*/
|
|
intval |= HAL_BEACON_ENA;
|
|
if (!sc->sc_hasveol)
|
|
sc->sc_imask |= HAL_INT_SWBA;
|
|
if ((intval & HAL_BEACON_RESET_TSF) == 0) {
|
|
/*
|
|
* Pull nexttbtt forward to reflect
|
|
* the current TSF.
|
|
*/
|
|
tsf = ath_hal_gettsf64(ah);
|
|
tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
|
|
do {
|
|
nexttbtt += intval;
|
|
} while (nexttbtt < tsftu);
|
|
}
|
|
ath_beaconq_config(sc);
|
|
} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
|
|
ic->ic_opmode == IEEE80211_M_MBSS) {
|
|
/*
|
|
* In AP/mesh mode we enable the beacon timers
|
|
* and SWBA interrupts to prepare beacon frames.
|
|
*/
|
|
intval |= HAL_BEACON_ENA;
|
|
sc->sc_imask |= HAL_INT_SWBA; /* beacon prepare */
|
|
ath_beaconq_config(sc);
|
|
}
|
|
ath_hal_beaconinit(ah, nexttbtt, intval);
|
|
sc->sc_bmisscount = 0;
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
/*
|
|
* When using a self-linked beacon descriptor in
|
|
* ibss mode load it once here.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
|
|
ath_beacon_start_adhoc(sc, vap);
|
|
}
|
|
sc->sc_syncbeacon = 0;
|
|
#undef FUDGE
|
|
#undef TSF_TO_TU
|
|
}
|
|
|
|
static void
|
|
ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
bus_addr_t *paddr = (bus_addr_t*) arg;
|
|
KASSERT(error == 0, ("error %u on bus_dma callback", error));
|
|
*paddr = segs->ds_addr;
|
|
}
|
|
|
|
static int
|
|
ath_descdma_setup(struct ath_softc *sc,
|
|
struct ath_descdma *dd, ath_bufhead *head,
|
|
const char *name, int nbuf, int ndesc)
|
|
{
|
|
#define DS2PHYS(_dd, _ds) \
|
|
((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ath_desc *ds;
|
|
struct ath_buf *bf;
|
|
int i, bsize, error;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
|
|
__func__, name, nbuf, ndesc);
|
|
|
|
dd->dd_name = name;
|
|
dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
|
|
|
|
/*
|
|
* Setup DMA descriptor area.
|
|
*/
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */
|
|
PAGE_SIZE, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
dd->dd_desc_len, /* maxsize */
|
|
1, /* nsegments */
|
|
dd->dd_desc_len, /* maxsegsize */
|
|
BUS_DMA_ALLOCNOW, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&dd->dd_dmat);
|
|
if (error != 0) {
|
|
if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
|
|
return error;
|
|
}
|
|
|
|
/* allocate descriptors */
|
|
error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
|
|
if (error != 0) {
|
|
if_printf(ifp, "unable to create dmamap for %s descriptors, "
|
|
"error %u\n", dd->dd_name, error);
|
|
goto fail0;
|
|
}
|
|
|
|
error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
|
|
BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
|
|
&dd->dd_dmamap);
|
|
if (error != 0) {
|
|
if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
|
|
"error %u\n", nbuf * ndesc, dd->dd_name, error);
|
|
goto fail1;
|
|
}
|
|
|
|
error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
|
|
dd->dd_desc, dd->dd_desc_len,
|
|
ath_load_cb, &dd->dd_desc_paddr,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
if_printf(ifp, "unable to map %s descriptors, error %u\n",
|
|
dd->dd_name, error);
|
|
goto fail2;
|
|
}
|
|
|
|
ds = dd->dd_desc;
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
|
|
__func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
|
|
(caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
|
|
|
|
/* allocate rx buffers */
|
|
bsize = sizeof(struct ath_buf) * nbuf;
|
|
bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
|
|
if (bf == NULL) {
|
|
if_printf(ifp, "malloc of %s buffers failed, size %u\n",
|
|
dd->dd_name, bsize);
|
|
goto fail3;
|
|
}
|
|
dd->dd_bufptr = bf;
|
|
|
|
STAILQ_INIT(head);
|
|
for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
|
|
bf->bf_desc = ds;
|
|
bf->bf_daddr = DS2PHYS(dd, ds);
|
|
error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
|
|
&bf->bf_dmamap);
|
|
if (error != 0) {
|
|
if_printf(ifp, "unable to create dmamap for %s "
|
|
"buffer %u, error %u\n", dd->dd_name, i, error);
|
|
ath_descdma_cleanup(sc, dd, head);
|
|
return error;
|
|
}
|
|
STAILQ_INSERT_TAIL(head, bf, bf_list);
|
|
}
|
|
return 0;
|
|
fail3:
|
|
bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
|
|
fail2:
|
|
bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
|
|
fail1:
|
|
bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
|
|
fail0:
|
|
bus_dma_tag_destroy(dd->dd_dmat);
|
|
memset(dd, 0, sizeof(*dd));
|
|
return error;
|
|
#undef DS2PHYS
|
|
}
|
|
|
|
static void
|
|
ath_descdma_cleanup(struct ath_softc *sc,
|
|
struct ath_descdma *dd, ath_bufhead *head)
|
|
{
|
|
struct ath_buf *bf;
|
|
struct ieee80211_node *ni;
|
|
|
|
bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
|
|
bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
|
|
bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
|
|
bus_dma_tag_destroy(dd->dd_dmat);
|
|
|
|
STAILQ_FOREACH(bf, head, bf_list) {
|
|
if (bf->bf_m) {
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
}
|
|
if (bf->bf_dmamap != NULL) {
|
|
bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
|
|
bf->bf_dmamap = NULL;
|
|
}
|
|
ni = bf->bf_node;
|
|
bf->bf_node = NULL;
|
|
if (ni != NULL) {
|
|
/*
|
|
* Reclaim node reference.
|
|
*/
|
|
ieee80211_free_node(ni);
|
|
}
|
|
}
|
|
|
|
STAILQ_INIT(head);
|
|
free(dd->dd_bufptr, M_ATHDEV);
|
|
memset(dd, 0, sizeof(*dd));
|
|
}
|
|
|
|
static int
|
|
ath_desc_alloc(struct ath_softc *sc)
|
|
{
|
|
int error;
|
|
|
|
error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
|
|
"rx", ath_rxbuf, 1);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
|
|
"tx", ath_txbuf, ATH_TXDESC);
|
|
if (error != 0) {
|
|
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
|
|
return error;
|
|
}
|
|
|
|
error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
|
|
"beacon", ATH_BCBUF, 1);
|
|
if (error != 0) {
|
|
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
|
|
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
|
|
return error;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ath_desc_free(struct ath_softc *sc)
|
|
{
|
|
|
|
if (sc->sc_bdma.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
|
|
if (sc->sc_txdma.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
|
|
if (sc->sc_rxdma.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
|
|
}
|
|
|
|
static struct ieee80211_node *
|
|
ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
|
|
struct ath_node *an;
|
|
|
|
an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
|
|
if (an == NULL) {
|
|
/* XXX stat+msg */
|
|
return NULL;
|
|
}
|
|
ath_rate_node_init(sc, an);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
|
|
return &an->an_node;
|
|
}
|
|
|
|
static void
|
|
ath_node_free(struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
|
|
|
|
ath_rate_node_cleanup(sc, ATH_NODE(ni));
|
|
sc->sc_node_free(ni);
|
|
}
|
|
|
|
static void
|
|
ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
|
|
{
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
*rssi = ic->ic_node_getrssi(ni);
|
|
if (ni->ni_chan != IEEE80211_CHAN_ANYC)
|
|
*noise = ath_hal_getchannoise(ah, ni->ni_chan);
|
|
else
|
|
*noise = -95; /* nominally correct */
|
|
}
|
|
|
|
static int
|
|
ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
int error;
|
|
struct mbuf *m;
|
|
struct ath_desc *ds;
|
|
|
|
m = bf->bf_m;
|
|
if (m == NULL) {
|
|
/*
|
|
* NB: by assigning a page to the rx dma buffer we
|
|
* implicitly satisfy the Atheros requirement that
|
|
* this buffer be cache-line-aligned and sized to be
|
|
* multiple of the cache line size. Not doing this
|
|
* causes weird stuff to happen (for the 5210 at least).
|
|
*/
|
|
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL) {
|
|
DPRINTF(sc, ATH_DEBUG_ANY,
|
|
"%s: no mbuf/cluster\n", __func__);
|
|
sc->sc_stats.ast_rx_nombuf++;
|
|
return ENOMEM;
|
|
}
|
|
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
|
|
bf->bf_dmamap, m,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
DPRINTF(sc, ATH_DEBUG_ANY,
|
|
"%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
|
|
__func__, error);
|
|
sc->sc_stats.ast_rx_busdma++;
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
KASSERT(bf->bf_nseg == 1,
|
|
("multi-segment packet; nseg %u", bf->bf_nseg));
|
|
bf->bf_m = m;
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
|
|
|
|
/*
|
|
* Setup descriptors. For receive we always terminate
|
|
* the descriptor list with a self-linked entry so we'll
|
|
* not get overrun under high load (as can happen with a
|
|
* 5212 when ANI processing enables PHY error frames).
|
|
*
|
|
* To insure the last descriptor is self-linked we create
|
|
* each descriptor as self-linked and add it to the end. As
|
|
* each additional descriptor is added the previous self-linked
|
|
* entry is ``fixed'' naturally. This should be safe even
|
|
* if DMA is happening. When processing RX interrupts we
|
|
* never remove/process the last, self-linked, entry on the
|
|
* descriptor list. This insures the hardware always has
|
|
* someplace to write a new frame.
|
|
*/
|
|
ds = bf->bf_desc;
|
|
ds->ds_link = bf->bf_daddr; /* link to self */
|
|
ds->ds_data = bf->bf_segs[0].ds_addr;
|
|
ath_hal_setuprxdesc(ah, ds
|
|
, m->m_len /* buffer size */
|
|
, 0
|
|
);
|
|
|
|
if (sc->sc_rxlink != NULL)
|
|
*sc->sc_rxlink = bf->bf_daddr;
|
|
sc->sc_rxlink = &ds->ds_link;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Extend 15-bit time stamp from rx descriptor to
|
|
* a full 64-bit TSF using the specified TSF.
|
|
*/
|
|
static __inline u_int64_t
|
|
ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
|
|
{
|
|
if ((tsf & 0x7fff) < rstamp)
|
|
tsf -= 0x8000;
|
|
return ((tsf &~ 0x7fff) | rstamp);
|
|
}
|
|
|
|
/*
|
|
* Intercept management frames to collect beacon rssi data
|
|
* and to do ibss merges.
|
|
*/
|
|
static void
|
|
ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
|
|
int subtype, int rssi, int nf)
|
|
{
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
|
|
|
|
/*
|
|
* Call up first so subsequent work can use information
|
|
* potentially stored in the node (e.g. for ibss merge).
|
|
*/
|
|
ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
|
|
switch (subtype) {
|
|
case IEEE80211_FC0_SUBTYPE_BEACON:
|
|
/* update rssi statistics for use by the hal */
|
|
ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
|
|
if (sc->sc_syncbeacon &&
|
|
ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
|
|
/*
|
|
* Resync beacon timers using the tsf of the beacon
|
|
* frame we just received.
|
|
*/
|
|
ath_beacon_config(sc, vap);
|
|
}
|
|
/* fall thru... */
|
|
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
|
|
if (vap->iv_opmode == IEEE80211_M_IBSS &&
|
|
vap->iv_state == IEEE80211_S_RUN) {
|
|
uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
|
|
u_int64_t tsf = ath_extend_tsf(rstamp,
|
|
ath_hal_gettsf64(sc->sc_ah));
|
|
/*
|
|
* Handle ibss merge as needed; check the tsf on the
|
|
* frame before attempting the merge. The 802.11 spec
|
|
* says the station should change it's bssid to match
|
|
* the oldest station with the same ssid, where oldest
|
|
* is determined by the tsf. Note that hardware
|
|
* reconfiguration happens through callback to
|
|
* ath_newstate as the state machine will go from
|
|
* RUN -> RUN when this happens.
|
|
*/
|
|
if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
|
|
DPRINTF(sc, ATH_DEBUG_STATE,
|
|
"ibss merge, rstamp %u tsf %ju "
|
|
"tstamp %ju\n", rstamp, (uintmax_t)tsf,
|
|
(uintmax_t)ni->ni_tstamp.tsf);
|
|
(void) ieee80211_ibss_merge(ni);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the default antenna.
|
|
*/
|
|
static void
|
|
ath_setdefantenna(struct ath_softc *sc, u_int antenna)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
/* XXX block beacon interrupts */
|
|
ath_hal_setdefantenna(ah, antenna);
|
|
if (sc->sc_defant != antenna)
|
|
sc->sc_stats.ast_ant_defswitch++;
|
|
sc->sc_defant = antenna;
|
|
sc->sc_rxotherant = 0;
|
|
}
|
|
|
|
static void
|
|
ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
|
|
const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
|
|
{
|
|
#define CHAN_HT20 htole32(IEEE80211_CHAN_HT20)
|
|
#define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U)
|
|
#define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D)
|
|
#define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
const HAL_RATE_TABLE *rt;
|
|
uint8_t rix;
|
|
|
|
rt = sc->sc_currates;
|
|
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
|
|
rix = rt->rateCodeToIndex[rs->rs_rate];
|
|
sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
|
|
sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
|
|
#ifdef AH_SUPPORT_AR5416
|
|
sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
|
|
if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
|
|
if ((rs->rs_flags & HAL_RX_2040) == 0)
|
|
sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
|
|
else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
|
|
sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
|
|
else
|
|
sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
|
|
if ((rs->rs_flags & HAL_RX_GI) == 0)
|
|
sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
|
|
}
|
|
#endif
|
|
sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
|
|
if (rs->rs_status & HAL_RXERR_CRC)
|
|
sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
|
|
/* XXX propagate other error flags from descriptor */
|
|
sc->sc_rx_th.wr_antnoise = nf;
|
|
sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
|
|
sc->sc_rx_th.wr_antenna = rs->rs_antenna;
|
|
#undef CHAN_HT
|
|
#undef CHAN_HT20
|
|
#undef CHAN_HT40U
|
|
#undef CHAN_HT40D
|
|
}
|
|
|
|
static void
|
|
ath_handle_micerror(struct ieee80211com *ic,
|
|
struct ieee80211_frame *wh, int keyix)
|
|
{
|
|
struct ieee80211_node *ni;
|
|
|
|
/* XXX recheck MIC to deal w/ chips that lie */
|
|
/* XXX discard MIC errors on !data frames */
|
|
ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
|
|
if (ni != NULL) {
|
|
ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
|
|
ieee80211_free_node(ni);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_rx_proc(void *arg, int npending)
|
|
{
|
|
#define PA2DESC(_sc, _pa) \
|
|
((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
|
|
((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
|
|
struct ath_softc *sc = arg;
|
|
struct ath_buf *bf;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_desc *ds;
|
|
struct ath_rx_status *rs;
|
|
struct mbuf *m;
|
|
struct ieee80211_node *ni;
|
|
int len, type, ngood;
|
|
u_int phyerr;
|
|
HAL_STATUS status;
|
|
int16_t nf;
|
|
u_int64_t tsf;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
|
|
ngood = 0;
|
|
nf = ath_hal_getchannoise(ah, sc->sc_curchan);
|
|
sc->sc_stats.ast_rx_noise = nf;
|
|
tsf = ath_hal_gettsf64(ah);
|
|
do {
|
|
bf = STAILQ_FIRST(&sc->sc_rxbuf);
|
|
if (bf == NULL) { /* NB: shouldn't happen */
|
|
if_printf(ifp, "%s: no buffer!\n", __func__);
|
|
break;
|
|
}
|
|
m = bf->bf_m;
|
|
if (m == NULL) { /* NB: shouldn't happen */
|
|
/*
|
|
* If mbuf allocation failed previously there
|
|
* will be no mbuf; try again to re-populate it.
|
|
*/
|
|
/* XXX make debug msg */
|
|
if_printf(ifp, "%s: no mbuf!\n", __func__);
|
|
STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
|
|
goto rx_next;
|
|
}
|
|
ds = bf->bf_desc;
|
|
if (ds->ds_link == bf->bf_daddr) {
|
|
/* NB: never process the self-linked entry at the end */
|
|
break;
|
|
}
|
|
/* XXX sync descriptor memory */
|
|
/*
|
|
* Must provide the virtual address of the current
|
|
* descriptor, the physical address, and the virtual
|
|
* address of the next descriptor in the h/w chain.
|
|
* This allows the HAL to look ahead to see if the
|
|
* hardware is done with a descriptor by checking the
|
|
* done bit in the following descriptor and the address
|
|
* of the current descriptor the DMA engine is working
|
|
* on. All this is necessary because of our use of
|
|
* a self-linked list to avoid rx overruns.
|
|
*/
|
|
rs = &bf->bf_status.ds_rxstat;
|
|
status = ath_hal_rxprocdesc(ah, ds,
|
|
bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
|
|
ath_printrxbuf(sc, bf, 0, status == HAL_OK);
|
|
#endif
|
|
if (status == HAL_EINPROGRESS)
|
|
break;
|
|
STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
|
|
if (rs->rs_status != 0) {
|
|
if (rs->rs_status & HAL_RXERR_CRC)
|
|
sc->sc_stats.ast_rx_crcerr++;
|
|
if (rs->rs_status & HAL_RXERR_FIFO)
|
|
sc->sc_stats.ast_rx_fifoerr++;
|
|
if (rs->rs_status & HAL_RXERR_PHY) {
|
|
sc->sc_stats.ast_rx_phyerr++;
|
|
phyerr = rs->rs_phyerr & 0x1f;
|
|
sc->sc_stats.ast_rx_phy[phyerr]++;
|
|
goto rx_error; /* NB: don't count in ierrors */
|
|
}
|
|
if (rs->rs_status & HAL_RXERR_DECRYPT) {
|
|
/*
|
|
* Decrypt error. If the error occurred
|
|
* because there was no hardware key, then
|
|
* let the frame through so the upper layers
|
|
* can process it. This is necessary for 5210
|
|
* parts which have no way to setup a ``clear''
|
|
* key cache entry.
|
|
*
|
|
* XXX do key cache faulting
|
|
*/
|
|
if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
|
|
goto rx_accept;
|
|
sc->sc_stats.ast_rx_badcrypt++;
|
|
}
|
|
if (rs->rs_status & HAL_RXERR_MIC) {
|
|
sc->sc_stats.ast_rx_badmic++;
|
|
/*
|
|
* Do minimal work required to hand off
|
|
* the 802.11 header for notification.
|
|
*/
|
|
/* XXX frag's and qos frames */
|
|
len = rs->rs_datalen;
|
|
if (len >= sizeof (struct ieee80211_frame)) {
|
|
bus_dmamap_sync(sc->sc_dmat,
|
|
bf->bf_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
ath_handle_micerror(ic,
|
|
mtod(m, struct ieee80211_frame *),
|
|
sc->sc_splitmic ?
|
|
rs->rs_keyix-32 : rs->rs_keyix);
|
|
}
|
|
}
|
|
ifp->if_ierrors++;
|
|
rx_error:
|
|
/*
|
|
* Cleanup any pending partial frame.
|
|
*/
|
|
if (sc->sc_rxpending != NULL) {
|
|
m_freem(sc->sc_rxpending);
|
|
sc->sc_rxpending = NULL;
|
|
}
|
|
/*
|
|
* When a tap is present pass error frames
|
|
* that have been requested. By default we
|
|
* pass decrypt+mic errors but others may be
|
|
* interesting (e.g. crc).
|
|
*/
|
|
if (ieee80211_radiotap_active(ic) &&
|
|
(rs->rs_status & sc->sc_monpass)) {
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
/* NB: bpf needs the mbuf length setup */
|
|
len = rs->rs_datalen;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
ath_rx_tap(ifp, m, rs, tsf, nf);
|
|
ieee80211_radiotap_rx_all(ic, m);
|
|
}
|
|
/* XXX pass MIC errors up for s/w reclaculation */
|
|
goto rx_next;
|
|
}
|
|
rx_accept:
|
|
/*
|
|
* Sync and unmap the frame. At this point we're
|
|
* committed to passing the mbuf somewhere so clear
|
|
* bf_m; this means a new mbuf must be allocated
|
|
* when the rx descriptor is setup again to receive
|
|
* another frame.
|
|
*/
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
bf->bf_m = NULL;
|
|
|
|
len = rs->rs_datalen;
|
|
m->m_len = len;
|
|
|
|
if (rs->rs_more) {
|
|
/*
|
|
* Frame spans multiple descriptors; save
|
|
* it for the next completed descriptor, it
|
|
* will be used to construct a jumbogram.
|
|
*/
|
|
if (sc->sc_rxpending != NULL) {
|
|
/* NB: max frame size is currently 2 clusters */
|
|
sc->sc_stats.ast_rx_toobig++;
|
|
m_freem(sc->sc_rxpending);
|
|
}
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = len;
|
|
sc->sc_rxpending = m;
|
|
goto rx_next;
|
|
} else if (sc->sc_rxpending != NULL) {
|
|
/*
|
|
* This is the second part of a jumbogram,
|
|
* chain it to the first mbuf, adjust the
|
|
* frame length, and clear the rxpending state.
|
|
*/
|
|
sc->sc_rxpending->m_next = m;
|
|
sc->sc_rxpending->m_pkthdr.len += len;
|
|
m = sc->sc_rxpending;
|
|
sc->sc_rxpending = NULL;
|
|
} else {
|
|
/*
|
|
* Normal single-descriptor receive; setup
|
|
* the rcvif and packet length.
|
|
*/
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = len;
|
|
}
|
|
|
|
ifp->if_ipackets++;
|
|
sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
|
|
|
|
/*
|
|
* Populate the rx status block. When there are bpf
|
|
* listeners we do the additional work to provide
|
|
* complete status. Otherwise we fill in only the
|
|
* material required by ieee80211_input. Note that
|
|
* noise setting is filled in above.
|
|
*/
|
|
if (ieee80211_radiotap_active(ic))
|
|
ath_rx_tap(ifp, m, rs, tsf, nf);
|
|
|
|
/*
|
|
* From this point on we assume the frame is at least
|
|
* as large as ieee80211_frame_min; verify that.
|
|
*/
|
|
if (len < IEEE80211_MIN_LEN) {
|
|
if (!ieee80211_radiotap_active(ic)) {
|
|
DPRINTF(sc, ATH_DEBUG_RECV,
|
|
"%s: short packet %d\n", __func__, len);
|
|
sc->sc_stats.ast_rx_tooshort++;
|
|
} else {
|
|
/* NB: in particular this captures ack's */
|
|
ieee80211_radiotap_rx_all(ic, m);
|
|
}
|
|
m_freem(m);
|
|
goto rx_next;
|
|
}
|
|
|
|
if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
|
|
const HAL_RATE_TABLE *rt = sc->sc_currates;
|
|
uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
|
|
|
|
ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
|
|
sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
|
|
}
|
|
|
|
m_adj(m, -IEEE80211_CRC_LEN);
|
|
|
|
/*
|
|
* Locate the node for sender, track state, and then
|
|
* pass the (referenced) node up to the 802.11 layer
|
|
* for its use.
|
|
*/
|
|
ni = ieee80211_find_rxnode_withkey(ic,
|
|
mtod(m, const struct ieee80211_frame_min *),
|
|
rs->rs_keyix == HAL_RXKEYIX_INVALID ?
|
|
IEEE80211_KEYIX_NONE : rs->rs_keyix);
|
|
if (ni != NULL) {
|
|
/*
|
|
* Sending station is known, dispatch directly.
|
|
*/
|
|
sc->sc_lastrs = rs;
|
|
type = ieee80211_input(ni, m, rs->rs_rssi, nf);
|
|
ieee80211_free_node(ni);
|
|
/*
|
|
* Arrange to update the last rx timestamp only for
|
|
* frames from our ap when operating in station mode.
|
|
* This assumes the rx key is always setup when
|
|
* associated.
|
|
*/
|
|
if (ic->ic_opmode == IEEE80211_M_STA &&
|
|
rs->rs_keyix != HAL_RXKEYIX_INVALID)
|
|
ngood++;
|
|
} else {
|
|
type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
|
|
}
|
|
/*
|
|
* Track rx rssi and do any rx antenna management.
|
|
*/
|
|
ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
|
|
if (sc->sc_diversity) {
|
|
/*
|
|
* When using fast diversity, change the default rx
|
|
* antenna if diversity chooses the other antenna 3
|
|
* times in a row.
|
|
*/
|
|
if (sc->sc_defant != rs->rs_antenna) {
|
|
if (++sc->sc_rxotherant >= 3)
|
|
ath_setdefantenna(sc, rs->rs_antenna);
|
|
} else
|
|
sc->sc_rxotherant = 0;
|
|
}
|
|
if (sc->sc_softled) {
|
|
/*
|
|
* Blink for any data frame. Otherwise do a
|
|
* heartbeat-style blink when idle. The latter
|
|
* is mainly for station mode where we depend on
|
|
* periodic beacon frames to trigger the poll event.
|
|
*/
|
|
if (type == IEEE80211_FC0_TYPE_DATA) {
|
|
const HAL_RATE_TABLE *rt = sc->sc_currates;
|
|
ath_led_event(sc,
|
|
rt->rateCodeToIndex[rs->rs_rate]);
|
|
} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
|
|
ath_led_event(sc, 0);
|
|
}
|
|
rx_next:
|
|
STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
|
|
} while (ath_rxbuf_init(sc, bf) == 0);
|
|
|
|
/* rx signal state monitoring */
|
|
ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
|
|
if (ngood)
|
|
sc->sc_lastrx = tsf;
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
ieee80211_ff_age_all(ic, 100);
|
|
#endif
|
|
if (!IFQ_IS_EMPTY(&ifp->if_snd))
|
|
ath_start(ifp);
|
|
}
|
|
#undef PA2DESC
|
|
}
|
|
|
|
static void
|
|
ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
|
|
{
|
|
txq->axq_qnum = qnum;
|
|
txq->axq_ac = 0;
|
|
txq->axq_depth = 0;
|
|
txq->axq_intrcnt = 0;
|
|
txq->axq_link = NULL;
|
|
STAILQ_INIT(&txq->axq_q);
|
|
ATH_TXQ_LOCK_INIT(sc, txq);
|
|
}
|
|
|
|
/*
|
|
* Setup a h/w transmit queue.
|
|
*/
|
|
static struct ath_txq *
|
|
ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_TXQ_INFO qi;
|
|
int qnum;
|
|
|
|
memset(&qi, 0, sizeof(qi));
|
|
qi.tqi_subtype = subtype;
|
|
qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
|
|
qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
|
|
qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
|
|
/*
|
|
* Enable interrupts only for EOL and DESC conditions.
|
|
* We mark tx descriptors to receive a DESC interrupt
|
|
* when a tx queue gets deep; otherwise waiting for the
|
|
* EOL to reap descriptors. Note that this is done to
|
|
* reduce interrupt load and this only defers reaping
|
|
* descriptors, never transmitting frames. Aside from
|
|
* reducing interrupts this also permits more concurrency.
|
|
* The only potential downside is if the tx queue backs
|
|
* up in which case the top half of the kernel may backup
|
|
* due to a lack of tx descriptors.
|
|
*/
|
|
qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
|
|
qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
|
|
if (qnum == -1) {
|
|
/*
|
|
* NB: don't print a message, this happens
|
|
* normally on parts with too few tx queues
|
|
*/
|
|
return NULL;
|
|
}
|
|
if (qnum >= N(sc->sc_txq)) {
|
|
device_printf(sc->sc_dev,
|
|
"hal qnum %u out of range, max %zu!\n",
|
|
qnum, N(sc->sc_txq));
|
|
ath_hal_releasetxqueue(ah, qnum);
|
|
return NULL;
|
|
}
|
|
if (!ATH_TXQ_SETUP(sc, qnum)) {
|
|
ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
|
|
sc->sc_txqsetup |= 1<<qnum;
|
|
}
|
|
return &sc->sc_txq[qnum];
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Setup a hardware data transmit queue for the specified
|
|
* access control. The hal may not support all requested
|
|
* queues in which case it will return a reference to a
|
|
* previously setup queue. We record the mapping from ac's
|
|
* to h/w queues for use by ath_tx_start and also track
|
|
* the set of h/w queues being used to optimize work in the
|
|
* transmit interrupt handler and related routines.
|
|
*/
|
|
static int
|
|
ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
struct ath_txq *txq;
|
|
|
|
if (ac >= N(sc->sc_ac2q)) {
|
|
device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
|
|
ac, N(sc->sc_ac2q));
|
|
return 0;
|
|
}
|
|
txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
|
|
if (txq != NULL) {
|
|
txq->axq_ac = ac;
|
|
sc->sc_ac2q[ac] = txq;
|
|
return 1;
|
|
} else
|
|
return 0;
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Update WME parameters for a transmit queue.
|
|
*/
|
|
static int
|
|
ath_txq_update(struct ath_softc *sc, int ac)
|
|
{
|
|
#define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
|
|
#define ATH_TXOP_TO_US(v) (v<<5)
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ath_txq *txq = sc->sc_ac2q[ac];
|
|
struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_TXQ_INFO qi;
|
|
|
|
ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (sc->sc_tdma) {
|
|
/*
|
|
* AIFS is zero so there's no pre-transmit wait. The
|
|
* burst time defines the slot duration and is configured
|
|
* through net80211. The QCU is setup to not do post-xmit
|
|
* back off, lockout all lower-priority QCU's, and fire
|
|
* off the DMA beacon alert timer which is setup based
|
|
* on the slot configuration.
|
|
*/
|
|
qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
|
|
| HAL_TXQ_TXERRINT_ENABLE
|
|
| HAL_TXQ_TXURNINT_ENABLE
|
|
| HAL_TXQ_TXEOLINT_ENABLE
|
|
| HAL_TXQ_DBA_GATED
|
|
| HAL_TXQ_BACKOFF_DISABLE
|
|
| HAL_TXQ_ARB_LOCKOUT_GLOBAL
|
|
;
|
|
qi.tqi_aifs = 0;
|
|
/* XXX +dbaprep? */
|
|
qi.tqi_readyTime = sc->sc_tdmaslotlen;
|
|
qi.tqi_burstTime = qi.tqi_readyTime;
|
|
} else {
|
|
#endif
|
|
qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
|
|
| HAL_TXQ_TXERRINT_ENABLE
|
|
| HAL_TXQ_TXDESCINT_ENABLE
|
|
| HAL_TXQ_TXURNINT_ENABLE
|
|
;
|
|
qi.tqi_aifs = wmep->wmep_aifsn;
|
|
qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
|
|
qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
|
|
qi.tqi_readyTime = 0;
|
|
qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
}
|
|
#endif
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET,
|
|
"%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
|
|
__func__, txq->axq_qnum, qi.tqi_qflags,
|
|
qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
|
|
|
|
if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
|
|
if_printf(ifp, "unable to update hardware queue "
|
|
"parameters for %s traffic!\n",
|
|
ieee80211_wme_acnames[ac]);
|
|
return 0;
|
|
} else {
|
|
ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
|
|
return 1;
|
|
}
|
|
#undef ATH_TXOP_TO_US
|
|
#undef ATH_EXPONENT_TO_VALUE
|
|
}
|
|
|
|
/*
|
|
* Callback from the 802.11 layer to update WME parameters.
|
|
*/
|
|
static int
|
|
ath_wme_update(struct ieee80211com *ic)
|
|
{
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
|
|
return !ath_txq_update(sc, WME_AC_BE) ||
|
|
!ath_txq_update(sc, WME_AC_BK) ||
|
|
!ath_txq_update(sc, WME_AC_VI) ||
|
|
!ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
|
|
}
|
|
|
|
/*
|
|
* Reclaim resources for a setup queue.
|
|
*/
|
|
static void
|
|
ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
|
|
ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
|
|
ATH_TXQ_LOCK_DESTROY(txq);
|
|
sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
|
|
}
|
|
|
|
/*
|
|
* Reclaim all tx queue resources.
|
|
*/
|
|
static void
|
|
ath_tx_cleanup(struct ath_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
ATH_TXBUF_LOCK_DESTROY(sc);
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_tx_cleanupq(sc, &sc->sc_txq[i]);
|
|
}
|
|
|
|
/*
|
|
* Return h/w rate index for an IEEE rate (w/o basic rate bit)
|
|
* using the current rates in sc_rixmap.
|
|
*/
|
|
static __inline int
|
|
ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
|
|
{
|
|
int rix = sc->sc_rixmap[rate];
|
|
/* NB: return lowest rix for invalid rate */
|
|
return (rix == 0xff ? 0 : rix);
|
|
}
|
|
|
|
/*
|
|
* Reclaim mbuf resources. For fragmented frames we
|
|
* need to claim each frag chained with m_nextpkt.
|
|
*/
|
|
static void
|
|
ath_freetx(struct mbuf *m)
|
|
{
|
|
struct mbuf *next;
|
|
|
|
do {
|
|
next = m->m_nextpkt;
|
|
m->m_nextpkt = NULL;
|
|
m_freem(m);
|
|
} while ((m = next) != NULL);
|
|
}
|
|
|
|
static int
|
|
ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
|
|
{
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
/*
|
|
* Load the DMA map so any coalescing is done. This
|
|
* also calculates the number of descriptors we need.
|
|
*/
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
/* XXX packet requires too many descriptors */
|
|
bf->bf_nseg = ATH_TXDESC+1;
|
|
} else if (error != 0) {
|
|
sc->sc_stats.ast_tx_busdma++;
|
|
ath_freetx(m0);
|
|
return error;
|
|
}
|
|
/*
|
|
* Discard null packets and check for packets that
|
|
* require too many TX descriptors. We try to convert
|
|
* the latter to a cluster.
|
|
*/
|
|
if (bf->bf_nseg > ATH_TXDESC) { /* too many desc's, linearize */
|
|
sc->sc_stats.ast_tx_linear++;
|
|
m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
|
|
if (m == NULL) {
|
|
ath_freetx(m0);
|
|
sc->sc_stats.ast_tx_nombuf++;
|
|
return ENOMEM;
|
|
}
|
|
m0 = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
|
|
bf->bf_segs, &bf->bf_nseg,
|
|
BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
sc->sc_stats.ast_tx_busdma++;
|
|
ath_freetx(m0);
|
|
return error;
|
|
}
|
|
KASSERT(bf->bf_nseg <= ATH_TXDESC,
|
|
("too many segments after defrag; nseg %u", bf->bf_nseg));
|
|
} else if (bf->bf_nseg == 0) { /* null packet, discard */
|
|
sc->sc_stats.ast_tx_nodata++;
|
|
ath_freetx(m0);
|
|
return EIO;
|
|
}
|
|
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
|
|
__func__, m0, m0->m_pkthdr.len);
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
|
|
bf->bf_m = m0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_desc *ds, *ds0;
|
|
int i;
|
|
|
|
/*
|
|
* Fillin the remainder of the descriptor info.
|
|
*/
|
|
ds0 = ds = bf->bf_desc;
|
|
for (i = 0; i < bf->bf_nseg; i++, ds++) {
|
|
ds->ds_data = bf->bf_segs[i].ds_addr;
|
|
if (i == bf->bf_nseg - 1)
|
|
ds->ds_link = 0;
|
|
else
|
|
ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
|
|
ath_hal_filltxdesc(ah, ds
|
|
, bf->bf_segs[i].ds_len /* segment length */
|
|
, i == 0 /* first segment */
|
|
, i == bf->bf_nseg - 1 /* last segment */
|
|
, ds0 /* first descriptor */
|
|
);
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: %d: %08x %08x %08x %08x %08x %08x\n",
|
|
__func__, i, ds->ds_link, ds->ds_data,
|
|
ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
|
|
}
|
|
/*
|
|
* Insert the frame on the outbound list and pass it on
|
|
* to the hardware. Multicast frames buffered for power
|
|
* save stations and transmit from the CAB queue are stored
|
|
* on a s/w only queue and loaded on to the CAB queue in
|
|
* the SWBA handler since frames only go out on DTIM and
|
|
* to avoid possible races.
|
|
*/
|
|
ATH_TXQ_LOCK(txq);
|
|
KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
|
|
("busy status 0x%x", bf->bf_flags));
|
|
if (txq->axq_qnum != ATH_TXQ_SWQ) {
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
int qbusy;
|
|
|
|
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
|
|
qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
|
|
if (txq->axq_link == NULL) {
|
|
/*
|
|
* Be careful writing the address to TXDP. If
|
|
* the tx q is enabled then this write will be
|
|
* ignored. Normally this is not an issue but
|
|
* when tdma is in use and the q is beacon gated
|
|
* this race can occur. If the q is busy then
|
|
* defer the work to later--either when another
|
|
* packet comes along or when we prepare a beacon
|
|
* frame at SWBA.
|
|
*/
|
|
if (!qbusy) {
|
|
ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
|
|
txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: TXDP[%u] = %p (%p) depth %d\n",
|
|
__func__, txq->axq_qnum,
|
|
(caddr_t)bf->bf_daddr, bf->bf_desc,
|
|
txq->axq_depth);
|
|
} else {
|
|
txq->axq_flags |= ATH_TXQ_PUTPENDING;
|
|
DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
|
|
"%s: Q%u busy, defer enable\n", __func__,
|
|
txq->axq_qnum);
|
|
}
|
|
} else {
|
|
*txq->axq_link = bf->bf_daddr;
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
|
|
txq->axq_qnum, txq->axq_link,
|
|
(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
|
|
if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
|
|
/*
|
|
* The q was busy when we previously tried
|
|
* to write the address of the first buffer
|
|
* in the chain. Since it's not busy now
|
|
* handle this chore. We are certain the
|
|
* buffer at the front is the right one since
|
|
* axq_link is NULL only when the buffer list
|
|
* is/was empty.
|
|
*/
|
|
ath_hal_puttxbuf(ah, txq->axq_qnum,
|
|
STAILQ_FIRST(&txq->axq_q)->bf_daddr);
|
|
txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
|
|
DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
|
|
"%s: Q%u restarted\n", __func__,
|
|
txq->axq_qnum);
|
|
}
|
|
}
|
|
#else
|
|
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
|
|
if (txq->axq_link == NULL) {
|
|
ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: TXDP[%u] = %p (%p) depth %d\n",
|
|
__func__, txq->axq_qnum,
|
|
(caddr_t)bf->bf_daddr, bf->bf_desc,
|
|
txq->axq_depth);
|
|
} else {
|
|
*txq->axq_link = bf->bf_daddr;
|
|
DPRINTF(sc, ATH_DEBUG_XMIT,
|
|
"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
|
|
txq->axq_qnum, txq->axq_link,
|
|
(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
|
|
}
|
|
#endif /* IEEE80211_SUPPORT_TDMA */
|
|
txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
|
|
ath_hal_txstart(ah, txq->axq_qnum);
|
|
} else {
|
|
if (txq->axq_link != NULL) {
|
|
struct ath_buf *last = ATH_TXQ_LAST(txq);
|
|
struct ieee80211_frame *wh;
|
|
|
|
/* mark previous frame */
|
|
wh = mtod(last->bf_m, struct ieee80211_frame *);
|
|
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
|
|
bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* link descriptor */
|
|
*txq->axq_link = bf->bf_daddr;
|
|
}
|
|
ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
|
|
txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
|
|
}
|
|
ATH_TXQ_UNLOCK(txq);
|
|
}
|
|
|
|
static int
|
|
ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
|
|
struct mbuf *m0)
|
|
{
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ath_vap *avp = ATH_VAP(vap);
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
|
|
int error, iswep, ismcast, isfrag, ismrr;
|
|
int keyix, hdrlen, pktlen, try0;
|
|
u_int8_t rix, txrate, ctsrate;
|
|
u_int8_t cix = 0xff; /* NB: silence compiler */
|
|
struct ath_desc *ds;
|
|
struct ath_txq *txq;
|
|
struct ieee80211_frame *wh;
|
|
u_int subtype, flags, ctsduration;
|
|
HAL_PKT_TYPE atype;
|
|
const HAL_RATE_TABLE *rt;
|
|
HAL_BOOL shortPreamble;
|
|
struct ath_node *an;
|
|
u_int pri;
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
|
|
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
|
|
isfrag = m0->m_flags & M_FRAG;
|
|
hdrlen = ieee80211_anyhdrsize(wh);
|
|
/*
|
|
* Packet length must not include any
|
|
* pad bytes; deduct them here.
|
|
*/
|
|
pktlen = m0->m_pkthdr.len - (hdrlen & 3);
|
|
|
|
if (iswep) {
|
|
const struct ieee80211_cipher *cip;
|
|
struct ieee80211_key *k;
|
|
|
|
/*
|
|
* Construct the 802.11 header+trailer for an encrypted
|
|
* frame. The only reason this can fail is because of an
|
|
* unknown or unsupported cipher/key type.
|
|
*/
|
|
k = ieee80211_crypto_encap(ni, m0);
|
|
if (k == NULL) {
|
|
/*
|
|
* This can happen when the key is yanked after the
|
|
* frame was queued. Just discard the frame; the
|
|
* 802.11 layer counts failures and provides
|
|
* debugging/diagnostics.
|
|
*/
|
|
ath_freetx(m0);
|
|
return EIO;
|
|
}
|
|
/*
|
|
* Adjust the packet + header lengths for the crypto
|
|
* additions and calculate the h/w key index. When
|
|
* a s/w mic is done the frame will have had any mic
|
|
* added to it prior to entry so m0->m_pkthdr.len will
|
|
* account for it. Otherwise we need to add it to the
|
|
* packet length.
|
|
*/
|
|
cip = k->wk_cipher;
|
|
hdrlen += cip->ic_header;
|
|
pktlen += cip->ic_header + cip->ic_trailer;
|
|
/* NB: frags always have any TKIP MIC done in s/w */
|
|
if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
|
|
pktlen += cip->ic_miclen;
|
|
keyix = k->wk_keyix;
|
|
|
|
/* packet header may have moved, reset our local pointer */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
|
|
/*
|
|
* Use station key cache slot, if assigned.
|
|
*/
|
|
keyix = ni->ni_ucastkey.wk_keyix;
|
|
if (keyix == IEEE80211_KEYIX_NONE)
|
|
keyix = HAL_TXKEYIX_INVALID;
|
|
} else
|
|
keyix = HAL_TXKEYIX_INVALID;
|
|
|
|
pktlen += IEEE80211_CRC_LEN;
|
|
|
|
/*
|
|
* Load the DMA map so any coalescing is done. This
|
|
* also calculates the number of descriptors we need.
|
|
*/
|
|
error = ath_tx_dmasetup(sc, bf, m0);
|
|
if (error != 0)
|
|
return error;
|
|
bf->bf_node = ni; /* NB: held reference */
|
|
m0 = bf->bf_m; /* NB: may have changed */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
|
|
/* setup descriptors */
|
|
ds = bf->bf_desc;
|
|
rt = sc->sc_currates;
|
|
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
|
|
|
|
/*
|
|
* NB: the 802.11 layer marks whether or not we should
|
|
* use short preamble based on the current mode and
|
|
* negotiated parameters.
|
|
*/
|
|
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
|
|
(ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
|
|
shortPreamble = AH_TRUE;
|
|
sc->sc_stats.ast_tx_shortpre++;
|
|
} else {
|
|
shortPreamble = AH_FALSE;
|
|
}
|
|
|
|
an = ATH_NODE(ni);
|
|
flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
|
|
ismrr = 0; /* default no multi-rate retry*/
|
|
pri = M_WME_GETAC(m0); /* honor classification */
|
|
/* XXX use txparams instead of fixed values */
|
|
/*
|
|
* Calculate Atheros packet type from IEEE80211 packet header,
|
|
* setup for rate calculations, and select h/w transmit queue.
|
|
*/
|
|
switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
|
|
case IEEE80211_FC0_TYPE_MGT:
|
|
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
|
|
atype = HAL_PKT_TYPE_BEACON;
|
|
else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
|
|
atype = HAL_PKT_TYPE_PROBE_RESP;
|
|
else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
|
|
atype = HAL_PKT_TYPE_ATIM;
|
|
else
|
|
atype = HAL_PKT_TYPE_NORMAL; /* XXX */
|
|
rix = an->an_mgmtrix;
|
|
txrate = rt->info[rix].rateCode;
|
|
if (shortPreamble)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
try0 = ATH_TXMGTTRY;
|
|
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
|
|
break;
|
|
case IEEE80211_FC0_TYPE_CTL:
|
|
atype = HAL_PKT_TYPE_PSPOLL; /* stop setting of duration */
|
|
rix = an->an_mgmtrix;
|
|
txrate = rt->info[rix].rateCode;
|
|
if (shortPreamble)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
try0 = ATH_TXMGTTRY;
|
|
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
|
|
break;
|
|
case IEEE80211_FC0_TYPE_DATA:
|
|
atype = HAL_PKT_TYPE_NORMAL; /* default */
|
|
/*
|
|
* Data frames: multicast frames go out at a fixed rate,
|
|
* EAPOL frames use the mgmt frame rate; otherwise consult
|
|
* the rate control module for the rate to use.
|
|
*/
|
|
if (ismcast) {
|
|
rix = an->an_mcastrix;
|
|
txrate = rt->info[rix].rateCode;
|
|
if (shortPreamble)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
try0 = 1;
|
|
} else if (m0->m_flags & M_EAPOL) {
|
|
/* XXX? maybe always use long preamble? */
|
|
rix = an->an_mgmtrix;
|
|
txrate = rt->info[rix].rateCode;
|
|
if (shortPreamble)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
try0 = ATH_TXMAXTRY; /* XXX?too many? */
|
|
} else {
|
|
ath_rate_findrate(sc, an, shortPreamble, pktlen,
|
|
&rix, &try0, &txrate);
|
|
sc->sc_txrix = rix; /* for LED blinking */
|
|
sc->sc_lastdatarix = rix; /* for fast frames */
|
|
if (try0 != ATH_TXMAXTRY)
|
|
ismrr = 1;
|
|
}
|
|
if (cap->cap_wmeParams[pri].wmep_noackPolicy)
|
|
flags |= HAL_TXDESC_NOACK;
|
|
break;
|
|
default:
|
|
if_printf(ifp, "bogus frame type 0x%x (%s)\n",
|
|
wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
|
|
/* XXX statistic */
|
|
ath_freetx(m0);
|
|
return EIO;
|
|
}
|
|
txq = sc->sc_ac2q[pri];
|
|
|
|
/*
|
|
* When servicing one or more stations in power-save mode
|
|
* (or) if there is some mcast data waiting on the mcast
|
|
* queue (to prevent out of order delivery) multicast
|
|
* frames must be buffered until after the beacon.
|
|
*/
|
|
if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
|
|
txq = &avp->av_mcastq;
|
|
|
|
/*
|
|
* Calculate miscellaneous flags.
|
|
*/
|
|
if (ismcast) {
|
|
flags |= HAL_TXDESC_NOACK; /* no ack on broad/multicast */
|
|
} else if (pktlen > vap->iv_rtsthreshold &&
|
|
(ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
|
|
flags |= HAL_TXDESC_RTSENA; /* RTS based on frame length */
|
|
cix = rt->info[rix].controlRate;
|
|
sc->sc_stats.ast_tx_rts++;
|
|
}
|
|
if (flags & HAL_TXDESC_NOACK) /* NB: avoid double counting */
|
|
sc->sc_stats.ast_tx_noack++;
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
|
|
DPRINTF(sc, ATH_DEBUG_TDMA,
|
|
"%s: discard frame, ACK required w/ TDMA\n", __func__);
|
|
sc->sc_stats.ast_tdma_ack++;
|
|
ath_freetx(m0);
|
|
return EIO;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If 802.11g protection is enabled, determine whether
|
|
* to use RTS/CTS or just CTS. Note that this is only
|
|
* done for OFDM unicast frames.
|
|
*/
|
|
if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
|
|
rt->info[rix].phy == IEEE80211_T_OFDM &&
|
|
(flags & HAL_TXDESC_NOACK) == 0) {
|
|
/* XXX fragments must use CCK rates w/ protection */
|
|
if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
|
|
flags |= HAL_TXDESC_RTSENA;
|
|
else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
|
|
flags |= HAL_TXDESC_CTSENA;
|
|
if (isfrag) {
|
|
/*
|
|
* For frags it would be desirable to use the
|
|
* highest CCK rate for RTS/CTS. But stations
|
|
* farther away may detect it at a lower CCK rate
|
|
* so use the configured protection rate instead
|
|
* (for now).
|
|
*/
|
|
cix = rt->info[sc->sc_protrix].controlRate;
|
|
} else
|
|
cix = rt->info[sc->sc_protrix].controlRate;
|
|
sc->sc_stats.ast_tx_protect++;
|
|
}
|
|
|
|
/*
|
|
* Calculate duration. This logically belongs in the 802.11
|
|
* layer but it lacks sufficient information to calculate it.
|
|
*/
|
|
if ((flags & HAL_TXDESC_NOACK) == 0 &&
|
|
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
|
|
u_int16_t dur;
|
|
if (shortPreamble)
|
|
dur = rt->info[rix].spAckDuration;
|
|
else
|
|
dur = rt->info[rix].lpAckDuration;
|
|
if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
|
|
dur += dur; /* additional SIFS+ACK */
|
|
KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
|
|
/*
|
|
* Include the size of next fragment so NAV is
|
|
* updated properly. The last fragment uses only
|
|
* the ACK duration
|
|
*/
|
|
dur += ath_hal_computetxtime(ah, rt,
|
|
m0->m_nextpkt->m_pkthdr.len,
|
|
rix, shortPreamble);
|
|
}
|
|
if (isfrag) {
|
|
/*
|
|
* Force hardware to use computed duration for next
|
|
* fragment by disabling multi-rate retry which updates
|
|
* duration based on the multi-rate duration table.
|
|
*/
|
|
ismrr = 0;
|
|
try0 = ATH_TXMGTTRY; /* XXX? */
|
|
}
|
|
*(u_int16_t *)wh->i_dur = htole16(dur);
|
|
}
|
|
|
|
/*
|
|
* Calculate RTS/CTS rate and duration if needed.
|
|
*/
|
|
ctsduration = 0;
|
|
if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
|
|
/*
|
|
* CTS transmit rate is derived from the transmit rate
|
|
* by looking in the h/w rate table. We must also factor
|
|
* in whether or not a short preamble is to be used.
|
|
*/
|
|
/* NB: cix is set above where RTS/CTS is enabled */
|
|
KASSERT(cix != 0xff, ("cix not setup"));
|
|
ctsrate = rt->info[cix].rateCode;
|
|
/*
|
|
* Compute the transmit duration based on the frame
|
|
* size and the size of an ACK frame. We call into the
|
|
* HAL to do the computation since it depends on the
|
|
* characteristics of the actual PHY being used.
|
|
*
|
|
* NB: CTS is assumed the same size as an ACK so we can
|
|
* use the precalculated ACK durations.
|
|
*/
|
|
if (shortPreamble) {
|
|
ctsrate |= rt->info[cix].shortPreamble;
|
|
if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
|
|
ctsduration += rt->info[cix].spAckDuration;
|
|
ctsduration += ath_hal_computetxtime(ah,
|
|
rt, pktlen, rix, AH_TRUE);
|
|
if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
|
|
ctsduration += rt->info[rix].spAckDuration;
|
|
} else {
|
|
if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
|
|
ctsduration += rt->info[cix].lpAckDuration;
|
|
ctsduration += ath_hal_computetxtime(ah,
|
|
rt, pktlen, rix, AH_FALSE);
|
|
if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
|
|
ctsduration += rt->info[rix].lpAckDuration;
|
|
}
|
|
/*
|
|
* Must disable multi-rate retry when using RTS/CTS.
|
|
*/
|
|
ismrr = 0;
|
|
try0 = ATH_TXMGTTRY; /* XXX */
|
|
} else
|
|
ctsrate = 0;
|
|
|
|
/*
|
|
* At this point we are committed to sending the frame
|
|
* and we don't need to look at m_nextpkt; clear it in
|
|
* case this frame is part of frag chain.
|
|
*/
|
|
m0->m_nextpkt = NULL;
|
|
|
|
if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
|
|
ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
|
|
sc->sc_hwmap[rix].ieeerate, -1);
|
|
|
|
if (ieee80211_radiotap_active_vap(vap)) {
|
|
u_int64_t tsf = ath_hal_gettsf64(ah);
|
|
|
|
sc->sc_tx_th.wt_tsf = htole64(tsf);
|
|
sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
|
|
if (iswep)
|
|
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
|
|
if (isfrag)
|
|
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
|
|
sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
|
|
sc->sc_tx_th.wt_txpower = ni->ni_txpower;
|
|
sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
|
|
|
|
ieee80211_radiotap_tx(vap, m0);
|
|
}
|
|
|
|
/*
|
|
* Determine if a tx interrupt should be generated for
|
|
* this descriptor. We take a tx interrupt to reap
|
|
* descriptors when the h/w hits an EOL condition or
|
|
* when the descriptor is specifically marked to generate
|
|
* an interrupt. We periodically mark descriptors in this
|
|
* way to insure timely replenishing of the supply needed
|
|
* for sending frames. Defering interrupts reduces system
|
|
* load and potentially allows more concurrent work to be
|
|
* done but if done to aggressively can cause senders to
|
|
* backup.
|
|
*
|
|
* NB: use >= to deal with sc_txintrperiod changing
|
|
* dynamically through sysctl.
|
|
*/
|
|
if (flags & HAL_TXDESC_INTREQ) {
|
|
txq->axq_intrcnt = 0;
|
|
} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
|
|
flags |= HAL_TXDESC_INTREQ;
|
|
txq->axq_intrcnt = 0;
|
|
}
|
|
|
|
/*
|
|
* Formulate first tx descriptor with tx controls.
|
|
*/
|
|
/* XXX check return value? */
|
|
ath_hal_setuptxdesc(ah, ds
|
|
, pktlen /* packet length */
|
|
, hdrlen /* header length */
|
|
, atype /* Atheros packet type */
|
|
, ni->ni_txpower /* txpower */
|
|
, txrate, try0 /* series 0 rate/tries */
|
|
, keyix /* key cache index */
|
|
, sc->sc_txantenna /* antenna mode */
|
|
, flags /* flags */
|
|
, ctsrate /* rts/cts rate */
|
|
, ctsduration /* rts/cts duration */
|
|
);
|
|
bf->bf_txflags = flags;
|
|
/*
|
|
* Setup the multi-rate retry state only when we're
|
|
* going to use it. This assumes ath_hal_setuptxdesc
|
|
* initializes the descriptors (so we don't have to)
|
|
* when the hardware supports multi-rate retry and
|
|
* we don't use it.
|
|
*/
|
|
if (ismrr)
|
|
ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
|
|
|
|
ath_tx_handoff(sc, txq, bf);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Process completed xmit descriptors from the specified queue.
|
|
*/
|
|
static int
|
|
ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ath_buf *bf, *last;
|
|
struct ath_desc *ds, *ds0;
|
|
struct ath_tx_status *ts;
|
|
struct ieee80211_node *ni;
|
|
struct ath_node *an;
|
|
int sr, lr, pri, nacked;
|
|
HAL_STATUS status;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
|
|
__func__, txq->axq_qnum,
|
|
(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
|
|
txq->axq_link);
|
|
nacked = 0;
|
|
for (;;) {
|
|
ATH_TXQ_LOCK(txq);
|
|
txq->axq_intrcnt = 0; /* reset periodic desc intr count */
|
|
bf = STAILQ_FIRST(&txq->axq_q);
|
|
if (bf == NULL) {
|
|
ATH_TXQ_UNLOCK(txq);
|
|
break;
|
|
}
|
|
ds0 = &bf->bf_desc[0];
|
|
ds = &bf->bf_desc[bf->bf_nseg - 1];
|
|
ts = &bf->bf_status.ds_txstat;
|
|
status = ath_hal_txprocdesc(ah, ds, ts);
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
|
|
ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
|
|
status == HAL_OK);
|
|
#endif
|
|
if (status == HAL_EINPROGRESS) {
|
|
ATH_TXQ_UNLOCK(txq);
|
|
break;
|
|
}
|
|
ATH_TXQ_REMOVE_HEAD(txq, bf_list);
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (txq->axq_depth > 0) {
|
|
/*
|
|
* More frames follow. Mark the buffer busy
|
|
* so it's not re-used while the hardware may
|
|
* still re-read the link field in the descriptor.
|
|
*/
|
|
bf->bf_flags |= ATH_BUF_BUSY;
|
|
} else
|
|
#else
|
|
if (txq->axq_depth == 0)
|
|
#endif
|
|
txq->axq_link = NULL;
|
|
ATH_TXQ_UNLOCK(txq);
|
|
|
|
ni = bf->bf_node;
|
|
if (ni != NULL) {
|
|
an = ATH_NODE(ni);
|
|
if (ts->ts_status == 0) {
|
|
u_int8_t txant = ts->ts_antenna;
|
|
sc->sc_stats.ast_ant_tx[txant]++;
|
|
sc->sc_ant_tx[txant]++;
|
|
if (ts->ts_finaltsi != 0)
|
|
sc->sc_stats.ast_tx_altrate++;
|
|
pri = M_WME_GETAC(bf->bf_m);
|
|
if (pri >= WME_AC_VO)
|
|
ic->ic_wme.wme_hipri_traffic++;
|
|
if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
|
|
ni->ni_inact = ni->ni_inact_reload;
|
|
} else {
|
|
if (ts->ts_status & HAL_TXERR_XRETRY)
|
|
sc->sc_stats.ast_tx_xretries++;
|
|
if (ts->ts_status & HAL_TXERR_FIFO)
|
|
sc->sc_stats.ast_tx_fifoerr++;
|
|
if (ts->ts_status & HAL_TXERR_FILT)
|
|
sc->sc_stats.ast_tx_filtered++;
|
|
if (bf->bf_m->m_flags & M_FF)
|
|
sc->sc_stats.ast_ff_txerr++;
|
|
}
|
|
sr = ts->ts_shortretry;
|
|
lr = ts->ts_longretry;
|
|
sc->sc_stats.ast_tx_shortretry += sr;
|
|
sc->sc_stats.ast_tx_longretry += lr;
|
|
/*
|
|
* Hand the descriptor to the rate control algorithm.
|
|
*/
|
|
if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
|
|
(bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
|
|
/*
|
|
* If frame was ack'd update statistics,
|
|
* including the last rx time used to
|
|
* workaround phantom bmiss interrupts.
|
|
*/
|
|
if (ts->ts_status == 0) {
|
|
nacked++;
|
|
sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
|
|
ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
|
|
ts->ts_rssi);
|
|
}
|
|
ath_rate_tx_complete(sc, an, bf);
|
|
}
|
|
/*
|
|
* Do any tx complete callback. Note this must
|
|
* be done before releasing the node reference.
|
|
*/
|
|
if (bf->bf_m->m_flags & M_TXCB)
|
|
ieee80211_process_callback(ni, bf->bf_m,
|
|
(bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
|
|
ts->ts_status : HAL_TXERR_XRETRY);
|
|
ieee80211_free_node(ni);
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
bf->bf_node = NULL;
|
|
|
|
ATH_TXBUF_LOCK(sc);
|
|
last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
|
|
if (last != NULL)
|
|
last->bf_flags &= ~ATH_BUF_BUSY;
|
|
STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
}
|
|
#ifdef IEEE80211_SUPPORT_SUPERG
|
|
/*
|
|
* Flush fast-frame staging queue when traffic slows.
|
|
*/
|
|
if (txq->axq_depth <= 1)
|
|
ieee80211_ff_flush(ic, txq->axq_ac);
|
|
#endif
|
|
return nacked;
|
|
}
|
|
|
|
static __inline int
|
|
txqactive(struct ath_hal *ah, int qnum)
|
|
{
|
|
u_int32_t txqs = 1<<qnum;
|
|
ath_hal_gettxintrtxqs(ah, &txqs);
|
|
return (txqs & (1<<qnum));
|
|
}
|
|
|
|
/*
|
|
* Deferred processing of transmit interrupt; special-cased
|
|
* for a single hardware transmit queue (e.g. 5210 and 5211).
|
|
*/
|
|
static void
|
|
ath_tx_proc_q0(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
|
|
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
|
|
if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
|
|
ath_tx_processq(sc, sc->sc_cabq);
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
sc->sc_wd_timer = 0;
|
|
|
|
if (sc->sc_softled)
|
|
ath_led_event(sc, sc->sc_txrix);
|
|
|
|
ath_start(ifp);
|
|
}
|
|
|
|
/*
|
|
* Deferred processing of transmit interrupt; special-cased
|
|
* for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
|
|
*/
|
|
static void
|
|
ath_tx_proc_q0123(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
int nacked;
|
|
|
|
/*
|
|
* Process each active queue.
|
|
*/
|
|
nacked = 0;
|
|
if (txqactive(sc->sc_ah, 0))
|
|
nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
|
|
if (txqactive(sc->sc_ah, 1))
|
|
nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
|
|
if (txqactive(sc->sc_ah, 2))
|
|
nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
|
|
if (txqactive(sc->sc_ah, 3))
|
|
nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
|
|
if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
|
|
ath_tx_processq(sc, sc->sc_cabq);
|
|
if (nacked)
|
|
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
|
|
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
sc->sc_wd_timer = 0;
|
|
|
|
if (sc->sc_softled)
|
|
ath_led_event(sc, sc->sc_txrix);
|
|
|
|
ath_start(ifp);
|
|
}
|
|
|
|
/*
|
|
* Deferred processing of transmit interrupt.
|
|
*/
|
|
static void
|
|
ath_tx_proc(void *arg, int npending)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
int i, nacked;
|
|
|
|
/*
|
|
* Process each active queue.
|
|
*/
|
|
nacked = 0;
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
|
|
nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
|
|
if (nacked)
|
|
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
|
|
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
sc->sc_wd_timer = 0;
|
|
|
|
if (sc->sc_softled)
|
|
ath_led_event(sc, sc->sc_txrix);
|
|
|
|
ath_start(ifp);
|
|
}
|
|
|
|
static void
|
|
ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
#ifdef ATH_DEBUG
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
#endif
|
|
struct ieee80211_node *ni;
|
|
struct ath_buf *bf;
|
|
u_int ix;
|
|
|
|
/*
|
|
* NB: this assumes output has been stopped and
|
|
* we do not need to block ath_tx_proc
|
|
*/
|
|
ATH_TXBUF_LOCK(sc);
|
|
bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
|
|
if (bf != NULL)
|
|
bf->bf_flags &= ~ATH_BUF_BUSY;
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
for (ix = 0;; ix++) {
|
|
ATH_TXQ_LOCK(txq);
|
|
bf = STAILQ_FIRST(&txq->axq_q);
|
|
if (bf == NULL) {
|
|
txq->axq_link = NULL;
|
|
ATH_TXQ_UNLOCK(txq);
|
|
break;
|
|
}
|
|
ATH_TXQ_REMOVE_HEAD(txq, bf_list);
|
|
ATH_TXQ_UNLOCK(txq);
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_RESET) {
|
|
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
|
|
|
|
ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
|
|
ath_hal_txprocdesc(ah, bf->bf_desc,
|
|
&bf->bf_status.ds_txstat) == HAL_OK);
|
|
ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
|
|
bf->bf_m->m_len, 0, -1);
|
|
}
|
|
#endif /* ATH_DEBUG */
|
|
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
|
|
ni = bf->bf_node;
|
|
bf->bf_node = NULL;
|
|
if (ni != NULL) {
|
|
/*
|
|
* Do any callback and reclaim the node reference.
|
|
*/
|
|
if (bf->bf_m->m_flags & M_TXCB)
|
|
ieee80211_process_callback(ni, bf->bf_m, -1);
|
|
ieee80211_free_node(ni);
|
|
}
|
|
m_freem(bf->bf_m);
|
|
bf->bf_m = NULL;
|
|
bf->bf_flags &= ~ATH_BUF_BUSY;
|
|
|
|
ATH_TXBUF_LOCK(sc);
|
|
STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
|
|
__func__, txq->axq_qnum,
|
|
(caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
|
|
txq->axq_link);
|
|
(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
|
|
}
|
|
|
|
/*
|
|
* Drain the transmit queues and reclaim resources.
|
|
*/
|
|
static void
|
|
ath_draintxq(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
int i;
|
|
|
|
/* XXX return value */
|
|
if (!sc->sc_invalid) {
|
|
/* don't touch the hardware if marked invalid */
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
|
|
__func__, sc->sc_bhalq,
|
|
(caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
|
|
NULL);
|
|
(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_tx_stopdma(sc, &sc->sc_txq[i]);
|
|
}
|
|
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
|
|
if (ATH_TXQ_SETUP(sc, i))
|
|
ath_tx_draintxq(sc, &sc->sc_txq[i]);
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & ATH_DEBUG_RESET) {
|
|
struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
|
|
if (bf != NULL && bf->bf_m != NULL) {
|
|
ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
|
|
ath_hal_txprocdesc(ah, bf->bf_desc,
|
|
&bf->bf_status.ds_txstat) == HAL_OK);
|
|
ieee80211_dump_pkt(ifp->if_l2com,
|
|
mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
|
|
0, -1);
|
|
}
|
|
}
|
|
#endif /* ATH_DEBUG */
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
sc->sc_wd_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* Disable the receive h/w in preparation for a reset.
|
|
*/
|
|
static void
|
|
ath_stoprecv(struct ath_softc *sc)
|
|
{
|
|
#define PA2DESC(_sc, _pa) \
|
|
((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
|
|
((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
ath_hal_stoppcurecv(ah); /* disable PCU */
|
|
ath_hal_setrxfilter(ah, 0); /* clear recv filter */
|
|
ath_hal_stopdmarecv(ah); /* disable DMA engine */
|
|
DELAY(3000); /* 3ms is long enough for 1 frame */
|
|
#ifdef ATH_DEBUG
|
|
if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
|
|
struct ath_buf *bf;
|
|
u_int ix;
|
|
|
|
printf("%s: rx queue %p, link %p\n", __func__,
|
|
(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
|
|
ix = 0;
|
|
STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
|
|
struct ath_desc *ds = bf->bf_desc;
|
|
struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
|
|
HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
|
|
bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
|
|
if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
|
|
ath_printrxbuf(sc, bf, ix, status == HAL_OK);
|
|
ix++;
|
|
}
|
|
}
|
|
#endif
|
|
if (sc->sc_rxpending != NULL) {
|
|
m_freem(sc->sc_rxpending);
|
|
sc->sc_rxpending = NULL;
|
|
}
|
|
sc->sc_rxlink = NULL; /* just in case */
|
|
#undef PA2DESC
|
|
}
|
|
|
|
/*
|
|
* Enable the receive h/w following a reset.
|
|
*/
|
|
static int
|
|
ath_startrecv(struct ath_softc *sc)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf;
|
|
|
|
sc->sc_rxlink = NULL;
|
|
sc->sc_rxpending = NULL;
|
|
STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
|
|
int error = ath_rxbuf_init(sc, bf);
|
|
if (error != 0) {
|
|
DPRINTF(sc, ATH_DEBUG_RECV,
|
|
"%s: ath_rxbuf_init failed %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
bf = STAILQ_FIRST(&sc->sc_rxbuf);
|
|
ath_hal_putrxbuf(ah, bf->bf_daddr);
|
|
ath_hal_rxena(ah); /* enable recv descriptors */
|
|
ath_mode_init(sc); /* set filters, etc. */
|
|
ath_hal_startpcurecv(ah); /* re-enable PCU/DMA engine */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update internal state after a channel change.
|
|
*/
|
|
static void
|
|
ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
|
|
{
|
|
enum ieee80211_phymode mode;
|
|
|
|
/*
|
|
* Change channels and update the h/w rate map
|
|
* if we're switching; e.g. 11a to 11b/g.
|
|
*/
|
|
mode = ieee80211_chan2mode(chan);
|
|
if (mode != sc->sc_curmode)
|
|
ath_setcurmode(sc, mode);
|
|
sc->sc_curchan = chan;
|
|
}
|
|
|
|
/*
|
|
* Set/change channels. If the channel is really being changed,
|
|
* it's done by reseting the chip. To accomplish this we must
|
|
* first cleanup any pending DMA, then restart stuff after a la
|
|
* ath_init.
|
|
*/
|
|
static int
|
|
ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
|
|
__func__, ieee80211_chan2ieee(ic, chan),
|
|
chan->ic_freq, chan->ic_flags);
|
|
if (chan != sc->sc_curchan) {
|
|
HAL_STATUS status;
|
|
/*
|
|
* To switch channels clear any pending DMA operations;
|
|
* wait long enough for the RX fifo to drain, reset the
|
|
* hardware at the new frequency, and then re-enable
|
|
* the relevant bits of the h/w.
|
|
*/
|
|
ath_hal_intrset(ah, 0); /* disable interrupts */
|
|
ath_draintxq(sc); /* clear pending tx frames */
|
|
ath_stoprecv(sc); /* turn off frame recv */
|
|
if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
|
|
if_printf(ifp, "%s: unable to reset "
|
|
"channel %u (%u Mhz, flags 0x%x), hal status %u\n",
|
|
__func__, ieee80211_chan2ieee(ic, chan),
|
|
chan->ic_freq, chan->ic_flags, status);
|
|
return EIO;
|
|
}
|
|
sc->sc_diversity = ath_hal_getdiversity(ah);
|
|
|
|
/*
|
|
* Re-enable rx framework.
|
|
*/
|
|
if (ath_startrecv(sc) != 0) {
|
|
if_printf(ifp, "%s: unable to restart recv logic\n",
|
|
__func__);
|
|
return EIO;
|
|
}
|
|
|
|
/*
|
|
* Change channels and update the h/w rate map
|
|
* if we're switching; e.g. 11a to 11b/g.
|
|
*/
|
|
ath_chan_change(sc, chan);
|
|
|
|
/*
|
|
* Re-enable interrupts.
|
|
*/
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Periodically recalibrate the PHY to account
|
|
* for temperature/environment changes.
|
|
*/
|
|
static void
|
|
ath_calibrate(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
HAL_BOOL longCal, isCalDone;
|
|
int nextcal;
|
|
|
|
if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */
|
|
goto restart;
|
|
longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
|
|
if (longCal) {
|
|
sc->sc_stats.ast_per_cal++;
|
|
if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
|
|
/*
|
|
* Rfgain is out of bounds, reset the chip
|
|
* to load new gain values.
|
|
*/
|
|
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
|
|
"%s: rfgain change\n", __func__);
|
|
sc->sc_stats.ast_per_rfgain++;
|
|
ath_reset(ifp);
|
|
}
|
|
/*
|
|
* If this long cal is after an idle period, then
|
|
* reset the data collection state so we start fresh.
|
|
*/
|
|
if (sc->sc_resetcal) {
|
|
(void) ath_hal_calreset(ah, sc->sc_curchan);
|
|
sc->sc_lastcalreset = ticks;
|
|
sc->sc_resetcal = 0;
|
|
}
|
|
}
|
|
if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
|
|
if (longCal) {
|
|
/*
|
|
* Calibrate noise floor data again in case of change.
|
|
*/
|
|
ath_hal_process_noisefloor(ah);
|
|
}
|
|
} else {
|
|
DPRINTF(sc, ATH_DEBUG_ANY,
|
|
"%s: calibration of channel %u failed\n",
|
|
__func__, sc->sc_curchan->ic_freq);
|
|
sc->sc_stats.ast_per_calfail++;
|
|
}
|
|
if (!isCalDone) {
|
|
restart:
|
|
/*
|
|
* Use a shorter interval to potentially collect multiple
|
|
* data samples required to complete calibration. Once
|
|
* we're told the work is done we drop back to a longer
|
|
* interval between requests. We're more aggressive doing
|
|
* work when operating as an AP to improve operation right
|
|
* after startup.
|
|
*/
|
|
nextcal = (1000*ath_shortcalinterval)/hz;
|
|
if (sc->sc_opmode != HAL_M_HOSTAP)
|
|
nextcal *= 10;
|
|
} else {
|
|
nextcal = ath_longcalinterval*hz;
|
|
sc->sc_lastlongcal = ticks;
|
|
if (sc->sc_lastcalreset == 0)
|
|
sc->sc_lastcalreset = sc->sc_lastlongcal;
|
|
else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
|
|
sc->sc_resetcal = 1; /* setup reset next trip */
|
|
}
|
|
|
|
if (nextcal != 0) {
|
|
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
|
|
__func__, nextcal, isCalDone ? "" : "!");
|
|
callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
|
|
} else {
|
|
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
|
|
__func__);
|
|
/* NB: don't rearm timer */
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_scan_start(struct ieee80211com *ic)
|
|
{
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u_int32_t rfilt;
|
|
|
|
/* XXX calibration timer? */
|
|
|
|
sc->sc_scanning = 1;
|
|
sc->sc_syncbeacon = 0;
|
|
rfilt = ath_calcrxfilter(sc);
|
|
ath_hal_setrxfilter(ah, rfilt);
|
|
ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
|
|
__func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
|
|
}
|
|
|
|
static void
|
|
ath_scan_end(struct ieee80211com *ic)
|
|
{
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u_int32_t rfilt;
|
|
|
|
sc->sc_scanning = 0;
|
|
rfilt = ath_calcrxfilter(sc);
|
|
ath_hal_setrxfilter(ah, rfilt);
|
|
ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
|
|
|
|
ath_hal_process_noisefloor(ah);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
|
|
__func__, rfilt, ether_sprintf(sc->sc_curbssid),
|
|
sc->sc_curaid);
|
|
}
|
|
|
|
static void
|
|
ath_set_channel(struct ieee80211com *ic)
|
|
{
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
|
|
(void) ath_chan_set(sc, ic->ic_curchan);
|
|
/*
|
|
* If we are returning to our bss channel then mark state
|
|
* so the next recv'd beacon's tsf will be used to sync the
|
|
* beacon timers. Note that since we only hear beacons in
|
|
* sta/ibss mode this has no effect in other operating modes.
|
|
*/
|
|
if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
|
|
sc->sc_syncbeacon = 1;
|
|
}
|
|
|
|
/*
|
|
* Walk the vap list and check if there any vap's in RUN state.
|
|
*/
|
|
static int
|
|
ath_isanyrunningvaps(struct ieee80211vap *this)
|
|
{
|
|
struct ieee80211com *ic = this->iv_ic;
|
|
struct ieee80211vap *vap;
|
|
|
|
IEEE80211_LOCK_ASSERT(ic);
|
|
|
|
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
|
|
if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
|
|
{
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
struct ath_vap *avp = ATH_VAP(vap);
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211_node *ni = NULL;
|
|
int i, error, stamode;
|
|
u_int32_t rfilt;
|
|
static const HAL_LED_STATE leds[] = {
|
|
HAL_LED_INIT, /* IEEE80211_S_INIT */
|
|
HAL_LED_SCAN, /* IEEE80211_S_SCAN */
|
|
HAL_LED_AUTH, /* IEEE80211_S_AUTH */
|
|
HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
|
|
HAL_LED_RUN, /* IEEE80211_S_CAC */
|
|
HAL_LED_RUN, /* IEEE80211_S_RUN */
|
|
HAL_LED_RUN, /* IEEE80211_S_CSA */
|
|
HAL_LED_RUN, /* IEEE80211_S_SLEEP */
|
|
};
|
|
|
|
DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
|
|
ieee80211_state_name[vap->iv_state],
|
|
ieee80211_state_name[nstate]);
|
|
|
|
callout_drain(&sc->sc_cal_ch);
|
|
ath_hal_setledstate(ah, leds[nstate]); /* set LED */
|
|
|
|
if (nstate == IEEE80211_S_SCAN) {
|
|
/*
|
|
* Scanning: turn off beacon miss and don't beacon.
|
|
* Mark beacon state so when we reach RUN state we'll
|
|
* [re]setup beacons. Unblock the task q thread so
|
|
* deferred interrupt processing is done.
|
|
*/
|
|
ath_hal_intrset(ah,
|
|
sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
|
|
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
|
|
sc->sc_beacons = 0;
|
|
taskqueue_unblock(sc->sc_tq);
|
|
}
|
|
|
|
ni = vap->iv_bss;
|
|
rfilt = ath_calcrxfilter(sc);
|
|
stamode = (vap->iv_opmode == IEEE80211_M_STA ||
|
|
vap->iv_opmode == IEEE80211_M_AHDEMO ||
|
|
vap->iv_opmode == IEEE80211_M_IBSS);
|
|
if (stamode && nstate == IEEE80211_S_RUN) {
|
|
sc->sc_curaid = ni->ni_associd;
|
|
IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
|
|
ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
|
|
}
|
|
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
|
|
__func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
|
|
ath_hal_setrxfilter(ah, rfilt);
|
|
|
|
/* XXX is this to restore keycache on resume? */
|
|
if (vap->iv_opmode != IEEE80211_M_STA &&
|
|
(vap->iv_flags & IEEE80211_F_PRIVACY)) {
|
|
for (i = 0; i < IEEE80211_WEP_NKID; i++)
|
|
if (ath_hal_keyisvalid(ah, i))
|
|
ath_hal_keysetmac(ah, i, ni->ni_bssid);
|
|
}
|
|
|
|
/*
|
|
* Invoke the parent method to do net80211 work.
|
|
*/
|
|
error = avp->av_newstate(vap, nstate, arg);
|
|
if (error != 0)
|
|
goto bad;
|
|
|
|
if (nstate == IEEE80211_S_RUN) {
|
|
/* NB: collect bss node again, it may have changed */
|
|
ni = vap->iv_bss;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_STATE,
|
|
"%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
|
|
"capinfo 0x%04x chan %d\n", __func__,
|
|
vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
|
|
ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
|
|
|
|
switch (vap->iv_opmode) {
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
case IEEE80211_M_AHDEMO:
|
|
if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
|
|
break;
|
|
/* fall thru... */
|
|
#endif
|
|
case IEEE80211_M_HOSTAP:
|
|
case IEEE80211_M_IBSS:
|
|
case IEEE80211_M_MBSS:
|
|
/*
|
|
* Allocate and setup the beacon frame.
|
|
*
|
|
* Stop any previous beacon DMA. This may be
|
|
* necessary, for example, when an ibss merge
|
|
* causes reconfiguration; there will be a state
|
|
* transition from RUN->RUN that means we may
|
|
* be called with beacon transmission active.
|
|
*/
|
|
ath_hal_stoptxdma(ah, sc->sc_bhalq);
|
|
|
|
error = ath_beacon_alloc(sc, ni);
|
|
if (error != 0)
|
|
goto bad;
|
|
/*
|
|
* If joining an adhoc network defer beacon timer
|
|
* configuration to the next beacon frame so we
|
|
* have a current TSF to use. Otherwise we're
|
|
* starting an ibss/bss so there's no need to delay;
|
|
* if this is the first vap moving to RUN state, then
|
|
* beacon state needs to be [re]configured.
|
|
*/
|
|
if (vap->iv_opmode == IEEE80211_M_IBSS &&
|
|
ni->ni_tstamp.tsf != 0) {
|
|
sc->sc_syncbeacon = 1;
|
|
} else if (!sc->sc_beacons) {
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (vap->iv_caps & IEEE80211_C_TDMA)
|
|
ath_tdma_config(sc, vap);
|
|
else
|
|
#endif
|
|
ath_beacon_config(sc, vap);
|
|
sc->sc_beacons = 1;
|
|
}
|
|
break;
|
|
case IEEE80211_M_STA:
|
|
/*
|
|
* Defer beacon timer configuration to the next
|
|
* beacon frame so we have a current TSF to use
|
|
* (any TSF collected when scanning is likely old).
|
|
*/
|
|
sc->sc_syncbeacon = 1;
|
|
break;
|
|
case IEEE80211_M_MONITOR:
|
|
/*
|
|
* Monitor mode vaps have only INIT->RUN and RUN->RUN
|
|
* transitions so we must re-enable interrupts here to
|
|
* handle the case of a single monitor mode vap.
|
|
*/
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
break;
|
|
case IEEE80211_M_WDS:
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
/*
|
|
* Let the hal process statistics collected during a
|
|
* scan so it can provide calibrated noise floor data.
|
|
*/
|
|
ath_hal_process_noisefloor(ah);
|
|
/*
|
|
* Reset rssi stats; maybe not the best place...
|
|
*/
|
|
sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
|
|
sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
|
|
sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
|
|
/*
|
|
* Finally, start any timers and the task q thread
|
|
* (in case we didn't go through SCAN state).
|
|
*/
|
|
if (ath_longcalinterval != 0) {
|
|
/* start periodic recalibration timer */
|
|
callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
|
|
} else {
|
|
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
|
|
"%s: calibration disabled\n", __func__);
|
|
}
|
|
taskqueue_unblock(sc->sc_tq);
|
|
} else if (nstate == IEEE80211_S_INIT) {
|
|
/*
|
|
* If there are no vaps left in RUN state then
|
|
* shutdown host/driver operation:
|
|
* o disable interrupts
|
|
* o disable the task queue thread
|
|
* o mark beacon processing as stopped
|
|
*/
|
|
if (!ath_isanyrunningvaps(vap)) {
|
|
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
|
|
/* disable interrupts */
|
|
ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
|
|
taskqueue_block(sc->sc_tq);
|
|
sc->sc_beacons = 0;
|
|
}
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
ath_hal_setcca(ah, AH_TRUE);
|
|
#endif
|
|
}
|
|
bad:
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Allocate a key cache slot to the station so we can
|
|
* setup a mapping from key index to node. The key cache
|
|
* slot is needed for managing antenna state and for
|
|
* compression when stations do not use crypto. We do
|
|
* it uniliaterally here; if crypto is employed this slot
|
|
* will be reassigned.
|
|
*/
|
|
static void
|
|
ath_setup_stationkey(struct ieee80211_node *ni)
|
|
{
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
|
|
ieee80211_keyix keyix, rxkeyix;
|
|
|
|
if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
|
|
/*
|
|
* Key cache is full; we'll fall back to doing
|
|
* the more expensive lookup in software. Note
|
|
* this also means no h/w compression.
|
|
*/
|
|
/* XXX msg+statistic */
|
|
} else {
|
|
/* XXX locking? */
|
|
ni->ni_ucastkey.wk_keyix = keyix;
|
|
ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
|
|
/* NB: must mark device key to get called back on delete */
|
|
ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
|
|
IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
|
|
/* NB: this will create a pass-thru key entry */
|
|
ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup driver-specific state for a newly associated node.
|
|
* Note that we're called also on a re-associate, the isnew
|
|
* param tells us if this is the first time or not.
|
|
*/
|
|
static void
|
|
ath_newassoc(struct ieee80211_node *ni, int isnew)
|
|
{
|
|
struct ath_node *an = ATH_NODE(ni);
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
|
|
const struct ieee80211_txparam *tp = ni->ni_txparms;
|
|
|
|
an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
|
|
an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
|
|
|
|
ath_rate_newassoc(sc, an, isnew);
|
|
if (isnew &&
|
|
(vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
|
|
ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
|
|
ath_setup_stationkey(ni);
|
|
}
|
|
|
|
static int
|
|
ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
|
|
int nchans, struct ieee80211_channel chans[])
|
|
{
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_STATUS status;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
|
|
"%s: rd %u cc %u location %c%s\n",
|
|
__func__, reg->regdomain, reg->country, reg->location,
|
|
reg->ecm ? " ecm" : "");
|
|
|
|
status = ath_hal_set_channels(ah, chans, nchans,
|
|
reg->country, reg->regdomain);
|
|
if (status != HAL_OK) {
|
|
DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
|
|
__func__, status);
|
|
return EINVAL; /* XXX */
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ath_getradiocaps(struct ieee80211com *ic,
|
|
int maxchans, int *nchans, struct ieee80211_channel chans[])
|
|
{
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
|
|
__func__, SKU_DEBUG, CTRY_DEFAULT);
|
|
|
|
/* XXX check return */
|
|
(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
|
|
HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
|
|
|
|
}
|
|
|
|
static int
|
|
ath_getchannels(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_STATUS status;
|
|
|
|
/*
|
|
* Collect channel set based on EEPROM contents.
|
|
*/
|
|
status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
|
|
&ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
|
|
if (status != HAL_OK) {
|
|
if_printf(ifp, "%s: unable to collect channel list from hal, "
|
|
"status %d\n", __func__, status);
|
|
return EINVAL;
|
|
}
|
|
(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
|
|
ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */
|
|
/* XXX map Atheros sku's to net80211 SKU's */
|
|
/* XXX net80211 types too small */
|
|
ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
|
|
ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
|
|
ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */
|
|
ic->ic_regdomain.isocc[1] = ' ';
|
|
|
|
ic->ic_regdomain.ecm = 1;
|
|
ic->ic_regdomain.location = 'I';
|
|
|
|
DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
|
|
"%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
|
|
__func__, sc->sc_eerd, sc->sc_eecc,
|
|
ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
|
|
ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ath_led_done(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
|
|
sc->sc_blinking = 0;
|
|
}
|
|
|
|
/*
|
|
* Turn the LED off: flip the pin and then set a timer so no
|
|
* update will happen for the specified duration.
|
|
*/
|
|
static void
|
|
ath_led_off(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
|
|
ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
|
|
callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
|
|
}
|
|
|
|
/*
|
|
* Blink the LED according to the specified on/off times.
|
|
*/
|
|
static void
|
|
ath_led_blink(struct ath_softc *sc, int on, int off)
|
|
{
|
|
DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
|
|
ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
|
|
sc->sc_blinking = 1;
|
|
sc->sc_ledoff = off;
|
|
callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
|
|
}
|
|
|
|
static void
|
|
ath_led_event(struct ath_softc *sc, int rix)
|
|
{
|
|
sc->sc_ledevent = ticks; /* time of last event */
|
|
if (sc->sc_blinking) /* don't interrupt active blink */
|
|
return;
|
|
ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
|
|
}
|
|
|
|
static int
|
|
ath_rate_setup(struct ath_softc *sc, u_int mode)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
const HAL_RATE_TABLE *rt;
|
|
|
|
switch (mode) {
|
|
case IEEE80211_MODE_11A:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11A);
|
|
break;
|
|
case IEEE80211_MODE_HALF:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
|
|
break;
|
|
case IEEE80211_MODE_QUARTER:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
|
|
break;
|
|
case IEEE80211_MODE_11B:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11B);
|
|
break;
|
|
case IEEE80211_MODE_11G:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11G);
|
|
break;
|
|
case IEEE80211_MODE_TURBO_A:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_108A);
|
|
break;
|
|
case IEEE80211_MODE_TURBO_G:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_108G);
|
|
break;
|
|
case IEEE80211_MODE_STURBO_A:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
|
|
break;
|
|
case IEEE80211_MODE_11NA:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
|
|
break;
|
|
case IEEE80211_MODE_11NG:
|
|
rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
|
|
break;
|
|
default:
|
|
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
|
|
__func__, mode);
|
|
return 0;
|
|
}
|
|
sc->sc_rates[mode] = rt;
|
|
return (rt != NULL);
|
|
}
|
|
|
|
static void
|
|
ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
/* NB: on/off times from the Atheros NDIS driver, w/ permission */
|
|
static const struct {
|
|
u_int rate; /* tx/rx 802.11 rate */
|
|
u_int16_t timeOn; /* LED on time (ms) */
|
|
u_int16_t timeOff; /* LED off time (ms) */
|
|
} blinkrates[] = {
|
|
{ 108, 40, 10 },
|
|
{ 96, 44, 11 },
|
|
{ 72, 50, 13 },
|
|
{ 48, 57, 14 },
|
|
{ 36, 67, 16 },
|
|
{ 24, 80, 20 },
|
|
{ 22, 100, 25 },
|
|
{ 18, 133, 34 },
|
|
{ 12, 160, 40 },
|
|
{ 10, 200, 50 },
|
|
{ 6, 240, 58 },
|
|
{ 4, 267, 66 },
|
|
{ 2, 400, 100 },
|
|
{ 0, 500, 130 },
|
|
/* XXX half/quarter rates */
|
|
};
|
|
const HAL_RATE_TABLE *rt;
|
|
int i, j;
|
|
|
|
memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
|
|
rt = sc->sc_rates[mode];
|
|
KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
|
|
for (i = 0; i < rt->rateCount; i++) {
|
|
uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
|
|
if (rt->info[i].phy != IEEE80211_T_HT)
|
|
sc->sc_rixmap[ieeerate] = i;
|
|
else
|
|
sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
|
|
}
|
|
memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
|
|
for (i = 0; i < N(sc->sc_hwmap); i++) {
|
|
if (i >= rt->rateCount) {
|
|
sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
|
|
sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
|
|
continue;
|
|
}
|
|
sc->sc_hwmap[i].ieeerate =
|
|
rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
|
|
if (rt->info[i].phy == IEEE80211_T_HT)
|
|
sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
|
|
sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
|
|
if (rt->info[i].shortPreamble ||
|
|
rt->info[i].phy == IEEE80211_T_OFDM)
|
|
sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
|
|
sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
|
|
for (j = 0; j < N(blinkrates)-1; j++)
|
|
if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
|
|
break;
|
|
/* NB: this uses the last entry if the rate isn't found */
|
|
/* XXX beware of overlow */
|
|
sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
|
|
sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
|
|
}
|
|
sc->sc_currates = rt;
|
|
sc->sc_curmode = mode;
|
|
/*
|
|
* All protection frames are transmited at 2Mb/s for
|
|
* 11g, otherwise at 1Mb/s.
|
|
*/
|
|
if (mode == IEEE80211_MODE_11G)
|
|
sc->sc_protrix = ath_tx_findrix(sc, 2*2);
|
|
else
|
|
sc->sc_protrix = ath_tx_findrix(sc, 2*1);
|
|
/* NB: caller is responsible for reseting rate control state */
|
|
#undef N
|
|
}
|
|
|
|
#ifdef ATH_DEBUG
|
|
static void
|
|
ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf,
|
|
u_int ix, int done)
|
|
{
|
|
const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
const struct ath_desc *ds;
|
|
int i;
|
|
|
|
for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
|
|
printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
|
|
" %08x %08x %08x %08x\n",
|
|
ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
|
|
ds->ds_link, ds->ds_data,
|
|
!done ? "" : (rs->rs_status == 0) ? " *" : " !",
|
|
ds->ds_ctl0, ds->ds_ctl1,
|
|
ds->ds_hw[0], ds->ds_hw[1]);
|
|
if (ah->ah_magic == 0x20065416) {
|
|
printf(" %08x %08x %08x %08x %08x %08x %08x\n",
|
|
ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4],
|
|
ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7],
|
|
ds->ds_hw[8]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf,
|
|
u_int qnum, u_int ix, int done)
|
|
{
|
|
const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
const struct ath_desc *ds;
|
|
int i;
|
|
|
|
printf("Q%u[%3u]", qnum, ix);
|
|
for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
|
|
printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
|
|
" %08x %08x %08x %08x %08x %08x\n",
|
|
ds, (const struct ath_desc *)bf->bf_daddr + i,
|
|
ds->ds_link, ds->ds_data, bf->bf_txflags,
|
|
!done ? "" : (ts->ts_status == 0) ? " *" : " !",
|
|
ds->ds_ctl0, ds->ds_ctl1,
|
|
ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
|
|
if (ah->ah_magic == 0x20065416) {
|
|
printf(" %08x %08x %08x %08x %08x %08x %08x %08x\n",
|
|
ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6],
|
|
ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9],
|
|
ds->ds_hw[10],ds->ds_hw[11]);
|
|
printf(" %08x %08x %08x %08x %08x %08x %08x %08x\n",
|
|
ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14],
|
|
ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17],
|
|
ds->ds_hw[18], ds->ds_hw[19]);
|
|
}
|
|
}
|
|
}
|
|
#endif /* ATH_DEBUG */
|
|
|
|
static void
|
|
ath_watchdog(void *arg)
|
|
{
|
|
struct ath_softc *sc = arg;
|
|
|
|
if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
uint32_t hangs;
|
|
|
|
if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
|
|
hangs != 0) {
|
|
if_printf(ifp, "%s hang detected (0x%x)\n",
|
|
hangs & 0xff ? "bb" : "mac", hangs);
|
|
} else
|
|
if_printf(ifp, "device timeout\n");
|
|
ath_reset(ifp);
|
|
ifp->if_oerrors++;
|
|
sc->sc_stats.ast_watchdog++;
|
|
}
|
|
callout_schedule(&sc->sc_wd_ch, hz);
|
|
}
|
|
|
|
#ifdef ATH_DIAGAPI
|
|
/*
|
|
* Diagnostic interface to the HAL. This is used by various
|
|
* tools to do things like retrieve register contents for
|
|
* debugging. The mechanism is intentionally opaque so that
|
|
* it can change frequently w/o concern for compatiblity.
|
|
*/
|
|
static int
|
|
ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u_int id = ad->ad_id & ATH_DIAG_ID;
|
|
void *indata = NULL;
|
|
void *outdata = NULL;
|
|
u_int32_t insize = ad->ad_in_size;
|
|
u_int32_t outsize = ad->ad_out_size;
|
|
int error = 0;
|
|
|
|
if (ad->ad_id & ATH_DIAG_IN) {
|
|
/*
|
|
* Copy in data.
|
|
*/
|
|
indata = malloc(insize, M_TEMP, M_NOWAIT);
|
|
if (indata == NULL) {
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
error = copyin(ad->ad_in_data, indata, insize);
|
|
if (error)
|
|
goto bad;
|
|
}
|
|
if (ad->ad_id & ATH_DIAG_DYN) {
|
|
/*
|
|
* Allocate a buffer for the results (otherwise the HAL
|
|
* returns a pointer to a buffer where we can read the
|
|
* results). Note that we depend on the HAL leaving this
|
|
* pointer for us to use below in reclaiming the buffer;
|
|
* may want to be more defensive.
|
|
*/
|
|
outdata = malloc(outsize, M_TEMP, M_NOWAIT);
|
|
if (outdata == NULL) {
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
}
|
|
if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
|
|
if (outsize < ad->ad_out_size)
|
|
ad->ad_out_size = outsize;
|
|
if (outdata != NULL)
|
|
error = copyout(outdata, ad->ad_out_data,
|
|
ad->ad_out_size);
|
|
} else {
|
|
error = EINVAL;
|
|
}
|
|
bad:
|
|
if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
|
|
free(indata, M_TEMP);
|
|
if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
|
|
free(outdata, M_TEMP);
|
|
return error;
|
|
}
|
|
#endif /* ATH_DIAGAPI */
|
|
|
|
static int
|
|
ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
#define IS_RUNNING(ifp) \
|
|
((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
const HAL_RATE_TABLE *rt;
|
|
int error = 0;
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFFLAGS:
|
|
ATH_LOCK(sc);
|
|
if (IS_RUNNING(ifp)) {
|
|
/*
|
|
* To avoid rescanning another access point,
|
|
* do not call ath_init() here. Instead,
|
|
* only reflect promisc mode settings.
|
|
*/
|
|
ath_mode_init(sc);
|
|
} else if (ifp->if_flags & IFF_UP) {
|
|
/*
|
|
* Beware of being called during attach/detach
|
|
* to reset promiscuous mode. In that case we
|
|
* will still be marked UP but not RUNNING.
|
|
* However trying to re-init the interface
|
|
* is the wrong thing to do as we've already
|
|
* torn down much of our state. There's
|
|
* probably a better way to deal with this.
|
|
*/
|
|
if (!sc->sc_invalid)
|
|
ath_init(sc); /* XXX lose error */
|
|
} else {
|
|
ath_stop_locked(ifp);
|
|
#ifdef notyet
|
|
/* XXX must wakeup in places like ath_vap_delete */
|
|
if (!sc->sc_invalid)
|
|
ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
|
|
#endif
|
|
}
|
|
ATH_UNLOCK(sc);
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
|
|
break;
|
|
case SIOCGATHSTATS:
|
|
/* NB: embed these numbers to get a consistent view */
|
|
sc->sc_stats.ast_tx_packets = ifp->if_opackets;
|
|
sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
|
|
sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
|
|
sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
|
|
sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
|
|
#endif
|
|
rt = sc->sc_currates;
|
|
/* XXX HT rates */
|
|
sc->sc_stats.ast_tx_rate =
|
|
rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
|
|
return copyout(&sc->sc_stats,
|
|
ifr->ifr_data, sizeof (sc->sc_stats));
|
|
case SIOCZATHSTATS:
|
|
error = priv_check(curthread, PRIV_DRIVER);
|
|
if (error == 0)
|
|
memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
|
|
break;
|
|
#ifdef ATH_DIAGAPI
|
|
case SIOCGATHDIAG:
|
|
error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
|
|
break;
|
|
#endif
|
|
case SIOCGIFADDR:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
return error;
|
|
#undef IS_RUNNING
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int slottime = ath_hal_getslottime(sc->sc_ah);
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &slottime, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &acktimeout, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
int softled = sc->sc_softled;
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &softled, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
softled = (softled != 0);
|
|
if (softled != sc->sc_softled) {
|
|
if (softled) {
|
|
/* NB: handle any sc_ledpin change */
|
|
ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
|
|
HAL_GPIO_MUX_MAC_NETWORK_LED);
|
|
ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
|
|
!sc->sc_ledon);
|
|
}
|
|
sc->sc_softled = softled;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
int ledpin = sc->sc_ledpin;
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &ledpin, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
if (ledpin != sc->sc_ledpin) {
|
|
sc->sc_ledpin = ledpin;
|
|
if (sc->sc_softled) {
|
|
ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
|
|
HAL_GPIO_MUX_MAC_NETWORK_LED);
|
|
ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
|
|
!sc->sc_ledon);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &txantenna, 0, req);
|
|
if (!error && req->newptr) {
|
|
/* XXX assumes 2 antenna ports */
|
|
if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
|
|
return EINVAL;
|
|
ath_hal_setantennaswitch(sc->sc_ah, txantenna);
|
|
/*
|
|
* NB: with the switch locked this isn't meaningful,
|
|
* but set it anyway so things like radiotap get
|
|
* consistent info in their data.
|
|
*/
|
|
sc->sc_txantenna = txantenna;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &defantenna, 0, req);
|
|
if (!error && req->newptr)
|
|
ath_hal_setdefantenna(sc->sc_ah, defantenna);
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int diversity = ath_hal_getdiversity(sc->sc_ah);
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &diversity, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
if (!ath_hal_setdiversity(sc->sc_ah, diversity))
|
|
return EINVAL;
|
|
sc->sc_diversity = diversity;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int32_t diag;
|
|
int error;
|
|
|
|
if (!ath_hal_getdiag(sc->sc_ah, &diag))
|
|
return EINVAL;
|
|
error = sysctl_handle_int(oidp, &diag, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
u_int32_t scale;
|
|
int error;
|
|
|
|
(void) ath_hal_gettpscale(sc->sc_ah, &scale);
|
|
error = sysctl_handle_int(oidp, &scale, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int tpc = ath_hal_gettpc(sc->sc_ah);
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &tpc, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
u_int rfkill = ath_hal_getrfkill(ah);
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, &rfkill, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
if (rfkill == ath_hal_getrfkill(ah)) /* unchanged */
|
|
return 0;
|
|
if (!ath_hal_setrfkill(ah, rfkill))
|
|
return EINVAL;
|
|
return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int rfsilent;
|
|
int error;
|
|
|
|
(void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
|
|
error = sysctl_handle_int(oidp, &rfsilent, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
|
|
return EINVAL;
|
|
sc->sc_rfsilentpin = rfsilent & 0x1c;
|
|
sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int32_t tpack;
|
|
int error;
|
|
|
|
(void) ath_hal_gettpack(sc->sc_ah, &tpack);
|
|
error = sysctl_handle_int(oidp, &tpack, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
u_int32_t tpcts;
|
|
int error;
|
|
|
|
(void) ath_hal_gettpcts(sc->sc_ah, &tpcts);
|
|
error = sysctl_handle_int(oidp, &tpcts, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
|
|
}
|
|
|
|
static int
|
|
ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
int intmit, error;
|
|
|
|
intmit = ath_hal_getintmit(sc->sc_ah);
|
|
error = sysctl_handle_int(oidp, &intmit, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
return !ath_hal_setintmit(sc->sc_ah, intmit) ? EINVAL : 0;
|
|
}
|
|
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
static int
|
|
ath_sysctl_setcca(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct ath_softc *sc = arg1;
|
|
int setcca, error;
|
|
|
|
setcca = sc->sc_setcca;
|
|
error = sysctl_handle_int(oidp, &setcca, 0, req);
|
|
if (error || !req->newptr)
|
|
return error;
|
|
sc->sc_setcca = (setcca != 0);
|
|
return 0;
|
|
}
|
|
#endif /* IEEE80211_SUPPORT_TDMA */
|
|
|
|
static void
|
|
ath_sysctlattach(struct ath_softc *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
|
|
struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
|
|
"EEPROM country code");
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
|
|
"EEPROM regdomain code");
|
|
#ifdef ATH_DEBUG
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"debug", CTLFLAG_RW, &sc->sc_debug, 0,
|
|
"control debugging printfs");
|
|
#endif
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_slottime, "I", "802.11 slot time (us)");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_softled, "I", "enable/disable software LED support");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
|
|
"setting to turn LED on");
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
|
|
"idle time for inactivity LED (ticks)");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_txantenna, "I", "antenna switch");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_rxantenna, "I", "default/rx antenna");
|
|
if (ath_hal_hasdiversity(ah))
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_diversity, "I", "antenna diversity");
|
|
sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
|
|
"tx descriptor batching");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_diag, "I", "h/w diagnostic control");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_tpscale, "I", "tx power scaling");
|
|
if (ath_hal_hastpc(ah)) {
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_tpack, "I", "tx power for ack frames");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_tpcts, "I", "tx power for cts frames");
|
|
}
|
|
if (ath_hal_hasrfsilent(ah)) {
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_rfsilent, "I", "h/w RF silent config");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
|
|
}
|
|
if (ath_hal_hasintmit(ah)) {
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_intmit, "I", "interference mitigation");
|
|
}
|
|
sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
|
|
"mask of error frames to pass when monitoring");
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
if (ath_hal_macversion(ah) > 0x78) {
|
|
sc->sc_tdmadbaprep = 2;
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0,
|
|
"TDMA DBA preparation time");
|
|
sc->sc_tdmaswbaprep = 10;
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0,
|
|
"TDMA SWBA preparation time");
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0,
|
|
"TDMA slot guard time");
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0,
|
|
"TDMA calculated super frame");
|
|
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"setcca", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
|
|
ath_sysctl_setcca, "I", "enable CCA control");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
|
|
struct ath_buf *bf, struct mbuf *m0,
|
|
const struct ieee80211_bpf_params *params)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
int error, ismcast, ismrr;
|
|
int keyix, hdrlen, pktlen, try0, txantenna;
|
|
u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
|
|
struct ieee80211_frame *wh;
|
|
u_int flags, ctsduration;
|
|
HAL_PKT_TYPE atype;
|
|
const HAL_RATE_TABLE *rt;
|
|
struct ath_desc *ds;
|
|
u_int pri;
|
|
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
|
|
hdrlen = ieee80211_anyhdrsize(wh);
|
|
/*
|
|
* Packet length must not include any
|
|
* pad bytes; deduct them here.
|
|
*/
|
|
/* XXX honor IEEE80211_BPF_DATAPAD */
|
|
pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
|
|
|
|
if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
|
|
const struct ieee80211_cipher *cip;
|
|
struct ieee80211_key *k;
|
|
|
|
/*
|
|
* Construct the 802.11 header+trailer for an encrypted
|
|
* frame. The only reason this can fail is because of an
|
|
* unknown or unsupported cipher/key type.
|
|
*/
|
|
k = ieee80211_crypto_encap(ni, m0);
|
|
if (k == NULL) {
|
|
/*
|
|
* This can happen when the key is yanked after the
|
|
* frame was queued. Just discard the frame; the
|
|
* 802.11 layer counts failures and provides
|
|
* debugging/diagnostics.
|
|
*/
|
|
ath_freetx(m0);
|
|
return EIO;
|
|
}
|
|
/*
|
|
* Adjust the packet + header lengths for the crypto
|
|
* additions and calculate the h/w key index. When
|
|
* a s/w mic is done the frame will have had any mic
|
|
* added to it prior to entry so m0->m_pkthdr.len will
|
|
* account for it. Otherwise we need to add it to the
|
|
* packet length.
|
|
*/
|
|
cip = k->wk_cipher;
|
|
hdrlen += cip->ic_header;
|
|
pktlen += cip->ic_header + cip->ic_trailer;
|
|
/* NB: frags always have any TKIP MIC done in s/w */
|
|
if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
|
|
pktlen += cip->ic_miclen;
|
|
keyix = k->wk_keyix;
|
|
|
|
/* packet header may have moved, reset our local pointer */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
|
|
/*
|
|
* Use station key cache slot, if assigned.
|
|
*/
|
|
keyix = ni->ni_ucastkey.wk_keyix;
|
|
if (keyix == IEEE80211_KEYIX_NONE)
|
|
keyix = HAL_TXKEYIX_INVALID;
|
|
} else
|
|
keyix = HAL_TXKEYIX_INVALID;
|
|
|
|
error = ath_tx_dmasetup(sc, bf, m0);
|
|
if (error != 0)
|
|
return error;
|
|
m0 = bf->bf_m; /* NB: may have changed */
|
|
wh = mtod(m0, struct ieee80211_frame *);
|
|
bf->bf_node = ni; /* NB: held reference */
|
|
|
|
flags = HAL_TXDESC_CLRDMASK; /* XXX needed for crypto errs */
|
|
flags |= HAL_TXDESC_INTREQ; /* force interrupt */
|
|
if (params->ibp_flags & IEEE80211_BPF_RTS)
|
|
flags |= HAL_TXDESC_RTSENA;
|
|
else if (params->ibp_flags & IEEE80211_BPF_CTS)
|
|
flags |= HAL_TXDESC_CTSENA;
|
|
/* XXX leave ismcast to injector? */
|
|
if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
|
|
flags |= HAL_TXDESC_NOACK;
|
|
|
|
rt = sc->sc_currates;
|
|
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
|
|
rix = ath_tx_findrix(sc, params->ibp_rate0);
|
|
txrate = rt->info[rix].rateCode;
|
|
if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
|
|
txrate |= rt->info[rix].shortPreamble;
|
|
sc->sc_txrix = rix;
|
|
try0 = params->ibp_try0;
|
|
ismrr = (params->ibp_try1 != 0);
|
|
txantenna = params->ibp_pri >> 2;
|
|
if (txantenna == 0) /* XXX? */
|
|
txantenna = sc->sc_txantenna;
|
|
ctsduration = 0;
|
|
if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
|
|
cix = ath_tx_findrix(sc, params->ibp_ctsrate);
|
|
ctsrate = rt->info[cix].rateCode;
|
|
if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
|
|
ctsrate |= rt->info[cix].shortPreamble;
|
|
if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
|
|
ctsduration += rt->info[cix].spAckDuration;
|
|
ctsduration += ath_hal_computetxtime(ah,
|
|
rt, pktlen, rix, AH_TRUE);
|
|
if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
|
|
ctsduration += rt->info[rix].spAckDuration;
|
|
} else {
|
|
if (flags & HAL_TXDESC_RTSENA) /* SIFS + CTS */
|
|
ctsduration += rt->info[cix].lpAckDuration;
|
|
ctsduration += ath_hal_computetxtime(ah,
|
|
rt, pktlen, rix, AH_FALSE);
|
|
if ((flags & HAL_TXDESC_NOACK) == 0) /* SIFS + ACK */
|
|
ctsduration += rt->info[rix].lpAckDuration;
|
|
}
|
|
ismrr = 0; /* XXX */
|
|
} else
|
|
ctsrate = 0;
|
|
pri = params->ibp_pri & 3;
|
|
/*
|
|
* NB: we mark all packets as type PSPOLL so the h/w won't
|
|
* set the sequence number, duration, etc.
|
|
*/
|
|
atype = HAL_PKT_TYPE_PSPOLL;
|
|
|
|
if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
|
|
ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
|
|
sc->sc_hwmap[rix].ieeerate, -1);
|
|
|
|
if (ieee80211_radiotap_active_vap(vap)) {
|
|
u_int64_t tsf = ath_hal_gettsf64(ah);
|
|
|
|
sc->sc_tx_th.wt_tsf = htole64(tsf);
|
|
sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
|
|
if (wh->i_fc[1] & IEEE80211_FC1_WEP)
|
|
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
|
|
if (m0->m_flags & M_FRAG)
|
|
sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
|
|
sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
|
|
sc->sc_tx_th.wt_txpower = ni->ni_txpower;
|
|
sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
|
|
|
|
ieee80211_radiotap_tx(vap, m0);
|
|
}
|
|
|
|
/*
|
|
* Formulate first tx descriptor with tx controls.
|
|
*/
|
|
ds = bf->bf_desc;
|
|
/* XXX check return value? */
|
|
ath_hal_setuptxdesc(ah, ds
|
|
, pktlen /* packet length */
|
|
, hdrlen /* header length */
|
|
, atype /* Atheros packet type */
|
|
, params->ibp_power /* txpower */
|
|
, txrate, try0 /* series 0 rate/tries */
|
|
, keyix /* key cache index */
|
|
, txantenna /* antenna mode */
|
|
, flags /* flags */
|
|
, ctsrate /* rts/cts rate */
|
|
, ctsduration /* rts/cts duration */
|
|
);
|
|
bf->bf_txflags = flags;
|
|
|
|
if (ismrr) {
|
|
rix = ath_tx_findrix(sc, params->ibp_rate1);
|
|
rate1 = rt->info[rix].rateCode;
|
|
if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
|
|
rate1 |= rt->info[rix].shortPreamble;
|
|
if (params->ibp_try2) {
|
|
rix = ath_tx_findrix(sc, params->ibp_rate2);
|
|
rate2 = rt->info[rix].rateCode;
|
|
if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
|
|
rate2 |= rt->info[rix].shortPreamble;
|
|
} else
|
|
rate2 = 0;
|
|
if (params->ibp_try3) {
|
|
rix = ath_tx_findrix(sc, params->ibp_rate3);
|
|
rate3 = rt->info[rix].rateCode;
|
|
if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
|
|
rate3 |= rt->info[rix].shortPreamble;
|
|
} else
|
|
rate3 = 0;
|
|
ath_hal_setupxtxdesc(ah, ds
|
|
, rate1, params->ibp_try1 /* series 1 */
|
|
, rate2, params->ibp_try2 /* series 2 */
|
|
, rate3, params->ibp_try3 /* series 3 */
|
|
);
|
|
}
|
|
|
|
/* NB: no buffered multicast in power save support */
|
|
ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
|
|
const struct ieee80211_bpf_params *params)
|
|
{
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct ath_softc *sc = ifp->if_softc;
|
|
struct ath_buf *bf;
|
|
int error;
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
|
|
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
|
|
"!running" : "invalid");
|
|
m_freem(m);
|
|
error = ENETDOWN;
|
|
goto bad;
|
|
}
|
|
/*
|
|
* Grab a TX buffer and associated resources.
|
|
*/
|
|
bf = ath_getbuf(sc);
|
|
if (bf == NULL) {
|
|
sc->sc_stats.ast_tx_nobuf++;
|
|
m_freem(m);
|
|
error = ENOBUFS;
|
|
goto bad;
|
|
}
|
|
|
|
if (params == NULL) {
|
|
/*
|
|
* Legacy path; interpret frame contents to decide
|
|
* precisely how to send the frame.
|
|
*/
|
|
if (ath_tx_start(sc, ni, bf, m)) {
|
|
error = EIO; /* XXX */
|
|
goto bad2;
|
|
}
|
|
} else {
|
|
/*
|
|
* Caller supplied explicit parameters to use in
|
|
* sending the frame.
|
|
*/
|
|
if (ath_tx_raw_start(sc, ni, bf, m, params)) {
|
|
error = EIO; /* XXX */
|
|
goto bad2;
|
|
}
|
|
}
|
|
sc->sc_wd_timer = 5;
|
|
ifp->if_opackets++;
|
|
sc->sc_stats.ast_tx_raw++;
|
|
|
|
return 0;
|
|
bad2:
|
|
ATH_TXBUF_LOCK(sc);
|
|
STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
|
|
ATH_TXBUF_UNLOCK(sc);
|
|
bad:
|
|
ifp->if_oerrors++;
|
|
sc->sc_stats.ast_tx_raw_fail++;
|
|
ieee80211_free_node(ni);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Announce various information on device/driver attach.
|
|
*/
|
|
static void
|
|
ath_announce(struct ath_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
|
|
if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
|
|
ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
|
|
ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
|
|
if (bootverbose) {
|
|
int i;
|
|
for (i = 0; i <= WME_AC_VO; i++) {
|
|
struct ath_txq *txq = sc->sc_ac2q[i];
|
|
if_printf(ifp, "Use hw queue %u for %s traffic\n",
|
|
txq->axq_qnum, ieee80211_wme_acnames[i]);
|
|
}
|
|
if_printf(ifp, "Use hw queue %u for CAB traffic\n",
|
|
sc->sc_cabq->axq_qnum);
|
|
if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
|
|
}
|
|
if (ath_rxbuf != ATH_RXBUF)
|
|
if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
|
|
if (ath_txbuf != ATH_TXBUF)
|
|
if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
|
|
}
|
|
|
|
#ifdef IEEE80211_SUPPORT_TDMA
|
|
static __inline uint32_t
|
|
ath_hal_getnexttbtt(struct ath_hal *ah)
|
|
{
|
|
#define AR_TIMER0 0x8028
|
|
return OS_REG_READ(ah, AR_TIMER0);
|
|
}
|
|
|
|
static __inline void
|
|
ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
|
|
{
|
|
/* XXX handle wrap/overflow */
|
|
OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
|
|
}
|
|
|
|
static void
|
|
ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
HAL_BEACON_TIMERS bt;
|
|
|
|
bt.bt_intval = bintval | HAL_BEACON_ENA;
|
|
bt.bt_nexttbtt = nexttbtt;
|
|
bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
|
|
bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
|
|
bt.bt_nextatim = nexttbtt+1;
|
|
ath_hal_beaconsettimers(ah, &bt);
|
|
}
|
|
|
|
/*
|
|
* Calculate the beacon interval. This is periodic in the
|
|
* superframe for the bss. We assume each station is configured
|
|
* identically wrt transmit rate so the guard time we calculate
|
|
* above will be the same on all stations. Note we need to
|
|
* factor in the xmit time because the hardware will schedule
|
|
* a frame for transmit if the start of the frame is within
|
|
* the burst time. When we get hardware that properly kills
|
|
* frames in the PCU we can reduce/eliminate the guard time.
|
|
*
|
|
* Roundup to 1024 is so we have 1 TU buffer in the guard time
|
|
* to deal with the granularity of the nexttbtt timer. 11n MAC's
|
|
* with 1us timer granularity should allow us to reduce/eliminate
|
|
* this.
|
|
*/
|
|
static void
|
|
ath_tdma_bintvalsetup(struct ath_softc *sc,
|
|
const struct ieee80211_tdma_state *tdma)
|
|
{
|
|
/* copy from vap state (XXX check all vaps have same value?) */
|
|
sc->sc_tdmaslotlen = tdma->tdma_slotlen;
|
|
|
|
sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
|
|
tdma->tdma_slotcnt, 1024);
|
|
sc->sc_tdmabintval >>= 10; /* TSF -> TU */
|
|
if (sc->sc_tdmabintval & 1)
|
|
sc->sc_tdmabintval++;
|
|
|
|
if (tdma->tdma_slot == 0) {
|
|
/*
|
|
* Only slot 0 beacons; other slots respond.
|
|
*/
|
|
sc->sc_imask |= HAL_INT_SWBA;
|
|
sc->sc_tdmaswba = 0; /* beacon immediately */
|
|
} else {
|
|
/* XXX all vaps must be slot 0 or slot !0 */
|
|
sc->sc_imask &= ~HAL_INT_SWBA;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Max 802.11 overhead. This assumes no 4-address frames and
|
|
* the encapsulation done by ieee80211_encap (llc). We also
|
|
* include potential crypto overhead.
|
|
*/
|
|
#define IEEE80211_MAXOVERHEAD \
|
|
(sizeof(struct ieee80211_qosframe) \
|
|
+ sizeof(struct llc) \
|
|
+ IEEE80211_ADDR_LEN \
|
|
+ IEEE80211_WEP_IVLEN \
|
|
+ IEEE80211_WEP_KIDLEN \
|
|
+ IEEE80211_WEP_CRCLEN \
|
|
+ IEEE80211_WEP_MICLEN \
|
|
+ IEEE80211_CRC_LEN)
|
|
|
|
/*
|
|
* Setup initially for tdma operation. Start the beacon
|
|
* timers and enable SWBA if we are slot 0. Otherwise
|
|
* we wait for slot 0 to arrive so we can sync up before
|
|
* starting to transmit.
|
|
*/
|
|
static void
|
|
ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
const struct ieee80211_txparam *tp;
|
|
const struct ieee80211_tdma_state *tdma = NULL;
|
|
int rix;
|
|
|
|
if (vap == NULL) {
|
|
vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */
|
|
if (vap == NULL) {
|
|
if_printf(ifp, "%s: no vaps?\n", __func__);
|
|
return;
|
|
}
|
|
}
|
|
tp = vap->iv_bss->ni_txparms;
|
|
/*
|
|
* Calculate the guard time for each slot. This is the
|
|
* time to send a maximal-size frame according to the
|
|
* fixed/lowest transmit rate. Note that the interface
|
|
* mtu does not include the 802.11 overhead so we must
|
|
* tack that on (ath_hal_computetxtime includes the
|
|
* preamble and plcp in it's calculation).
|
|
*/
|
|
tdma = vap->iv_tdma;
|
|
if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
|
|
rix = ath_tx_findrix(sc, tp->ucastrate);
|
|
else
|
|
rix = ath_tx_findrix(sc, tp->mcastrate);
|
|
/* XXX short preamble assumed */
|
|
sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
|
|
ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
|
|
|
|
ath_hal_intrset(ah, 0);
|
|
|
|
ath_beaconq_config(sc); /* setup h/w beacon q */
|
|
if (sc->sc_setcca)
|
|
ath_hal_setcca(ah, AH_FALSE); /* disable CCA */
|
|
ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */
|
|
ath_tdma_settimers(sc, sc->sc_tdmabintval,
|
|
sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
|
|
sc->sc_syncbeacon = 0;
|
|
|
|
sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
|
|
sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
|
|
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
|
|
"bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
|
|
tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
|
|
tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
|
|
sc->sc_tdmadbaprep);
|
|
}
|
|
|
|
/*
|
|
* Update tdma operation. Called from the 802.11 layer
|
|
* when a beacon is received from the TDMA station operating
|
|
* in the slot immediately preceding us in the bss. Use
|
|
* the rx timestamp for the beacon frame to update our
|
|
* beacon timers so we follow their schedule. Note that
|
|
* by using the rx timestamp we implicitly include the
|
|
* propagation delay in our schedule.
|
|
*/
|
|
static void
|
|
ath_tdma_update(struct ieee80211_node *ni,
|
|
const struct ieee80211_tdma_param *tdma, int changed)
|
|
{
|
|
#define TSF_TO_TU(_h,_l) \
|
|
((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
|
|
#define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10)
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ath_softc *sc = ic->ic_ifp->if_softc;
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
const HAL_RATE_TABLE *rt = sc->sc_currates;
|
|
u_int64_t tsf, rstamp, nextslot;
|
|
u_int32_t txtime, nextslottu, timer0;
|
|
int32_t tudelta, tsfdelta;
|
|
const struct ath_rx_status *rs;
|
|
int rix;
|
|
|
|
sc->sc_stats.ast_tdma_update++;
|
|
|
|
/*
|
|
* Check for and adopt configuration changes.
|
|
*/
|
|
if (changed != 0) {
|
|
const struct ieee80211_tdma_state *ts = vap->iv_tdma;
|
|
|
|
ath_tdma_bintvalsetup(sc, ts);
|
|
if (changed & TDMA_UPDATE_SLOTLEN)
|
|
ath_wme_update(ic);
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TDMA,
|
|
"%s: adopt slot %u slotcnt %u slotlen %u us "
|
|
"bintval %u TU\n", __func__,
|
|
ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
|
|
sc->sc_tdmabintval);
|
|
|
|
/* XXX right? */
|
|
ath_hal_intrset(ah, sc->sc_imask);
|
|
/* NB: beacon timers programmed below */
|
|
}
|
|
|
|
/* extend rx timestamp to 64 bits */
|
|
rs = sc->sc_lastrs;
|
|
tsf = ath_hal_gettsf64(ah);
|
|
rstamp = ath_extend_tsf(rs->rs_tstamp, tsf);
|
|
/*
|
|
* The rx timestamp is set by the hardware on completing
|
|
* reception (at the point where the rx descriptor is DMA'd
|
|
* to the host). To find the start of our next slot we
|
|
* must adjust this time by the time required to send
|
|
* the packet just received.
|
|
*/
|
|
rix = rt->rateCodeToIndex[rs->rs_rate];
|
|
txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
|
|
rt->info[rix].shortPreamble);
|
|
/* NB: << 9 is to cvt to TU and /2 */
|
|
nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
|
|
nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
|
|
|
|
/*
|
|
* TIMER0 is the h/w's idea of NextTBTT (in TU's). Convert
|
|
* to usecs and calculate the difference between what the
|
|
* other station thinks and what we have programmed. This
|
|
* lets us figure how to adjust our timers to match. The
|
|
* adjustments are done by pulling the TSF forward and possibly
|
|
* rewriting the beacon timers.
|
|
*/
|
|
timer0 = ath_hal_getnexttbtt(ah);
|
|
tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
|
|
|
|
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
|
|
"tsfdelta %d avg +%d/-%d\n", tsfdelta,
|
|
TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
|
|
|
|
if (tsfdelta < 0) {
|
|
TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
|
|
TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
|
|
tsfdelta = -tsfdelta % 1024;
|
|
nextslottu++;
|
|
} else if (tsfdelta > 0) {
|
|
TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
|
|
TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
|
|
tsfdelta = 1024 - (tsfdelta % 1024);
|
|
nextslottu++;
|
|
} else {
|
|
TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
|
|
TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
|
|
}
|
|
tudelta = nextslottu - timer0;
|
|
|
|
/*
|
|
* Copy sender's timetstamp into tdma ie so they can
|
|
* calculate roundtrip time. We submit a beacon frame
|
|
* below after any timer adjustment. The frame goes out
|
|
* at the next TBTT so the sender can calculate the
|
|
* roundtrip by inspecting the tdma ie in our beacon frame.
|
|
*
|
|
* NB: This tstamp is subtlely preserved when
|
|
* IEEE80211_BEACON_TDMA is marked (e.g. when the
|
|
* slot position changes) because ieee80211_add_tdma
|
|
* skips over the data.
|
|
*/
|
|
memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
|
|
__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
|
|
&ni->ni_tstamp.data, 8);
|
|
#if 0
|
|
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
|
|
"tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
|
|
(unsigned long long) tsf, (unsigned long long) nextslot,
|
|
(int)(nextslot - tsf), tsfdelta,
|
|
nextslottu, timer0, tudelta);
|
|
#endif
|
|
/*
|
|
* Adjust the beacon timers only when pulling them forward
|
|
* or when going back by less than the beacon interval.
|
|
* Negative jumps larger than the beacon interval seem to
|
|
* cause the timers to stop and generally cause instability.
|
|
* This basically filters out jumps due to missed beacons.
|
|
*/
|
|
if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
|
|
ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
|
|
sc->sc_stats.ast_tdma_timers++;
|
|
}
|
|
if (tsfdelta > 0) {
|
|
ath_hal_adjusttsf(ah, tsfdelta);
|
|
sc->sc_stats.ast_tdma_tsf++;
|
|
}
|
|
ath_tdma_beacon_send(sc, vap); /* prepare response */
|
|
#undef TU_TO_TSF
|
|
#undef TSF_TO_TU
|
|
}
|
|
|
|
/*
|
|
* Transmit a beacon frame at SWBA. Dynamic updates
|
|
* to the frame contents are done as needed.
|
|
*/
|
|
static void
|
|
ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
|
|
{
|
|
struct ath_hal *ah = sc->sc_ah;
|
|
struct ath_buf *bf;
|
|
int otherant;
|
|
|
|
/*
|
|
* Check if the previous beacon has gone out. If
|
|
* not don't try to post another, skip this period
|
|
* and wait for the next. Missed beacons indicate
|
|
* a problem and should not occur. If we miss too
|
|
* many consecutive beacons reset the device.
|
|
*/
|
|
if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
|
|
sc->sc_bmisscount++;
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: missed %u consecutive beacons\n",
|
|
__func__, sc->sc_bmisscount);
|
|
if (sc->sc_bmisscount >= ath_bstuck_threshold)
|
|
taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
|
|
return;
|
|
}
|
|
if (sc->sc_bmisscount != 0) {
|
|
DPRINTF(sc, ATH_DEBUG_BEACON,
|
|
"%s: resume beacon xmit after %u misses\n",
|
|
__func__, sc->sc_bmisscount);
|
|
sc->sc_bmisscount = 0;
|
|
}
|
|
|
|
/*
|
|
* Check recent per-antenna transmit statistics and flip
|
|
* the default antenna if noticeably more frames went out
|
|
* on the non-default antenna.
|
|
* XXX assumes 2 anntenae
|
|
*/
|
|
if (!sc->sc_diversity) {
|
|
otherant = sc->sc_defant & 1 ? 2 : 1;
|
|
if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
|
|
ath_setdefantenna(sc, otherant);
|
|
sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
|
|
}
|
|
|
|
bf = ath_beacon_generate(sc, vap);
|
|
if (bf != NULL) {
|
|
/*
|
|
* Stop any current dma and put the new frame on the queue.
|
|
* This should never fail since we check above that no frames
|
|
* are still pending on the queue.
|
|
*/
|
|
if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
|
|
DPRINTF(sc, ATH_DEBUG_ANY,
|
|
"%s: beacon queue %u did not stop?\n",
|
|
__func__, sc->sc_bhalq);
|
|
/* NB: the HAL still stops DMA, so proceed */
|
|
}
|
|
ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
|
|
ath_hal_txstart(ah, sc->sc_bhalq);
|
|
|
|
sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */
|
|
|
|
/*
|
|
* Record local TSF for our last send for use
|
|
* in arbitrating slot collisions.
|
|
*/
|
|
vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
|
|
}
|
|
}
|
|
#endif /* IEEE80211_SUPPORT_TDMA */
|