freebsd-skq/contrib/ntp/ntpd/ntp_request.c
delphij a3a54e251a MFV r298691:
ntp 4.2.8p7.

Security:	CVE-2016-1547, CVE-2016-1548, CVE-2016-1549, CVE-2016-1550
Security:	CVE-2016-1551, CVE-2016-2516, CVE-2016-2517, CVE-2016-2518
Security:	CVE-2016-2519
Security:	FreeBSD-SA-16:16.ntp
With hat:	so
2016-04-27 07:46:38 +00:00

2760 lines
66 KiB
C

/*
* ntp_request.c - respond to information requests
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "ntpd.h"
#include "ntp_io.h"
#include "ntp_request.h"
#include "ntp_control.h"
#include "ntp_refclock.h"
#include "ntp_if.h"
#include "ntp_stdlib.h"
#include "ntp_assert.h"
#include <stdio.h>
#include <stddef.h>
#include <signal.h>
#ifdef HAVE_NETINET_IN_H
#include <netinet/in.h>
#endif
#include <arpa/inet.h>
#include "recvbuff.h"
#ifdef KERNEL_PLL
#include "ntp_syscall.h"
#endif /* KERNEL_PLL */
/*
* Structure to hold request procedure information
*/
#define NOAUTH 0
#define AUTH 1
#define NO_REQUEST (-1)
/*
* Because we now have v6 addresses in the messages, we need to compensate
* for the larger size. Therefore, we introduce the alternate size to
* keep us friendly with older implementations. A little ugly.
*/
static int client_v6_capable = 0; /* the client can handle longer messages */
#define v6sizeof(type) (client_v6_capable ? sizeof(type) : v4sizeof(type))
struct req_proc {
short request_code; /* defined request code */
short needs_auth; /* true when authentication needed */
short sizeofitem; /* size of request data item (older size)*/
short v6_sizeofitem; /* size of request data item (new size)*/
void (*handler) (sockaddr_u *, endpt *,
struct req_pkt *); /* routine to handle request */
};
/*
* Universal request codes
*/
static const struct req_proc univ_codes[] = {
{ NO_REQUEST, NOAUTH, 0, 0, NULL }
};
static void req_ack (sockaddr_u *, endpt *, struct req_pkt *, int);
static void * prepare_pkt (sockaddr_u *, endpt *,
struct req_pkt *, size_t);
static void * more_pkt (void);
static void flush_pkt (void);
static void list_peers (sockaddr_u *, endpt *, struct req_pkt *);
static void list_peers_sum (sockaddr_u *, endpt *, struct req_pkt *);
static void peer_info (sockaddr_u *, endpt *, struct req_pkt *);
static void peer_stats (sockaddr_u *, endpt *, struct req_pkt *);
static void sys_info (sockaddr_u *, endpt *, struct req_pkt *);
static void sys_stats (sockaddr_u *, endpt *, struct req_pkt *);
static void mem_stats (sockaddr_u *, endpt *, struct req_pkt *);
static void io_stats (sockaddr_u *, endpt *, struct req_pkt *);
static void timer_stats (sockaddr_u *, endpt *, struct req_pkt *);
static void loop_info (sockaddr_u *, endpt *, struct req_pkt *);
static void do_conf (sockaddr_u *, endpt *, struct req_pkt *);
static void do_unconf (sockaddr_u *, endpt *, struct req_pkt *);
static void set_sys_flag (sockaddr_u *, endpt *, struct req_pkt *);
static void clr_sys_flag (sockaddr_u *, endpt *, struct req_pkt *);
static void setclr_flags (sockaddr_u *, endpt *, struct req_pkt *, u_long);
static void list_restrict4 (const restrict_u *, struct info_restrict **);
static void list_restrict6 (const restrict_u *, struct info_restrict **);
static void list_restrict (sockaddr_u *, endpt *, struct req_pkt *);
static void do_resaddflags (sockaddr_u *, endpt *, struct req_pkt *);
static void do_ressubflags (sockaddr_u *, endpt *, struct req_pkt *);
static void do_unrestrict (sockaddr_u *, endpt *, struct req_pkt *);
static void do_restrict (sockaddr_u *, endpt *, struct req_pkt *, int);
static void mon_getlist (sockaddr_u *, endpt *, struct req_pkt *);
static void reset_stats (sockaddr_u *, endpt *, struct req_pkt *);
static void reset_peer (sockaddr_u *, endpt *, struct req_pkt *);
static void do_key_reread (sockaddr_u *, endpt *, struct req_pkt *);
static void trust_key (sockaddr_u *, endpt *, struct req_pkt *);
static void untrust_key (sockaddr_u *, endpt *, struct req_pkt *);
static void do_trustkey (sockaddr_u *, endpt *, struct req_pkt *, u_long);
static void get_auth_info (sockaddr_u *, endpt *, struct req_pkt *);
static void req_get_traps (sockaddr_u *, endpt *, struct req_pkt *);
static void req_set_trap (sockaddr_u *, endpt *, struct req_pkt *);
static void req_clr_trap (sockaddr_u *, endpt *, struct req_pkt *);
static void do_setclr_trap (sockaddr_u *, endpt *, struct req_pkt *, int);
static void set_request_keyid (sockaddr_u *, endpt *, struct req_pkt *);
static void set_control_keyid (sockaddr_u *, endpt *, struct req_pkt *);
static void get_ctl_stats (sockaddr_u *, endpt *, struct req_pkt *);
static void get_if_stats (sockaddr_u *, endpt *, struct req_pkt *);
static void do_if_reload (sockaddr_u *, endpt *, struct req_pkt *);
#ifdef KERNEL_PLL
static void get_kernel_info (sockaddr_u *, endpt *, struct req_pkt *);
#endif /* KERNEL_PLL */
#ifdef REFCLOCK
static void get_clock_info (sockaddr_u *, endpt *, struct req_pkt *);
static void set_clock_fudge (sockaddr_u *, endpt *, struct req_pkt *);
#endif /* REFCLOCK */
#ifdef REFCLOCK
static void get_clkbug_info (sockaddr_u *, endpt *, struct req_pkt *);
#endif /* REFCLOCK */
/*
* ntpd request codes
*/
static const struct req_proc ntp_codes[] = {
{ REQ_PEER_LIST, NOAUTH, 0, 0, list_peers },
{ REQ_PEER_LIST_SUM, NOAUTH, 0, 0, list_peers_sum },
{ REQ_PEER_INFO, NOAUTH, v4sizeof(struct info_peer_list),
sizeof(struct info_peer_list), peer_info},
{ REQ_PEER_STATS, NOAUTH, v4sizeof(struct info_peer_list),
sizeof(struct info_peer_list), peer_stats},
{ REQ_SYS_INFO, NOAUTH, 0, 0, sys_info },
{ REQ_SYS_STATS, NOAUTH, 0, 0, sys_stats },
{ REQ_IO_STATS, NOAUTH, 0, 0, io_stats },
{ REQ_MEM_STATS, NOAUTH, 0, 0, mem_stats },
{ REQ_LOOP_INFO, NOAUTH, 0, 0, loop_info },
{ REQ_TIMER_STATS, NOAUTH, 0, 0, timer_stats },
{ REQ_CONFIG, AUTH, v4sizeof(struct conf_peer),
sizeof(struct conf_peer), do_conf },
{ REQ_UNCONFIG, AUTH, v4sizeof(struct conf_unpeer),
sizeof(struct conf_unpeer), do_unconf },
{ REQ_SET_SYS_FLAG, AUTH, sizeof(struct conf_sys_flags),
sizeof(struct conf_sys_flags), set_sys_flag },
{ REQ_CLR_SYS_FLAG, AUTH, sizeof(struct conf_sys_flags),
sizeof(struct conf_sys_flags), clr_sys_flag },
{ REQ_GET_RESTRICT, NOAUTH, 0, 0, list_restrict },
{ REQ_RESADDFLAGS, AUTH, v4sizeof(struct conf_restrict),
sizeof(struct conf_restrict), do_resaddflags },
{ REQ_RESSUBFLAGS, AUTH, v4sizeof(struct conf_restrict),
sizeof(struct conf_restrict), do_ressubflags },
{ REQ_UNRESTRICT, AUTH, v4sizeof(struct conf_restrict),
sizeof(struct conf_restrict), do_unrestrict },
{ REQ_MON_GETLIST, NOAUTH, 0, 0, mon_getlist },
{ REQ_MON_GETLIST_1, NOAUTH, 0, 0, mon_getlist },
{ REQ_RESET_STATS, AUTH, sizeof(struct reset_flags), 0, reset_stats },
{ REQ_RESET_PEER, AUTH, v4sizeof(struct conf_unpeer),
sizeof(struct conf_unpeer), reset_peer },
{ REQ_REREAD_KEYS, AUTH, 0, 0, do_key_reread },
{ REQ_TRUSTKEY, AUTH, sizeof(u_long), sizeof(u_long), trust_key },
{ REQ_UNTRUSTKEY, AUTH, sizeof(u_long), sizeof(u_long), untrust_key },
{ REQ_AUTHINFO, NOAUTH, 0, 0, get_auth_info },
{ REQ_TRAPS, NOAUTH, 0, 0, req_get_traps },
{ REQ_ADD_TRAP, AUTH, v4sizeof(struct conf_trap),
sizeof(struct conf_trap), req_set_trap },
{ REQ_CLR_TRAP, AUTH, v4sizeof(struct conf_trap),
sizeof(struct conf_trap), req_clr_trap },
{ REQ_REQUEST_KEY, AUTH, sizeof(u_long), sizeof(u_long),
set_request_keyid },
{ REQ_CONTROL_KEY, AUTH, sizeof(u_long), sizeof(u_long),
set_control_keyid },
{ REQ_GET_CTLSTATS, NOAUTH, 0, 0, get_ctl_stats },
#ifdef KERNEL_PLL
{ REQ_GET_KERNEL, NOAUTH, 0, 0, get_kernel_info },
#endif
#ifdef REFCLOCK
{ REQ_GET_CLOCKINFO, NOAUTH, sizeof(u_int32), sizeof(u_int32),
get_clock_info },
{ REQ_SET_CLKFUDGE, AUTH, sizeof(struct conf_fudge),
sizeof(struct conf_fudge), set_clock_fudge },
{ REQ_GET_CLKBUGINFO, NOAUTH, sizeof(u_int32), sizeof(u_int32),
get_clkbug_info },
#endif
{ REQ_IF_STATS, AUTH, 0, 0, get_if_stats },
{ REQ_IF_RELOAD, AUTH, 0, 0, do_if_reload },
{ NO_REQUEST, NOAUTH, 0, 0, 0 }
};
/*
* Authentication keyid used to authenticate requests. Zero means we
* don't allow writing anything.
*/
keyid_t info_auth_keyid;
/*
* Statistic counters to keep track of requests and responses.
*/
u_long numrequests; /* number of requests we've received */
u_long numresppkts; /* number of resp packets sent with data */
/*
* lazy way to count errors, indexed by the error code
*/
u_long errorcounter[MAX_INFO_ERR + 1];
/*
* A hack. To keep the authentication module clear of ntp-ism's, we
* include a time reset variable for its stats here.
*/
u_long auth_timereset;
/*
* Response packet used by these routines. Also some state information
* so that we can handle packet formatting within a common set of
* subroutines. Note we try to enter data in place whenever possible,
* but the need to set the more bit correctly means we occasionally
* use the extra buffer and copy.
*/
static struct resp_pkt rpkt;
static int reqver;
static int seqno;
static int nitems;
static int itemsize;
static int databytes;
static char exbuf[RESP_DATA_SIZE];
static int usingexbuf;
static sockaddr_u *toaddr;
static endpt *frominter;
/*
* init_request - initialize request data
*/
void
init_request (void)
{
size_t i;
numrequests = 0;
numresppkts = 0;
auth_timereset = 0;
info_auth_keyid = 0; /* by default, can't do this */
for (i = 0; i < sizeof(errorcounter)/sizeof(errorcounter[0]); i++)
errorcounter[i] = 0;
}
/*
* req_ack - acknowledge request with no data
*/
static void
req_ack(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt,
int errcode
)
{
/*
* fill in the fields
*/
rpkt.rm_vn_mode = RM_VN_MODE(RESP_BIT, 0, reqver);
rpkt.auth_seq = AUTH_SEQ(0, 0);
rpkt.implementation = inpkt->implementation;
rpkt.request = inpkt->request;
rpkt.err_nitems = ERR_NITEMS(errcode, 0);
rpkt.mbz_itemsize = MBZ_ITEMSIZE(0);
/*
* send packet and bump counters
*/
sendpkt(srcadr, inter, -1, (struct pkt *)&rpkt, RESP_HEADER_SIZE);
errorcounter[errcode]++;
}
/*
* prepare_pkt - prepare response packet for transmission, return pointer
* to storage for data item.
*/
static void *
prepare_pkt(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *pkt,
size_t structsize
)
{
DPRINTF(4, ("request: preparing pkt\n"));
/*
* Fill in the implementation, request and itemsize fields
* since these won't change.
*/
rpkt.implementation = pkt->implementation;
rpkt.request = pkt->request;
rpkt.mbz_itemsize = MBZ_ITEMSIZE(structsize);
/*
* Compute the static data needed to carry on.
*/
toaddr = srcadr;
frominter = inter;
seqno = 0;
nitems = 0;
itemsize = structsize;
databytes = 0;
usingexbuf = 0;
/*
* return the beginning of the packet buffer.
*/
return &rpkt.u;
}
/*
* more_pkt - return a data pointer for a new item.
*/
static void *
more_pkt(void)
{
/*
* If we were using the extra buffer, send the packet.
*/
if (usingexbuf) {
DPRINTF(3, ("request: sending pkt\n"));
rpkt.rm_vn_mode = RM_VN_MODE(RESP_BIT, MORE_BIT, reqver);
rpkt.auth_seq = AUTH_SEQ(0, seqno);
rpkt.err_nitems = htons((u_short)nitems);
sendpkt(toaddr, frominter, -1, (struct pkt *)&rpkt,
RESP_HEADER_SIZE + databytes);
numresppkts++;
/*
* Copy data out of exbuf into the packet.
*/
memcpy(&rpkt.u.data[0], exbuf, (unsigned)itemsize);
seqno++;
databytes = 0;
nitems = 0;
usingexbuf = 0;
}
databytes += itemsize;
nitems++;
if (databytes + itemsize <= RESP_DATA_SIZE) {
DPRINTF(4, ("request: giving him more data\n"));
/*
* More room in packet. Give him the
* next address.
*/
return &rpkt.u.data[databytes];
} else {
/*
* No room in packet. Give him the extra
* buffer unless this was the last in the sequence.
*/
DPRINTF(4, ("request: into extra buffer\n"));
if (seqno == MAXSEQ)
return NULL;
else {
usingexbuf = 1;
return exbuf;
}
}
}
/*
* flush_pkt - we're done, return remaining information.
*/
static void
flush_pkt(void)
{
DPRINTF(3, ("request: flushing packet, %d items\n", nitems));
/*
* Must send the last packet. If nothing in here and nothing
* has been sent, send an error saying no data to be found.
*/
if (seqno == 0 && nitems == 0)
req_ack(toaddr, frominter, (struct req_pkt *)&rpkt,
INFO_ERR_NODATA);
else {
rpkt.rm_vn_mode = RM_VN_MODE(RESP_BIT, 0, reqver);
rpkt.auth_seq = AUTH_SEQ(0, seqno);
rpkt.err_nitems = htons((u_short)nitems);
sendpkt(toaddr, frominter, -1, (struct pkt *)&rpkt,
RESP_HEADER_SIZE+databytes);
numresppkts++;
}
}
/*
* Given a buffer, return the packet mode
*/
int
get_packet_mode(struct recvbuf *rbufp)
{
struct req_pkt *inpkt = (struct req_pkt *)&rbufp->recv_pkt;
return (INFO_MODE(inpkt->rm_vn_mode));
}
/*
* process_private - process private mode (7) packets
*/
void
process_private(
struct recvbuf *rbufp,
int mod_okay
)
{
static u_long quiet_until;
struct req_pkt *inpkt;
struct req_pkt_tail *tailinpkt;
sockaddr_u *srcadr;
endpt *inter;
const struct req_proc *proc;
int ec;
short temp_size;
l_fp ftmp;
double dtemp;
size_t recv_len;
size_t noslop_len;
size_t mac_len;
/*
* Initialize pointers, for convenience
*/
recv_len = rbufp->recv_length;
inpkt = (struct req_pkt *)&rbufp->recv_pkt;
srcadr = &rbufp->recv_srcadr;
inter = rbufp->dstadr;
DPRINTF(3, ("process_private: impl %d req %d\n",
inpkt->implementation, inpkt->request));
/*
* Do some sanity checks on the packet. Return a format
* error if it fails.
*/
ec = 0;
if ( (++ec, ISRESPONSE(inpkt->rm_vn_mode))
|| (++ec, ISMORE(inpkt->rm_vn_mode))
|| (++ec, INFO_VERSION(inpkt->rm_vn_mode) > NTP_VERSION)
|| (++ec, INFO_VERSION(inpkt->rm_vn_mode) < NTP_OLDVERSION)
|| (++ec, INFO_SEQ(inpkt->auth_seq) != 0)
|| (++ec, INFO_ERR(inpkt->err_nitems) != 0)
|| (++ec, INFO_MBZ(inpkt->mbz_itemsize) != 0)
|| (++ec, rbufp->recv_length < (int)REQ_LEN_HDR)
) {
NLOG(NLOG_SYSEVENT)
if (current_time >= quiet_until) {
msyslog(LOG_ERR,
"process_private: drop test %d"
" failed, pkt from %s",
ec, stoa(srcadr));
quiet_until = current_time + 60;
}
return;
}
reqver = INFO_VERSION(inpkt->rm_vn_mode);
/*
* Get the appropriate procedure list to search.
*/
if (inpkt->implementation == IMPL_UNIV)
proc = univ_codes;
else if ((inpkt->implementation == IMPL_XNTPD) ||
(inpkt->implementation == IMPL_XNTPD_OLD))
proc = ntp_codes;
else {
req_ack(srcadr, inter, inpkt, INFO_ERR_IMPL);
return;
}
/*
* Search the list for the request codes. If it isn't one
* we know, return an error.
*/
while (proc->request_code != NO_REQUEST) {
if (proc->request_code == (short) inpkt->request)
break;
proc++;
}
if (proc->request_code == NO_REQUEST) {
req_ack(srcadr, inter, inpkt, INFO_ERR_REQ);
return;
}
DPRINTF(4, ("found request in tables\n"));
/*
* If we need data, check to see if we have some. If we
* don't, check to see that there is none (picky, picky).
*/
/* This part is a bit tricky, we want to be sure that the size
* returned is either the old or the new size. We also can find
* out if the client can accept both types of messages this way.
*
* Handle the exception of REQ_CONFIG. It can have two data sizes.
*/
temp_size = INFO_ITEMSIZE(inpkt->mbz_itemsize);
if ((temp_size != proc->sizeofitem &&
temp_size != proc->v6_sizeofitem) &&
!(inpkt->implementation == IMPL_XNTPD &&
inpkt->request == REQ_CONFIG &&
temp_size == sizeof(struct old_conf_peer))) {
DPRINTF(3, ("process_private: wrong item size, received %d, should be %d or %d\n",
temp_size, proc->sizeofitem, proc->v6_sizeofitem));
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
if ((proc->sizeofitem != 0) &&
((size_t)(temp_size * INFO_NITEMS(inpkt->err_nitems)) >
(recv_len - REQ_LEN_HDR))) {
DPRINTF(3, ("process_private: not enough data\n"));
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
switch (inpkt->implementation) {
case IMPL_XNTPD:
client_v6_capable = 1;
break;
case IMPL_XNTPD_OLD:
client_v6_capable = 0;
break;
default:
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
/*
* If we need to authenticate, do so. Note that an
* authenticatable packet must include a mac field, must
* have used key info_auth_keyid and must have included
* a time stamp in the appropriate field. The time stamp
* must be within INFO_TS_MAXSKEW of the receive
* time stamp.
*/
if (proc->needs_auth && sys_authenticate) {
if (recv_len < (REQ_LEN_HDR +
(INFO_ITEMSIZE(inpkt->mbz_itemsize) *
INFO_NITEMS(inpkt->err_nitems)) +
REQ_TAIL_MIN)) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
/*
* For 16-octet digests, regardless of itemsize and
* nitems, authenticated requests are a fixed size
* with the timestamp, key ID, and digest located
* at the end of the packet. Because the key ID
* determining the digest size precedes the digest,
* for larger digests the fixed size request scheme
* is abandoned and the timestamp, key ID, and digest
* are located relative to the start of the packet,
* with the digest size determined by the packet size.
*/
noslop_len = REQ_LEN_HDR
+ INFO_ITEMSIZE(inpkt->mbz_itemsize) *
INFO_NITEMS(inpkt->err_nitems)
+ sizeof(inpkt->tstamp);
/* 32-bit alignment */
noslop_len = (noslop_len + 3) & ~3;
if (recv_len > (noslop_len + MAX_MAC_LEN))
mac_len = 20;
else
mac_len = recv_len - noslop_len;
tailinpkt = (void *)((char *)inpkt + recv_len -
(mac_len + sizeof(inpkt->tstamp)));
/*
* If this guy is restricted from doing this, don't let
* him. If the wrong key was used, or packet doesn't
* have mac, return.
*/
if (!INFO_IS_AUTH(inpkt->auth_seq) || !info_auth_keyid
|| ntohl(tailinpkt->keyid) != info_auth_keyid) {
DPRINTF(5, ("failed auth %d info_auth_keyid %u pkt keyid %u maclen %lu\n",
INFO_IS_AUTH(inpkt->auth_seq),
info_auth_keyid,
ntohl(tailinpkt->keyid), (u_long)mac_len));
#ifdef DEBUG
msyslog(LOG_DEBUG,
"process_private: failed auth %d info_auth_keyid %u pkt keyid %u maclen %lu\n",
INFO_IS_AUTH(inpkt->auth_seq),
info_auth_keyid,
ntohl(tailinpkt->keyid), (u_long)mac_len);
#endif
req_ack(srcadr, inter, inpkt, INFO_ERR_AUTH);
return;
}
if (recv_len > REQ_LEN_NOMAC + MAX_MAC_LEN) {
DPRINTF(5, ("bad pkt length %zu\n", recv_len));
msyslog(LOG_ERR,
"process_private: bad pkt length %zu",
recv_len);
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
if (!mod_okay || !authhavekey(info_auth_keyid)) {
DPRINTF(5, ("failed auth mod_okay %d\n",
mod_okay));
#ifdef DEBUG
msyslog(LOG_DEBUG,
"process_private: failed auth mod_okay %d\n",
mod_okay);
#endif
if (!mod_okay) {
sys_restricted++;
}
req_ack(srcadr, inter, inpkt, INFO_ERR_AUTH);
return;
}
/*
* calculate absolute time difference between xmit time stamp
* and receive time stamp. If too large, too bad.
*/
NTOHL_FP(&tailinpkt->tstamp, &ftmp);
L_SUB(&ftmp, &rbufp->recv_time);
LFPTOD(&ftmp, dtemp);
if (fabs(dtemp) > INFO_TS_MAXSKEW) {
/*
* He's a loser. Tell him.
*/
DPRINTF(5, ("xmit/rcv timestamp delta %g > INFO_TS_MAXSKEW %g\n",
dtemp, INFO_TS_MAXSKEW));
req_ack(srcadr, inter, inpkt, INFO_ERR_AUTH);
return;
}
/*
* So far so good. See if decryption works out okay.
*/
if (!authdecrypt(info_auth_keyid, (u_int32 *)inpkt,
recv_len - mac_len, mac_len)) {
DPRINTF(5, ("authdecrypt failed\n"));
req_ack(srcadr, inter, inpkt, INFO_ERR_AUTH);
return;
}
}
DPRINTF(3, ("process_private: all okay, into handler\n"));
/*
* Packet is okay. Call the handler to send him data.
*/
(proc->handler)(srcadr, inter, inpkt);
}
/*
* list_peers - send a list of the peers
*/
static void
list_peers(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
struct info_peer_list * ip;
const struct peer * pp;
ip = (struct info_peer_list *)prepare_pkt(srcadr, inter, inpkt,
v6sizeof(struct info_peer_list));
for (pp = peer_list; pp != NULL && ip != NULL; pp = pp->p_link) {
if (IS_IPV6(&pp->srcadr)) {
if (!client_v6_capable)
continue;
ip->addr6 = SOCK_ADDR6(&pp->srcadr);
ip->v6_flag = 1;
} else {
ip->addr = NSRCADR(&pp->srcadr);
if (client_v6_capable)
ip->v6_flag = 0;
}
ip->port = NSRCPORT(&pp->srcadr);
ip->hmode = pp->hmode;
ip->flags = 0;
if (pp->flags & FLAG_CONFIG)
ip->flags |= INFO_FLAG_CONFIG;
if (pp == sys_peer)
ip->flags |= INFO_FLAG_SYSPEER;
if (pp->status == CTL_PST_SEL_SYNCCAND)
ip->flags |= INFO_FLAG_SEL_CANDIDATE;
if (pp->status >= CTL_PST_SEL_SYSPEER)
ip->flags |= INFO_FLAG_SHORTLIST;
ip = (struct info_peer_list *)more_pkt();
} /* for pp */
flush_pkt();
}
/*
* list_peers_sum - return extended peer list
*/
static void
list_peers_sum(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
struct info_peer_summary * ips;
const struct peer * pp;
l_fp ltmp;
DPRINTF(3, ("wants peer list summary\n"));
ips = (struct info_peer_summary *)prepare_pkt(srcadr, inter, inpkt,
v6sizeof(struct info_peer_summary));
for (pp = peer_list; pp != NULL && ips != NULL; pp = pp->p_link) {
DPRINTF(4, ("sum: got one\n"));
/*
* Be careful here not to return v6 peers when we
* want only v4.
*/
if (IS_IPV6(&pp->srcadr)) {
if (!client_v6_capable)
continue;
ips->srcadr6 = SOCK_ADDR6(&pp->srcadr);
ips->v6_flag = 1;
if (pp->dstadr)
ips->dstadr6 = SOCK_ADDR6(&pp->dstadr->sin);
else
ZERO(ips->dstadr6);
} else {
ips->srcadr = NSRCADR(&pp->srcadr);
if (client_v6_capable)
ips->v6_flag = 0;
if (pp->dstadr) {
if (!pp->processed)
ips->dstadr = NSRCADR(&pp->dstadr->sin);
else {
if (MDF_BCAST == pp->cast_flags)
ips->dstadr = NSRCADR(&pp->dstadr->bcast);
else if (pp->cast_flags) {
ips->dstadr = NSRCADR(&pp->dstadr->sin);
if (!ips->dstadr)
ips->dstadr = NSRCADR(&pp->dstadr->bcast);
}
}
} else {
ips->dstadr = 0;
}
}
ips->srcport = NSRCPORT(&pp->srcadr);
ips->stratum = pp->stratum;
ips->hpoll = pp->hpoll;
ips->ppoll = pp->ppoll;
ips->reach = pp->reach;
ips->flags = 0;
if (pp == sys_peer)
ips->flags |= INFO_FLAG_SYSPEER;
if (pp->flags & FLAG_CONFIG)
ips->flags |= INFO_FLAG_CONFIG;
if (pp->flags & FLAG_REFCLOCK)
ips->flags |= INFO_FLAG_REFCLOCK;
if (pp->flags & FLAG_PREFER)
ips->flags |= INFO_FLAG_PREFER;
if (pp->flags & FLAG_BURST)
ips->flags |= INFO_FLAG_BURST;
if (pp->status == CTL_PST_SEL_SYNCCAND)
ips->flags |= INFO_FLAG_SEL_CANDIDATE;
if (pp->status >= CTL_PST_SEL_SYSPEER)
ips->flags |= INFO_FLAG_SHORTLIST;
ips->hmode = pp->hmode;
ips->delay = HTONS_FP(DTOFP(pp->delay));
DTOLFP(pp->offset, &ltmp);
HTONL_FP(&ltmp, &ips->offset);
ips->dispersion = HTONS_FP(DTOUFP(SQRT(pp->disp)));
ips = (struct info_peer_summary *)more_pkt();
} /* for pp */
flush_pkt();
}
/*
* peer_info - send information for one or more peers
*/
static void
peer_info (
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
u_short items;
size_t item_sz;
char * datap;
struct info_peer_list ipl;
struct peer * pp;
struct info_peer * ip;
int i;
int j;
sockaddr_u addr;
l_fp ltmp;
items = INFO_NITEMS(inpkt->err_nitems);
item_sz = INFO_ITEMSIZE(inpkt->mbz_itemsize);
datap = inpkt->u.data;
if (item_sz != sizeof(ipl)) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
ip = prepare_pkt(srcadr, inter, inpkt,
v6sizeof(struct info_peer));
while (items-- > 0 && ip != NULL) {
ZERO(ipl);
memcpy(&ipl, datap, item_sz);
ZERO_SOCK(&addr);
NSRCPORT(&addr) = ipl.port;
if (client_v6_capable && ipl.v6_flag) {
AF(&addr) = AF_INET6;
SOCK_ADDR6(&addr) = ipl.addr6;
} else {
AF(&addr) = AF_INET;
NSRCADR(&addr) = ipl.addr;
}
#ifdef ISC_PLATFORM_HAVESALEN
addr.sa.sa_len = SOCKLEN(&addr);
#endif
datap += item_sz;
pp = findexistingpeer(&addr, NULL, NULL, -1, 0);
if (NULL == pp)
continue;
if (IS_IPV6(srcadr)) {
if (pp->dstadr)
ip->dstadr6 =
(MDF_BCAST == pp->cast_flags)
? SOCK_ADDR6(&pp->dstadr->bcast)
: SOCK_ADDR6(&pp->dstadr->sin);
else
ZERO(ip->dstadr6);
ip->srcadr6 = SOCK_ADDR6(&pp->srcadr);
ip->v6_flag = 1;
} else {
if (pp->dstadr) {
if (!pp->processed)
ip->dstadr = NSRCADR(&pp->dstadr->sin);
else {
if (MDF_BCAST == pp->cast_flags)
ip->dstadr = NSRCADR(&pp->dstadr->bcast);
else if (pp->cast_flags) {
ip->dstadr = NSRCADR(&pp->dstadr->sin);
if (!ip->dstadr)
ip->dstadr = NSRCADR(&pp->dstadr->bcast);
}
}
} else
ip->dstadr = 0;
ip->srcadr = NSRCADR(&pp->srcadr);
if (client_v6_capable)
ip->v6_flag = 0;
}
ip->srcport = NSRCPORT(&pp->srcadr);
ip->flags = 0;
if (pp == sys_peer)
ip->flags |= INFO_FLAG_SYSPEER;
if (pp->flags & FLAG_CONFIG)
ip->flags |= INFO_FLAG_CONFIG;
if (pp->flags & FLAG_REFCLOCK)
ip->flags |= INFO_FLAG_REFCLOCK;
if (pp->flags & FLAG_PREFER)
ip->flags |= INFO_FLAG_PREFER;
if (pp->flags & FLAG_BURST)
ip->flags |= INFO_FLAG_BURST;
if (pp->status == CTL_PST_SEL_SYNCCAND)
ip->flags |= INFO_FLAG_SEL_CANDIDATE;
if (pp->status >= CTL_PST_SEL_SYSPEER)
ip->flags |= INFO_FLAG_SHORTLIST;
ip->leap = pp->leap;
ip->hmode = pp->hmode;
ip->keyid = pp->keyid;
ip->stratum = pp->stratum;
ip->ppoll = pp->ppoll;
ip->hpoll = pp->hpoll;
ip->precision = pp->precision;
ip->version = pp->version;
ip->reach = pp->reach;
ip->unreach = (u_char)pp->unreach;
ip->flash = (u_char)pp->flash;
ip->flash2 = (u_short)pp->flash;
ip->estbdelay = HTONS_FP(DTOFP(pp->delay));
ip->ttl = (u_char)pp->ttl;
ip->associd = htons(pp->associd);
ip->rootdelay = HTONS_FP(DTOUFP(pp->rootdelay));
ip->rootdispersion = HTONS_FP(DTOUFP(pp->rootdisp));
ip->refid = pp->refid;
HTONL_FP(&pp->reftime, &ip->reftime);
HTONL_FP(&pp->aorg, &ip->org);
HTONL_FP(&pp->rec, &ip->rec);
HTONL_FP(&pp->xmt, &ip->xmt);
j = pp->filter_nextpt - 1;
for (i = 0; i < NTP_SHIFT; i++, j--) {
if (j < 0)
j = NTP_SHIFT-1;
ip->filtdelay[i] = HTONS_FP(DTOFP(pp->filter_delay[j]));
DTOLFP(pp->filter_offset[j], &ltmp);
HTONL_FP(&ltmp, &ip->filtoffset[i]);
ip->order[i] = (u_char)((pp->filter_nextpt +
NTP_SHIFT - 1) -
pp->filter_order[i]);
if (ip->order[i] >= NTP_SHIFT)
ip->order[i] -= NTP_SHIFT;
}
DTOLFP(pp->offset, &ltmp);
HTONL_FP(&ltmp, &ip->offset);
ip->delay = HTONS_FP(DTOFP(pp->delay));
ip->dispersion = HTONS_FP(DTOUFP(SQRT(pp->disp)));
ip->selectdisp = HTONS_FP(DTOUFP(SQRT(pp->jitter)));
ip = more_pkt();
}
flush_pkt();
}
/*
* peer_stats - send statistics for one or more peers
*/
static void
peer_stats (
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
u_short items;
size_t item_sz;
char * datap;
struct info_peer_list ipl;
struct peer * pp;
struct info_peer_stats *ip;
sockaddr_u addr;
DPRINTF(1, ("peer_stats: called\n"));
items = INFO_NITEMS(inpkt->err_nitems);
item_sz = INFO_ITEMSIZE(inpkt->mbz_itemsize);
datap = inpkt->u.data;
if (item_sz > sizeof(ipl)) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
ip = prepare_pkt(srcadr, inter, inpkt,
v6sizeof(struct info_peer_stats));
while (items-- > 0 && ip != NULL) {
ZERO(ipl);
memcpy(&ipl, datap, item_sz);
ZERO(addr);
NSRCPORT(&addr) = ipl.port;
if (client_v6_capable && ipl.v6_flag) {
AF(&addr) = AF_INET6;
SOCK_ADDR6(&addr) = ipl.addr6;
} else {
AF(&addr) = AF_INET;
NSRCADR(&addr) = ipl.addr;
}
#ifdef ISC_PLATFORM_HAVESALEN
addr.sa.sa_len = SOCKLEN(&addr);
#endif
DPRINTF(1, ("peer_stats: looking for %s, %d, %d\n",
stoa(&addr), ipl.port, NSRCPORT(&addr)));
datap += item_sz;
pp = findexistingpeer(&addr, NULL, NULL, -1, 0);
if (NULL == pp)
continue;
DPRINTF(1, ("peer_stats: found %s\n", stoa(&addr)));
if (IS_IPV4(&pp->srcadr)) {
if (pp->dstadr) {
if (!pp->processed)
ip->dstadr = NSRCADR(&pp->dstadr->sin);
else {
if (MDF_BCAST == pp->cast_flags)
ip->dstadr = NSRCADR(&pp->dstadr->bcast);
else if (pp->cast_flags) {
ip->dstadr = NSRCADR(&pp->dstadr->sin);
if (!ip->dstadr)
ip->dstadr = NSRCADR(&pp->dstadr->bcast);
}
}
} else
ip->dstadr = 0;
ip->srcadr = NSRCADR(&pp->srcadr);
if (client_v6_capable)
ip->v6_flag = 0;
} else {
if (pp->dstadr)
ip->dstadr6 =
(MDF_BCAST == pp->cast_flags)
? SOCK_ADDR6(&pp->dstadr->bcast)
: SOCK_ADDR6(&pp->dstadr->sin);
else
ZERO(ip->dstadr6);
ip->srcadr6 = SOCK_ADDR6(&pp->srcadr);
ip->v6_flag = 1;
}
ip->srcport = NSRCPORT(&pp->srcadr);
ip->flags = 0;
if (pp == sys_peer)
ip->flags |= INFO_FLAG_SYSPEER;
if (pp->flags & FLAG_CONFIG)
ip->flags |= INFO_FLAG_CONFIG;
if (pp->flags & FLAG_REFCLOCK)
ip->flags |= INFO_FLAG_REFCLOCK;
if (pp->flags & FLAG_PREFER)
ip->flags |= INFO_FLAG_PREFER;
if (pp->flags & FLAG_BURST)
ip->flags |= INFO_FLAG_BURST;
if (pp->flags & FLAG_IBURST)
ip->flags |= INFO_FLAG_IBURST;
if (pp->status == CTL_PST_SEL_SYNCCAND)
ip->flags |= INFO_FLAG_SEL_CANDIDATE;
if (pp->status >= CTL_PST_SEL_SYSPEER)
ip->flags |= INFO_FLAG_SHORTLIST;
ip->flags = htons(ip->flags);
ip->timereceived = htonl((u_int32)(current_time - pp->timereceived));
ip->timetosend = htonl(pp->nextdate - current_time);
ip->timereachable = htonl((u_int32)(current_time - pp->timereachable));
ip->sent = htonl((u_int32)(pp->sent));
ip->processed = htonl((u_int32)(pp->processed));
ip->badauth = htonl((u_int32)(pp->badauth));
ip->bogusorg = htonl((u_int32)(pp->bogusorg));
ip->oldpkt = htonl((u_int32)(pp->oldpkt));
ip->seldisp = htonl((u_int32)(pp->seldisptoolarge));
ip->selbroken = htonl((u_int32)(pp->selbroken));
ip->candidate = pp->status;
ip = (struct info_peer_stats *)more_pkt();
}
flush_pkt();
}
/*
* sys_info - return system info
*/
static void
sys_info(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
register struct info_sys *is;
is = (struct info_sys *)prepare_pkt(srcadr, inter, inpkt,
v6sizeof(struct info_sys));
if (sys_peer) {
if (IS_IPV4(&sys_peer->srcadr)) {
is->peer = NSRCADR(&sys_peer->srcadr);
if (client_v6_capable)
is->v6_flag = 0;
} else if (client_v6_capable) {
is->peer6 = SOCK_ADDR6(&sys_peer->srcadr);
is->v6_flag = 1;
}
is->peer_mode = sys_peer->hmode;
} else {
is->peer = 0;
if (client_v6_capable) {
is->v6_flag = 0;
}
is->peer_mode = 0;
}
is->leap = sys_leap;
is->stratum = sys_stratum;
is->precision = sys_precision;
is->rootdelay = htonl(DTOFP(sys_rootdelay));
is->rootdispersion = htonl(DTOUFP(sys_rootdisp));
is->frequency = htonl(DTOFP(sys_jitter));
is->stability = htonl(DTOUFP(clock_stability * 1e6));
is->refid = sys_refid;
HTONL_FP(&sys_reftime, &is->reftime);
is->poll = sys_poll;
is->flags = 0;
if (sys_authenticate)
is->flags |= INFO_FLAG_AUTHENTICATE;
if (sys_bclient)
is->flags |= INFO_FLAG_BCLIENT;
#ifdef REFCLOCK
if (cal_enable)
is->flags |= INFO_FLAG_CAL;
#endif /* REFCLOCK */
if (kern_enable)
is->flags |= INFO_FLAG_KERNEL;
if (mon_enabled != MON_OFF)
is->flags |= INFO_FLAG_MONITOR;
if (ntp_enable)
is->flags |= INFO_FLAG_NTP;
if (hardpps_enable)
is->flags |= INFO_FLAG_PPS_SYNC;
if (stats_control)
is->flags |= INFO_FLAG_FILEGEN;
is->bdelay = HTONS_FP(DTOFP(sys_bdelay));
HTONL_UF(sys_authdelay.l_uf, &is->authdelay);
(void) more_pkt();
flush_pkt();
}
/*
* sys_stats - return system statistics
*/
static void
sys_stats(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
register struct info_sys_stats *ss;
ss = (struct info_sys_stats *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_sys_stats));
ss->timeup = htonl((u_int32)current_time);
ss->timereset = htonl((u_int32)(current_time - sys_stattime));
ss->denied = htonl((u_int32)sys_restricted);
ss->oldversionpkt = htonl((u_int32)sys_oldversion);
ss->newversionpkt = htonl((u_int32)sys_newversion);
ss->unknownversion = htonl((u_int32)sys_declined);
ss->badlength = htonl((u_int32)sys_badlength);
ss->processed = htonl((u_int32)sys_processed);
ss->badauth = htonl((u_int32)sys_badauth);
ss->limitrejected = htonl((u_int32)sys_limitrejected);
ss->received = htonl((u_int32)sys_received);
(void) more_pkt();
flush_pkt();
}
/*
* mem_stats - return memory statistics
*/
static void
mem_stats(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
register struct info_mem_stats *ms;
register int i;
ms = (struct info_mem_stats *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_mem_stats));
ms->timereset = htonl((u_int32)(current_time - peer_timereset));
ms->totalpeermem = htons((u_short)total_peer_structs);
ms->freepeermem = htons((u_short)peer_free_count);
ms->findpeer_calls = htonl((u_int32)findpeer_calls);
ms->allocations = htonl((u_int32)peer_allocations);
ms->demobilizations = htonl((u_int32)peer_demobilizations);
for (i = 0; i < NTP_HASH_SIZE; i++)
ms->hashcount[i] = (u_char)
max((u_int)peer_hash_count[i], UCHAR_MAX);
(void) more_pkt();
flush_pkt();
}
/*
* io_stats - return io statistics
*/
static void
io_stats(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
struct info_io_stats *io;
io = (struct info_io_stats *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_io_stats));
io->timereset = htonl((u_int32)(current_time - io_timereset));
io->totalrecvbufs = htons((u_short) total_recvbuffs());
io->freerecvbufs = htons((u_short) free_recvbuffs());
io->fullrecvbufs = htons((u_short) full_recvbuffs());
io->lowwater = htons((u_short) lowater_additions());
io->dropped = htonl((u_int32)packets_dropped);
io->ignored = htonl((u_int32)packets_ignored);
io->received = htonl((u_int32)packets_received);
io->sent = htonl((u_int32)packets_sent);
io->notsent = htonl((u_int32)packets_notsent);
io->interrupts = htonl((u_int32)handler_calls);
io->int_received = htonl((u_int32)handler_pkts);
(void) more_pkt();
flush_pkt();
}
/*
* timer_stats - return timer statistics
*/
static void
timer_stats(
sockaddr_u * srcadr,
endpt * inter,
struct req_pkt * inpkt
)
{
struct info_timer_stats * ts;
u_long sincereset;
ts = (struct info_timer_stats *)prepare_pkt(srcadr, inter,
inpkt, sizeof(*ts));
sincereset = current_time - timer_timereset;
ts->timereset = htonl((u_int32)sincereset);
ts->alarms = ts->timereset;
ts->overflows = htonl((u_int32)alarm_overflow);
ts->xmtcalls = htonl((u_int32)timer_xmtcalls);
(void) more_pkt();
flush_pkt();
}
/*
* loop_info - return the current state of the loop filter
*/
static void
loop_info(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
struct info_loop *li;
l_fp ltmp;
li = (struct info_loop *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_loop));
DTOLFP(last_offset, &ltmp);
HTONL_FP(&ltmp, &li->last_offset);
DTOLFP(drift_comp * 1e6, &ltmp);
HTONL_FP(&ltmp, &li->drift_comp);
li->compliance = htonl((u_int32)(tc_counter));
li->watchdog_timer = htonl((u_int32)(current_time - sys_epoch));
(void) more_pkt();
flush_pkt();
}
/*
* do_conf - add a peer to the configuration list
*/
static void
do_conf(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
u_short items;
size_t item_sz;
u_int fl;
char * datap;
struct conf_peer temp_cp;
sockaddr_u peeraddr;
/*
* Do a check of everything to see that it looks
* okay. If not, complain about it. Note we are
* very picky here.
*/
items = INFO_NITEMS(inpkt->err_nitems);
item_sz = INFO_ITEMSIZE(inpkt->mbz_itemsize);
datap = inpkt->u.data;
if (item_sz > sizeof(temp_cp)) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
while (items-- > 0) {
ZERO(temp_cp);
memcpy(&temp_cp, datap, item_sz);
ZERO_SOCK(&peeraddr);
fl = 0;
if (temp_cp.flags & CONF_FLAG_PREFER)
fl |= FLAG_PREFER;
if (temp_cp.flags & CONF_FLAG_BURST)
fl |= FLAG_BURST;
if (temp_cp.flags & CONF_FLAG_IBURST)
fl |= FLAG_IBURST;
#ifdef AUTOKEY
if (temp_cp.flags & CONF_FLAG_SKEY)
fl |= FLAG_SKEY;
#endif /* AUTOKEY */
if (client_v6_capable && temp_cp.v6_flag) {
AF(&peeraddr) = AF_INET6;
SOCK_ADDR6(&peeraddr) = temp_cp.peeraddr6;
} else {
AF(&peeraddr) = AF_INET;
NSRCADR(&peeraddr) = temp_cp.peeraddr;
/*
* Make sure the address is valid
*/
if (!ISREFCLOCKADR(&peeraddr) &&
ISBADADR(&peeraddr)) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
}
NSRCPORT(&peeraddr) = htons(NTP_PORT);
#ifdef ISC_PLATFORM_HAVESALEN
peeraddr.sa.sa_len = SOCKLEN(&peeraddr);
#endif
/* check mode value: 0 <= hmode <= 6
*
* There's no good global define for that limit, and
* using a magic define is as good (or bad, actually) as
* a magic number. So we use the highest possible peer
* mode, and that is MODE_BCLIENT.
*
* [Bug 3009] claims that a problem occurs for hmode > 7,
* but the code in ntp_peer.c indicates trouble for any
* hmode > 6 ( --> MODE_BCLIENT).
*/
if (temp_cp.hmode > MODE_BCLIENT) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
/* Any more checks on the values? Unchecked at this
* point:
* - version
* - ttl
* - keyid
*
* - minpoll/maxpoll, but they are treated properly
* for all cases internally. Checking not necessary.
*/
/* finally create the peer */
if (peer_config(&peeraddr, NULL, NULL,
temp_cp.hmode, temp_cp.version, temp_cp.minpoll,
temp_cp.maxpoll, fl, temp_cp.ttl, temp_cp.keyid,
NULL) == 0)
{
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
datap += item_sz;
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* do_unconf - remove a peer from the configuration list
*/
static void
do_unconf(
sockaddr_u * srcadr,
endpt * inter,
struct req_pkt *inpkt
)
{
u_short items;
size_t item_sz;
char * datap;
struct conf_unpeer temp_cp;
struct peer * p;
sockaddr_u peeraddr;
int loops;
/*
* This is a bit unstructured, but I like to be careful.
* We check to see that every peer exists and is actually
* configured. If so, we remove them. If not, we return
* an error.
*
* [Bug 3011] Even if we checked all peers given in the request
* in a dry run, there's still a chance that the caller played
* unfair and gave the same peer multiple times. So we still
* have to be prepared for nasty surprises in the second run ;)
*/
/* basic consistency checks */
item_sz = INFO_ITEMSIZE(inpkt->mbz_itemsize);
if (item_sz > sizeof(temp_cp)) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
/* now do two runs: first a dry run, then a busy one */
for (loops = 0; loops != 2; ++loops) {
items = INFO_NITEMS(inpkt->err_nitems);
datap = inpkt->u.data;
while (items-- > 0) {
/* copy from request to local */
ZERO(temp_cp);
memcpy(&temp_cp, datap, item_sz);
/* get address structure */
ZERO_SOCK(&peeraddr);
if (client_v6_capable && temp_cp.v6_flag) {
AF(&peeraddr) = AF_INET6;
SOCK_ADDR6(&peeraddr) = temp_cp.peeraddr6;
} else {
AF(&peeraddr) = AF_INET;
NSRCADR(&peeraddr) = temp_cp.peeraddr;
}
SET_PORT(&peeraddr, NTP_PORT);
#ifdef ISC_PLATFORM_HAVESALEN
peeraddr.sa.sa_len = SOCKLEN(&peeraddr);
#endif
DPRINTF(1, ("searching for %s\n",
stoa(&peeraddr)));
/* search for matching configred(!) peer */
p = NULL;
do {
p = findexistingpeer(
&peeraddr, NULL, p, -1, 0);
} while (p && !(FLAG_CONFIG & p->flags));
if (!loops && !p) {
/* Item not found in dry run -- bail! */
req_ack(srcadr, inter, inpkt,
INFO_ERR_NODATA);
return;
} else if (loops && p) {
/* Item found in busy run -- remove! */
peer_clear(p, "GONE");
unpeer(p);
}
datap += item_sz;
}
}
/* report success */
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* set_sys_flag - set system flags
*/
static void
set_sys_flag(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
setclr_flags(srcadr, inter, inpkt, 1);
}
/*
* clr_sys_flag - clear system flags
*/
static void
clr_sys_flag(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
setclr_flags(srcadr, inter, inpkt, 0);
}
/*
* setclr_flags - do the grunge work of flag setting/clearing
*/
static void
setclr_flags(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt,
u_long set
)
{
struct conf_sys_flags *sf;
u_int32 flags;
if (INFO_NITEMS(inpkt->err_nitems) > 1) {
msyslog(LOG_ERR, "setclr_flags: err_nitems > 1");
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
sf = (struct conf_sys_flags *)&inpkt->u;
flags = ntohl(sf->flags);
if (flags & ~(SYS_FLAG_BCLIENT | SYS_FLAG_PPS |
SYS_FLAG_NTP | SYS_FLAG_KERNEL | SYS_FLAG_MONITOR |
SYS_FLAG_FILEGEN | SYS_FLAG_AUTH | SYS_FLAG_CAL)) {
msyslog(LOG_ERR, "setclr_flags: extra flags: %#x",
flags & ~(SYS_FLAG_BCLIENT | SYS_FLAG_PPS |
SYS_FLAG_NTP | SYS_FLAG_KERNEL |
SYS_FLAG_MONITOR | SYS_FLAG_FILEGEN |
SYS_FLAG_AUTH | SYS_FLAG_CAL));
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
if (flags & SYS_FLAG_BCLIENT)
proto_config(PROTO_BROADCLIENT, set, 0., NULL);
if (flags & SYS_FLAG_PPS)
proto_config(PROTO_PPS, set, 0., NULL);
if (flags & SYS_FLAG_NTP)
proto_config(PROTO_NTP, set, 0., NULL);
if (flags & SYS_FLAG_KERNEL)
proto_config(PROTO_KERNEL, set, 0., NULL);
if (flags & SYS_FLAG_MONITOR)
proto_config(PROTO_MONITOR, set, 0., NULL);
if (flags & SYS_FLAG_FILEGEN)
proto_config(PROTO_FILEGEN, set, 0., NULL);
if (flags & SYS_FLAG_AUTH)
proto_config(PROTO_AUTHENTICATE, set, 0., NULL);
if (flags & SYS_FLAG_CAL)
proto_config(PROTO_CAL, set, 0., NULL);
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/* There have been some issues with the restrict list processing,
* ranging from problems with deep recursion (resulting in stack
* overflows) and overfull reply buffers.
*
* To avoid this trouble the list reversal is done iteratively using a
* scratch pad.
*/
typedef struct RestrictStack RestrictStackT;
struct RestrictStack {
RestrictStackT *link;
size_t fcnt;
const restrict_u *pres[63];
};
static size_t
getStackSheetSize(
RestrictStackT *sp
)
{
if (sp)
return sizeof(sp->pres)/sizeof(sp->pres[0]);
return 0u;
}
static int/*BOOL*/
pushRestriction(
RestrictStackT **spp,
const restrict_u *ptr
)
{
RestrictStackT *sp;
if (NULL == (sp = *spp) || 0 == sp->fcnt) {
/* need another sheet in the scratch pad */
sp = emalloc(sizeof(*sp));
sp->link = *spp;
sp->fcnt = getStackSheetSize(sp);
*spp = sp;
}
sp->pres[--sp->fcnt] = ptr;
return TRUE;
}
static int/*BOOL*/
popRestriction(
RestrictStackT **spp,
const restrict_u **opp
)
{
RestrictStackT *sp;
if (NULL == (sp = *spp) || sp->fcnt >= getStackSheetSize(sp))
return FALSE;
*opp = sp->pres[sp->fcnt++];
if (sp->fcnt >= getStackSheetSize(sp)) {
/* discard sheet from scratch pad */
*spp = sp->link;
free(sp);
}
return TRUE;
}
static void
flushRestrictionStack(
RestrictStackT **spp
)
{
RestrictStackT *sp;
while (NULL != (sp = *spp)) {
*spp = sp->link;
free(sp);
}
}
/*
* list_restrict4 - iterative helper for list_restrict dumps IPv4
* restriction list in reverse order.
*/
static void
list_restrict4(
const restrict_u * res,
struct info_restrict ** ppir
)
{
RestrictStackT * rpad;
struct info_restrict * pir;
pir = *ppir;
for (rpad = NULL; res; res = res->link)
if (!pushRestriction(&rpad, res))
break;
while (pir && popRestriction(&rpad, &res)) {
pir->addr = htonl(res->u.v4.addr);
if (client_v6_capable)
pir->v6_flag = 0;
pir->mask = htonl(res->u.v4.mask);
pir->count = htonl(res->count);
pir->flags = htons(res->flags);
pir->mflags = htons(res->mflags);
pir = (struct info_restrict *)more_pkt();
}
flushRestrictionStack(&rpad);
*ppir = pir;
}
/*
* list_restrict6 - iterative helper for list_restrict dumps IPv6
* restriction list in reverse order.
*/
static void
list_restrict6(
const restrict_u * res,
struct info_restrict ** ppir
)
{
RestrictStackT * rpad;
struct info_restrict * pir;
pir = *ppir;
for (rpad = NULL; res; res = res->link)
if (!pushRestriction(&rpad, res))
break;
while (pir && popRestriction(&rpad, &res)) {
pir->addr6 = res->u.v6.addr;
pir->mask6 = res->u.v6.mask;
pir->v6_flag = 1;
pir->count = htonl(res->count);
pir->flags = htons(res->flags);
pir->mflags = htons(res->mflags);
pir = (struct info_restrict *)more_pkt();
}
flushRestrictionStack(&rpad);
*ppir = pir;
}
/*
* list_restrict - return the restrict list
*/
static void
list_restrict(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
struct info_restrict *ir;
DPRINTF(3, ("wants restrict list summary\n"));
ir = (struct info_restrict *)prepare_pkt(srcadr, inter, inpkt,
v6sizeof(struct info_restrict));
/*
* The restriction lists are kept sorted in the reverse order
* than they were originally. To preserve the output semantics,
* dump each list in reverse order. The workers take care of that.
*/
list_restrict4(restrictlist4, &ir);
if (client_v6_capable)
list_restrict6(restrictlist6, &ir);
flush_pkt();
}
/*
* do_resaddflags - add flags to a restrict entry (or create one)
*/
static void
do_resaddflags(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
do_restrict(srcadr, inter, inpkt, RESTRICT_FLAGS);
}
/*
* do_ressubflags - remove flags from a restrict entry
*/
static void
do_ressubflags(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
do_restrict(srcadr, inter, inpkt, RESTRICT_UNFLAG);
}
/*
* do_unrestrict - remove a restrict entry from the list
*/
static void
do_unrestrict(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
do_restrict(srcadr, inter, inpkt, RESTRICT_REMOVE);
}
/*
* do_restrict - do the dirty stuff of dealing with restrictions
*/
static void
do_restrict(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt,
int op
)
{
char * datap;
struct conf_restrict cr;
u_short items;
size_t item_sz;
sockaddr_u matchaddr;
sockaddr_u matchmask;
int bad;
/*
* Do a check of the flags to make sure that only
* the NTPPORT flag is set, if any. If not, complain
* about it. Note we are very picky here.
*/
items = INFO_NITEMS(inpkt->err_nitems);
item_sz = INFO_ITEMSIZE(inpkt->mbz_itemsize);
datap = inpkt->u.data;
if (item_sz > sizeof(cr)) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
bad = FALSE;
while (items-- > 0 && !bad) {
memcpy(&cr, datap, item_sz);
cr.flags = ntohs(cr.flags);
cr.mflags = ntohs(cr.mflags);
if (~RESM_NTPONLY & cr.mflags)
bad |= 1;
if (~RES_ALLFLAGS & cr.flags)
bad |= 2;
if (INADDR_ANY != cr.mask) {
if (client_v6_capable && cr.v6_flag) {
if (IN6_IS_ADDR_UNSPECIFIED(&cr.addr6))
bad |= 4;
} else {
if (INADDR_ANY == cr.addr)
bad |= 8;
}
}
datap += item_sz;
}
if (bad) {
msyslog(LOG_ERR, "do_restrict: bad = %#x", bad);
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
/*
* Looks okay, try it out. Needs to reload data pointer and
* item counter. (Talos-CAN-0052)
*/
ZERO_SOCK(&matchaddr);
ZERO_SOCK(&matchmask);
items = INFO_NITEMS(inpkt->err_nitems);
datap = inpkt->u.data;
while (items-- > 0) {
memcpy(&cr, datap, item_sz);
cr.flags = ntohs(cr.flags);
cr.mflags = ntohs(cr.mflags);
if (client_v6_capable && cr.v6_flag) {
AF(&matchaddr) = AF_INET6;
AF(&matchmask) = AF_INET6;
SOCK_ADDR6(&matchaddr) = cr.addr6;
SOCK_ADDR6(&matchmask) = cr.mask6;
} else {
AF(&matchaddr) = AF_INET;
AF(&matchmask) = AF_INET;
NSRCADR(&matchaddr) = cr.addr;
NSRCADR(&matchmask) = cr.mask;
}
hack_restrict(op, &matchaddr, &matchmask, cr.mflags,
cr.flags, 0);
datap += item_sz;
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* mon_getlist - return monitor data
*/
static void
mon_getlist(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
}
/*
* Module entry points and the flags they correspond with
*/
struct reset_entry {
int flag; /* flag this corresponds to */
void (*handler)(void); /* routine to handle request */
};
struct reset_entry reset_entries[] = {
{ RESET_FLAG_ALLPEERS, peer_all_reset },
{ RESET_FLAG_IO, io_clr_stats },
{ RESET_FLAG_SYS, proto_clr_stats },
{ RESET_FLAG_MEM, peer_clr_stats },
{ RESET_FLAG_TIMER, timer_clr_stats },
{ RESET_FLAG_AUTH, reset_auth_stats },
{ RESET_FLAG_CTL, ctl_clr_stats },
{ 0, 0 }
};
/*
* reset_stats - reset statistic counters here and there
*/
static void
reset_stats(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
struct reset_flags *rflags;
u_long flags;
struct reset_entry *rent;
if (INFO_NITEMS(inpkt->err_nitems) > 1) {
msyslog(LOG_ERR, "reset_stats: err_nitems > 1");
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
rflags = (struct reset_flags *)&inpkt->u;
flags = ntohl(rflags->flags);
if (flags & ~RESET_ALLFLAGS) {
msyslog(LOG_ERR, "reset_stats: reset leaves %#lx",
flags & ~RESET_ALLFLAGS);
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
for (rent = reset_entries; rent->flag != 0; rent++) {
if (flags & rent->flag)
(*rent->handler)();
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* reset_peer - clear a peer's statistics
*/
static void
reset_peer(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
u_short items;
size_t item_sz;
char * datap;
struct conf_unpeer cp;
struct peer * p;
sockaddr_u peeraddr;
int bad;
/*
* We check first to see that every peer exists. If not,
* we return an error.
*/
items = INFO_NITEMS(inpkt->err_nitems);
item_sz = INFO_ITEMSIZE(inpkt->mbz_itemsize);
datap = inpkt->u.data;
if (item_sz > sizeof(cp)) {
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
bad = FALSE;
while (items-- > 0 && !bad) {
ZERO(cp);
memcpy(&cp, datap, item_sz);
ZERO_SOCK(&peeraddr);
if (client_v6_capable && cp.v6_flag) {
AF(&peeraddr) = AF_INET6;
SOCK_ADDR6(&peeraddr) = cp.peeraddr6;
} else {
AF(&peeraddr) = AF_INET;
NSRCADR(&peeraddr) = cp.peeraddr;
}
#ifdef ISC_PLATFORM_HAVESALEN
peeraddr.sa.sa_len = SOCKLEN(&peeraddr);
#endif
p = findexistingpeer(&peeraddr, NULL, NULL, -1, 0);
if (NULL == p)
bad++;
datap += item_sz;
}
if (bad) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
/*
* Now do it in earnest. Needs to reload data pointer and item
* counter. (Talos-CAN-0052)
*/
items = INFO_NITEMS(inpkt->err_nitems);
datap = inpkt->u.data;
while (items-- > 0) {
ZERO(cp);
memcpy(&cp, datap, item_sz);
ZERO_SOCK(&peeraddr);
if (client_v6_capable && cp.v6_flag) {
AF(&peeraddr) = AF_INET6;
SOCK_ADDR6(&peeraddr) = cp.peeraddr6;
} else {
AF(&peeraddr) = AF_INET;
NSRCADR(&peeraddr) = cp.peeraddr;
}
SET_PORT(&peeraddr, 123);
#ifdef ISC_PLATFORM_HAVESALEN
peeraddr.sa.sa_len = SOCKLEN(&peeraddr);
#endif
p = findexistingpeer(&peeraddr, NULL, NULL, -1, 0);
while (p != NULL) {
peer_reset(p);
p = findexistingpeer(&peeraddr, NULL, p, -1, 0);
}
datap += item_sz;
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* do_key_reread - reread the encryption key file
*/
static void
do_key_reread(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
rereadkeys();
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* trust_key - make one or more keys trusted
*/
static void
trust_key(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
do_trustkey(srcadr, inter, inpkt, 1);
}
/*
* untrust_key - make one or more keys untrusted
*/
static void
untrust_key(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
do_trustkey(srcadr, inter, inpkt, 0);
}
/*
* do_trustkey - make keys either trustable or untrustable
*/
static void
do_trustkey(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt,
u_long trust
)
{
register uint32_t *kp;
register int items;
items = INFO_NITEMS(inpkt->err_nitems);
kp = (uint32_t *)&inpkt->u;
while (items-- > 0) {
authtrust(*kp, trust);
kp++;
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* get_auth_info - return some stats concerning the authentication module
*/
static void
get_auth_info(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
register struct info_auth *ia;
ia = (struct info_auth *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_auth));
ia->numkeys = htonl((u_int32)authnumkeys);
ia->numfreekeys = htonl((u_int32)authnumfreekeys);
ia->keylookups = htonl((u_int32)authkeylookups);
ia->keynotfound = htonl((u_int32)authkeynotfound);
ia->encryptions = htonl((u_int32)authencryptions);
ia->decryptions = htonl((u_int32)authdecryptions);
ia->keyuncached = htonl((u_int32)authkeyuncached);
ia->expired = htonl((u_int32)authkeyexpired);
ia->timereset = htonl((u_int32)(current_time - auth_timereset));
(void) more_pkt();
flush_pkt();
}
/*
* reset_auth_stats - reset the authentication stat counters. Done here
* to keep ntp-isms out of the authentication module
*/
void
reset_auth_stats(void)
{
authkeylookups = 0;
authkeynotfound = 0;
authencryptions = 0;
authdecryptions = 0;
authkeyuncached = 0;
auth_timereset = current_time;
}
/*
* req_get_traps - return information about current trap holders
*/
static void
req_get_traps(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
struct info_trap *it;
struct ctl_trap *tr;
size_t i;
if (num_ctl_traps == 0) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
it = (struct info_trap *)prepare_pkt(srcadr, inter, inpkt,
v6sizeof(struct info_trap));
for (i = 0, tr = ctl_traps; it && i < COUNTOF(ctl_traps); i++, tr++) {
if (tr->tr_flags & TRAP_INUSE) {
if (IS_IPV4(&tr->tr_addr)) {
if (tr->tr_localaddr == any_interface)
it->local_address = 0;
else
it->local_address
= NSRCADR(&tr->tr_localaddr->sin);
it->trap_address = NSRCADR(&tr->tr_addr);
if (client_v6_capable)
it->v6_flag = 0;
} else {
if (!client_v6_capable)
continue;
it->local_address6
= SOCK_ADDR6(&tr->tr_localaddr->sin);
it->trap_address6 = SOCK_ADDR6(&tr->tr_addr);
it->v6_flag = 1;
}
it->trap_port = NSRCPORT(&tr->tr_addr);
it->sequence = htons(tr->tr_sequence);
it->settime = htonl((u_int32)(current_time - tr->tr_settime));
it->origtime = htonl((u_int32)(current_time - tr->tr_origtime));
it->resets = htonl((u_int32)tr->tr_resets);
it->flags = htonl((u_int32)tr->tr_flags);
it = (struct info_trap *)more_pkt();
}
}
flush_pkt();
}
/*
* req_set_trap - configure a trap
*/
static void
req_set_trap(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
do_setclr_trap(srcadr, inter, inpkt, 1);
}
/*
* req_clr_trap - unconfigure a trap
*/
static void
req_clr_trap(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
do_setclr_trap(srcadr, inter, inpkt, 0);
}
/*
* do_setclr_trap - do the grunge work of (un)configuring a trap
*/
static void
do_setclr_trap(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt,
int set
)
{
register struct conf_trap *ct;
register endpt *linter;
int res;
sockaddr_u laddr;
/*
* Prepare sockaddr
*/
ZERO_SOCK(&laddr);
AF(&laddr) = AF(srcadr);
SET_PORT(&laddr, NTP_PORT);
/*
* Restrict ourselves to one item only. This eliminates
* the error reporting problem.
*/
if (INFO_NITEMS(inpkt->err_nitems) > 1) {
msyslog(LOG_ERR, "do_setclr_trap: err_nitems > 1");
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
ct = (struct conf_trap *)&inpkt->u;
/*
* Look for the local interface. If none, use the default.
*/
if (ct->local_address == 0) {
linter = any_interface;
} else {
if (IS_IPV4(&laddr))
NSRCADR(&laddr) = ct->local_address;
else
SOCK_ADDR6(&laddr) = ct->local_address6;
linter = findinterface(&laddr);
if (NULL == linter) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
}
if (IS_IPV4(&laddr))
NSRCADR(&laddr) = ct->trap_address;
else
SOCK_ADDR6(&laddr) = ct->trap_address6;
if (ct->trap_port)
NSRCPORT(&laddr) = ct->trap_port;
else
SET_PORT(&laddr, TRAPPORT);
if (set) {
res = ctlsettrap(&laddr, linter, 0,
INFO_VERSION(inpkt->rm_vn_mode));
} else {
res = ctlclrtrap(&laddr, linter, 0);
}
if (!res) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
} else {
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
return;
}
/*
* Validate a request packet for a new request or control key:
* - only one item allowed
* - key must be valid (that is, known, and not in the autokey range)
*/
static void
set_keyid_checked(
keyid_t *into,
const char *what,
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
keyid_t *pkeyid;
keyid_t tmpkey;
/* restrict ourselves to one item only */
if (INFO_NITEMS(inpkt->err_nitems) > 1) {
msyslog(LOG_ERR, "set_keyid_checked[%s]: err_nitems > 1",
what);
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
/* plug the new key from the packet */
pkeyid = (keyid_t *)&inpkt->u;
tmpkey = ntohl(*pkeyid);
/* validate the new key id, claim data error on failure */
if (tmpkey < 1 || tmpkey > NTP_MAXKEY || !auth_havekey(tmpkey)) {
msyslog(LOG_ERR, "set_keyid_checked[%s]: invalid key id: %ld",
what, (long)tmpkey);
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
/* if we arrive here, the key is good -- use it */
*into = tmpkey;
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
/*
* set_request_keyid - set the keyid used to authenticate requests
*/
static void
set_request_keyid(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
set_keyid_checked(&info_auth_keyid, "request",
srcadr, inter, inpkt);
}
/*
* set_control_keyid - set the keyid used to authenticate requests
*/
static void
set_control_keyid(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
set_keyid_checked(&ctl_auth_keyid, "control",
srcadr, inter, inpkt);
}
/*
* get_ctl_stats - return some stats concerning the control message module
*/
static void
get_ctl_stats(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
register struct info_control *ic;
ic = (struct info_control *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_control));
ic->ctltimereset = htonl((u_int32)(current_time - ctltimereset));
ic->numctlreq = htonl((u_int32)numctlreq);
ic->numctlbadpkts = htonl((u_int32)numctlbadpkts);
ic->numctlresponses = htonl((u_int32)numctlresponses);
ic->numctlfrags = htonl((u_int32)numctlfrags);
ic->numctlerrors = htonl((u_int32)numctlerrors);
ic->numctltooshort = htonl((u_int32)numctltooshort);
ic->numctlinputresp = htonl((u_int32)numctlinputresp);
ic->numctlinputfrag = htonl((u_int32)numctlinputfrag);
ic->numctlinputerr = htonl((u_int32)numctlinputerr);
ic->numctlbadoffset = htonl((u_int32)numctlbadoffset);
ic->numctlbadversion = htonl((u_int32)numctlbadversion);
ic->numctldatatooshort = htonl((u_int32)numctldatatooshort);
ic->numctlbadop = htonl((u_int32)numctlbadop);
ic->numasyncmsgs = htonl((u_int32)numasyncmsgs);
(void) more_pkt();
flush_pkt();
}
#ifdef KERNEL_PLL
/*
* get_kernel_info - get kernel pll/pps information
*/
static void
get_kernel_info(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
register struct info_kernel *ik;
struct timex ntx;
if (!pll_control) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
ZERO(ntx);
if (ntp_adjtime(&ntx) < 0)
msyslog(LOG_ERR, "get_kernel_info: ntp_adjtime() failed: %m");
ik = (struct info_kernel *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_kernel));
/*
* pll variables
*/
ik->offset = htonl((u_int32)ntx.offset);
ik->freq = htonl((u_int32)ntx.freq);
ik->maxerror = htonl((u_int32)ntx.maxerror);
ik->esterror = htonl((u_int32)ntx.esterror);
ik->status = htons(ntx.status);
ik->constant = htonl((u_int32)ntx.constant);
ik->precision = htonl((u_int32)ntx.precision);
ik->tolerance = htonl((u_int32)ntx.tolerance);
/*
* pps variables
*/
ik->ppsfreq = htonl((u_int32)ntx.ppsfreq);
ik->jitter = htonl((u_int32)ntx.jitter);
ik->shift = htons(ntx.shift);
ik->stabil = htonl((u_int32)ntx.stabil);
ik->jitcnt = htonl((u_int32)ntx.jitcnt);
ik->calcnt = htonl((u_int32)ntx.calcnt);
ik->errcnt = htonl((u_int32)ntx.errcnt);
ik->stbcnt = htonl((u_int32)ntx.stbcnt);
(void) more_pkt();
flush_pkt();
}
#endif /* KERNEL_PLL */
#ifdef REFCLOCK
/*
* get_clock_info - get info about a clock
*/
static void
get_clock_info(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
register struct info_clock *ic;
register u_int32 *clkaddr;
register int items;
struct refclockstat clock_stat;
sockaddr_u addr;
l_fp ltmp;
ZERO_SOCK(&addr);
AF(&addr) = AF_INET;
#ifdef ISC_PLATFORM_HAVESALEN
addr.sa.sa_len = SOCKLEN(&addr);
#endif
SET_PORT(&addr, NTP_PORT);
items = INFO_NITEMS(inpkt->err_nitems);
clkaddr = &inpkt->u.u32[0];
ic = (struct info_clock *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_clock));
while (items-- > 0 && ic) {
NSRCADR(&addr) = *clkaddr++;
if (!ISREFCLOCKADR(&addr) || NULL ==
findexistingpeer(&addr, NULL, NULL, -1, 0)) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
clock_stat.kv_list = (struct ctl_var *)0;
refclock_control(&addr, NULL, &clock_stat);
ic->clockadr = NSRCADR(&addr);
ic->type = clock_stat.type;
ic->flags = clock_stat.flags;
ic->lastevent = clock_stat.lastevent;
ic->currentstatus = clock_stat.currentstatus;
ic->polls = htonl((u_int32)clock_stat.polls);
ic->noresponse = htonl((u_int32)clock_stat.noresponse);
ic->badformat = htonl((u_int32)clock_stat.badformat);
ic->baddata = htonl((u_int32)clock_stat.baddata);
ic->timestarted = htonl((u_int32)clock_stat.timereset);
DTOLFP(clock_stat.fudgetime1, &ltmp);
HTONL_FP(&ltmp, &ic->fudgetime1);
DTOLFP(clock_stat.fudgetime2, &ltmp);
HTONL_FP(&ltmp, &ic->fudgetime2);
ic->fudgeval1 = htonl((u_int32)clock_stat.fudgeval1);
ic->fudgeval2 = htonl(clock_stat.fudgeval2);
free_varlist(clock_stat.kv_list);
ic = (struct info_clock *)more_pkt();
}
flush_pkt();
}
/*
* set_clock_fudge - get a clock's fudge factors
*/
static void
set_clock_fudge(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
register struct conf_fudge *cf;
register int items;
struct refclockstat clock_stat;
sockaddr_u addr;
l_fp ltmp;
ZERO(addr);
ZERO(clock_stat);
items = INFO_NITEMS(inpkt->err_nitems);
cf = (struct conf_fudge *)&inpkt->u;
while (items-- > 0) {
AF(&addr) = AF_INET;
NSRCADR(&addr) = cf->clockadr;
#ifdef ISC_PLATFORM_HAVESALEN
addr.sa.sa_len = SOCKLEN(&addr);
#endif
SET_PORT(&addr, NTP_PORT);
if (!ISREFCLOCKADR(&addr) || NULL ==
findexistingpeer(&addr, NULL, NULL, -1, 0)) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
switch(ntohl(cf->which)) {
case FUDGE_TIME1:
NTOHL_FP(&cf->fudgetime, &ltmp);
LFPTOD(&ltmp, clock_stat.fudgetime1);
clock_stat.haveflags = CLK_HAVETIME1;
break;
case FUDGE_TIME2:
NTOHL_FP(&cf->fudgetime, &ltmp);
LFPTOD(&ltmp, clock_stat.fudgetime2);
clock_stat.haveflags = CLK_HAVETIME2;
break;
case FUDGE_VAL1:
clock_stat.fudgeval1 = ntohl(cf->fudgeval_flags);
clock_stat.haveflags = CLK_HAVEVAL1;
break;
case FUDGE_VAL2:
clock_stat.fudgeval2 = ntohl(cf->fudgeval_flags);
clock_stat.haveflags = CLK_HAVEVAL2;
break;
case FUDGE_FLAGS:
clock_stat.flags = (u_char) (ntohl(cf->fudgeval_flags) & 0xf);
clock_stat.haveflags =
(CLK_HAVEFLAG1|CLK_HAVEFLAG2|CLK_HAVEFLAG3|CLK_HAVEFLAG4);
break;
default:
msyslog(LOG_ERR, "set_clock_fudge: default!");
req_ack(srcadr, inter, inpkt, INFO_ERR_FMT);
return;
}
refclock_control(&addr, &clock_stat, (struct refclockstat *)0);
}
req_ack(srcadr, inter, inpkt, INFO_OKAY);
}
#endif
#ifdef REFCLOCK
/*
* get_clkbug_info - get debugging info about a clock
*/
static void
get_clkbug_info(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
register int i;
register struct info_clkbug *ic;
register u_int32 *clkaddr;
register int items;
struct refclockbug bug;
sockaddr_u addr;
ZERO_SOCK(&addr);
AF(&addr) = AF_INET;
#ifdef ISC_PLATFORM_HAVESALEN
addr.sa.sa_len = SOCKLEN(&addr);
#endif
SET_PORT(&addr, NTP_PORT);
items = INFO_NITEMS(inpkt->err_nitems);
clkaddr = (u_int32 *)&inpkt->u;
ic = (struct info_clkbug *)prepare_pkt(srcadr, inter, inpkt,
sizeof(struct info_clkbug));
while (items-- > 0 && ic) {
NSRCADR(&addr) = *clkaddr++;
if (!ISREFCLOCKADR(&addr) || NULL ==
findexistingpeer(&addr, NULL, NULL, -1, 0)) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
ZERO(bug);
refclock_buginfo(&addr, &bug);
if (bug.nvalues == 0 && bug.ntimes == 0) {
req_ack(srcadr, inter, inpkt, INFO_ERR_NODATA);
return;
}
ic->clockadr = NSRCADR(&addr);
i = bug.nvalues;
if (i > NUMCBUGVALUES)
i = NUMCBUGVALUES;
ic->nvalues = (u_char)i;
ic->svalues = htons((u_short) (bug.svalues & ((1<<i)-1)));
while (--i >= 0)
ic->values[i] = htonl(bug.values[i]);
i = bug.ntimes;
if (i > NUMCBUGTIMES)
i = NUMCBUGTIMES;
ic->ntimes = (u_char)i;
ic->stimes = htonl(bug.stimes);
while (--i >= 0) {
HTONL_FP(&bug.times[i], &ic->times[i]);
}
ic = (struct info_clkbug *)more_pkt();
}
flush_pkt();
}
#endif
/*
* receiver of interface structures
*/
static void
fill_info_if_stats(void *data, interface_info_t *interface_info)
{
struct info_if_stats **ifsp = (struct info_if_stats **)data;
struct info_if_stats *ifs = *ifsp;
endpt *ep = interface_info->ep;
if (NULL == ifs)
return;
ZERO(*ifs);
if (IS_IPV6(&ep->sin)) {
if (!client_v6_capable)
return;
ifs->v6_flag = 1;
ifs->unaddr.addr6 = SOCK_ADDR6(&ep->sin);
ifs->unbcast.addr6 = SOCK_ADDR6(&ep->bcast);
ifs->unmask.addr6 = SOCK_ADDR6(&ep->mask);
} else {
ifs->v6_flag = 0;
ifs->unaddr.addr = SOCK_ADDR4(&ep->sin);
ifs->unbcast.addr = SOCK_ADDR4(&ep->bcast);
ifs->unmask.addr = SOCK_ADDR4(&ep->mask);
}
ifs->v6_flag = htonl(ifs->v6_flag);
strlcpy(ifs->name, ep->name, sizeof(ifs->name));
ifs->family = htons(ep->family);
ifs->flags = htonl(ep->flags);
ifs->last_ttl = htonl(ep->last_ttl);
ifs->num_mcast = htonl(ep->num_mcast);
ifs->received = htonl(ep->received);
ifs->sent = htonl(ep->sent);
ifs->notsent = htonl(ep->notsent);
ifs->ifindex = htonl(ep->ifindex);
/* scope no longer in endpt, in in6_addr typically */
ifs->scopeid = ifs->ifindex;
ifs->ifnum = htonl(ep->ifnum);
ifs->uptime = htonl(current_time - ep->starttime);
ifs->ignore_packets = ep->ignore_packets;
ifs->peercnt = htonl(ep->peercnt);
ifs->action = interface_info->action;
*ifsp = (struct info_if_stats *)more_pkt();
}
/*
* get_if_stats - get interface statistics
*/
static void
get_if_stats(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
struct info_if_stats *ifs;
DPRINTF(3, ("wants interface statistics\n"));
ifs = (struct info_if_stats *)prepare_pkt(srcadr, inter, inpkt,
v6sizeof(struct info_if_stats));
interface_enumerate(fill_info_if_stats, &ifs);
flush_pkt();
}
static void
do_if_reload(
sockaddr_u *srcadr,
endpt *inter,
struct req_pkt *inpkt
)
{
struct info_if_stats *ifs;
DPRINTF(3, ("wants interface reload\n"));
ifs = (struct info_if_stats *)prepare_pkt(srcadr, inter, inpkt,
v6sizeof(struct info_if_stats));
interface_update(fill_info_if_stats, &ifs);
flush_pkt();
}