freebsd-skq/sys/kern/subr_bus.c
markm d586165577 Huge cleanup of random(4) code.
* GENERAL
- Update copyright.
- Make kernel options for RANDOM_YARROW and RANDOM_DUMMY. Set
  neither to ON, which means we want Fortuna
- If there is no 'device random' in the kernel, there will be NO
  random(4) device in the kernel, and the KERN_ARND sysctl will
  return nothing. With RANDOM_DUMMY there will be a random(4) that
  always blocks.
- Repair kern.arandom (KERN_ARND sysctl). The old version went
  through arc4random(9) and was a bit weird.
- Adjust arc4random stirring a bit - the existing code looks a little
  suspect.
- Fix the nasty pre- and post-read overloading by providing explictit
  functions to do these tasks.
- Redo read_random(9) so as to duplicate random(4)'s read internals.
  This makes it a first-class citizen rather than a hack.
- Move stuff out of locked regions when it does not need to be
  there.
- Trim RANDOM_DEBUG printfs. Some are excess to requirement, some
  behind boot verbose.
- Use SYSINIT to sequence the startup.
- Fix init/deinit sysctl stuff.
- Make relevant sysctls also tunables.
- Add different harvesting "styles" to allow for different requirements
  (direct, queue, fast).
- Add harvesting of FFS atime events. This needs to be checked for
  weighing down the FS code.
- Add harvesting of slab allocator events. This needs to be checked for
  weighing down the allocator code.
- Fix the random(9) manpage.
- Loadable modules are not present for now. These will be re-engineered
  when the dust settles.
- Use macros for locks.
- Fix comments.

* src/share/man/...
- Update the man pages.

* src/etc/...
- The startup/shutdown work is done in D2924.

* src/UPDATING
- Add UPDATING announcement.

* src/sys/dev/random/build.sh
- Add copyright.
- Add libz for unit tests.

* src/sys/dev/random/dummy.c
- Remove; no longer needed. Functionality incorporated into randomdev.*.

* live_entropy_sources.c live_entropy_sources.h
- Remove; content moved.
- move content to randomdev.[ch] and optimise.

* src/sys/dev/random/random_adaptors.c src/sys/dev/random/random_adaptors.h
- Remove; plugability is no longer used. Compile-time algorithm
  selection is the way to go.

* src/sys/dev/random/random_harvestq.c src/sys/dev/random/random_harvestq.h
- Add early (re)boot-time randomness caching.

* src/sys/dev/random/randomdev_soft.c src/sys/dev/random/randomdev_soft.h
- Remove; no longer needed.

* src/sys/dev/random/uint128.h
- Provide a fake uint128_t; if a real one ever arrived, we can use
  that instead. All that is needed here is N=0, N++, N==0, and some
  localised trickery is used to manufacture a 128-bit 0ULLL.

* src/sys/dev/random/unit_test.c src/sys/dev/random/unit_test.h
- Improve unit tests; previously the testing human needed clairvoyance;
  now the test will do a basic check of compressibility. Clairvoyant
  talent is still a good idea.
- This is still a long way off a proper unit test.

* src/sys/dev/random/fortuna.c src/sys/dev/random/fortuna.h
- Improve messy union to just uint128_t.
- Remove unneeded 'static struct fortuna_start_cache'.
- Tighten up up arithmetic.
- Provide a method to allow eternal junk to be introduced; harden
  it against blatant by compress/hashing.
- Assert that locks are held correctly.
- Fix the nasty pre- and post-read overloading by providing explictit
  functions to do these tasks.
- Turn into self-sufficient module (no longer requires randomdev_soft.[ch])

* src/sys/dev/random/yarrow.c src/sys/dev/random/yarrow.h
- Improve messy union to just uint128_t.
- Remove unneeded 'staic struct start_cache'.
- Tighten up up arithmetic.
- Provide a method to allow eternal junk to be introduced; harden
  it against blatant by compress/hashing.
- Assert that locks are held correctly.
- Fix the nasty pre- and post-read overloading by providing explictit
  functions to do these tasks.
- Turn into self-sufficient module (no longer requires randomdev_soft.[ch])
- Fix some magic numbers elsewhere used as FAST and SLOW.

Differential Revision: https://reviews.freebsd.org/D2025
Reviewed by: vsevolod,delphij,rwatson,trasz,jmg
Approved by: so (delphij)
2015-06-30 17:00:45 +00:00

5310 lines
128 KiB
C

/*-
* Copyright (c) 1997,1998,2003 Doug Rabson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_bus.h"
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/filio.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/kobj.h>
#include <sys/limits.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/poll.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/condvar.h>
#include <sys/queue.h>
#include <machine/bus.h>
#include <sys/random.h>
#include <sys/rman.h>
#include <sys/selinfo.h>
#include <sys/signalvar.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/uio.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/cpuset.h>
#include <net/vnet.h>
#include <machine/cpu.h>
#include <machine/stdarg.h>
#include <vm/uma.h>
SYSCTL_NODE(_hw, OID_AUTO, bus, CTLFLAG_RW, NULL, NULL);
SYSCTL_ROOT_NODE(OID_AUTO, dev, CTLFLAG_RW, NULL, NULL);
/*
* Used to attach drivers to devclasses.
*/
typedef struct driverlink *driverlink_t;
struct driverlink {
kobj_class_t driver;
TAILQ_ENTRY(driverlink) link; /* list of drivers in devclass */
int pass;
TAILQ_ENTRY(driverlink) passlink;
};
/*
* Forward declarations
*/
typedef TAILQ_HEAD(devclass_list, devclass) devclass_list_t;
typedef TAILQ_HEAD(driver_list, driverlink) driver_list_t;
typedef TAILQ_HEAD(device_list, device) device_list_t;
struct devclass {
TAILQ_ENTRY(devclass) link;
devclass_t parent; /* parent in devclass hierarchy */
driver_list_t drivers; /* bus devclasses store drivers for bus */
char *name;
device_t *devices; /* array of devices indexed by unit */
int maxunit; /* size of devices array */
int flags;
#define DC_HAS_CHILDREN 1
struct sysctl_ctx_list sysctl_ctx;
struct sysctl_oid *sysctl_tree;
};
/**
* @brief Implementation of device.
*/
struct device {
/*
* A device is a kernel object. The first field must be the
* current ops table for the object.
*/
KOBJ_FIELDS;
/*
* Device hierarchy.
*/
TAILQ_ENTRY(device) link; /**< list of devices in parent */
TAILQ_ENTRY(device) devlink; /**< global device list membership */
device_t parent; /**< parent of this device */
device_list_t children; /**< list of child devices */
/*
* Details of this device.
*/
driver_t *driver; /**< current driver */
devclass_t devclass; /**< current device class */
int unit; /**< current unit number */
char* nameunit; /**< name+unit e.g. foodev0 */
char* desc; /**< driver specific description */
int busy; /**< count of calls to device_busy() */
device_state_t state; /**< current device state */
uint32_t devflags; /**< api level flags for device_get_flags() */
u_int flags; /**< internal device flags */
u_int order; /**< order from device_add_child_ordered() */
void *ivars; /**< instance variables */
void *softc; /**< current driver's variables */
struct sysctl_ctx_list sysctl_ctx; /**< state for sysctl variables */
struct sysctl_oid *sysctl_tree; /**< state for sysctl variables */
};
static MALLOC_DEFINE(M_BUS, "bus", "Bus data structures");
static MALLOC_DEFINE(M_BUS_SC, "bus-sc", "Bus data structures, softc");
static void devctl2_init(void);
#ifdef BUS_DEBUG
static int bus_debug = 1;
SYSCTL_INT(_debug, OID_AUTO, bus_debug, CTLFLAG_RWTUN, &bus_debug, 0,
"Bus debug level");
#define PDEBUG(a) if (bus_debug) {printf("%s:%d: ", __func__, __LINE__), printf a; printf("\n");}
#define DEVICENAME(d) ((d)? device_get_name(d): "no device")
#define DRIVERNAME(d) ((d)? d->name : "no driver")
#define DEVCLANAME(d) ((d)? d->name : "no devclass")
/**
* Produce the indenting, indent*2 spaces plus a '.' ahead of that to
* prevent syslog from deleting initial spaces
*/
#define indentprintf(p) do { int iJ; printf("."); for (iJ=0; iJ<indent; iJ++) printf(" "); printf p ; } while (0)
static void print_device_short(device_t dev, int indent);
static void print_device(device_t dev, int indent);
void print_device_tree_short(device_t dev, int indent);
void print_device_tree(device_t dev, int indent);
static void print_driver_short(driver_t *driver, int indent);
static void print_driver(driver_t *driver, int indent);
static void print_driver_list(driver_list_t drivers, int indent);
static void print_devclass_short(devclass_t dc, int indent);
static void print_devclass(devclass_t dc, int indent);
void print_devclass_list_short(void);
void print_devclass_list(void);
#else
/* Make the compiler ignore the function calls */
#define PDEBUG(a) /* nop */
#define DEVICENAME(d) /* nop */
#define DRIVERNAME(d) /* nop */
#define DEVCLANAME(d) /* nop */
#define print_device_short(d,i) /* nop */
#define print_device(d,i) /* nop */
#define print_device_tree_short(d,i) /* nop */
#define print_device_tree(d,i) /* nop */
#define print_driver_short(d,i) /* nop */
#define print_driver(d,i) /* nop */
#define print_driver_list(d,i) /* nop */
#define print_devclass_short(d,i) /* nop */
#define print_devclass(d,i) /* nop */
#define print_devclass_list_short() /* nop */
#define print_devclass_list() /* nop */
#endif
/*
* dev sysctl tree
*/
enum {
DEVCLASS_SYSCTL_PARENT,
};
static int
devclass_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
devclass_t dc = (devclass_t)arg1;
const char *value;
switch (arg2) {
case DEVCLASS_SYSCTL_PARENT:
value = dc->parent ? dc->parent->name : "";
break;
default:
return (EINVAL);
}
return (SYSCTL_OUT_STR(req, value));
}
static void
devclass_sysctl_init(devclass_t dc)
{
if (dc->sysctl_tree != NULL)
return;
sysctl_ctx_init(&dc->sysctl_ctx);
dc->sysctl_tree = SYSCTL_ADD_NODE(&dc->sysctl_ctx,
SYSCTL_STATIC_CHILDREN(_dev), OID_AUTO, dc->name,
CTLFLAG_RD, NULL, "");
SYSCTL_ADD_PROC(&dc->sysctl_ctx, SYSCTL_CHILDREN(dc->sysctl_tree),
OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
dc, DEVCLASS_SYSCTL_PARENT, devclass_sysctl_handler, "A",
"parent class");
}
enum {
DEVICE_SYSCTL_DESC,
DEVICE_SYSCTL_DRIVER,
DEVICE_SYSCTL_LOCATION,
DEVICE_SYSCTL_PNPINFO,
DEVICE_SYSCTL_PARENT,
};
static int
device_sysctl_handler(SYSCTL_HANDLER_ARGS)
{
device_t dev = (device_t)arg1;
const char *value;
char *buf;
int error;
buf = NULL;
switch (arg2) {
case DEVICE_SYSCTL_DESC:
value = dev->desc ? dev->desc : "";
break;
case DEVICE_SYSCTL_DRIVER:
value = dev->driver ? dev->driver->name : "";
break;
case DEVICE_SYSCTL_LOCATION:
value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
bus_child_location_str(dev, buf, 1024);
break;
case DEVICE_SYSCTL_PNPINFO:
value = buf = malloc(1024, M_BUS, M_WAITOK | M_ZERO);
bus_child_pnpinfo_str(dev, buf, 1024);
break;
case DEVICE_SYSCTL_PARENT:
value = dev->parent ? dev->parent->nameunit : "";
break;
default:
return (EINVAL);
}
error = SYSCTL_OUT_STR(req, value);
if (buf != NULL)
free(buf, M_BUS);
return (error);
}
static void
device_sysctl_init(device_t dev)
{
devclass_t dc = dev->devclass;
int domain;
if (dev->sysctl_tree != NULL)
return;
devclass_sysctl_init(dc);
sysctl_ctx_init(&dev->sysctl_ctx);
dev->sysctl_tree = SYSCTL_ADD_NODE(&dev->sysctl_ctx,
SYSCTL_CHILDREN(dc->sysctl_tree), OID_AUTO,
dev->nameunit + strlen(dc->name),
CTLFLAG_RD, NULL, "");
SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
OID_AUTO, "%desc", CTLTYPE_STRING | CTLFLAG_RD,
dev, DEVICE_SYSCTL_DESC, device_sysctl_handler, "A",
"device description");
SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
OID_AUTO, "%driver", CTLTYPE_STRING | CTLFLAG_RD,
dev, DEVICE_SYSCTL_DRIVER, device_sysctl_handler, "A",
"device driver name");
SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
OID_AUTO, "%location", CTLTYPE_STRING | CTLFLAG_RD,
dev, DEVICE_SYSCTL_LOCATION, device_sysctl_handler, "A",
"device location relative to parent");
SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
OID_AUTO, "%pnpinfo", CTLTYPE_STRING | CTLFLAG_RD,
dev, DEVICE_SYSCTL_PNPINFO, device_sysctl_handler, "A",
"device identification");
SYSCTL_ADD_PROC(&dev->sysctl_ctx, SYSCTL_CHILDREN(dev->sysctl_tree),
OID_AUTO, "%parent", CTLTYPE_STRING | CTLFLAG_RD,
dev, DEVICE_SYSCTL_PARENT, device_sysctl_handler, "A",
"parent device");
if (bus_get_domain(dev, &domain) == 0)
SYSCTL_ADD_INT(&dev->sysctl_ctx,
SYSCTL_CHILDREN(dev->sysctl_tree), OID_AUTO, "%domain",
CTLFLAG_RD, NULL, domain, "NUMA domain");
}
static void
device_sysctl_update(device_t dev)
{
devclass_t dc = dev->devclass;
if (dev->sysctl_tree == NULL)
return;
sysctl_rename_oid(dev->sysctl_tree, dev->nameunit + strlen(dc->name));
}
static void
device_sysctl_fini(device_t dev)
{
if (dev->sysctl_tree == NULL)
return;
sysctl_ctx_free(&dev->sysctl_ctx);
dev->sysctl_tree = NULL;
}
/*
* /dev/devctl implementation
*/
/*
* This design allows only one reader for /dev/devctl. This is not desirable
* in the long run, but will get a lot of hair out of this implementation.
* Maybe we should make this device a clonable device.
*
* Also note: we specifically do not attach a device to the device_t tree
* to avoid potential chicken and egg problems. One could argue that all
* of this belongs to the root node. One could also further argue that the
* sysctl interface that we have not might more properly be an ioctl
* interface, but at this stage of the game, I'm not inclined to rock that
* boat.
*
* I'm also not sure that the SIGIO support is done correctly or not, as
* I copied it from a driver that had SIGIO support that likely hasn't been
* tested since 3.4 or 2.2.8!
*/
/* Deprecated way to adjust queue length */
static int sysctl_devctl_disable(SYSCTL_HANDLER_ARGS);
SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_disable, CTLTYPE_INT | CTLFLAG_RWTUN |
CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_disable, "I",
"devctl disable -- deprecated");
#define DEVCTL_DEFAULT_QUEUE_LEN 1000
static int sysctl_devctl_queue(SYSCTL_HANDLER_ARGS);
static int devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
SYSCTL_PROC(_hw_bus, OID_AUTO, devctl_queue, CTLTYPE_INT | CTLFLAG_RWTUN |
CTLFLAG_MPSAFE, NULL, 0, sysctl_devctl_queue, "I", "devctl queue length");
static d_open_t devopen;
static d_close_t devclose;
static d_read_t devread;
static d_ioctl_t devioctl;
static d_poll_t devpoll;
static d_kqfilter_t devkqfilter;
static struct cdevsw dev_cdevsw = {
.d_version = D_VERSION,
.d_open = devopen,
.d_close = devclose,
.d_read = devread,
.d_ioctl = devioctl,
.d_poll = devpoll,
.d_kqfilter = devkqfilter,
.d_name = "devctl",
};
struct dev_event_info
{
char *dei_data;
TAILQ_ENTRY(dev_event_info) dei_link;
};
TAILQ_HEAD(devq, dev_event_info);
static struct dev_softc
{
int inuse;
int nonblock;
int queued;
int async;
struct mtx mtx;
struct cv cv;
struct selinfo sel;
struct devq devq;
struct sigio *sigio;
} devsoftc;
static void filt_devctl_detach(struct knote *kn);
static int filt_devctl_read(struct knote *kn, long hint);
struct filterops devctl_rfiltops = {
.f_isfd = 1,
.f_detach = filt_devctl_detach,
.f_event = filt_devctl_read,
};
static struct cdev *devctl_dev;
static void
devinit(void)
{
devctl_dev = make_dev_credf(MAKEDEV_ETERNAL, &dev_cdevsw, 0, NULL,
UID_ROOT, GID_WHEEL, 0600, "devctl");
mtx_init(&devsoftc.mtx, "dev mtx", "devd", MTX_DEF);
cv_init(&devsoftc.cv, "dev cv");
TAILQ_INIT(&devsoftc.devq);
knlist_init_mtx(&devsoftc.sel.si_note, &devsoftc.mtx);
devctl2_init();
}
static int
devopen(struct cdev *dev, int oflags, int devtype, struct thread *td)
{
mtx_lock(&devsoftc.mtx);
if (devsoftc.inuse) {
mtx_unlock(&devsoftc.mtx);
return (EBUSY);
}
/* move to init */
devsoftc.inuse = 1;
mtx_unlock(&devsoftc.mtx);
return (0);
}
static int
devclose(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
mtx_lock(&devsoftc.mtx);
devsoftc.inuse = 0;
devsoftc.nonblock = 0;
devsoftc.async = 0;
cv_broadcast(&devsoftc.cv);
funsetown(&devsoftc.sigio);
mtx_unlock(&devsoftc.mtx);
return (0);
}
/*
* The read channel for this device is used to report changes to
* userland in realtime. We are required to free the data as well as
* the n1 object because we allocate them separately. Also note that
* we return one record at a time. If you try to read this device a
* character at a time, you will lose the rest of the data. Listening
* programs are expected to cope.
*/
static int
devread(struct cdev *dev, struct uio *uio, int ioflag)
{
struct dev_event_info *n1;
int rv;
mtx_lock(&devsoftc.mtx);
while (TAILQ_EMPTY(&devsoftc.devq)) {
if (devsoftc.nonblock) {
mtx_unlock(&devsoftc.mtx);
return (EAGAIN);
}
rv = cv_wait_sig(&devsoftc.cv, &devsoftc.mtx);
if (rv) {
/*
* Need to translate ERESTART to EINTR here? -- jake
*/
mtx_unlock(&devsoftc.mtx);
return (rv);
}
}
n1 = TAILQ_FIRST(&devsoftc.devq);
TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
devsoftc.queued--;
mtx_unlock(&devsoftc.mtx);
rv = uiomove(n1->dei_data, strlen(n1->dei_data), uio);
free(n1->dei_data, M_BUS);
free(n1, M_BUS);
return (rv);
}
static int
devioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td)
{
switch (cmd) {
case FIONBIO:
if (*(int*)data)
devsoftc.nonblock = 1;
else
devsoftc.nonblock = 0;
return (0);
case FIOASYNC:
if (*(int*)data)
devsoftc.async = 1;
else
devsoftc.async = 0;
return (0);
case FIOSETOWN:
return fsetown(*(int *)data, &devsoftc.sigio);
case FIOGETOWN:
*(int *)data = fgetown(&devsoftc.sigio);
return (0);
/* (un)Support for other fcntl() calls. */
case FIOCLEX:
case FIONCLEX:
case FIONREAD:
default:
break;
}
return (ENOTTY);
}
static int
devpoll(struct cdev *dev, int events, struct thread *td)
{
int revents = 0;
mtx_lock(&devsoftc.mtx);
if (events & (POLLIN | POLLRDNORM)) {
if (!TAILQ_EMPTY(&devsoftc.devq))
revents = events & (POLLIN | POLLRDNORM);
else
selrecord(td, &devsoftc.sel);
}
mtx_unlock(&devsoftc.mtx);
return (revents);
}
static int
devkqfilter(struct cdev *dev, struct knote *kn)
{
int error;
if (kn->kn_filter == EVFILT_READ) {
kn->kn_fop = &devctl_rfiltops;
knlist_add(&devsoftc.sel.si_note, kn, 0);
error = 0;
} else
error = EINVAL;
return (error);
}
static void
filt_devctl_detach(struct knote *kn)
{
knlist_remove(&devsoftc.sel.si_note, kn, 0);
}
static int
filt_devctl_read(struct knote *kn, long hint)
{
kn->kn_data = devsoftc.queued;
return (kn->kn_data != 0);
}
/**
* @brief Return whether the userland process is running
*/
boolean_t
devctl_process_running(void)
{
return (devsoftc.inuse == 1);
}
/**
* @brief Queue data to be read from the devctl device
*
* Generic interface to queue data to the devctl device. It is
* assumed that @p data is properly formatted. It is further assumed
* that @p data is allocated using the M_BUS malloc type.
*/
void
devctl_queue_data_f(char *data, int flags)
{
struct dev_event_info *n1 = NULL, *n2 = NULL;
if (strlen(data) == 0)
goto out;
if (devctl_queue_length == 0)
goto out;
n1 = malloc(sizeof(*n1), M_BUS, flags);
if (n1 == NULL)
goto out;
n1->dei_data = data;
mtx_lock(&devsoftc.mtx);
if (devctl_queue_length == 0) {
mtx_unlock(&devsoftc.mtx);
free(n1->dei_data, M_BUS);
free(n1, M_BUS);
return;
}
/* Leave at least one spot in the queue... */
while (devsoftc.queued > devctl_queue_length - 1) {
n2 = TAILQ_FIRST(&devsoftc.devq);
TAILQ_REMOVE(&devsoftc.devq, n2, dei_link);
free(n2->dei_data, M_BUS);
free(n2, M_BUS);
devsoftc.queued--;
}
TAILQ_INSERT_TAIL(&devsoftc.devq, n1, dei_link);
devsoftc.queued++;
cv_broadcast(&devsoftc.cv);
KNOTE_LOCKED(&devsoftc.sel.si_note, 0);
mtx_unlock(&devsoftc.mtx);
selwakeup(&devsoftc.sel);
if (devsoftc.async && devsoftc.sigio != NULL)
pgsigio(&devsoftc.sigio, SIGIO, 0);
return;
out:
/*
* We have to free data on all error paths since the caller
* assumes it will be free'd when this item is dequeued.
*/
free(data, M_BUS);
return;
}
void
devctl_queue_data(char *data)
{
devctl_queue_data_f(data, M_NOWAIT);
}
/**
* @brief Send a 'notification' to userland, using standard ways
*/
void
devctl_notify_f(const char *system, const char *subsystem, const char *type,
const char *data, int flags)
{
int len = 0;
char *msg;
if (system == NULL)
return; /* BOGUS! Must specify system. */
if (subsystem == NULL)
return; /* BOGUS! Must specify subsystem. */
if (type == NULL)
return; /* BOGUS! Must specify type. */
len += strlen(" system=") + strlen(system);
len += strlen(" subsystem=") + strlen(subsystem);
len += strlen(" type=") + strlen(type);
/* add in the data message plus newline. */
if (data != NULL)
len += strlen(data);
len += 3; /* '!', '\n', and NUL */
msg = malloc(len, M_BUS, flags);
if (msg == NULL)
return; /* Drop it on the floor */
if (data != NULL)
snprintf(msg, len, "!system=%s subsystem=%s type=%s %s\n",
system, subsystem, type, data);
else
snprintf(msg, len, "!system=%s subsystem=%s type=%s\n",
system, subsystem, type);
devctl_queue_data_f(msg, flags);
}
void
devctl_notify(const char *system, const char *subsystem, const char *type,
const char *data)
{
devctl_notify_f(system, subsystem, type, data, M_NOWAIT);
}
/*
* Common routine that tries to make sending messages as easy as possible.
* We allocate memory for the data, copy strings into that, but do not
* free it unless there's an error. The dequeue part of the driver should
* free the data. We don't send data when the device is disabled. We do
* send data, even when we have no listeners, because we wish to avoid
* races relating to startup and restart of listening applications.
*
* devaddq is designed to string together the type of event, with the
* object of that event, plus the plug and play info and location info
* for that event. This is likely most useful for devices, but less
* useful for other consumers of this interface. Those should use
* the devctl_queue_data() interface instead.
*/
static void
devaddq(const char *type, const char *what, device_t dev)
{
char *data = NULL;
char *loc = NULL;
char *pnp = NULL;
const char *parstr;
if (!devctl_queue_length)/* Rare race, but lost races safely discard */
return;
data = malloc(1024, M_BUS, M_NOWAIT);
if (data == NULL)
goto bad;
/* get the bus specific location of this device */
loc = malloc(1024, M_BUS, M_NOWAIT);
if (loc == NULL)
goto bad;
*loc = '\0';
bus_child_location_str(dev, loc, 1024);
/* Get the bus specific pnp info of this device */
pnp = malloc(1024, M_BUS, M_NOWAIT);
if (pnp == NULL)
goto bad;
*pnp = '\0';
bus_child_pnpinfo_str(dev, pnp, 1024);
/* Get the parent of this device, or / if high enough in the tree. */
if (device_get_parent(dev) == NULL)
parstr = "."; /* Or '/' ? */
else
parstr = device_get_nameunit(device_get_parent(dev));
/* String it all together. */
snprintf(data, 1024, "%s%s at %s %s on %s\n", type, what, loc, pnp,
parstr);
free(loc, M_BUS);
free(pnp, M_BUS);
devctl_queue_data(data);
return;
bad:
free(pnp, M_BUS);
free(loc, M_BUS);
free(data, M_BUS);
return;
}
/*
* A device was added to the tree. We are called just after it successfully
* attaches (that is, probe and attach success for this device). No call
* is made if a device is merely parented into the tree. See devnomatch
* if probe fails. If attach fails, no notification is sent (but maybe
* we should have a different message for this).
*/
static void
devadded(device_t dev)
{
devaddq("+", device_get_nameunit(dev), dev);
}
/*
* A device was removed from the tree. We are called just before this
* happens.
*/
static void
devremoved(device_t dev)
{
devaddq("-", device_get_nameunit(dev), dev);
}
/*
* Called when there's no match for this device. This is only called
* the first time that no match happens, so we don't keep getting this
* message. Should that prove to be undesirable, we can change it.
* This is called when all drivers that can attach to a given bus
* decline to accept this device. Other errors may not be detected.
*/
static void
devnomatch(device_t dev)
{
devaddq("?", "", dev);
}
static int
sysctl_devctl_disable(SYSCTL_HANDLER_ARGS)
{
struct dev_event_info *n1;
int dis, error;
dis = (devctl_queue_length == 0);
error = sysctl_handle_int(oidp, &dis, 0, req);
if (error || !req->newptr)
return (error);
if (mtx_initialized(&devsoftc.mtx))
mtx_lock(&devsoftc.mtx);
if (dis) {
while (!TAILQ_EMPTY(&devsoftc.devq)) {
n1 = TAILQ_FIRST(&devsoftc.devq);
TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
free(n1->dei_data, M_BUS);
free(n1, M_BUS);
}
devsoftc.queued = 0;
devctl_queue_length = 0;
} else {
devctl_queue_length = DEVCTL_DEFAULT_QUEUE_LEN;
}
if (mtx_initialized(&devsoftc.mtx))
mtx_unlock(&devsoftc.mtx);
return (0);
}
static int
sysctl_devctl_queue(SYSCTL_HANDLER_ARGS)
{
struct dev_event_info *n1;
int q, error;
q = devctl_queue_length;
error = sysctl_handle_int(oidp, &q, 0, req);
if (error || !req->newptr)
return (error);
if (q < 0)
return (EINVAL);
if (mtx_initialized(&devsoftc.mtx))
mtx_lock(&devsoftc.mtx);
devctl_queue_length = q;
while (devsoftc.queued > devctl_queue_length) {
n1 = TAILQ_FIRST(&devsoftc.devq);
TAILQ_REMOVE(&devsoftc.devq, n1, dei_link);
free(n1->dei_data, M_BUS);
free(n1, M_BUS);
devsoftc.queued--;
}
if (mtx_initialized(&devsoftc.mtx))
mtx_unlock(&devsoftc.mtx);
return (0);
}
/* End of /dev/devctl code */
static TAILQ_HEAD(,device) bus_data_devices;
static int bus_data_generation = 1;
static kobj_method_t null_methods[] = {
KOBJMETHOD_END
};
DEFINE_CLASS(null, null_methods, 0);
/*
* Bus pass implementation
*/
static driver_list_t passes = TAILQ_HEAD_INITIALIZER(passes);
int bus_current_pass = BUS_PASS_ROOT;
/**
* @internal
* @brief Register the pass level of a new driver attachment
*
* Register a new driver attachment's pass level. If no driver
* attachment with the same pass level has been added, then @p new
* will be added to the global passes list.
*
* @param new the new driver attachment
*/
static void
driver_register_pass(struct driverlink *new)
{
struct driverlink *dl;
/* We only consider pass numbers during boot. */
if (bus_current_pass == BUS_PASS_DEFAULT)
return;
/*
* Walk the passes list. If we already know about this pass
* then there is nothing to do. If we don't, then insert this
* driver link into the list.
*/
TAILQ_FOREACH(dl, &passes, passlink) {
if (dl->pass < new->pass)
continue;
if (dl->pass == new->pass)
return;
TAILQ_INSERT_BEFORE(dl, new, passlink);
return;
}
TAILQ_INSERT_TAIL(&passes, new, passlink);
}
/**
* @brief Raise the current bus pass
*
* Raise the current bus pass level to @p pass. Call the BUS_NEW_PASS()
* method on the root bus to kick off a new device tree scan for each
* new pass level that has at least one driver.
*/
void
bus_set_pass(int pass)
{
struct driverlink *dl;
if (bus_current_pass > pass)
panic("Attempt to lower bus pass level");
TAILQ_FOREACH(dl, &passes, passlink) {
/* Skip pass values below the current pass level. */
if (dl->pass <= bus_current_pass)
continue;
/*
* Bail once we hit a driver with a pass level that is
* too high.
*/
if (dl->pass > pass)
break;
/*
* Raise the pass level to the next level and rescan
* the tree.
*/
bus_current_pass = dl->pass;
BUS_NEW_PASS(root_bus);
}
/*
* If there isn't a driver registered for the requested pass,
* then bus_current_pass might still be less than 'pass'. Set
* it to 'pass' in that case.
*/
if (bus_current_pass < pass)
bus_current_pass = pass;
KASSERT(bus_current_pass == pass, ("Failed to update bus pass level"));
}
/*
* Devclass implementation
*/
static devclass_list_t devclasses = TAILQ_HEAD_INITIALIZER(devclasses);
/**
* @internal
* @brief Find or create a device class
*
* If a device class with the name @p classname exists, return it,
* otherwise if @p create is non-zero create and return a new device
* class.
*
* If @p parentname is non-NULL, the parent of the devclass is set to
* the devclass of that name.
*
* @param classname the devclass name to find or create
* @param parentname the parent devclass name or @c NULL
* @param create non-zero to create a devclass
*/
static devclass_t
devclass_find_internal(const char *classname, const char *parentname,
int create)
{
devclass_t dc;
PDEBUG(("looking for %s", classname));
if (!classname)
return (NULL);
TAILQ_FOREACH(dc, &devclasses, link) {
if (!strcmp(dc->name, classname))
break;
}
if (create && !dc) {
PDEBUG(("creating %s", classname));
dc = malloc(sizeof(struct devclass) + strlen(classname) + 1,
M_BUS, M_NOWAIT | M_ZERO);
if (!dc)
return (NULL);
dc->parent = NULL;
dc->name = (char*) (dc + 1);
strcpy(dc->name, classname);
TAILQ_INIT(&dc->drivers);
TAILQ_INSERT_TAIL(&devclasses, dc, link);
bus_data_generation_update();
}
/*
* If a parent class is specified, then set that as our parent so
* that this devclass will support drivers for the parent class as
* well. If the parent class has the same name don't do this though
* as it creates a cycle that can trigger an infinite loop in
* device_probe_child() if a device exists for which there is no
* suitable driver.
*/
if (parentname && dc && !dc->parent &&
strcmp(classname, parentname) != 0) {
dc->parent = devclass_find_internal(parentname, NULL, TRUE);
dc->parent->flags |= DC_HAS_CHILDREN;
}
return (dc);
}
/**
* @brief Create a device class
*
* If a device class with the name @p classname exists, return it,
* otherwise create and return a new device class.
*
* @param classname the devclass name to find or create
*/
devclass_t
devclass_create(const char *classname)
{
return (devclass_find_internal(classname, NULL, TRUE));
}
/**
* @brief Find a device class
*
* If a device class with the name @p classname exists, return it,
* otherwise return @c NULL.
*
* @param classname the devclass name to find
*/
devclass_t
devclass_find(const char *classname)
{
return (devclass_find_internal(classname, NULL, FALSE));
}
/**
* @brief Register that a device driver has been added to a devclass
*
* Register that a device driver has been added to a devclass. This
* is called by devclass_add_driver to accomplish the recursive
* notification of all the children classes of dc, as well as dc.
* Each layer will have BUS_DRIVER_ADDED() called for all instances of
* the devclass.
*
* We do a full search here of the devclass list at each iteration
* level to save storing children-lists in the devclass structure. If
* we ever move beyond a few dozen devices doing this, we may need to
* reevaluate...
*
* @param dc the devclass to edit
* @param driver the driver that was just added
*/
static void
devclass_driver_added(devclass_t dc, driver_t *driver)
{
devclass_t parent;
int i;
/*
* Call BUS_DRIVER_ADDED for any existing busses in this class.
*/
for (i = 0; i < dc->maxunit; i++)
if (dc->devices[i] && device_is_attached(dc->devices[i]))
BUS_DRIVER_ADDED(dc->devices[i], driver);
/*
* Walk through the children classes. Since we only keep a
* single parent pointer around, we walk the entire list of
* devclasses looking for children. We set the
* DC_HAS_CHILDREN flag when a child devclass is created on
* the parent, so we only walk the list for those devclasses
* that have children.
*/
if (!(dc->flags & DC_HAS_CHILDREN))
return;
parent = dc;
TAILQ_FOREACH(dc, &devclasses, link) {
if (dc->parent == parent)
devclass_driver_added(dc, driver);
}
}
/**
* @brief Add a device driver to a device class
*
* Add a device driver to a devclass. This is normally called
* automatically by DRIVER_MODULE(). The BUS_DRIVER_ADDED() method of
* all devices in the devclass will be called to allow them to attempt
* to re-probe any unmatched children.
*
* @param dc the devclass to edit
* @param driver the driver to register
*/
int
devclass_add_driver(devclass_t dc, driver_t *driver, int pass, devclass_t *dcp)
{
driverlink_t dl;
const char *parentname;
PDEBUG(("%s", DRIVERNAME(driver)));
/* Don't allow invalid pass values. */
if (pass <= BUS_PASS_ROOT)
return (EINVAL);
dl = malloc(sizeof *dl, M_BUS, M_NOWAIT|M_ZERO);
if (!dl)
return (ENOMEM);
/*
* Compile the driver's methods. Also increase the reference count
* so that the class doesn't get freed when the last instance
* goes. This means we can safely use static methods and avoids a
* double-free in devclass_delete_driver.
*/
kobj_class_compile((kobj_class_t) driver);
/*
* If the driver has any base classes, make the
* devclass inherit from the devclass of the driver's
* first base class. This will allow the system to
* search for drivers in both devclasses for children
* of a device using this driver.
*/
if (driver->baseclasses)
parentname = driver->baseclasses[0]->name;
else
parentname = NULL;
*dcp = devclass_find_internal(driver->name, parentname, TRUE);
dl->driver = driver;
TAILQ_INSERT_TAIL(&dc->drivers, dl, link);
driver->refs++; /* XXX: kobj_mtx */
dl->pass = pass;
driver_register_pass(dl);
devclass_driver_added(dc, driver);
bus_data_generation_update();
return (0);
}
/**
* @brief Register that a device driver has been deleted from a devclass
*
* Register that a device driver has been removed from a devclass.
* This is called by devclass_delete_driver to accomplish the
* recursive notification of all the children classes of busclass, as
* well as busclass. Each layer will attempt to detach the driver
* from any devices that are children of the bus's devclass. The function
* will return an error if a device fails to detach.
*
* We do a full search here of the devclass list at each iteration
* level to save storing children-lists in the devclass structure. If
* we ever move beyond a few dozen devices doing this, we may need to
* reevaluate...
*
* @param busclass the devclass of the parent bus
* @param dc the devclass of the driver being deleted
* @param driver the driver being deleted
*/
static int
devclass_driver_deleted(devclass_t busclass, devclass_t dc, driver_t *driver)
{
devclass_t parent;
device_t dev;
int error, i;
/*
* Disassociate from any devices. We iterate through all the
* devices in the devclass of the driver and detach any which are
* using the driver and which have a parent in the devclass which
* we are deleting from.
*
* Note that since a driver can be in multiple devclasses, we
* should not detach devices which are not children of devices in
* the affected devclass.
*/
for (i = 0; i < dc->maxunit; i++) {
if (dc->devices[i]) {
dev = dc->devices[i];
if (dev->driver == driver && dev->parent &&
dev->parent->devclass == busclass) {
if ((error = device_detach(dev)) != 0)
return (error);
BUS_PROBE_NOMATCH(dev->parent, dev);
devnomatch(dev);
dev->flags |= DF_DONENOMATCH;
}
}
}
/*
* Walk through the children classes. Since we only keep a
* single parent pointer around, we walk the entire list of
* devclasses looking for children. We set the
* DC_HAS_CHILDREN flag when a child devclass is created on
* the parent, so we only walk the list for those devclasses
* that have children.
*/
if (!(busclass->flags & DC_HAS_CHILDREN))
return (0);
parent = busclass;
TAILQ_FOREACH(busclass, &devclasses, link) {
if (busclass->parent == parent) {
error = devclass_driver_deleted(busclass, dc, driver);
if (error)
return (error);
}
}
return (0);
}
/**
* @brief Delete a device driver from a device class
*
* Delete a device driver from a devclass. This is normally called
* automatically by DRIVER_MODULE().
*
* If the driver is currently attached to any devices,
* devclass_delete_driver() will first attempt to detach from each
* device. If one of the detach calls fails, the driver will not be
* deleted.
*
* @param dc the devclass to edit
* @param driver the driver to unregister
*/
int
devclass_delete_driver(devclass_t busclass, driver_t *driver)
{
devclass_t dc = devclass_find(driver->name);
driverlink_t dl;
int error;
PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
if (!dc)
return (0);
/*
* Find the link structure in the bus' list of drivers.
*/
TAILQ_FOREACH(dl, &busclass->drivers, link) {
if (dl->driver == driver)
break;
}
if (!dl) {
PDEBUG(("%s not found in %s list", driver->name,
busclass->name));
return (ENOENT);
}
error = devclass_driver_deleted(busclass, dc, driver);
if (error != 0)
return (error);
TAILQ_REMOVE(&busclass->drivers, dl, link);
free(dl, M_BUS);
/* XXX: kobj_mtx */
driver->refs--;
if (driver->refs == 0)
kobj_class_free((kobj_class_t) driver);
bus_data_generation_update();
return (0);
}
/**
* @brief Quiesces a set of device drivers from a device class
*
* Quiesce a device driver from a devclass. This is normally called
* automatically by DRIVER_MODULE().
*
* If the driver is currently attached to any devices,
* devclass_quiesece_driver() will first attempt to quiesce each
* device.
*
* @param dc the devclass to edit
* @param driver the driver to unregister
*/
static int
devclass_quiesce_driver(devclass_t busclass, driver_t *driver)
{
devclass_t dc = devclass_find(driver->name);
driverlink_t dl;
device_t dev;
int i;
int error;
PDEBUG(("%s from devclass %s", driver->name, DEVCLANAME(busclass)));
if (!dc)
return (0);
/*
* Find the link structure in the bus' list of drivers.
*/
TAILQ_FOREACH(dl, &busclass->drivers, link) {
if (dl->driver == driver)
break;
}
if (!dl) {
PDEBUG(("%s not found in %s list", driver->name,
busclass->name));
return (ENOENT);
}
/*
* Quiesce all devices. We iterate through all the devices in
* the devclass of the driver and quiesce any which are using
* the driver and which have a parent in the devclass which we
* are quiescing.
*
* Note that since a driver can be in multiple devclasses, we
* should not quiesce devices which are not children of
* devices in the affected devclass.
*/
for (i = 0; i < dc->maxunit; i++) {
if (dc->devices[i]) {
dev = dc->devices[i];
if (dev->driver == driver && dev->parent &&
dev->parent->devclass == busclass) {
if ((error = device_quiesce(dev)) != 0)
return (error);
}
}
}
return (0);
}
/**
* @internal
*/
static driverlink_t
devclass_find_driver_internal(devclass_t dc, const char *classname)
{
driverlink_t dl;
PDEBUG(("%s in devclass %s", classname, DEVCLANAME(dc)));
TAILQ_FOREACH(dl, &dc->drivers, link) {
if (!strcmp(dl->driver->name, classname))
return (dl);
}
PDEBUG(("not found"));
return (NULL);
}
/**
* @brief Return the name of the devclass
*/
const char *
devclass_get_name(devclass_t dc)
{
return (dc->name);
}
/**
* @brief Find a device given a unit number
*
* @param dc the devclass to search
* @param unit the unit number to search for
*
* @returns the device with the given unit number or @c
* NULL if there is no such device
*/
device_t
devclass_get_device(devclass_t dc, int unit)
{
if (dc == NULL || unit < 0 || unit >= dc->maxunit)
return (NULL);
return (dc->devices[unit]);
}
/**
* @brief Find the softc field of a device given a unit number
*
* @param dc the devclass to search
* @param unit the unit number to search for
*
* @returns the softc field of the device with the given
* unit number or @c NULL if there is no such
* device
*/
void *
devclass_get_softc(devclass_t dc, int unit)
{
device_t dev;
dev = devclass_get_device(dc, unit);
if (!dev)
return (NULL);
return (device_get_softc(dev));
}
/**
* @brief Get a list of devices in the devclass
*
* An array containing a list of all the devices in the given devclass
* is allocated and returned in @p *devlistp. The number of devices
* in the array is returned in @p *devcountp. The caller should free
* the array using @c free(p, M_TEMP), even if @p *devcountp is 0.
*
* @param dc the devclass to examine
* @param devlistp points at location for array pointer return
* value
* @param devcountp points at location for array size return value
*
* @retval 0 success
* @retval ENOMEM the array allocation failed
*/
int
devclass_get_devices(devclass_t dc, device_t **devlistp, int *devcountp)
{
int count, i;
device_t *list;
count = devclass_get_count(dc);
list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
if (!list)
return (ENOMEM);
count = 0;
for (i = 0; i < dc->maxunit; i++) {
if (dc->devices[i]) {
list[count] = dc->devices[i];
count++;
}
}
*devlistp = list;
*devcountp = count;
return (0);
}
/**
* @brief Get a list of drivers in the devclass
*
* An array containing a list of pointers to all the drivers in the
* given devclass is allocated and returned in @p *listp. The number
* of drivers in the array is returned in @p *countp. The caller should
* free the array using @c free(p, M_TEMP).
*
* @param dc the devclass to examine
* @param listp gives location for array pointer return value
* @param countp gives location for number of array elements
* return value
*
* @retval 0 success
* @retval ENOMEM the array allocation failed
*/
int
devclass_get_drivers(devclass_t dc, driver_t ***listp, int *countp)
{
driverlink_t dl;
driver_t **list;
int count;
count = 0;
TAILQ_FOREACH(dl, &dc->drivers, link)
count++;
list = malloc(count * sizeof(driver_t *), M_TEMP, M_NOWAIT);
if (list == NULL)
return (ENOMEM);
count = 0;
TAILQ_FOREACH(dl, &dc->drivers, link) {
list[count] = dl->driver;
count++;
}
*listp = list;
*countp = count;
return (0);
}
/**
* @brief Get the number of devices in a devclass
*
* @param dc the devclass to examine
*/
int
devclass_get_count(devclass_t dc)
{
int count, i;
count = 0;
for (i = 0; i < dc->maxunit; i++)
if (dc->devices[i])
count++;
return (count);
}
/**
* @brief Get the maximum unit number used in a devclass
*
* Note that this is one greater than the highest currently-allocated
* unit. If a null devclass_t is passed in, -1 is returned to indicate
* that not even the devclass has been allocated yet.
*
* @param dc the devclass to examine
*/
int
devclass_get_maxunit(devclass_t dc)
{
if (dc == NULL)
return (-1);
return (dc->maxunit);
}
/**
* @brief Find a free unit number in a devclass
*
* This function searches for the first unused unit number greater
* that or equal to @p unit.
*
* @param dc the devclass to examine
* @param unit the first unit number to check
*/
int
devclass_find_free_unit(devclass_t dc, int unit)
{
if (dc == NULL)
return (unit);
while (unit < dc->maxunit && dc->devices[unit] != NULL)
unit++;
return (unit);
}
/**
* @brief Set the parent of a devclass
*
* The parent class is normally initialised automatically by
* DRIVER_MODULE().
*
* @param dc the devclass to edit
* @param pdc the new parent devclass
*/
void
devclass_set_parent(devclass_t dc, devclass_t pdc)
{
dc->parent = pdc;
}
/**
* @brief Get the parent of a devclass
*
* @param dc the devclass to examine
*/
devclass_t
devclass_get_parent(devclass_t dc)
{
return (dc->parent);
}
struct sysctl_ctx_list *
devclass_get_sysctl_ctx(devclass_t dc)
{
return (&dc->sysctl_ctx);
}
struct sysctl_oid *
devclass_get_sysctl_tree(devclass_t dc)
{
return (dc->sysctl_tree);
}
/**
* @internal
* @brief Allocate a unit number
*
* On entry, @p *unitp is the desired unit number (or @c -1 if any
* will do). The allocated unit number is returned in @p *unitp.
* @param dc the devclass to allocate from
* @param unitp points at the location for the allocated unit
* number
*
* @retval 0 success
* @retval EEXIST the requested unit number is already allocated
* @retval ENOMEM memory allocation failure
*/
static int
devclass_alloc_unit(devclass_t dc, device_t dev, int *unitp)
{
const char *s;
int unit = *unitp;
PDEBUG(("unit %d in devclass %s", unit, DEVCLANAME(dc)));
/* Ask the parent bus if it wants to wire this device. */
if (unit == -1)
BUS_HINT_DEVICE_UNIT(device_get_parent(dev), dev, dc->name,
&unit);
/* If we were given a wired unit number, check for existing device */
/* XXX imp XXX */
if (unit != -1) {
if (unit >= 0 && unit < dc->maxunit &&
dc->devices[unit] != NULL) {
if (bootverbose)
printf("%s: %s%d already exists; skipping it\n",
dc->name, dc->name, *unitp);
return (EEXIST);
}
} else {
/* Unwired device, find the next available slot for it */
unit = 0;
for (unit = 0;; unit++) {
/* If there is an "at" hint for a unit then skip it. */
if (resource_string_value(dc->name, unit, "at", &s) ==
0)
continue;
/* If this device slot is already in use, skip it. */
if (unit < dc->maxunit && dc->devices[unit] != NULL)
continue;
break;
}
}
/*
* We've selected a unit beyond the length of the table, so let's
* extend the table to make room for all units up to and including
* this one.
*/
if (unit >= dc->maxunit) {
device_t *newlist, *oldlist;
int newsize;
oldlist = dc->devices;
newsize = roundup((unit + 1), MINALLOCSIZE / sizeof(device_t));
newlist = malloc(sizeof(device_t) * newsize, M_BUS, M_NOWAIT);
if (!newlist)
return (ENOMEM);
if (oldlist != NULL)
bcopy(oldlist, newlist, sizeof(device_t) * dc->maxunit);
bzero(newlist + dc->maxunit,
sizeof(device_t) * (newsize - dc->maxunit));
dc->devices = newlist;
dc->maxunit = newsize;
if (oldlist != NULL)
free(oldlist, M_BUS);
}
PDEBUG(("now: unit %d in devclass %s", unit, DEVCLANAME(dc)));
*unitp = unit;
return (0);
}
/**
* @internal
* @brief Add a device to a devclass
*
* A unit number is allocated for the device (using the device's
* preferred unit number if any) and the device is registered in the
* devclass. This allows the device to be looked up by its unit
* number, e.g. by decoding a dev_t minor number.
*
* @param dc the devclass to add to
* @param dev the device to add
*
* @retval 0 success
* @retval EEXIST the requested unit number is already allocated
* @retval ENOMEM memory allocation failure
*/
static int
devclass_add_device(devclass_t dc, device_t dev)
{
int buflen, error;
PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
buflen = snprintf(NULL, 0, "%s%d$", dc->name, INT_MAX);
if (buflen < 0)
return (ENOMEM);
dev->nameunit = malloc(buflen, M_BUS, M_NOWAIT|M_ZERO);
if (!dev->nameunit)
return (ENOMEM);
if ((error = devclass_alloc_unit(dc, dev, &dev->unit)) != 0) {
free(dev->nameunit, M_BUS);
dev->nameunit = NULL;
return (error);
}
dc->devices[dev->unit] = dev;
dev->devclass = dc;
snprintf(dev->nameunit, buflen, "%s%d", dc->name, dev->unit);
return (0);
}
/**
* @internal
* @brief Delete a device from a devclass
*
* The device is removed from the devclass's device list and its unit
* number is freed.
* @param dc the devclass to delete from
* @param dev the device to delete
*
* @retval 0 success
*/
static int
devclass_delete_device(devclass_t dc, device_t dev)
{
if (!dc || !dev)
return (0);
PDEBUG(("%s in devclass %s", DEVICENAME(dev), DEVCLANAME(dc)));
if (dev->devclass != dc || dc->devices[dev->unit] != dev)
panic("devclass_delete_device: inconsistent device class");
dc->devices[dev->unit] = NULL;
if (dev->flags & DF_WILDCARD)
dev->unit = -1;
dev->devclass = NULL;
free(dev->nameunit, M_BUS);
dev->nameunit = NULL;
return (0);
}
/**
* @internal
* @brief Make a new device and add it as a child of @p parent
*
* @param parent the parent of the new device
* @param name the devclass name of the new device or @c NULL
* to leave the devclass unspecified
* @parem unit the unit number of the new device of @c -1 to
* leave the unit number unspecified
*
* @returns the new device
*/
static device_t
make_device(device_t parent, const char *name, int unit)
{
device_t dev;
devclass_t dc;
PDEBUG(("%s at %s as unit %d", name, DEVICENAME(parent), unit));
if (name) {
dc = devclass_find_internal(name, NULL, TRUE);
if (!dc) {
printf("make_device: can't find device class %s\n",
name);
return (NULL);
}
} else {
dc = NULL;
}
dev = malloc(sizeof(struct device), M_BUS, M_NOWAIT|M_ZERO);
if (!dev)
return (NULL);
dev->parent = parent;
TAILQ_INIT(&dev->children);
kobj_init((kobj_t) dev, &null_class);
dev->driver = NULL;
dev->devclass = NULL;
dev->unit = unit;
dev->nameunit = NULL;
dev->desc = NULL;
dev->busy = 0;
dev->devflags = 0;
dev->flags = DF_ENABLED;
dev->order = 0;
if (unit == -1)
dev->flags |= DF_WILDCARD;
if (name) {
dev->flags |= DF_FIXEDCLASS;
if (devclass_add_device(dc, dev)) {
kobj_delete((kobj_t) dev, M_BUS);
return (NULL);
}
}
dev->ivars = NULL;
dev->softc = NULL;
dev->state = DS_NOTPRESENT;
TAILQ_INSERT_TAIL(&bus_data_devices, dev, devlink);
bus_data_generation_update();
return (dev);
}
/**
* @internal
* @brief Print a description of a device.
*/
static int
device_print_child(device_t dev, device_t child)
{
int retval = 0;
if (device_is_alive(child))
retval += BUS_PRINT_CHILD(dev, child);
else
retval += device_printf(child, " not found\n");
return (retval);
}
/**
* @brief Create a new device
*
* This creates a new device and adds it as a child of an existing
* parent device. The new device will be added after the last existing
* child with order zero.
*
* @param dev the device which will be the parent of the
* new child device
* @param name devclass name for new device or @c NULL if not
* specified
* @param unit unit number for new device or @c -1 if not
* specified
*
* @returns the new device
*/
device_t
device_add_child(device_t dev, const char *name, int unit)
{
return (device_add_child_ordered(dev, 0, name, unit));
}
/**
* @brief Create a new device
*
* This creates a new device and adds it as a child of an existing
* parent device. The new device will be added after the last existing
* child with the same order.
*
* @param dev the device which will be the parent of the
* new child device
* @param order a value which is used to partially sort the
* children of @p dev - devices created using
* lower values of @p order appear first in @p
* dev's list of children
* @param name devclass name for new device or @c NULL if not
* specified
* @param unit unit number for new device or @c -1 if not
* specified
*
* @returns the new device
*/
device_t
device_add_child_ordered(device_t dev, u_int order, const char *name, int unit)
{
device_t child;
device_t place;
PDEBUG(("%s at %s with order %u as unit %d",
name, DEVICENAME(dev), order, unit));
KASSERT(name != NULL || unit == -1,
("child device with wildcard name and specific unit number"));
child = make_device(dev, name, unit);
if (child == NULL)
return (child);
child->order = order;
TAILQ_FOREACH(place, &dev->children, link) {
if (place->order > order)
break;
}
if (place) {
/*
* The device 'place' is the first device whose order is
* greater than the new child.
*/
TAILQ_INSERT_BEFORE(place, child, link);
} else {
/*
* The new child's order is greater or equal to the order of
* any existing device. Add the child to the tail of the list.
*/
TAILQ_INSERT_TAIL(&dev->children, child, link);
}
bus_data_generation_update();
return (child);
}
/**
* @brief Delete a device
*
* This function deletes a device along with all of its children. If
* the device currently has a driver attached to it, the device is
* detached first using device_detach().
*
* @param dev the parent device
* @param child the device to delete
*
* @retval 0 success
* @retval non-zero a unit error code describing the error
*/
int
device_delete_child(device_t dev, device_t child)
{
int error;
device_t grandchild;
PDEBUG(("%s from %s", DEVICENAME(child), DEVICENAME(dev)));
/* remove children first */
while ((grandchild = TAILQ_FIRST(&child->children)) != NULL) {
error = device_delete_child(child, grandchild);
if (error)
return (error);
}
if ((error = device_detach(child)) != 0)
return (error);
if (child->devclass)
devclass_delete_device(child->devclass, child);
if (child->parent)
BUS_CHILD_DELETED(dev, child);
TAILQ_REMOVE(&dev->children, child, link);
TAILQ_REMOVE(&bus_data_devices, child, devlink);
kobj_delete((kobj_t) child, M_BUS);
bus_data_generation_update();
return (0);
}
/**
* @brief Delete all children devices of the given device, if any.
*
* This function deletes all children devices of the given device, if
* any, using the device_delete_child() function for each device it
* finds. If a child device cannot be deleted, this function will
* return an error code.
*
* @param dev the parent device
*
* @retval 0 success
* @retval non-zero a device would not detach
*/
int
device_delete_children(device_t dev)
{
device_t child;
int error;
PDEBUG(("Deleting all children of %s", DEVICENAME(dev)));
error = 0;
while ((child = TAILQ_FIRST(&dev->children)) != NULL) {
error = device_delete_child(dev, child);
if (error) {
PDEBUG(("Failed deleting %s", DEVICENAME(child)));
break;
}
}
return (error);
}
/**
* @brief Find a device given a unit number
*
* This is similar to devclass_get_devices() but only searches for
* devices which have @p dev as a parent.
*
* @param dev the parent device to search
* @param unit the unit number to search for. If the unit is -1,
* return the first child of @p dev which has name
* @p classname (that is, the one with the lowest unit.)
*
* @returns the device with the given unit number or @c
* NULL if there is no such device
*/
device_t
device_find_child(device_t dev, const char *classname, int unit)
{
devclass_t dc;
device_t child;
dc = devclass_find(classname);
if (!dc)
return (NULL);
if (unit != -1) {
child = devclass_get_device(dc, unit);
if (child && child->parent == dev)
return (child);
} else {
for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
child = devclass_get_device(dc, unit);
if (child && child->parent == dev)
return (child);
}
}
return (NULL);
}
/**
* @internal
*/
static driverlink_t
first_matching_driver(devclass_t dc, device_t dev)
{
if (dev->devclass)
return (devclass_find_driver_internal(dc, dev->devclass->name));
return (TAILQ_FIRST(&dc->drivers));
}
/**
* @internal
*/
static driverlink_t
next_matching_driver(devclass_t dc, device_t dev, driverlink_t last)
{
if (dev->devclass) {
driverlink_t dl;
for (dl = TAILQ_NEXT(last, link); dl; dl = TAILQ_NEXT(dl, link))
if (!strcmp(dev->devclass->name, dl->driver->name))
return (dl);
return (NULL);
}
return (TAILQ_NEXT(last, link));
}
/**
* @internal
*/
int
device_probe_child(device_t dev, device_t child)
{
devclass_t dc;
driverlink_t best = NULL;
driverlink_t dl;
int result, pri = 0;
int hasclass = (child->devclass != NULL);
GIANT_REQUIRED;
dc = dev->devclass;
if (!dc)
panic("device_probe_child: parent device has no devclass");
/*
* If the state is already probed, then return. However, don't
* return if we can rebid this object.
*/
if (child->state == DS_ALIVE && (child->flags & DF_REBID) == 0)
return (0);
for (; dc; dc = dc->parent) {
for (dl = first_matching_driver(dc, child);
dl;
dl = next_matching_driver(dc, child, dl)) {
/* If this driver's pass is too high, then ignore it. */
if (dl->pass > bus_current_pass)
continue;
PDEBUG(("Trying %s", DRIVERNAME(dl->driver)));
result = device_set_driver(child, dl->driver);
if (result == ENOMEM)
return (result);
else if (result != 0)
continue;
if (!hasclass) {
if (device_set_devclass(child,
dl->driver->name) != 0) {
char const * devname =
device_get_name(child);
if (devname == NULL)
devname = "(unknown)";
printf("driver bug: Unable to set "
"devclass (class: %s "
"devname: %s)\n",
dl->driver->name,
devname);
(void)device_set_driver(child, NULL);
continue;
}
}
/* Fetch any flags for the device before probing. */
resource_int_value(dl->driver->name, child->unit,
"flags", &child->devflags);
result = DEVICE_PROBE(child);
/* Reset flags and devclass before the next probe. */
child->devflags = 0;
if (!hasclass)
(void)device_set_devclass(child, NULL);
/*
* If the driver returns SUCCESS, there can be
* no higher match for this device.
*/
if (result == 0) {
best = dl;
pri = 0;
break;
}
/*
* Probes that return BUS_PROBE_NOWILDCARD or lower
* only match on devices whose driver was explicitly
* specified.
*/
if (result <= BUS_PROBE_NOWILDCARD &&
!(child->flags & DF_FIXEDCLASS)) {
result = ENXIO;
}
/*
* The driver returned an error so it
* certainly doesn't match.
*/
if (result > 0) {
(void)device_set_driver(child, NULL);
continue;
}
/*
* A priority lower than SUCCESS, remember the
* best matching driver. Initialise the value
* of pri for the first match.
*/
if (best == NULL || result > pri) {
best = dl;
pri = result;
continue;
}
}
/*
* If we have an unambiguous match in this devclass,
* don't look in the parent.
*/
if (best && pri == 0)
break;
}
/*
* If we found a driver, change state and initialise the devclass.
*/
/* XXX What happens if we rebid and got no best? */
if (best) {
/*
* If this device was attached, and we were asked to
* rescan, and it is a different driver, then we have
* to detach the old driver and reattach this new one.
* Note, we don't have to check for DF_REBID here
* because if the state is > DS_ALIVE, we know it must
* be.
*
* This assumes that all DF_REBID drivers can have
* their probe routine called at any time and that
* they are idempotent as well as completely benign in
* normal operations.
*
* We also have to make sure that the detach
* succeeded, otherwise we fail the operation (or
* maybe it should just fail silently? I'm torn).
*/
if (child->state > DS_ALIVE && best->driver != child->driver)
if ((result = device_detach(dev)) != 0)
return (result);
/* Set the winning driver, devclass, and flags. */
if (!child->devclass) {
result = device_set_devclass(child, best->driver->name);
if (result != 0)
return (result);
}
result = device_set_driver(child, best->driver);
if (result != 0)
return (result);
resource_int_value(best->driver->name, child->unit,
"flags", &child->devflags);
if (pri < 0) {
/*
* A bit bogus. Call the probe method again to make
* sure that we have the right description.
*/
DEVICE_PROBE(child);
#if 0
child->flags |= DF_REBID;
#endif
} else
child->flags &= ~DF_REBID;
child->state = DS_ALIVE;
bus_data_generation_update();
return (0);
}
return (ENXIO);
}
/**
* @brief Return the parent of a device
*/
device_t
device_get_parent(device_t dev)
{
return (dev->parent);
}
/**
* @brief Get a list of children of a device
*
* An array containing a list of all the children of the given device
* is allocated and returned in @p *devlistp. The number of devices
* in the array is returned in @p *devcountp. The caller should free
* the array using @c free(p, M_TEMP).
*
* @param dev the device to examine
* @param devlistp points at location for array pointer return
* value
* @param devcountp points at location for array size return value
*
* @retval 0 success
* @retval ENOMEM the array allocation failed
*/
int
device_get_children(device_t dev, device_t **devlistp, int *devcountp)
{
int count;
device_t child;
device_t *list;
count = 0;
TAILQ_FOREACH(child, &dev->children, link) {
count++;
}
if (count == 0) {
*devlistp = NULL;
*devcountp = 0;
return (0);
}
list = malloc(count * sizeof(device_t), M_TEMP, M_NOWAIT|M_ZERO);
if (!list)
return (ENOMEM);
count = 0;
TAILQ_FOREACH(child, &dev->children, link) {
list[count] = child;
count++;
}
*devlistp = list;
*devcountp = count;
return (0);
}
/**
* @brief Return the current driver for the device or @c NULL if there
* is no driver currently attached
*/
driver_t *
device_get_driver(device_t dev)
{
return (dev->driver);
}
/**
* @brief Return the current devclass for the device or @c NULL if
* there is none.
*/
devclass_t
device_get_devclass(device_t dev)
{
return (dev->devclass);
}
/**
* @brief Return the name of the device's devclass or @c NULL if there
* is none.
*/
const char *
device_get_name(device_t dev)
{
if (dev != NULL && dev->devclass)
return (devclass_get_name(dev->devclass));
return (NULL);
}
/**
* @brief Return a string containing the device's devclass name
* followed by an ascii representation of the device's unit number
* (e.g. @c "foo2").
*/
const char *
device_get_nameunit(device_t dev)
{
return (dev->nameunit);
}
/**
* @brief Return the device's unit number.
*/
int
device_get_unit(device_t dev)
{
return (dev->unit);
}
/**
* @brief Return the device's description string
*/
const char *
device_get_desc(device_t dev)
{
return (dev->desc);
}
/**
* @brief Return the device's flags
*/
uint32_t
device_get_flags(device_t dev)
{
return (dev->devflags);
}
struct sysctl_ctx_list *
device_get_sysctl_ctx(device_t dev)
{
return (&dev->sysctl_ctx);
}
struct sysctl_oid *
device_get_sysctl_tree(device_t dev)
{
return (dev->sysctl_tree);
}
/**
* @brief Print the name of the device followed by a colon and a space
*
* @returns the number of characters printed
*/
int
device_print_prettyname(device_t dev)
{
const char *name = device_get_name(dev);
if (name == NULL)
return (printf("unknown: "));
return (printf("%s%d: ", name, device_get_unit(dev)));
}
/**
* @brief Print the name of the device followed by a colon, a space
* and the result of calling vprintf() with the value of @p fmt and
* the following arguments.
*
* @returns the number of characters printed
*/
int
device_printf(device_t dev, const char * fmt, ...)
{
va_list ap;
int retval;
retval = device_print_prettyname(dev);
va_start(ap, fmt);
retval += vprintf(fmt, ap);
va_end(ap);
return (retval);
}
/**
* @internal
*/
static void
device_set_desc_internal(device_t dev, const char* desc, int copy)
{
if (dev->desc && (dev->flags & DF_DESCMALLOCED)) {
free(dev->desc, M_BUS);
dev->flags &= ~DF_DESCMALLOCED;
dev->desc = NULL;
}
if (copy && desc) {
dev->desc = malloc(strlen(desc) + 1, M_BUS, M_NOWAIT);
if (dev->desc) {
strcpy(dev->desc, desc);
dev->flags |= DF_DESCMALLOCED;
}
} else {
/* Avoid a -Wcast-qual warning */
dev->desc = (char *)(uintptr_t) desc;
}
bus_data_generation_update();
}
/**
* @brief Set the device's description
*
* The value of @c desc should be a string constant that will not
* change (at least until the description is changed in a subsequent
* call to device_set_desc() or device_set_desc_copy()).
*/
void
device_set_desc(device_t dev, const char* desc)
{
device_set_desc_internal(dev, desc, FALSE);
}
/**
* @brief Set the device's description
*
* The string pointed to by @c desc is copied. Use this function if
* the device description is generated, (e.g. with sprintf()).
*/
void
device_set_desc_copy(device_t dev, const char* desc)
{
device_set_desc_internal(dev, desc, TRUE);
}
/**
* @brief Set the device's flags
*/
void
device_set_flags(device_t dev, uint32_t flags)
{
dev->devflags = flags;
}
/**
* @brief Return the device's softc field
*
* The softc is allocated and zeroed when a driver is attached, based
* on the size field of the driver.
*/
void *
device_get_softc(device_t dev)
{
return (dev->softc);
}
/**
* @brief Set the device's softc field
*
* Most drivers do not need to use this since the softc is allocated
* automatically when the driver is attached.
*/
void
device_set_softc(device_t dev, void *softc)
{
if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC))
free(dev->softc, M_BUS_SC);
dev->softc = softc;
if (dev->softc)
dev->flags |= DF_EXTERNALSOFTC;
else
dev->flags &= ~DF_EXTERNALSOFTC;
}
/**
* @brief Free claimed softc
*
* Most drivers do not need to use this since the softc is freed
* automatically when the driver is detached.
*/
void
device_free_softc(void *softc)
{
free(softc, M_BUS_SC);
}
/**
* @brief Claim softc
*
* This function can be used to let the driver free the automatically
* allocated softc using "device_free_softc()". This function is
* useful when the driver is refcounting the softc and the softc
* cannot be freed when the "device_detach" method is called.
*/
void
device_claim_softc(device_t dev)
{
if (dev->softc)
dev->flags |= DF_EXTERNALSOFTC;
else
dev->flags &= ~DF_EXTERNALSOFTC;
}
/**
* @brief Get the device's ivars field
*
* The ivars field is used by the parent device to store per-device
* state (e.g. the physical location of the device or a list of
* resources).
*/
void *
device_get_ivars(device_t dev)
{
KASSERT(dev != NULL, ("device_get_ivars(NULL, ...)"));
return (dev->ivars);
}
/**
* @brief Set the device's ivars field
*/
void
device_set_ivars(device_t dev, void * ivars)
{
KASSERT(dev != NULL, ("device_set_ivars(NULL, ...)"));
dev->ivars = ivars;
}
/**
* @brief Return the device's state
*/
device_state_t
device_get_state(device_t dev)
{
return (dev->state);
}
/**
* @brief Set the DF_ENABLED flag for the device
*/
void
device_enable(device_t dev)
{
dev->flags |= DF_ENABLED;
}
/**
* @brief Clear the DF_ENABLED flag for the device
*/
void
device_disable(device_t dev)
{
dev->flags &= ~DF_ENABLED;
}
/**
* @brief Increment the busy counter for the device
*/
void
device_busy(device_t dev)
{
if (dev->state < DS_ATTACHING)
panic("device_busy: called for unattached device");
if (dev->busy == 0 && dev->parent)
device_busy(dev->parent);
dev->busy++;
if (dev->state == DS_ATTACHED)
dev->state = DS_BUSY;
}
/**
* @brief Decrement the busy counter for the device
*/
void
device_unbusy(device_t dev)
{
if (dev->busy != 0 && dev->state != DS_BUSY &&
dev->state != DS_ATTACHING)
panic("device_unbusy: called for non-busy device %s",
device_get_nameunit(dev));
dev->busy--;
if (dev->busy == 0) {
if (dev->parent)
device_unbusy(dev->parent);
if (dev->state == DS_BUSY)
dev->state = DS_ATTACHED;
}
}
/**
* @brief Set the DF_QUIET flag for the device
*/
void
device_quiet(device_t dev)
{
dev->flags |= DF_QUIET;
}
/**
* @brief Clear the DF_QUIET flag for the device
*/
void
device_verbose(device_t dev)
{
dev->flags &= ~DF_QUIET;
}
/**
* @brief Return non-zero if the DF_QUIET flag is set on the device
*/
int
device_is_quiet(device_t dev)
{
return ((dev->flags & DF_QUIET) != 0);
}
/**
* @brief Return non-zero if the DF_ENABLED flag is set on the device
*/
int
device_is_enabled(device_t dev)
{
return ((dev->flags & DF_ENABLED) != 0);
}
/**
* @brief Return non-zero if the device was successfully probed
*/
int
device_is_alive(device_t dev)
{
return (dev->state >= DS_ALIVE);
}
/**
* @brief Return non-zero if the device currently has a driver
* attached to it
*/
int
device_is_attached(device_t dev)
{
return (dev->state >= DS_ATTACHED);
}
/**
* @brief Return non-zero if the device is currently suspended.
*/
int
device_is_suspended(device_t dev)
{
return ((dev->flags & DF_SUSPENDED) != 0);
}
/**
* @brief Set the devclass of a device
* @see devclass_add_device().
*/
int
device_set_devclass(device_t dev, const char *classname)
{
devclass_t dc;
int error;
if (!classname) {
if (dev->devclass)
devclass_delete_device(dev->devclass, dev);
return (0);
}
if (dev->devclass) {
printf("device_set_devclass: device class already set\n");
return (EINVAL);
}
dc = devclass_find_internal(classname, NULL, TRUE);
if (!dc)
return (ENOMEM);
error = devclass_add_device(dc, dev);
bus_data_generation_update();
return (error);
}
/**
* @brief Set the devclass of a device and mark the devclass fixed.
* @see device_set_devclass()
*/
int
device_set_devclass_fixed(device_t dev, const char *classname)
{
int error;
if (classname == NULL)
return (EINVAL);
error = device_set_devclass(dev, classname);
if (error)
return (error);
dev->flags |= DF_FIXEDCLASS;
return (0);
}
/**
* @brief Set the driver of a device
*
* @retval 0 success
* @retval EBUSY the device already has a driver attached
* @retval ENOMEM a memory allocation failure occurred
*/
int
device_set_driver(device_t dev, driver_t *driver)
{
if (dev->state >= DS_ATTACHED)
return (EBUSY);
if (dev->driver == driver)
return (0);
if (dev->softc && !(dev->flags & DF_EXTERNALSOFTC)) {
free(dev->softc, M_BUS_SC);
dev->softc = NULL;
}
device_set_desc(dev, NULL);
kobj_delete((kobj_t) dev, NULL);
dev->driver = driver;
if (driver) {
kobj_init((kobj_t) dev, (kobj_class_t) driver);
if (!(dev->flags & DF_EXTERNALSOFTC) && driver->size > 0) {
dev->softc = malloc(driver->size, M_BUS_SC,
M_NOWAIT | M_ZERO);
if (!dev->softc) {
kobj_delete((kobj_t) dev, NULL);
kobj_init((kobj_t) dev, &null_class);
dev->driver = NULL;
return (ENOMEM);
}
}
} else {
kobj_init((kobj_t) dev, &null_class);
}
bus_data_generation_update();
return (0);
}
/**
* @brief Probe a device, and return this status.
*
* This function is the core of the device autoconfiguration
* system. Its purpose is to select a suitable driver for a device and
* then call that driver to initialise the hardware appropriately. The
* driver is selected by calling the DEVICE_PROBE() method of a set of
* candidate drivers and then choosing the driver which returned the
* best value. This driver is then attached to the device using
* device_attach().
*
* The set of suitable drivers is taken from the list of drivers in
* the parent device's devclass. If the device was originally created
* with a specific class name (see device_add_child()), only drivers
* with that name are probed, otherwise all drivers in the devclass
* are probed. If no drivers return successful probe values in the
* parent devclass, the search continues in the parent of that
* devclass (see devclass_get_parent()) if any.
*
* @param dev the device to initialise
*
* @retval 0 success
* @retval ENXIO no driver was found
* @retval ENOMEM memory allocation failure
* @retval non-zero some other unix error code
* @retval -1 Device already attached
*/
int
device_probe(device_t dev)
{
int error;
GIANT_REQUIRED;
if (dev->state >= DS_ALIVE && (dev->flags & DF_REBID) == 0)
return (-1);
if (!(dev->flags & DF_ENABLED)) {
if (bootverbose && device_get_name(dev) != NULL) {
device_print_prettyname(dev);
printf("not probed (disabled)\n");
}
return (-1);
}
if ((error = device_probe_child(dev->parent, dev)) != 0) {
if (bus_current_pass == BUS_PASS_DEFAULT &&
!(dev->flags & DF_DONENOMATCH)) {
BUS_PROBE_NOMATCH(dev->parent, dev);
devnomatch(dev);
dev->flags |= DF_DONENOMATCH;
}
return (error);
}
return (0);
}
/**
* @brief Probe a device and attach a driver if possible
*
* calls device_probe() and attaches if that was successful.
*/
int
device_probe_and_attach(device_t dev)
{
int error;
GIANT_REQUIRED;
error = device_probe(dev);
if (error == -1)
return (0);
else if (error != 0)
return (error);
CURVNET_SET_QUIET(vnet0);
error = device_attach(dev);
CURVNET_RESTORE();
return error;
}
/**
* @brief Attach a device driver to a device
*
* This function is a wrapper around the DEVICE_ATTACH() driver
* method. In addition to calling DEVICE_ATTACH(), it initialises the
* device's sysctl tree, optionally prints a description of the device
* and queues a notification event for user-based device management
* services.
*
* Normally this function is only called internally from
* device_probe_and_attach().
*
* @param dev the device to initialise
*
* @retval 0 success
* @retval ENXIO no driver was found
* @retval ENOMEM memory allocation failure
* @retval non-zero some other unix error code
*/
int
device_attach(device_t dev)
{
uint64_t attachtime;
int error;
if (resource_disabled(dev->driver->name, dev->unit)) {
device_disable(dev);
if (bootverbose)
device_printf(dev, "disabled via hints entry\n");
return (ENXIO);
}
device_sysctl_init(dev);
if (!device_is_quiet(dev))
device_print_child(dev->parent, dev);
attachtime = get_cyclecount();
dev->state = DS_ATTACHING;
if ((error = DEVICE_ATTACH(dev)) != 0) {
printf("device_attach: %s%d attach returned %d\n",
dev->driver->name, dev->unit, error);
if (!(dev->flags & DF_FIXEDCLASS))
devclass_delete_device(dev->devclass, dev);
(void)device_set_driver(dev, NULL);
device_sysctl_fini(dev);
KASSERT(dev->busy == 0, ("attach failed but busy"));
dev->state = DS_NOTPRESENT;
return (error);
}
attachtime = get_cyclecount() - attachtime;
/*
* 4 bits per device is a reasonable value for desktop and server
* hardware with good get_cyclecount() implementations, but WILL
* need to be adjusted on other platforms.
*/
#define RANDOM_PROBE_BIT_GUESS 4
if (bootverbose)
printf("random: harvesting attach, %zu bytes (%d bits) from %s%d\n",
sizeof(attachtime), RANDOM_PROBE_BIT_GUESS,
dev->driver->name, dev->unit);
random_harvest_direct(&attachtime, sizeof(attachtime),
RANDOM_PROBE_BIT_GUESS, RANDOM_ATTACH);
device_sysctl_update(dev);
if (dev->busy)
dev->state = DS_BUSY;
else
dev->state = DS_ATTACHED;
dev->flags &= ~DF_DONENOMATCH;
devadded(dev);
return (0);
}
/**
* @brief Detach a driver from a device
*
* This function is a wrapper around the DEVICE_DETACH() driver
* method. If the call to DEVICE_DETACH() succeeds, it calls
* BUS_CHILD_DETACHED() for the parent of @p dev, queues a
* notification event for user-based device management services and
* cleans up the device's sysctl tree.
*
* @param dev the device to un-initialise
*
* @retval 0 success
* @retval ENXIO no driver was found
* @retval ENOMEM memory allocation failure
* @retval non-zero some other unix error code
*/
int
device_detach(device_t dev)
{
int error;
GIANT_REQUIRED;
PDEBUG(("%s", DEVICENAME(dev)));
if (dev->state == DS_BUSY)
return (EBUSY);
if (dev->state != DS_ATTACHED)
return (0);
if ((error = DEVICE_DETACH(dev)) != 0)
return (error);
devremoved(dev);
if (!device_is_quiet(dev))
device_printf(dev, "detached\n");
if (dev->parent)
BUS_CHILD_DETACHED(dev->parent, dev);
if (!(dev->flags & DF_FIXEDCLASS))
devclass_delete_device(dev->devclass, dev);
dev->state = DS_NOTPRESENT;
(void)device_set_driver(dev, NULL);
device_sysctl_fini(dev);
return (0);
}
/**
* @brief Tells a driver to quiesce itself.
*
* This function is a wrapper around the DEVICE_QUIESCE() driver
* method. If the call to DEVICE_QUIESCE() succeeds.
*
* @param dev the device to quiesce
*
* @retval 0 success
* @retval ENXIO no driver was found
* @retval ENOMEM memory allocation failure
* @retval non-zero some other unix error code
*/
int
device_quiesce(device_t dev)
{
PDEBUG(("%s", DEVICENAME(dev)));
if (dev->state == DS_BUSY)
return (EBUSY);
if (dev->state != DS_ATTACHED)
return (0);
return (DEVICE_QUIESCE(dev));
}
/**
* @brief Notify a device of system shutdown
*
* This function calls the DEVICE_SHUTDOWN() driver method if the
* device currently has an attached driver.
*
* @returns the value returned by DEVICE_SHUTDOWN()
*/
int
device_shutdown(device_t dev)
{
if (dev->state < DS_ATTACHED)
return (0);
return (DEVICE_SHUTDOWN(dev));
}
/**
* @brief Set the unit number of a device
*
* This function can be used to override the unit number used for a
* device (e.g. to wire a device to a pre-configured unit number).
*/
int
device_set_unit(device_t dev, int unit)
{
devclass_t dc;
int err;
dc = device_get_devclass(dev);
if (unit < dc->maxunit && dc->devices[unit])
return (EBUSY);
err = devclass_delete_device(dc, dev);
if (err)
return (err);
dev->unit = unit;
err = devclass_add_device(dc, dev);
if (err)
return (err);
bus_data_generation_update();
return (0);
}
/*======================================*/
/*
* Some useful method implementations to make life easier for bus drivers.
*/
/**
* @brief Initialise a resource list.
*
* @param rl the resource list to initialise
*/
void
resource_list_init(struct resource_list *rl)
{
STAILQ_INIT(rl);
}
/**
* @brief Reclaim memory used by a resource list.
*
* This function frees the memory for all resource entries on the list
* (if any).
*
* @param rl the resource list to free
*/
void
resource_list_free(struct resource_list *rl)
{
struct resource_list_entry *rle;
while ((rle = STAILQ_FIRST(rl)) != NULL) {
if (rle->res)
panic("resource_list_free: resource entry is busy");
STAILQ_REMOVE_HEAD(rl, link);
free(rle, M_BUS);
}
}
/**
* @brief Add a resource entry.
*
* This function adds a resource entry using the given @p type, @p
* start, @p end and @p count values. A rid value is chosen by
* searching sequentially for the first unused rid starting at zero.
*
* @param rl the resource list to edit
* @param type the resource entry type (e.g. SYS_RES_MEMORY)
* @param start the start address of the resource
* @param end the end address of the resource
* @param count XXX end-start+1
*/
int
resource_list_add_next(struct resource_list *rl, int type, u_long start,
u_long end, u_long count)
{
int rid;
rid = 0;
while (resource_list_find(rl, type, rid) != NULL)
rid++;
resource_list_add(rl, type, rid, start, end, count);
return (rid);
}
/**
* @brief Add or modify a resource entry.
*
* If an existing entry exists with the same type and rid, it will be
* modified using the given values of @p start, @p end and @p
* count. If no entry exists, a new one will be created using the
* given values. The resource list entry that matches is then returned.
*
* @param rl the resource list to edit
* @param type the resource entry type (e.g. SYS_RES_MEMORY)
* @param rid the resource identifier
* @param start the start address of the resource
* @param end the end address of the resource
* @param count XXX end-start+1
*/
struct resource_list_entry *
resource_list_add(struct resource_list *rl, int type, int rid,
u_long start, u_long end, u_long count)
{
struct resource_list_entry *rle;
rle = resource_list_find(rl, type, rid);
if (!rle) {
rle = malloc(sizeof(struct resource_list_entry), M_BUS,
M_NOWAIT);
if (!rle)
panic("resource_list_add: can't record entry");
STAILQ_INSERT_TAIL(rl, rle, link);
rle->type = type;
rle->rid = rid;
rle->res = NULL;
rle->flags = 0;
}
if (rle->res)
panic("resource_list_add: resource entry is busy");
rle->start = start;
rle->end = end;
rle->count = count;
return (rle);
}
/**
* @brief Determine if a resource entry is busy.
*
* Returns true if a resource entry is busy meaning that it has an
* associated resource that is not an unallocated "reserved" resource.
*
* @param rl the resource list to search
* @param type the resource entry type (e.g. SYS_RES_MEMORY)
* @param rid the resource identifier
*
* @returns Non-zero if the entry is busy, zero otherwise.
*/
int
resource_list_busy(struct resource_list *rl, int type, int rid)
{
struct resource_list_entry *rle;
rle = resource_list_find(rl, type, rid);
if (rle == NULL || rle->res == NULL)
return (0);
if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) == RLE_RESERVED) {
KASSERT(!(rman_get_flags(rle->res) & RF_ACTIVE),
("reserved resource is active"));
return (0);
}
return (1);
}
/**
* @brief Determine if a resource entry is reserved.
*
* Returns true if a resource entry is reserved meaning that it has an
* associated "reserved" resource. The resource can either be
* allocated or unallocated.
*
* @param rl the resource list to search
* @param type the resource entry type (e.g. SYS_RES_MEMORY)
* @param rid the resource identifier
*
* @returns Non-zero if the entry is reserved, zero otherwise.
*/
int
resource_list_reserved(struct resource_list *rl, int type, int rid)
{
struct resource_list_entry *rle;
rle = resource_list_find(rl, type, rid);
if (rle != NULL && rle->flags & RLE_RESERVED)
return (1);
return (0);
}
/**
* @brief Find a resource entry by type and rid.
*
* @param rl the resource list to search
* @param type the resource entry type (e.g. SYS_RES_MEMORY)
* @param rid the resource identifier
*
* @returns the resource entry pointer or NULL if there is no such
* entry.
*/
struct resource_list_entry *
resource_list_find(struct resource_list *rl, int type, int rid)
{
struct resource_list_entry *rle;
STAILQ_FOREACH(rle, rl, link) {
if (rle->type == type && rle->rid == rid)
return (rle);
}
return (NULL);
}
/**
* @brief Delete a resource entry.
*
* @param rl the resource list to edit
* @param type the resource entry type (e.g. SYS_RES_MEMORY)
* @param rid the resource identifier
*/
void
resource_list_delete(struct resource_list *rl, int type, int rid)
{
struct resource_list_entry *rle = resource_list_find(rl, type, rid);
if (rle) {
if (rle->res != NULL)
panic("resource_list_delete: resource has not been released");
STAILQ_REMOVE(rl, rle, resource_list_entry, link);
free(rle, M_BUS);
}
}
/**
* @brief Allocate a reserved resource
*
* This can be used by busses to force the allocation of resources
* that are always active in the system even if they are not allocated
* by a driver (e.g. PCI BARs). This function is usually called when
* adding a new child to the bus. The resource is allocated from the
* parent bus when it is reserved. The resource list entry is marked
* with RLE_RESERVED to note that it is a reserved resource.
*
* Subsequent attempts to allocate the resource with
* resource_list_alloc() will succeed the first time and will set
* RLE_ALLOCATED to note that it has been allocated. When a reserved
* resource that has been allocated is released with
* resource_list_release() the resource RLE_ALLOCATED is cleared, but
* the actual resource remains allocated. The resource can be released to
* the parent bus by calling resource_list_unreserve().
*
* @param rl the resource list to allocate from
* @param bus the parent device of @p child
* @param child the device for which the resource is being reserved
* @param type the type of resource to allocate
* @param rid a pointer to the resource identifier
* @param start hint at the start of the resource range - pass
* @c 0UL for any start address
* @param end hint at the end of the resource range - pass
* @c ~0UL for any end address
* @param count hint at the size of range required - pass @c 1
* for any size
* @param flags any extra flags to control the resource
* allocation - see @c RF_XXX flags in
* <sys/rman.h> for details
*
* @returns the resource which was allocated or @c NULL if no
* resource could be allocated
*/
struct resource *
resource_list_reserve(struct resource_list *rl, device_t bus, device_t child,
int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
{
struct resource_list_entry *rle = NULL;
int passthrough = (device_get_parent(child) != bus);
struct resource *r;
if (passthrough)
panic(
"resource_list_reserve() should only be called for direct children");
if (flags & RF_ACTIVE)
panic(
"resource_list_reserve() should only reserve inactive resources");
r = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
flags);
if (r != NULL) {
rle = resource_list_find(rl, type, *rid);
rle->flags |= RLE_RESERVED;
}
return (r);
}
/**
* @brief Helper function for implementing BUS_ALLOC_RESOURCE()
*
* Implement BUS_ALLOC_RESOURCE() by looking up a resource from the list
* and passing the allocation up to the parent of @p bus. This assumes
* that the first entry of @c device_get_ivars(child) is a struct
* resource_list. This also handles 'passthrough' allocations where a
* child is a remote descendant of bus by passing the allocation up to
* the parent of bus.
*
* Typically, a bus driver would store a list of child resources
* somewhere in the child device's ivars (see device_get_ivars()) and
* its implementation of BUS_ALLOC_RESOURCE() would find that list and
* then call resource_list_alloc() to perform the allocation.
*
* @param rl the resource list to allocate from
* @param bus the parent device of @p child
* @param child the device which is requesting an allocation
* @param type the type of resource to allocate
* @param rid a pointer to the resource identifier
* @param start hint at the start of the resource range - pass
* @c 0UL for any start address
* @param end hint at the end of the resource range - pass
* @c ~0UL for any end address
* @param count hint at the size of range required - pass @c 1
* for any size
* @param flags any extra flags to control the resource
* allocation - see @c RF_XXX flags in
* <sys/rman.h> for details
*
* @returns the resource which was allocated or @c NULL if no
* resource could be allocated
*/
struct resource *
resource_list_alloc(struct resource_list *rl, device_t bus, device_t child,
int type, int *rid, u_long start, u_long end, u_long count, u_int flags)
{
struct resource_list_entry *rle = NULL;
int passthrough = (device_get_parent(child) != bus);
int isdefault = (start == 0UL && end == ~0UL);
if (passthrough) {
return (BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
type, rid, start, end, count, flags));
}
rle = resource_list_find(rl, type, *rid);
if (!rle)
return (NULL); /* no resource of that type/rid */
if (rle->res) {
if (rle->flags & RLE_RESERVED) {
if (rle->flags & RLE_ALLOCATED)
return (NULL);
if ((flags & RF_ACTIVE) &&
bus_activate_resource(child, type, *rid,
rle->res) != 0)
return (NULL);
rle->flags |= RLE_ALLOCATED;
return (rle->res);
}
device_printf(bus,
"resource entry %#x type %d for child %s is busy\n", *rid,
type, device_get_nameunit(child));
return (NULL);
}
if (isdefault) {
start = rle->start;
count = ulmax(count, rle->count);
end = ulmax(rle->end, start + count - 1);
}
rle->res = BUS_ALLOC_RESOURCE(device_get_parent(bus), child,
type, rid, start, end, count, flags);
/*
* Record the new range.
*/
if (rle->res) {
rle->start = rman_get_start(rle->res);
rle->end = rman_get_end(rle->res);
rle->count = count;
}
return (rle->res);
}
/**
* @brief Helper function for implementing BUS_RELEASE_RESOURCE()
*
* Implement BUS_RELEASE_RESOURCE() using a resource list. Normally
* used with resource_list_alloc().
*
* @param rl the resource list which was allocated from
* @param bus the parent device of @p child
* @param child the device which is requesting a release
* @param type the type of resource to release
* @param rid the resource identifier
* @param res the resource to release
*
* @retval 0 success
* @retval non-zero a standard unix error code indicating what
* error condition prevented the operation
*/
int
resource_list_release(struct resource_list *rl, device_t bus, device_t child,
int type, int rid, struct resource *res)
{
struct resource_list_entry *rle = NULL;
int passthrough = (device_get_parent(child) != bus);
int error;
if (passthrough) {
return (BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
type, rid, res));
}
rle = resource_list_find(rl, type, rid);
if (!rle)
panic("resource_list_release: can't find resource");
if (!rle->res)
panic("resource_list_release: resource entry is not busy");
if (rle->flags & RLE_RESERVED) {
if (rle->flags & RLE_ALLOCATED) {
if (rman_get_flags(res) & RF_ACTIVE) {
error = bus_deactivate_resource(child, type,
rid, res);
if (error)
return (error);
}
rle->flags &= ~RLE_ALLOCATED;
return (0);
}
return (EINVAL);
}
error = BUS_RELEASE_RESOURCE(device_get_parent(bus), child,
type, rid, res);
if (error)
return (error);
rle->res = NULL;
return (0);
}
/**
* @brief Release all active resources of a given type
*
* Release all active resources of a specified type. This is intended
* to be used to cleanup resources leaked by a driver after detach or
* a failed attach.
*
* @param rl the resource list which was allocated from
* @param bus the parent device of @p child
* @param child the device whose active resources are being released
* @param type the type of resources to release
*
* @retval 0 success
* @retval EBUSY at least one resource was active
*/
int
resource_list_release_active(struct resource_list *rl, device_t bus,
device_t child, int type)
{
struct resource_list_entry *rle;
int error, retval;
retval = 0;
STAILQ_FOREACH(rle, rl, link) {
if (rle->type != type)
continue;
if (rle->res == NULL)
continue;
if ((rle->flags & (RLE_RESERVED | RLE_ALLOCATED)) ==
RLE_RESERVED)
continue;
retval = EBUSY;
error = resource_list_release(rl, bus, child, type,
rman_get_rid(rle->res), rle->res);
if (error != 0)
device_printf(bus,
"Failed to release active resource: %d\n", error);
}
return (retval);
}
/**
* @brief Fully release a reserved resource
*
* Fully releases a resource reserved via resource_list_reserve().
*
* @param rl the resource list which was allocated from
* @param bus the parent device of @p child
* @param child the device whose reserved resource is being released
* @param type the type of resource to release
* @param rid the resource identifier
* @param res the resource to release
*
* @retval 0 success
* @retval non-zero a standard unix error code indicating what
* error condition prevented the operation
*/
int
resource_list_unreserve(struct resource_list *rl, device_t bus, device_t child,
int type, int rid)
{
struct resource_list_entry *rle = NULL;
int passthrough = (device_get_parent(child) != bus);
if (passthrough)
panic(
"resource_list_unreserve() should only be called for direct children");
rle = resource_list_find(rl, type, rid);
if (!rle)
panic("resource_list_unreserve: can't find resource");
if (!(rle->flags & RLE_RESERVED))
return (EINVAL);
if (rle->flags & RLE_ALLOCATED)
return (EBUSY);
rle->flags &= ~RLE_RESERVED;
return (resource_list_release(rl, bus, child, type, rid, rle->res));
}
/**
* @brief Print a description of resources in a resource list
*
* Print all resources of a specified type, for use in BUS_PRINT_CHILD().
* The name is printed if at least one resource of the given type is available.
* The format is used to print resource start and end.
*
* @param rl the resource list to print
* @param name the name of @p type, e.g. @c "memory"
* @param type type type of resource entry to print
* @param format printf(9) format string to print resource
* start and end values
*
* @returns the number of characters printed
*/
int
resource_list_print_type(struct resource_list *rl, const char *name, int type,
const char *format)
{
struct resource_list_entry *rle;
int printed, retval;
printed = 0;
retval = 0;
/* Yes, this is kinda cheating */
STAILQ_FOREACH(rle, rl, link) {
if (rle->type == type) {
if (printed == 0)
retval += printf(" %s ", name);
else
retval += printf(",");
printed++;
retval += printf(format, rle->start);
if (rle->count > 1) {
retval += printf("-");
retval += printf(format, rle->start +
rle->count - 1);
}
}
}
return (retval);
}
/**
* @brief Releases all the resources in a list.
*
* @param rl The resource list to purge.
*
* @returns nothing
*/
void
resource_list_purge(struct resource_list *rl)
{
struct resource_list_entry *rle;
while ((rle = STAILQ_FIRST(rl)) != NULL) {
if (rle->res)
bus_release_resource(rman_get_device(rle->res),
rle->type, rle->rid, rle->res);
STAILQ_REMOVE_HEAD(rl, link);
free(rle, M_BUS);
}
}
device_t
bus_generic_add_child(device_t dev, u_int order, const char *name, int unit)
{
return (device_add_child_ordered(dev, order, name, unit));
}
/**
* @brief Helper function for implementing DEVICE_PROBE()
*
* This function can be used to help implement the DEVICE_PROBE() for
* a bus (i.e. a device which has other devices attached to it). It
* calls the DEVICE_IDENTIFY() method of each driver in the device's
* devclass.
*/
int
bus_generic_probe(device_t dev)
{
devclass_t dc = dev->devclass;
driverlink_t dl;
TAILQ_FOREACH(dl, &dc->drivers, link) {
/*
* If this driver's pass is too high, then ignore it.
* For most drivers in the default pass, this will
* never be true. For early-pass drivers they will
* only call the identify routines of eligible drivers
* when this routine is called. Drivers for later
* passes should have their identify routines called
* on early-pass busses during BUS_NEW_PASS().
*/
if (dl->pass > bus_current_pass)
continue;
DEVICE_IDENTIFY(dl->driver, dev);
}
return (0);
}
/**
* @brief Helper function for implementing DEVICE_ATTACH()
*
* This function can be used to help implement the DEVICE_ATTACH() for
* a bus. It calls device_probe_and_attach() for each of the device's
* children.
*/
int
bus_generic_attach(device_t dev)
{
device_t child;
TAILQ_FOREACH(child, &dev->children, link) {
device_probe_and_attach(child);
}
return (0);
}
/**
* @brief Helper function for implementing DEVICE_DETACH()
*
* This function can be used to help implement the DEVICE_DETACH() for
* a bus. It calls device_detach() for each of the device's
* children.
*/
int
bus_generic_detach(device_t dev)
{
device_t child;
int error;
if (dev->state != DS_ATTACHED)
return (EBUSY);
TAILQ_FOREACH(child, &dev->children, link) {
if ((error = device_detach(child)) != 0)
return (error);
}
return (0);
}
/**
* @brief Helper function for implementing DEVICE_SHUTDOWN()
*
* This function can be used to help implement the DEVICE_SHUTDOWN()
* for a bus. It calls device_shutdown() for each of the device's
* children.
*/
int
bus_generic_shutdown(device_t dev)
{
device_t child;
TAILQ_FOREACH(child, &dev->children, link) {
device_shutdown(child);
}
return (0);
}
/**
* @brief Default function for suspending a child device.
*
* This function is to be used by a bus's DEVICE_SUSPEND_CHILD().
*/
int
bus_generic_suspend_child(device_t dev, device_t child)
{
int error;
error = DEVICE_SUSPEND(child);
if (error == 0)
child->flags |= DF_SUSPENDED;
return (error);
}
/**
* @brief Default function for resuming a child device.
*
* This function is to be used by a bus's DEVICE_RESUME_CHILD().
*/
int
bus_generic_resume_child(device_t dev, device_t child)
{
DEVICE_RESUME(child);
child->flags &= ~DF_SUSPENDED;
return (0);
}
/**
* @brief Helper function for implementing DEVICE_SUSPEND()
*
* This function can be used to help implement the DEVICE_SUSPEND()
* for a bus. It calls DEVICE_SUSPEND() for each of the device's
* children. If any call to DEVICE_SUSPEND() fails, the suspend
* operation is aborted and any devices which were suspended are
* resumed immediately by calling their DEVICE_RESUME() methods.
*/
int
bus_generic_suspend(device_t dev)
{
int error;
device_t child, child2;
TAILQ_FOREACH(child, &dev->children, link) {
error = BUS_SUSPEND_CHILD(dev, child);
if (error) {
for (child2 = TAILQ_FIRST(&dev->children);
child2 && child2 != child;
child2 = TAILQ_NEXT(child2, link))
BUS_RESUME_CHILD(dev, child2);
return (error);
}
}
return (0);
}
/**
* @brief Helper function for implementing DEVICE_RESUME()
*
* This function can be used to help implement the DEVICE_RESUME() for
* a bus. It calls DEVICE_RESUME() on each of the device's children.
*/
int
bus_generic_resume(device_t dev)
{
device_t child;
TAILQ_FOREACH(child, &dev->children, link) {
BUS_RESUME_CHILD(dev, child);
/* if resume fails, there's nothing we can usefully do... */
}
return (0);
}
/**
* @brief Helper function for implementing BUS_PRINT_CHILD().
*
* This function prints the first part of the ascii representation of
* @p child, including its name, unit and description (if any - see
* device_set_desc()).
*
* @returns the number of characters printed
*/
int
bus_print_child_header(device_t dev, device_t child)
{
int retval = 0;
if (device_get_desc(child)) {
retval += device_printf(child, "<%s>", device_get_desc(child));
} else {
retval += printf("%s", device_get_nameunit(child));
}
return (retval);
}
/**
* @brief Helper function for implementing BUS_PRINT_CHILD().
*
* This function prints the last part of the ascii representation of
* @p child, which consists of the string @c " on " followed by the
* name and unit of the @p dev.
*
* @returns the number of characters printed
*/
int
bus_print_child_footer(device_t dev, device_t child)
{
return (printf(" on %s\n", device_get_nameunit(dev)));
}
/**
* @brief Helper function for implementing BUS_PRINT_CHILD().
*
* This function prints out the VM domain for the given device.
*
* @returns the number of characters printed
*/
int
bus_print_child_domain(device_t dev, device_t child)
{
int domain;
/* No domain? Don't print anything */
if (BUS_GET_DOMAIN(dev, child, &domain) != 0)
return (0);
return (printf(" numa-domain %d", domain));
}
/**
* @brief Helper function for implementing BUS_PRINT_CHILD().
*
* This function simply calls bus_print_child_header() followed by
* bus_print_child_footer().
*
* @returns the number of characters printed
*/
int
bus_generic_print_child(device_t dev, device_t child)
{
int retval = 0;
retval += bus_print_child_header(dev, child);
retval += bus_print_child_domain(dev, child);
retval += bus_print_child_footer(dev, child);
return (retval);
}
/**
* @brief Stub function for implementing BUS_READ_IVAR().
*
* @returns ENOENT
*/
int
bus_generic_read_ivar(device_t dev, device_t child, int index,
uintptr_t * result)
{
return (ENOENT);
}
/**
* @brief Stub function for implementing BUS_WRITE_IVAR().
*
* @returns ENOENT
*/
int
bus_generic_write_ivar(device_t dev, device_t child, int index,
uintptr_t value)
{
return (ENOENT);
}
/**
* @brief Stub function for implementing BUS_GET_RESOURCE_LIST().
*
* @returns NULL
*/
struct resource_list *
bus_generic_get_resource_list(device_t dev, device_t child)
{
return (NULL);
}
/**
* @brief Helper function for implementing BUS_DRIVER_ADDED().
*
* This implementation of BUS_DRIVER_ADDED() simply calls the driver's
* DEVICE_IDENTIFY() method to allow it to add new children to the bus
* and then calls device_probe_and_attach() for each unattached child.
*/
void
bus_generic_driver_added(device_t dev, driver_t *driver)
{
device_t child;
DEVICE_IDENTIFY(driver, dev);
TAILQ_FOREACH(child, &dev->children, link) {
if (child->state == DS_NOTPRESENT ||
(child->flags & DF_REBID))
device_probe_and_attach(child);
}
}
/**
* @brief Helper function for implementing BUS_NEW_PASS().
*
* This implementing of BUS_NEW_PASS() first calls the identify
* routines for any drivers that probe at the current pass. Then it
* walks the list of devices for this bus. If a device is already
* attached, then it calls BUS_NEW_PASS() on that device. If the
* device is not already attached, it attempts to attach a driver to
* it.
*/
void
bus_generic_new_pass(device_t dev)
{
driverlink_t dl;
devclass_t dc;
device_t child;
dc = dev->devclass;
TAILQ_FOREACH(dl, &dc->drivers, link) {
if (dl->pass == bus_current_pass)
DEVICE_IDENTIFY(dl->driver, dev);
}
TAILQ_FOREACH(child, &dev->children, link) {
if (child->state >= DS_ATTACHED)
BUS_NEW_PASS(child);
else if (child->state == DS_NOTPRESENT)
device_probe_and_attach(child);
}
}
/**
* @brief Helper function for implementing BUS_SETUP_INTR().
*
* This simple implementation of BUS_SETUP_INTR() simply calls the
* BUS_SETUP_INTR() method of the parent of @p dev.
*/
int
bus_generic_setup_intr(device_t dev, device_t child, struct resource *irq,
int flags, driver_filter_t *filter, driver_intr_t *intr, void *arg,
void **cookiep)
{
/* Propagate up the bus hierarchy until someone handles it. */
if (dev->parent)
return (BUS_SETUP_INTR(dev->parent, child, irq, flags,
filter, intr, arg, cookiep));
return (EINVAL);
}
/**
* @brief Helper function for implementing BUS_TEARDOWN_INTR().
*
* This simple implementation of BUS_TEARDOWN_INTR() simply calls the
* BUS_TEARDOWN_INTR() method of the parent of @p dev.
*/
int
bus_generic_teardown_intr(device_t dev, device_t child, struct resource *irq,
void *cookie)
{
/* Propagate up the bus hierarchy until someone handles it. */
if (dev->parent)
return (BUS_TEARDOWN_INTR(dev->parent, child, irq, cookie));
return (EINVAL);
}
/**
* @brief Helper function for implementing BUS_ADJUST_RESOURCE().
*
* This simple implementation of BUS_ADJUST_RESOURCE() simply calls the
* BUS_ADJUST_RESOURCE() method of the parent of @p dev.
*/
int
bus_generic_adjust_resource(device_t dev, device_t child, int type,
struct resource *r, u_long start, u_long end)
{
/* Propagate up the bus hierarchy until someone handles it. */
if (dev->parent)
return (BUS_ADJUST_RESOURCE(dev->parent, child, type, r, start,
end));
return (EINVAL);
}
/**
* @brief Helper function for implementing BUS_ALLOC_RESOURCE().
*
* This simple implementation of BUS_ALLOC_RESOURCE() simply calls the
* BUS_ALLOC_RESOURCE() method of the parent of @p dev.
*/
struct resource *
bus_generic_alloc_resource(device_t dev, device_t child, int type, int *rid,
u_long start, u_long end, u_long count, u_int flags)
{
/* Propagate up the bus hierarchy until someone handles it. */
if (dev->parent)
return (BUS_ALLOC_RESOURCE(dev->parent, child, type, rid,
start, end, count, flags));
return (NULL);
}
/**
* @brief Helper function for implementing BUS_RELEASE_RESOURCE().
*
* This simple implementation of BUS_RELEASE_RESOURCE() simply calls the
* BUS_RELEASE_RESOURCE() method of the parent of @p dev.
*/
int
bus_generic_release_resource(device_t dev, device_t child, int type, int rid,
struct resource *r)
{
/* Propagate up the bus hierarchy until someone handles it. */
if (dev->parent)
return (BUS_RELEASE_RESOURCE(dev->parent, child, type, rid,
r));
return (EINVAL);
}
/**
* @brief Helper function for implementing BUS_ACTIVATE_RESOURCE().
*
* This simple implementation of BUS_ACTIVATE_RESOURCE() simply calls the
* BUS_ACTIVATE_RESOURCE() method of the parent of @p dev.
*/
int
bus_generic_activate_resource(device_t dev, device_t child, int type, int rid,
struct resource *r)
{
/* Propagate up the bus hierarchy until someone handles it. */
if (dev->parent)
return (BUS_ACTIVATE_RESOURCE(dev->parent, child, type, rid,
r));
return (EINVAL);
}
/**
* @brief Helper function for implementing BUS_DEACTIVATE_RESOURCE().
*
* This simple implementation of BUS_DEACTIVATE_RESOURCE() simply calls the
* BUS_DEACTIVATE_RESOURCE() method of the parent of @p dev.
*/
int
bus_generic_deactivate_resource(device_t dev, device_t child, int type,
int rid, struct resource *r)
{
/* Propagate up the bus hierarchy until someone handles it. */
if (dev->parent)
return (BUS_DEACTIVATE_RESOURCE(dev->parent, child, type, rid,
r));
return (EINVAL);
}
/**
* @brief Helper function for implementing BUS_BIND_INTR().
*
* This simple implementation of BUS_BIND_INTR() simply calls the
* BUS_BIND_INTR() method of the parent of @p dev.
*/
int
bus_generic_bind_intr(device_t dev, device_t child, struct resource *irq,
int cpu)
{
/* Propagate up the bus hierarchy until someone handles it. */
if (dev->parent)
return (BUS_BIND_INTR(dev->parent, child, irq, cpu));
return (EINVAL);
}
/**
* @brief Helper function for implementing BUS_CONFIG_INTR().
*
* This simple implementation of BUS_CONFIG_INTR() simply calls the
* BUS_CONFIG_INTR() method of the parent of @p dev.
*/
int
bus_generic_config_intr(device_t dev, int irq, enum intr_trigger trig,
enum intr_polarity pol)
{
/* Propagate up the bus hierarchy until someone handles it. */
if (dev->parent)
return (BUS_CONFIG_INTR(dev->parent, irq, trig, pol));
return (EINVAL);
}
/**
* @brief Helper function for implementing BUS_DESCRIBE_INTR().
*
* This simple implementation of BUS_DESCRIBE_INTR() simply calls the
* BUS_DESCRIBE_INTR() method of the parent of @p dev.
*/
int
bus_generic_describe_intr(device_t dev, device_t child, struct resource *irq,
void *cookie, const char *descr)
{
/* Propagate up the bus hierarchy until someone handles it. */
if (dev->parent)
return (BUS_DESCRIBE_INTR(dev->parent, child, irq, cookie,
descr));
return (EINVAL);
}
/**
* @brief Helper function for implementing BUS_GET_DMA_TAG().
*
* This simple implementation of BUS_GET_DMA_TAG() simply calls the
* BUS_GET_DMA_TAG() method of the parent of @p dev.
*/
bus_dma_tag_t
bus_generic_get_dma_tag(device_t dev, device_t child)
{
/* Propagate up the bus hierarchy until someone handles it. */
if (dev->parent != NULL)
return (BUS_GET_DMA_TAG(dev->parent, child));
return (NULL);
}
/**
* @brief Helper function for implementing BUS_GET_RESOURCE().
*
* This implementation of BUS_GET_RESOURCE() uses the
* resource_list_find() function to do most of the work. It calls
* BUS_GET_RESOURCE_LIST() to find a suitable resource list to
* search.
*/
int
bus_generic_rl_get_resource(device_t dev, device_t child, int type, int rid,
u_long *startp, u_long *countp)
{
struct resource_list * rl = NULL;
struct resource_list_entry * rle = NULL;
rl = BUS_GET_RESOURCE_LIST(dev, child);
if (!rl)
return (EINVAL);
rle = resource_list_find(rl, type, rid);
if (!rle)
return (ENOENT);
if (startp)
*startp = rle->start;
if (countp)
*countp = rle->count;
return (0);
}
/**
* @brief Helper function for implementing BUS_SET_RESOURCE().
*
* This implementation of BUS_SET_RESOURCE() uses the
* resource_list_add() function to do most of the work. It calls
* BUS_GET_RESOURCE_LIST() to find a suitable resource list to
* edit.
*/
int
bus_generic_rl_set_resource(device_t dev, device_t child, int type, int rid,
u_long start, u_long count)
{
struct resource_list * rl = NULL;
rl = BUS_GET_RESOURCE_LIST(dev, child);
if (!rl)
return (EINVAL);
resource_list_add(rl, type, rid, start, (start + count - 1), count);
return (0);
}
/**
* @brief Helper function for implementing BUS_DELETE_RESOURCE().
*
* This implementation of BUS_DELETE_RESOURCE() uses the
* resource_list_delete() function to do most of the work. It calls
* BUS_GET_RESOURCE_LIST() to find a suitable resource list to
* edit.
*/
void
bus_generic_rl_delete_resource(device_t dev, device_t child, int type, int rid)
{
struct resource_list * rl = NULL;
rl = BUS_GET_RESOURCE_LIST(dev, child);
if (!rl)
return;
resource_list_delete(rl, type, rid);
return;
}
/**
* @brief Helper function for implementing BUS_RELEASE_RESOURCE().
*
* This implementation of BUS_RELEASE_RESOURCE() uses the
* resource_list_release() function to do most of the work. It calls
* BUS_GET_RESOURCE_LIST() to find a suitable resource list.
*/
int
bus_generic_rl_release_resource(device_t dev, device_t child, int type,
int rid, struct resource *r)
{
struct resource_list * rl = NULL;
if (device_get_parent(child) != dev)
return (BUS_RELEASE_RESOURCE(device_get_parent(dev), child,
type, rid, r));
rl = BUS_GET_RESOURCE_LIST(dev, child);
if (!rl)
return (EINVAL);
return (resource_list_release(rl, dev, child, type, rid, r));
}
/**
* @brief Helper function for implementing BUS_ALLOC_RESOURCE().
*
* This implementation of BUS_ALLOC_RESOURCE() uses the
* resource_list_alloc() function to do most of the work. It calls
* BUS_GET_RESOURCE_LIST() to find a suitable resource list.
*/
struct resource *
bus_generic_rl_alloc_resource(device_t dev, device_t child, int type,
int *rid, u_long start, u_long end, u_long count, u_int flags)
{
struct resource_list * rl = NULL;
if (device_get_parent(child) != dev)
return (BUS_ALLOC_RESOURCE(device_get_parent(dev), child,
type, rid, start, end, count, flags));
rl = BUS_GET_RESOURCE_LIST(dev, child);
if (!rl)
return (NULL);
return (resource_list_alloc(rl, dev, child, type, rid,
start, end, count, flags));
}
/**
* @brief Helper function for implementing BUS_CHILD_PRESENT().
*
* This simple implementation of BUS_CHILD_PRESENT() simply calls the
* BUS_CHILD_PRESENT() method of the parent of @p dev.
*/
int
bus_generic_child_present(device_t dev, device_t child)
{
return (BUS_CHILD_PRESENT(device_get_parent(dev), dev));
}
int
bus_generic_get_domain(device_t dev, device_t child, int *domain)
{
if (dev->parent)
return (BUS_GET_DOMAIN(dev->parent, dev, domain));
return (ENOENT);
}
/*
* Some convenience functions to make it easier for drivers to use the
* resource-management functions. All these really do is hide the
* indirection through the parent's method table, making for slightly
* less-wordy code. In the future, it might make sense for this code
* to maintain some sort of a list of resources allocated by each device.
*/
int
bus_alloc_resources(device_t dev, struct resource_spec *rs,
struct resource **res)
{
int i;
for (i = 0; rs[i].type != -1; i++)
res[i] = NULL;
for (i = 0; rs[i].type != -1; i++) {
res[i] = bus_alloc_resource_any(dev,
rs[i].type, &rs[i].rid, rs[i].flags);
if (res[i] == NULL && !(rs[i].flags & RF_OPTIONAL)) {
bus_release_resources(dev, rs, res);
return (ENXIO);
}
}
return (0);
}
void
bus_release_resources(device_t dev, const struct resource_spec *rs,
struct resource **res)
{
int i;
for (i = 0; rs[i].type != -1; i++)
if (res[i] != NULL) {
bus_release_resource(
dev, rs[i].type, rs[i].rid, res[i]);
res[i] = NULL;
}
}
/**
* @brief Wrapper function for BUS_ALLOC_RESOURCE().
*
* This function simply calls the BUS_ALLOC_RESOURCE() method of the
* parent of @p dev.
*/
struct resource *
bus_alloc_resource(device_t dev, int type, int *rid, u_long start, u_long end,
u_long count, u_int flags)
{
if (dev->parent == NULL)
return (NULL);
return (BUS_ALLOC_RESOURCE(dev->parent, dev, type, rid, start, end,
count, flags));
}
/**
* @brief Wrapper function for BUS_ADJUST_RESOURCE().
*
* This function simply calls the BUS_ADJUST_RESOURCE() method of the
* parent of @p dev.
*/
int
bus_adjust_resource(device_t dev, int type, struct resource *r, u_long start,
u_long end)
{
if (dev->parent == NULL)
return (EINVAL);
return (BUS_ADJUST_RESOURCE(dev->parent, dev, type, r, start, end));
}
/**
* @brief Wrapper function for BUS_ACTIVATE_RESOURCE().
*
* This function simply calls the BUS_ACTIVATE_RESOURCE() method of the
* parent of @p dev.
*/
int
bus_activate_resource(device_t dev, int type, int rid, struct resource *r)
{
if (dev->parent == NULL)
return (EINVAL);
return (BUS_ACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
}
/**
* @brief Wrapper function for BUS_DEACTIVATE_RESOURCE().
*
* This function simply calls the BUS_DEACTIVATE_RESOURCE() method of the
* parent of @p dev.
*/
int
bus_deactivate_resource(device_t dev, int type, int rid, struct resource *r)
{
if (dev->parent == NULL)
return (EINVAL);
return (BUS_DEACTIVATE_RESOURCE(dev->parent, dev, type, rid, r));
}
/**
* @brief Wrapper function for BUS_RELEASE_RESOURCE().
*
* This function simply calls the BUS_RELEASE_RESOURCE() method of the
* parent of @p dev.
*/
int
bus_release_resource(device_t dev, int type, int rid, struct resource *r)
{
if (dev->parent == NULL)
return (EINVAL);
return (BUS_RELEASE_RESOURCE(dev->parent, dev, type, rid, r));
}
/**
* @brief Wrapper function for BUS_SETUP_INTR().
*
* This function simply calls the BUS_SETUP_INTR() method of the
* parent of @p dev.
*/
int
bus_setup_intr(device_t dev, struct resource *r, int flags,
driver_filter_t filter, driver_intr_t handler, void *arg, void **cookiep)
{
int error;
if (dev->parent == NULL)
return (EINVAL);
error = BUS_SETUP_INTR(dev->parent, dev, r, flags, filter, handler,
arg, cookiep);
if (error != 0)
return (error);
if (handler != NULL && !(flags & INTR_MPSAFE))
device_printf(dev, "[GIANT-LOCKED]\n");
return (0);
}
/**
* @brief Wrapper function for BUS_TEARDOWN_INTR().
*
* This function simply calls the BUS_TEARDOWN_INTR() method of the
* parent of @p dev.
*/
int
bus_teardown_intr(device_t dev, struct resource *r, void *cookie)
{
if (dev->parent == NULL)
return (EINVAL);
return (BUS_TEARDOWN_INTR(dev->parent, dev, r, cookie));
}
/**
* @brief Wrapper function for BUS_BIND_INTR().
*
* This function simply calls the BUS_BIND_INTR() method of the
* parent of @p dev.
*/
int
bus_bind_intr(device_t dev, struct resource *r, int cpu)
{
if (dev->parent == NULL)
return (EINVAL);
return (BUS_BIND_INTR(dev->parent, dev, r, cpu));
}
/**
* @brief Wrapper function for BUS_DESCRIBE_INTR().
*
* This function first formats the requested description into a
* temporary buffer and then calls the BUS_DESCRIBE_INTR() method of
* the parent of @p dev.
*/
int
bus_describe_intr(device_t dev, struct resource *irq, void *cookie,
const char *fmt, ...)
{
va_list ap;
char descr[MAXCOMLEN + 1];
if (dev->parent == NULL)
return (EINVAL);
va_start(ap, fmt);
vsnprintf(descr, sizeof(descr), fmt, ap);
va_end(ap);
return (BUS_DESCRIBE_INTR(dev->parent, dev, irq, cookie, descr));
}
/**
* @brief Wrapper function for BUS_SET_RESOURCE().
*
* This function simply calls the BUS_SET_RESOURCE() method of the
* parent of @p dev.
*/
int
bus_set_resource(device_t dev, int type, int rid,
u_long start, u_long count)
{
return (BUS_SET_RESOURCE(device_get_parent(dev), dev, type, rid,
start, count));
}
/**
* @brief Wrapper function for BUS_GET_RESOURCE().
*
* This function simply calls the BUS_GET_RESOURCE() method of the
* parent of @p dev.
*/
int
bus_get_resource(device_t dev, int type, int rid,
u_long *startp, u_long *countp)
{
return (BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
startp, countp));
}
/**
* @brief Wrapper function for BUS_GET_RESOURCE().
*
* This function simply calls the BUS_GET_RESOURCE() method of the
* parent of @p dev and returns the start value.
*/
u_long
bus_get_resource_start(device_t dev, int type, int rid)
{
u_long start, count;
int error;
error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
&start, &count);
if (error)
return (0);
return (start);
}
/**
* @brief Wrapper function for BUS_GET_RESOURCE().
*
* This function simply calls the BUS_GET_RESOURCE() method of the
* parent of @p dev and returns the count value.
*/
u_long
bus_get_resource_count(device_t dev, int type, int rid)
{
u_long start, count;
int error;
error = BUS_GET_RESOURCE(device_get_parent(dev), dev, type, rid,
&start, &count);
if (error)
return (0);
return (count);
}
/**
* @brief Wrapper function for BUS_DELETE_RESOURCE().
*
* This function simply calls the BUS_DELETE_RESOURCE() method of the
* parent of @p dev.
*/
void
bus_delete_resource(device_t dev, int type, int rid)
{
BUS_DELETE_RESOURCE(device_get_parent(dev), dev, type, rid);
}
/**
* @brief Wrapper function for BUS_CHILD_PRESENT().
*
* This function simply calls the BUS_CHILD_PRESENT() method of the
* parent of @p dev.
*/
int
bus_child_present(device_t child)
{
return (BUS_CHILD_PRESENT(device_get_parent(child), child));
}
/**
* @brief Wrapper function for BUS_CHILD_PNPINFO_STR().
*
* This function simply calls the BUS_CHILD_PNPINFO_STR() method of the
* parent of @p dev.
*/
int
bus_child_pnpinfo_str(device_t child, char *buf, size_t buflen)
{
device_t parent;
parent = device_get_parent(child);
if (parent == NULL) {
*buf = '\0';
return (0);
}
return (BUS_CHILD_PNPINFO_STR(parent, child, buf, buflen));
}
/**
* @brief Wrapper function for BUS_CHILD_LOCATION_STR().
*
* This function simply calls the BUS_CHILD_LOCATION_STR() method of the
* parent of @p dev.
*/
int
bus_child_location_str(device_t child, char *buf, size_t buflen)
{
device_t parent;
parent = device_get_parent(child);
if (parent == NULL) {
*buf = '\0';
return (0);
}
return (BUS_CHILD_LOCATION_STR(parent, child, buf, buflen));
}
/**
* @brief Wrapper function for BUS_GET_DMA_TAG().
*
* This function simply calls the BUS_GET_DMA_TAG() method of the
* parent of @p dev.
*/
bus_dma_tag_t
bus_get_dma_tag(device_t dev)
{
device_t parent;
parent = device_get_parent(dev);
if (parent == NULL)
return (NULL);
return (BUS_GET_DMA_TAG(parent, dev));
}
/**
* @brief Wrapper function for BUS_GET_DOMAIN().
*
* This function simply calls the BUS_GET_DOMAIN() method of the
* parent of @p dev.
*/
int
bus_get_domain(device_t dev, int *domain)
{
return (BUS_GET_DOMAIN(device_get_parent(dev), dev, domain));
}
/* Resume all devices and then notify userland that we're up again. */
static int
root_resume(device_t dev)
{
int error;
error = bus_generic_resume(dev);
if (error == 0)
devctl_notify("kern", "power", "resume", NULL);
return (error);
}
static int
root_print_child(device_t dev, device_t child)
{
int retval = 0;
retval += bus_print_child_header(dev, child);
retval += printf("\n");
return (retval);
}
static int
root_setup_intr(device_t dev, device_t child, struct resource *irq, int flags,
driver_filter_t *filter, driver_intr_t *intr, void *arg, void **cookiep)
{
/*
* If an interrupt mapping gets to here something bad has happened.
*/
panic("root_setup_intr");
}
/*
* If we get here, assume that the device is permanant and really is
* present in the system. Removable bus drivers are expected to intercept
* this call long before it gets here. We return -1 so that drivers that
* really care can check vs -1 or some ERRNO returned higher in the food
* chain.
*/
static int
root_child_present(device_t dev, device_t child)
{
return (-1);
}
static kobj_method_t root_methods[] = {
/* Device interface */
KOBJMETHOD(device_shutdown, bus_generic_shutdown),
KOBJMETHOD(device_suspend, bus_generic_suspend),
KOBJMETHOD(device_resume, root_resume),
/* Bus interface */
KOBJMETHOD(bus_print_child, root_print_child),
KOBJMETHOD(bus_read_ivar, bus_generic_read_ivar),
KOBJMETHOD(bus_write_ivar, bus_generic_write_ivar),
KOBJMETHOD(bus_setup_intr, root_setup_intr),
KOBJMETHOD(bus_child_present, root_child_present),
KOBJMETHOD_END
};
static driver_t root_driver = {
"root",
root_methods,
1, /* no softc */
};
device_t root_bus;
devclass_t root_devclass;
static int
root_bus_module_handler(module_t mod, int what, void* arg)
{
switch (what) {
case MOD_LOAD:
TAILQ_INIT(&bus_data_devices);
kobj_class_compile((kobj_class_t) &root_driver);
root_bus = make_device(NULL, "root", 0);
root_bus->desc = "System root bus";
kobj_init((kobj_t) root_bus, (kobj_class_t) &root_driver);
root_bus->driver = &root_driver;
root_bus->state = DS_ATTACHED;
root_devclass = devclass_find_internal("root", NULL, FALSE);
devinit();
return (0);
case MOD_SHUTDOWN:
device_shutdown(root_bus);
return (0);
default:
return (EOPNOTSUPP);
}
return (0);
}
static moduledata_t root_bus_mod = {
"rootbus",
root_bus_module_handler,
NULL
};
DECLARE_MODULE(rootbus, root_bus_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
/**
* @brief Automatically configure devices
*
* This function begins the autoconfiguration process by calling
* device_probe_and_attach() for each child of the @c root0 device.
*/
void
root_bus_configure(void)
{
PDEBUG(("."));
/* Eventually this will be split up, but this is sufficient for now. */
bus_set_pass(BUS_PASS_DEFAULT);
}
/**
* @brief Module handler for registering device drivers
*
* This module handler is used to automatically register device
* drivers when modules are loaded. If @p what is MOD_LOAD, it calls
* devclass_add_driver() for the driver described by the
* driver_module_data structure pointed to by @p arg
*/
int
driver_module_handler(module_t mod, int what, void *arg)
{
struct driver_module_data *dmd;
devclass_t bus_devclass;
kobj_class_t driver;
int error, pass;
dmd = (struct driver_module_data *)arg;
bus_devclass = devclass_find_internal(dmd->dmd_busname, NULL, TRUE);
error = 0;
switch (what) {
case MOD_LOAD:
if (dmd->dmd_chainevh)
error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
pass = dmd->dmd_pass;
driver = dmd->dmd_driver;
PDEBUG(("Loading module: driver %s on bus %s (pass %d)",
DRIVERNAME(driver), dmd->dmd_busname, pass));
error = devclass_add_driver(bus_devclass, driver, pass,
dmd->dmd_devclass);
break;
case MOD_UNLOAD:
PDEBUG(("Unloading module: driver %s from bus %s",
DRIVERNAME(dmd->dmd_driver),
dmd->dmd_busname));
error = devclass_delete_driver(bus_devclass,
dmd->dmd_driver);
if (!error && dmd->dmd_chainevh)
error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
break;
case MOD_QUIESCE:
PDEBUG(("Quiesce module: driver %s from bus %s",
DRIVERNAME(dmd->dmd_driver),
dmd->dmd_busname));
error = devclass_quiesce_driver(bus_devclass,
dmd->dmd_driver);
if (!error && dmd->dmd_chainevh)
error = dmd->dmd_chainevh(mod,what,dmd->dmd_chainarg);
break;
default:
error = EOPNOTSUPP;
break;
}
return (error);
}
/**
* @brief Enumerate all hinted devices for this bus.
*
* Walks through the hints for this bus and calls the bus_hinted_child
* routine for each one it fines. It searches first for the specific
* bus that's being probed for hinted children (eg isa0), and then for
* generic children (eg isa).
*
* @param dev bus device to enumerate
*/
void
bus_enumerate_hinted_children(device_t bus)
{
int i;
const char *dname, *busname;
int dunit;
/*
* enumerate all devices on the specific bus
*/
busname = device_get_nameunit(bus);
i = 0;
while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
BUS_HINTED_CHILD(bus, dname, dunit);
/*
* and all the generic ones.
*/
busname = device_get_name(bus);
i = 0;
while (resource_find_match(&i, &dname, &dunit, "at", busname) == 0)
BUS_HINTED_CHILD(bus, dname, dunit);
}
#ifdef BUS_DEBUG
/* the _short versions avoid iteration by not calling anything that prints
* more than oneliners. I love oneliners.
*/
static void
print_device_short(device_t dev, int indent)
{
if (!dev)
return;
indentprintf(("device %d: <%s> %sparent,%schildren,%s%s%s%s%s,%sivars,%ssoftc,busy=%d\n",
dev->unit, dev->desc,
(dev->parent? "":"no "),
(TAILQ_EMPTY(&dev->children)? "no ":""),
(dev->flags&DF_ENABLED? "enabled,":"disabled,"),
(dev->flags&DF_FIXEDCLASS? "fixed,":""),
(dev->flags&DF_WILDCARD? "wildcard,":""),
(dev->flags&DF_DESCMALLOCED? "descmalloced,":""),
(dev->flags&DF_REBID? "rebiddable,":""),
(dev->ivars? "":"no "),
(dev->softc? "":"no "),
dev->busy));
}
static void
print_device(device_t dev, int indent)
{
if (!dev)
return;
print_device_short(dev, indent);
indentprintf(("Parent:\n"));
print_device_short(dev->parent, indent+1);
indentprintf(("Driver:\n"));
print_driver_short(dev->driver, indent+1);
indentprintf(("Devclass:\n"));
print_devclass_short(dev->devclass, indent+1);
}
void
print_device_tree_short(device_t dev, int indent)
/* print the device and all its children (indented) */
{
device_t child;
if (!dev)
return;
print_device_short(dev, indent);
TAILQ_FOREACH(child, &dev->children, link) {
print_device_tree_short(child, indent+1);
}
}
void
print_device_tree(device_t dev, int indent)
/* print the device and all its children (indented) */
{
device_t child;
if (!dev)
return;
print_device(dev, indent);
TAILQ_FOREACH(child, &dev->children, link) {
print_device_tree(child, indent+1);
}
}
static void
print_driver_short(driver_t *driver, int indent)
{
if (!driver)
return;
indentprintf(("driver %s: softc size = %zd\n",
driver->name, driver->size));
}
static void
print_driver(driver_t *driver, int indent)
{
if (!driver)
return;
print_driver_short(driver, indent);
}
static void
print_driver_list(driver_list_t drivers, int indent)
{
driverlink_t driver;
TAILQ_FOREACH(driver, &drivers, link) {
print_driver(driver->driver, indent);
}
}
static void
print_devclass_short(devclass_t dc, int indent)
{
if ( !dc )
return;
indentprintf(("devclass %s: max units = %d\n", dc->name, dc->maxunit));
}
static void
print_devclass(devclass_t dc, int indent)
{
int i;
if ( !dc )
return;
print_devclass_short(dc, indent);
indentprintf(("Drivers:\n"));
print_driver_list(dc->drivers, indent+1);
indentprintf(("Devices:\n"));
for (i = 0; i < dc->maxunit; i++)
if (dc->devices[i])
print_device(dc->devices[i], indent+1);
}
void
print_devclass_list_short(void)
{
devclass_t dc;
printf("Short listing of devclasses, drivers & devices:\n");
TAILQ_FOREACH(dc, &devclasses, link) {
print_devclass_short(dc, 0);
}
}
void
print_devclass_list(void)
{
devclass_t dc;
printf("Full listing of devclasses, drivers & devices:\n");
TAILQ_FOREACH(dc, &devclasses, link) {
print_devclass(dc, 0);
}
}
#endif
/*
* User-space access to the device tree.
*
* We implement a small set of nodes:
*
* hw.bus Single integer read method to obtain the
* current generation count.
* hw.bus.devices Reads the entire device tree in flat space.
* hw.bus.rman Resource manager interface
*
* We might like to add the ability to scan devclasses and/or drivers to
* determine what else is currently loaded/available.
*/
static int
sysctl_bus(SYSCTL_HANDLER_ARGS)
{
struct u_businfo ubus;
ubus.ub_version = BUS_USER_VERSION;
ubus.ub_generation = bus_data_generation;
return (SYSCTL_OUT(req, &ubus, sizeof(ubus)));
}
SYSCTL_NODE(_hw_bus, OID_AUTO, info, CTLFLAG_RW, sysctl_bus,
"bus-related data");
static int
sysctl_devices(SYSCTL_HANDLER_ARGS)
{
int *name = (int *)arg1;
u_int namelen = arg2;
int index;
struct device *dev;
struct u_device udev; /* XXX this is a bit big */
int error;
if (namelen != 2)
return (EINVAL);
if (bus_data_generation_check(name[0]))
return (EINVAL);
index = name[1];
/*
* Scan the list of devices, looking for the requested index.
*/
TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
if (index-- == 0)
break;
}
if (dev == NULL)
return (ENOENT);
/*
* Populate the return array.
*/
bzero(&udev, sizeof(udev));
udev.dv_handle = (uintptr_t)dev;
udev.dv_parent = (uintptr_t)dev->parent;
if (dev->nameunit != NULL)
strlcpy(udev.dv_name, dev->nameunit, sizeof(udev.dv_name));
if (dev->desc != NULL)
strlcpy(udev.dv_desc, dev->desc, sizeof(udev.dv_desc));
if (dev->driver != NULL && dev->driver->name != NULL)
strlcpy(udev.dv_drivername, dev->driver->name,
sizeof(udev.dv_drivername));
bus_child_pnpinfo_str(dev, udev.dv_pnpinfo, sizeof(udev.dv_pnpinfo));
bus_child_location_str(dev, udev.dv_location, sizeof(udev.dv_location));
udev.dv_devflags = dev->devflags;
udev.dv_flags = dev->flags;
udev.dv_state = dev->state;
error = SYSCTL_OUT(req, &udev, sizeof(udev));
return (error);
}
SYSCTL_NODE(_hw_bus, OID_AUTO, devices, CTLFLAG_RD, sysctl_devices,
"system device tree");
int
bus_data_generation_check(int generation)
{
if (generation != bus_data_generation)
return (1);
/* XXX generate optimised lists here? */
return (0);
}
void
bus_data_generation_update(void)
{
bus_data_generation++;
}
int
bus_free_resource(device_t dev, int type, struct resource *r)
{
if (r == NULL)
return (0);
return (bus_release_resource(dev, type, rman_get_rid(r), r));
}
/*
* /dev/devctl2 implementation. The existing /dev/devctl device has
* implicit semantics on open, so it could not be reused for this.
* Another option would be to call this /dev/bus?
*/
static int
find_device(struct devreq *req, device_t *devp)
{
device_t dev;
/*
* First, ensure that the name is nul terminated.
*/
if (memchr(req->dr_name, '\0', sizeof(req->dr_name)) == NULL)
return (EINVAL);
/*
* Second, try to find an attached device whose name matches
* 'name'.
*/
TAILQ_FOREACH(dev, &bus_data_devices, devlink) {
if (dev->nameunit != NULL &&
strcmp(dev->nameunit, req->dr_name) == 0) {
*devp = dev;
return (0);
}
}
/* Finally, give device enumerators a chance. */
dev = NULL;
EVENTHANDLER_INVOKE(dev_lookup, req->dr_name, &dev);
if (dev == NULL)
return (ENOENT);
*devp = dev;
return (0);
}
static bool
driver_exists(struct device *bus, const char *driver)
{
devclass_t dc;
for (dc = bus->devclass; dc != NULL; dc = dc->parent) {
if (devclass_find_driver_internal(dc, driver) != NULL)
return (true);
}
return (false);
}
static int
devctl2_ioctl(struct cdev *cdev, u_long cmd, caddr_t data, int fflag,
struct thread *td)
{
struct devreq *req;
device_t dev;
int error, old;
/* Locate the device to control. */
mtx_lock(&Giant);
req = (struct devreq *)data;
switch (cmd) {
case DEV_ATTACH:
case DEV_DETACH:
case DEV_ENABLE:
case DEV_DISABLE:
case DEV_SUSPEND:
case DEV_RESUME:
case DEV_SET_DRIVER:
error = priv_check(td, PRIV_DRIVER);
if (error == 0)
error = find_device(req, &dev);
break;
default:
error = ENOTTY;
break;
}
if (error) {
mtx_unlock(&Giant);
return (error);
}
/* Perform the requested operation. */
switch (cmd) {
case DEV_ATTACH:
if (device_is_attached(dev) && (dev->flags & DF_REBID) == 0)
error = EBUSY;
else if (!device_is_enabled(dev))
error = ENXIO;
else
error = device_probe_and_attach(dev);
break;
case DEV_DETACH:
if (!device_is_attached(dev)) {
error = ENXIO;
break;
}
if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
error = device_quiesce(dev);
if (error)
break;
}
error = device_detach(dev);
break;
case DEV_ENABLE:
if (device_is_enabled(dev)) {
error = EBUSY;
break;
}
/*
* If the device has been probed but not attached (e.g.
* when it has been disabled by a loader hint), just
* attach the device rather than doing a full probe.
*/
device_enable(dev);
if (device_is_alive(dev)) {
/*
* If the device was disabled via a hint, clear
* the hint.
*/
if (resource_disabled(dev->driver->name, dev->unit))
resource_unset_value(dev->driver->name,
dev->unit, "disabled");
error = device_attach(dev);
} else
error = device_probe_and_attach(dev);
break;
case DEV_DISABLE:
if (!device_is_enabled(dev)) {
error = ENXIO;
break;
}
if (!(req->dr_flags & DEVF_FORCE_DETACH)) {
error = device_quiesce(dev);
if (error)
break;
}
/*
* Force DF_FIXEDCLASS on around detach to preserve
* the existing name.
*/
old = dev->flags;
dev->flags |= DF_FIXEDCLASS;
error = device_detach(dev);
if (!(old & DF_FIXEDCLASS))
dev->flags &= ~DF_FIXEDCLASS;
if (error == 0)
device_disable(dev);
break;
case DEV_SUSPEND:
if (device_is_suspended(dev)) {
error = EBUSY;
break;
}
if (device_get_parent(dev) == NULL) {
error = EINVAL;
break;
}
error = BUS_SUSPEND_CHILD(device_get_parent(dev), dev);
break;
case DEV_RESUME:
if (!device_is_suspended(dev)) {
error = EINVAL;
break;
}
if (device_get_parent(dev) == NULL) {
error = EINVAL;
break;
}
error = BUS_RESUME_CHILD(device_get_parent(dev), dev);
break;
case DEV_SET_DRIVER: {
devclass_t dc;
char driver[128];
error = copyinstr(req->dr_data, driver, sizeof(driver), NULL);
if (error)
break;
if (driver[0] == '\0') {
error = EINVAL;
break;
}
if (dev->devclass != NULL &&
strcmp(driver, dev->devclass->name) == 0)
/* XXX: Could possibly force DF_FIXEDCLASS on? */
break;
/*
* Scan drivers for this device's bus looking for at
* least one matching driver.
*/
if (dev->parent == NULL) {
error = EINVAL;
break;
}
if (!driver_exists(dev->parent, driver)) {
error = ENOENT;
break;
}
dc = devclass_create(driver);
if (dc == NULL) {
error = ENOMEM;
break;
}
/* Detach device if necessary. */
if (device_is_attached(dev)) {
if (req->dr_flags & DEVF_SET_DRIVER_DETACH)
error = device_detach(dev);
else
error = EBUSY;
if (error)
break;
}
/* Clear any previously-fixed device class and unit. */
if (dev->flags & DF_FIXEDCLASS)
devclass_delete_device(dev->devclass, dev);
dev->flags |= DF_WILDCARD;
dev->unit = -1;
/* Force the new device class. */
error = devclass_add_device(dc, dev);
if (error)
break;
dev->flags |= DF_FIXEDCLASS;
error = device_probe_and_attach(dev);
break;
}
}
mtx_unlock(&Giant);
return (error);
}
static struct cdevsw devctl2_cdevsw = {
.d_version = D_VERSION,
.d_ioctl = devctl2_ioctl,
.d_name = "devctl2",
};
static void
devctl2_init(void)
{
make_dev_credf(MAKEDEV_ETERNAL, &devctl2_cdevsw, 0, NULL,
UID_ROOT, GID_WHEEL, 0600, "devctl2");
}