freebsd-skq/bin/pax/ftree.c
Eivind Eklund 007d33500e Remove simultaneous include of <sys/param.h> and <sys/types.h>.
Reorder includes to be alphabetical some places since I already was in
here.
1997-12-10 22:18:54 +00:00

544 lines
14 KiB
C

/*-
* Copyright (c) 1992 Keith Muller.
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Keith Muller of the University of California, San Diego.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: ftree.c,v 1.8 1997/08/29 16:12:24 sos Exp $
*/
#ifndef lint
static char const sccsid[] = "@(#)ftree.c 8.2 (Berkeley) 4/18/94";
#endif /* not lint */
#include <sys/types.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <unistd.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <fts.h>
#include "pax.h"
#include "ftree.h"
#include "extern.h"
/*
* routines to interface with the fts library function.
*
* file args supplied to pax are stored on a single linked list (of type FTREE)
* and given to fts to be processed one at a time. pax "selects" files from
* the expansion of each arg into the corresponding file tree (if the arg is a
* directory, otherwise the node itself is just passed to pax). The selection
* is modified by the -n and -u flags. The user is informed when a specific
* file arg does not generate any selected files. -n keeps expanding the file
* tree arg until one of its files is selected, then skips to the next file
* arg. when the user does not supply the file trees as command line args to
* pax, they are read from stdin
*/
static FTS *ftsp = NULL; /* curent FTS handle */
static int ftsopts; /* options to be used on fts_open */
static char *farray[2]; /* array for passing each arg to fts */
static FTREE *fthead = NULL; /* head of linked list of file args */
static FTREE *fttail = NULL; /* tail of linked list of file args */
static FTREE *ftcur = NULL; /* current file arg being processed */
static FTSENT *ftent = NULL; /* current file tree entry */
static int ftree_skip; /* when set skip to next file arg */
static int ftree_arg __P((void));
/*
* ftree_start()
* initialize the options passed to fts_open() during this run of pax
* options are based on the selection of pax options by the user
* fts_start() also calls fts_arg() to open the first valid file arg. We
* also attempt to reset directory access times when -t (tflag) is set.
* Return:
* 0 if there is at least one valid file arg to process, -1 otherwise
*/
#if __STDC__
int
ftree_start(void)
#else
int
ftree_start()
#endif
{
/*
* set up the operation mode of fts, open the first file arg. We must
* use FTS_NOCHDIR, as the user may have to open multiple archives and
* if fts did a chdir off into the boondocks, we may create an archive
* volume in an place where the user did not expect to.
*/
ftsopts = FTS_NOCHDIR;
/*
* optional user flags that effect file traversal
* -H command line symlink follow only (half follow)
* -L follow sylinks (logical)
* -P do not follow sylinks (physical). This is the default.
* -X do not cross over mount points
* -t preserve access times on files read.
* -n select only the first member of a file tree when a match is found
* -d do not extract subtrees rooted at a directory arg.
*/
if (Lflag)
ftsopts |= FTS_LOGICAL;
else
ftsopts |= FTS_PHYSICAL;
if (Hflag)
# ifdef NET2_FTS
pax_warn(0, "The -H flag is not supported on this version");
# else
ftsopts |= FTS_COMFOLLOW;
# endif
if (Xflag)
ftsopts |= FTS_XDEV;
if ((fthead == NULL) && ((farray[0] = malloc(PAXPATHLEN+2)) == NULL)) {
pax_warn(1, "Unable to allocate memory for file name buffer");
return(-1);
}
if (ftree_arg() < 0)
return(-1);
if (tflag && (atdir_start() < 0))
return(-1);
return(0);
}
/*
* ftree_add()
* add the arg to the linked list of files to process. Each will be
* processed by fts one at a time
* Return:
* 0 if added to the linked list, -1 if failed
*/
#if __STDC__
int
ftree_add(register char *str)
#else
int
ftree_add(str)
register char *str;
#endif
{
register FTREE *ft;
register int len;
/*
* simple check for bad args
*/
if ((str == NULL) || (*str == '\0')) {
pax_warn(0, "Invalid file name arguement");
return(-1);
}
/*
* allocate FTREE node and add to the end of the linked list (args are
* processed in the same order they were passed to pax). Get rid of any
* trailing / the user may pass us. (watch out for / by itself).
*/
if ((ft = (FTREE *)malloc(sizeof(FTREE))) == NULL) {
pax_warn(0, "Unable to allocate memory for filename");
return(-1);
}
if (((len = strlen(str) - 1) > 0) && (str[len] == '/'))
str[len] = '\0';
ft->fname = str;
ft->refcnt = 0;
ft->fow = NULL;
if (fthead == NULL) {
fttail = fthead = ft;
return(0);
}
fttail->fow = ft;
fttail = ft;
return(0);
}
/*
* ftree_sel()
* this entry has been selected by pax. bump up reference count and handle
* -n and -d processing.
*/
#if __STDC__
void
ftree_sel(register ARCHD *arcn)
#else
void
ftree_sel(arcn)
register ARCHD *arcn;
#endif
{
/*
* set reference bit for this pattern. This linked list is only used
* when file trees are supplied pax as args. The list is not used when
* the trees are read from stdin.
*/
if (ftcur != NULL)
ftcur->refcnt = 1;
/*
* if -n we are done with this arg, force a skip to the next arg when
* pax asks for the next file in next_file().
* if -d we tell fts only to match the directory (if the arg is a dir)
* and not the entire file tree rooted at that point.
*/
if (nflag)
ftree_skip = 1;
if (!dflag || (arcn->type != PAX_DIR))
return;
if (ftent != NULL)
(void)fts_set(ftsp, ftent, FTS_SKIP);
}
/*
* ftree_chk()
* called at end on pax execution. Prints all those file args that did not
* have a selected member (reference count still 0)
*/
#if __STDC__
void
ftree_chk(void)
#else
void
ftree_chk()
#endif
{
register FTREE *ft;
register int wban = 0;
/*
* make sure all dir access times were reset.
*/
if (tflag)
atdir_end();
/*
* walk down list and check reference count. Print out those members
* that never had a match
*/
for (ft = fthead; ft != NULL; ft = ft->fow) {
if (ft->refcnt > 0)
continue;
if (wban == 0) {
pax_warn(1,"WARNING! These file names were not selected:");
++wban;
}
(void)fprintf(stderr, "%s\n", ft->fname);
}
}
/*
* ftree_arg()
* Get the next file arg for fts to process. Can be from either the linked
* list or read from stdin when the user did not them as args to pax. Each
* arg is processed until the first successful fts_open().
* Return:
* 0 when the next arg is ready to go, -1 if out of file args (or EOF on
* stdin).
*/
#if __STDC__
static int
ftree_arg(void)
#else
static int
ftree_arg()
#endif
{
register char *pt;
/*
* close off the current file tree
*/
if (ftsp != NULL) {
(void)fts_close(ftsp);
ftsp = NULL;
}
/*
* keep looping until we get a valid file tree to process. Stop when we
* reach the end of the list (or get an eof on stdin)
*/
for(;;) {
if (fthead == NULL) {
/*
* the user didn't supply any args, get the file trees
* to process from stdin;
*/
if (fgets(farray[0], PAXPATHLEN+1, stdin) == NULL)
return(-1);
if ((pt = strchr(farray[0], '\n')) != NULL)
*pt = '\0';
} else {
/*
* the user supplied the file args as arguements to pax
*/
if (ftcur == NULL)
ftcur = fthead;
else if ((ftcur = ftcur->fow) == NULL)
return(-1);
farray[0] = ftcur->fname;
}
/*
* watch it, fts wants the file arg stored in a array of char
* ptrs, with the last one a null. we use a two element array
* and set farray[0] to point at the buffer with the file name
* in it. We cannnot pass all the file args to fts at one shot
* as we need to keep a handle on which file arg generates what
* files (the -n and -d flags need this). If the open is
* successful, return a 0.
*/
if ((ftsp = fts_open(farray, ftsopts, NULL)) != NULL)
break;
}
return(0);
}
/*
* next_file()
* supplies the next file to process in the supplied archd structure.
* Return:
* 0 when contents of arcn have been set with the next file, -1 when done.
*/
#if __STDC__
int
next_file(register ARCHD *arcn)
#else
int
next_file(arcn)
register ARCHD *arcn;
#endif
{
register int cnt;
time_t atime;
time_t mtime;
/*
* ftree_sel() might have set the ftree_skip flag if the user has the
* -n option and a file was selected from this file arg tree. (-n says
* only one member is matched for each pattern) ftree_skip being 1
* forces us to go to the next arg now.
*/
if (ftree_skip) {
/*
* clear and go to next arg
*/
ftree_skip = 0;
if (ftree_arg() < 0)
return(-1);
}
/*
* loop until we get a valid file to process
*/
for(;;) {
if ((ftent = fts_read(ftsp)) == NULL) {
/*
* out of files in this tree, go to next arg, if none
* we are done
*/
if (ftree_arg() < 0)
return(-1);
continue;
}
/*
* handle each type of fts_read() flag
*/
switch(ftent->fts_info) {
case FTS_D:
case FTS_DEFAULT:
case FTS_F:
case FTS_SL:
case FTS_SLNONE:
/*
* these are all ok
*/
break;
case FTS_DP:
/*
* already saw this directory. If the user wants file
* access times reset, we use this to restore the
* access time for this directory since this is the
* last time we will see it in this file subtree
* remember to force the time (this is -t on a read
* directory, not a created directory).
*/
# ifdef NET2_FTS
if (!tflag || (get_atdir(ftent->fts_statb.st_dev,
ftent->fts_statb.st_ino, &mtime, &atime) < 0))
# else
if (!tflag || (get_atdir(ftent->fts_statp->st_dev,
ftent->fts_statp->st_ino, &mtime, &atime) < 0))
# endif
continue;
set_ftime(ftent->fts_path, mtime, atime, 1);
continue;
case FTS_DC:
/*
* fts claims a file system cycle
*/
pax_warn(1,"File system cycle found at %s",ftent->fts_path);
continue;
case FTS_DNR:
# ifdef NET2_FTS
sys_warn(1, errno,
# else
sys_warn(1, ftent->fts_errno,
# endif
"Unable to read directory %s", ftent->fts_path);
continue;
case FTS_ERR:
# ifdef NET2_FTS
sys_warn(1, errno,
# else
sys_warn(1, ftent->fts_errno,
# endif
"File system traversal error");
continue;
case FTS_NS:
case FTS_NSOK:
# ifdef NET2_FTS
sys_warn(1, errno,
# else
sys_warn(1, ftent->fts_errno,
# endif
"Unable to access %s", ftent->fts_path);
continue;
}
/*
* ok got a file tree node to process. copy info into arcn
* structure (initialize as required)
*/
arcn->skip = 0;
arcn->pad = 0;
arcn->ln_nlen = 0;
arcn->ln_name[0] = '\0';
# ifdef NET2_FTS
arcn->sb = ftent->fts_statb;
# else
arcn->sb = *(ftent->fts_statp);
# endif
/*
* file type based set up and copy into the arcn struct
* SIDE NOTE:
* we try to reset the access time on all files and directories
* we may read when the -t flag is specified. files are reset
* when we close them after copying. we reset the directories
* when we are done with their file tree (we also clean up at
* end in case we cut short a file tree traversal). However
* there is no way to reset access times on symlinks.
*/
switch(S_IFMT & arcn->sb.st_mode) {
case S_IFDIR:
arcn->type = PAX_DIR;
if (!tflag)
break;
add_atdir(ftent->fts_path, arcn->sb.st_dev,
arcn->sb.st_ino, arcn->sb.st_mtime,
arcn->sb.st_atime);
break;
case S_IFCHR:
arcn->type = PAX_CHR;
break;
case S_IFBLK:
arcn->type = PAX_BLK;
break;
case S_IFREG:
/*
* only regular files with have data to store on the
* archive. all others will store a zero length skip.
* the skip field is used by pax for actual data it has
* to read (or skip over).
*/
arcn->type = PAX_REG;
arcn->skip = arcn->sb.st_size;
break;
case S_IFLNK:
arcn->type = PAX_SLK;
/*
* have to read the symlink path from the file
*/
if ((cnt = readlink(ftent->fts_path, arcn->ln_name,
PAXPATHLEN)) < 0) {
sys_warn(1, errno, "Unable to read symlink %s",
ftent->fts_path);
continue;
}
/*
* set link name length, watch out readlink does not
* allways null terminate the link path
*/
arcn->ln_name[cnt] = '\0';
arcn->ln_nlen = cnt;
break;
case S_IFSOCK:
/*
* under BSD storing a socket is senseless but we will
* let the format specific write function make the
* decision of what to do with it.
*/
arcn->type = PAX_SCK;
break;
case S_IFIFO:
arcn->type = PAX_FIF;
break;
}
break;
}
/*
* copy file name, set file name length
*/
arcn->nlen = l_strncpy(arcn->name, ftent->fts_path, PAXPATHLEN+1);
arcn->name[arcn->nlen] = '\0';
arcn->org_name = ftent->fts_path;
return(0);
}