9bd4b3fa75
present. Only call the bus to check if we actually do timeout so we don't affect the normal case (since this case needn't be optimized and this guards against all races).
4103 lines
107 KiB
C
4103 lines
107 KiB
C
/*-
|
|
* Copyright (c) 1997, 1998, 1999
|
|
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* DEC "tulip" clone ethernet driver. Supports the DEC/Intel 21143
|
|
* series chips and several workalikes including the following:
|
|
*
|
|
* Macronix 98713/98715/98725/98727/98732 PMAC (www.macronix.com)
|
|
* Macronix/Lite-On 82c115 PNIC II (www.macronix.com)
|
|
* Lite-On 82c168/82c169 PNIC (www.litecom.com)
|
|
* ASIX Electronics AX88140A (www.asix.com.tw)
|
|
* ASIX Electronics AX88141 (www.asix.com.tw)
|
|
* ADMtek AL981 (www.admtek.com.tw)
|
|
* ADMtek AN983 (www.admtek.com.tw)
|
|
* ADMtek CardBus AN985 (www.admtek.com.tw)
|
|
* Netgear FA511 (www.netgear.com) Appears to be rebadged ADMTek CardBus AN985
|
|
* Davicom DM9100, DM9102, DM9102A (www.davicom8.com)
|
|
* Accton EN1217 (www.accton.com)
|
|
* Xircom X3201 (www.xircom.com)
|
|
* Abocom FE2500
|
|
* Conexant LANfinity (www.conexant.com)
|
|
* 3Com OfficeConnect 10/100B 3CSOHO100B (www.3com.com)
|
|
*
|
|
* Datasheets for the 21143 are available at developer.intel.com.
|
|
* Datasheets for the clone parts can be found at their respective sites.
|
|
* (Except for the PNIC; see www.freebsd.org/~wpaul/PNIC/pnic.ps.gz.)
|
|
* The PNIC II is essentially a Macronix 98715A chip; the only difference
|
|
* worth noting is that its multicast hash table is only 128 bits wide
|
|
* instead of 512.
|
|
*
|
|
* Written by Bill Paul <wpaul@ee.columbia.edu>
|
|
* Electrical Engineering Department
|
|
* Columbia University, New York City
|
|
*/
|
|
/*
|
|
* The Intel 21143 is the successor to the DEC 21140. It is basically
|
|
* the same as the 21140 but with a few new features. The 21143 supports
|
|
* three kinds of media attachments:
|
|
*
|
|
* o MII port, for 10Mbps and 100Mbps support and NWAY
|
|
* autonegotiation provided by an external PHY.
|
|
* o SYM port, for symbol mode 100Mbps support.
|
|
* o 10baseT port.
|
|
* o AUI/BNC port.
|
|
*
|
|
* The 100Mbps SYM port and 10baseT port can be used together in
|
|
* combination with the internal NWAY support to create a 10/100
|
|
* autosensing configuration.
|
|
*
|
|
* Note that not all tulip workalikes are handled in this driver: we only
|
|
* deal with those which are relatively well behaved. The Winbond is
|
|
* handled separately due to its different register offsets and the
|
|
* special handling needed for its various bugs. The PNIC is handled
|
|
* here, but I'm not thrilled about it.
|
|
*
|
|
* All of the workalike chips use some form of MII transceiver support
|
|
* with the exception of the Macronix chips, which also have a SYM port.
|
|
* The ASIX AX88140A is also documented to have a SYM port, but all
|
|
* the cards I've seen use an MII transceiver, probably because the
|
|
* AX88140A doesn't support internal NWAY.
|
|
*/
|
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_device_polling.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#define DC_USEIOSPACE
|
|
|
|
#include <dev/dc/if_dcreg.h>
|
|
|
|
#ifdef __sparc64__
|
|
#include <dev/ofw/openfirm.h>
|
|
#include <machine/ofw_machdep.h>
|
|
#endif
|
|
|
|
MODULE_DEPEND(dc, pci, 1, 1, 1);
|
|
MODULE_DEPEND(dc, ether, 1, 1, 1);
|
|
MODULE_DEPEND(dc, miibus, 1, 1, 1);
|
|
|
|
/*
|
|
* "device miibus" is required in kernel config. See GENERIC if you get
|
|
* errors here.
|
|
*/
|
|
#include "miibus_if.h"
|
|
|
|
/*
|
|
* Various supported device vendors/types and their names.
|
|
*/
|
|
static const struct dc_type dc_devs[] = {
|
|
{ DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143), 0,
|
|
"Intel 21143 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009), 0,
|
|
"Davicom DM9009 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100), 0,
|
|
"Davicom DM9100 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), DC_REVISION_DM9102A,
|
|
"Davicom DM9102A 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102), 0,
|
|
"Davicom DM9102 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981), 0,
|
|
"ADMtek AL981 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983), 0,
|
|
"ADMtek AN983 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985), 0,
|
|
"ADMtek AN985 CardBus 10/100BaseTX or clone" },
|
|
{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511), 0,
|
|
"ADMtek ADM9511 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513), 0,
|
|
"ADMtek ADM9513 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), DC_REVISION_88141,
|
|
"ASIX AX88141 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A), 0,
|
|
"ASIX AX88140A 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), DC_REVISION_98713A,
|
|
"Macronix 98713A 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713), 0,
|
|
"Macronix 98713 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), DC_REVISION_98713A,
|
|
"Compex RL100-TX 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP), 0,
|
|
"Compex RL100-TX 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98725,
|
|
"Macronix 98725 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), DC_REVISION_98715AEC_C,
|
|
"Macronix 98715AEC-C 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5), 0,
|
|
"Macronix 98715/98715A 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727), 0,
|
|
"Macronix 98727/98732 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115), 0,
|
|
"LC82C115 PNIC II 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), DC_REVISION_82C169,
|
|
"82c169 PNIC 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168), 0,
|
|
"82c168 PNIC 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217), 0,
|
|
"Accton EN1217 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242), 0,
|
|
"Accton EN2242 MiniPCI 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201), 0,
|
|
"Xircom X3201 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD), 0,
|
|
"Neteasy DRP-32TXD Cardbus 10/100" },
|
|
{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500), 0,
|
|
"Abocom FE2500 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX), 0,
|
|
"Abocom FE2500MX 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112), 0,
|
|
"Conexant LANfinity MiniPCI 10/100BaseTX" },
|
|
{ DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX), 0,
|
|
"Hawking CB102 CardBus 10/100" },
|
|
{ DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T), 0,
|
|
"PlaneX FNW-3602-T CardBus 10/100" },
|
|
{ DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB), 0,
|
|
"3Com OfficeConnect 10/100B" },
|
|
{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120), 0,
|
|
"Microsoft MN-120 CardBus 10/100" },
|
|
{ DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130), 0,
|
|
"Microsoft MN-130 10/100" },
|
|
{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08), 0,
|
|
"Linksys PCMPC200 CardBus 10/100" },
|
|
{ DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09), 0,
|
|
"Linksys PCMPC200 CardBus 10/100" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static int dc_probe(device_t);
|
|
static int dc_attach(device_t);
|
|
static int dc_detach(device_t);
|
|
static int dc_suspend(device_t);
|
|
static int dc_resume(device_t);
|
|
static const struct dc_type *dc_devtype(device_t);
|
|
static void dc_discard_rxbuf(struct dc_softc *, int);
|
|
static int dc_newbuf(struct dc_softc *, int);
|
|
static int dc_encap(struct dc_softc *, struct mbuf **);
|
|
static void dc_pnic_rx_bug_war(struct dc_softc *, int);
|
|
static int dc_rx_resync(struct dc_softc *);
|
|
static int dc_rxeof(struct dc_softc *);
|
|
static void dc_txeof(struct dc_softc *);
|
|
static void dc_tick(void *);
|
|
static void dc_tx_underrun(struct dc_softc *);
|
|
static void dc_intr(void *);
|
|
static void dc_start(struct ifnet *);
|
|
static void dc_start_locked(struct ifnet *);
|
|
static int dc_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void dc_init(void *);
|
|
static void dc_init_locked(struct dc_softc *);
|
|
static void dc_stop(struct dc_softc *);
|
|
static void dc_watchdog(void *);
|
|
static int dc_shutdown(device_t);
|
|
static int dc_ifmedia_upd(struct ifnet *);
|
|
static void dc_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
|
|
static int dc_dma_alloc(struct dc_softc *);
|
|
static void dc_dma_free(struct dc_softc *);
|
|
static void dc_dma_map_addr(void *, bus_dma_segment_t *, int, int);
|
|
|
|
static void dc_delay(struct dc_softc *);
|
|
static void dc_eeprom_idle(struct dc_softc *);
|
|
static void dc_eeprom_putbyte(struct dc_softc *, int);
|
|
static void dc_eeprom_getword(struct dc_softc *, int, uint16_t *);
|
|
static void dc_eeprom_getword_pnic(struct dc_softc *, int, uint16_t *);
|
|
static void dc_eeprom_getword_xircom(struct dc_softc *, int, uint16_t *);
|
|
static void dc_eeprom_width(struct dc_softc *);
|
|
static void dc_read_eeprom(struct dc_softc *, caddr_t, int, int, int);
|
|
|
|
static void dc_mii_writebit(struct dc_softc *, int);
|
|
static int dc_mii_readbit(struct dc_softc *);
|
|
static void dc_mii_sync(struct dc_softc *);
|
|
static void dc_mii_send(struct dc_softc *, uint32_t, int);
|
|
static int dc_mii_readreg(struct dc_softc *, struct dc_mii_frame *);
|
|
static int dc_mii_writereg(struct dc_softc *, struct dc_mii_frame *);
|
|
static int dc_miibus_readreg(device_t, int, int);
|
|
static int dc_miibus_writereg(device_t, int, int, int);
|
|
static void dc_miibus_statchg(device_t);
|
|
static void dc_miibus_mediainit(device_t);
|
|
|
|
static void dc_setcfg(struct dc_softc *, int);
|
|
static void dc_netcfg_wait(struct dc_softc *);
|
|
static uint32_t dc_mchash_le(struct dc_softc *, const uint8_t *);
|
|
static uint32_t dc_mchash_be(const uint8_t *);
|
|
static void dc_setfilt_21143(struct dc_softc *);
|
|
static void dc_setfilt_asix(struct dc_softc *);
|
|
static void dc_setfilt_admtek(struct dc_softc *);
|
|
static void dc_setfilt_xircom(struct dc_softc *);
|
|
|
|
static void dc_setfilt(struct dc_softc *);
|
|
|
|
static void dc_reset(struct dc_softc *);
|
|
static int dc_list_rx_init(struct dc_softc *);
|
|
static int dc_list_tx_init(struct dc_softc *);
|
|
|
|
static int dc_read_srom(struct dc_softc *, int);
|
|
static int dc_parse_21143_srom(struct dc_softc *);
|
|
static int dc_decode_leaf_sia(struct dc_softc *, struct dc_eblock_sia *);
|
|
static int dc_decode_leaf_mii(struct dc_softc *, struct dc_eblock_mii *);
|
|
static int dc_decode_leaf_sym(struct dc_softc *, struct dc_eblock_sym *);
|
|
static void dc_apply_fixup(struct dc_softc *, int);
|
|
static int dc_check_multiport(struct dc_softc *);
|
|
|
|
#ifdef DC_USEIOSPACE
|
|
#define DC_RES SYS_RES_IOPORT
|
|
#define DC_RID DC_PCI_CFBIO
|
|
#else
|
|
#define DC_RES SYS_RES_MEMORY
|
|
#define DC_RID DC_PCI_CFBMA
|
|
#endif
|
|
|
|
static device_method_t dc_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, dc_probe),
|
|
DEVMETHOD(device_attach, dc_attach),
|
|
DEVMETHOD(device_detach, dc_detach),
|
|
DEVMETHOD(device_suspend, dc_suspend),
|
|
DEVMETHOD(device_resume, dc_resume),
|
|
DEVMETHOD(device_shutdown, dc_shutdown),
|
|
|
|
/* bus interface */
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, dc_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, dc_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, dc_miibus_statchg),
|
|
DEVMETHOD(miibus_mediainit, dc_miibus_mediainit),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t dc_driver = {
|
|
"dc",
|
|
dc_methods,
|
|
sizeof(struct dc_softc)
|
|
};
|
|
|
|
static devclass_t dc_devclass;
|
|
|
|
DRIVER_MODULE(dc, pci, dc_driver, dc_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, dc, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
#define DC_SETBIT(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
|
|
|
|
#define DC_CLRBIT(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
|
|
|
|
#define SIO_SET(x) DC_SETBIT(sc, DC_SIO, (x))
|
|
#define SIO_CLR(x) DC_CLRBIT(sc, DC_SIO, (x))
|
|
|
|
static void
|
|
dc_delay(struct dc_softc *sc)
|
|
{
|
|
int idx;
|
|
|
|
for (idx = (300 / 33) + 1; idx > 0; idx--)
|
|
CSR_READ_4(sc, DC_BUSCTL);
|
|
}
|
|
|
|
static void
|
|
dc_eeprom_width(struct dc_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
/* Force EEPROM to idle state. */
|
|
dc_eeprom_idle(sc);
|
|
|
|
/* Enter EEPROM access mode. */
|
|
CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
|
|
dc_delay(sc);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
|
|
dc_delay(sc);
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
|
|
dc_delay(sc);
|
|
|
|
for (i = 3; i--;) {
|
|
if (6 & (1 << i))
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
|
|
else
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
|
|
dc_delay(sc);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
}
|
|
|
|
for (i = 1; i <= 12; i++) {
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
if (!(CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)) {
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
break;
|
|
}
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
}
|
|
|
|
/* Turn off EEPROM access mode. */
|
|
dc_eeprom_idle(sc);
|
|
|
|
if (i < 4 || i > 12)
|
|
sc->dc_romwidth = 6;
|
|
else
|
|
sc->dc_romwidth = i;
|
|
|
|
/* Enter EEPROM access mode. */
|
|
CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
|
|
dc_delay(sc);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
|
|
dc_delay(sc);
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
|
|
dc_delay(sc);
|
|
|
|
/* Turn off EEPROM access mode. */
|
|
dc_eeprom_idle(sc);
|
|
}
|
|
|
|
static void
|
|
dc_eeprom_idle(struct dc_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
|
|
dc_delay(sc);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
|
|
dc_delay(sc);
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
|
|
dc_delay(sc);
|
|
|
|
for (i = 0; i < 25; i++) {
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
}
|
|
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CS);
|
|
dc_delay(sc);
|
|
CSR_WRITE_4(sc, DC_SIO, 0x00000000);
|
|
}
|
|
|
|
/*
|
|
* Send a read command and address to the EEPROM, check for ACK.
|
|
*/
|
|
static void
|
|
dc_eeprom_putbyte(struct dc_softc *sc, int addr)
|
|
{
|
|
int d, i;
|
|
|
|
d = DC_EECMD_READ >> 6;
|
|
for (i = 3; i--; ) {
|
|
if (d & (1 << i))
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
|
|
else
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_DATAIN);
|
|
dc_delay(sc);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
}
|
|
|
|
/*
|
|
* Feed in each bit and strobe the clock.
|
|
*/
|
|
for (i = sc->dc_romwidth; i--;) {
|
|
if (addr & (1 << i)) {
|
|
SIO_SET(DC_SIO_EE_DATAIN);
|
|
} else {
|
|
SIO_CLR(DC_SIO_EE_DATAIN);
|
|
}
|
|
dc_delay(sc);
|
|
SIO_SET(DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
SIO_CLR(DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read a word of data stored in the EEPROM at address 'addr.'
|
|
* The PNIC 82c168/82c169 has its own non-standard way to read
|
|
* the EEPROM.
|
|
*/
|
|
static void
|
|
dc_eeprom_getword_pnic(struct dc_softc *sc, int addr, uint16_t *dest)
|
|
{
|
|
int i;
|
|
uint32_t r;
|
|
|
|
CSR_WRITE_4(sc, DC_PN_SIOCTL, DC_PN_EEOPCODE_READ | addr);
|
|
|
|
for (i = 0; i < DC_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
r = CSR_READ_4(sc, DC_SIO);
|
|
if (!(r & DC_PN_SIOCTL_BUSY)) {
|
|
*dest = (uint16_t)(r & 0xFFFF);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read a word of data stored in the EEPROM at address 'addr.'
|
|
* The Xircom X3201 has its own non-standard way to read
|
|
* the EEPROM, too.
|
|
*/
|
|
static void
|
|
dc_eeprom_getword_xircom(struct dc_softc *sc, int addr, uint16_t *dest)
|
|
{
|
|
|
|
SIO_SET(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
|
|
|
|
addr *= 2;
|
|
CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
|
|
*dest = (uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff;
|
|
addr += 1;
|
|
CSR_WRITE_4(sc, DC_ROM, addr | 0x160);
|
|
*dest |= ((uint16_t)CSR_READ_4(sc, DC_SIO) & 0xff) << 8;
|
|
|
|
SIO_CLR(DC_SIO_ROMSEL | DC_SIO_ROMCTL_READ);
|
|
}
|
|
|
|
/*
|
|
* Read a word of data stored in the EEPROM at address 'addr.'
|
|
*/
|
|
static void
|
|
dc_eeprom_getword(struct dc_softc *sc, int addr, uint16_t *dest)
|
|
{
|
|
int i;
|
|
uint16_t word = 0;
|
|
|
|
/* Force EEPROM to idle state. */
|
|
dc_eeprom_idle(sc);
|
|
|
|
/* Enter EEPROM access mode. */
|
|
CSR_WRITE_4(sc, DC_SIO, DC_SIO_EESEL);
|
|
dc_delay(sc);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_ROMCTL_READ);
|
|
dc_delay(sc);
|
|
DC_CLRBIT(sc, DC_SIO, DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
DC_SETBIT(sc, DC_SIO, DC_SIO_EE_CS);
|
|
dc_delay(sc);
|
|
|
|
/*
|
|
* Send address of word we want to read.
|
|
*/
|
|
dc_eeprom_putbyte(sc, addr);
|
|
|
|
/*
|
|
* Start reading bits from EEPROM.
|
|
*/
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
SIO_SET(DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
if (CSR_READ_4(sc, DC_SIO) & DC_SIO_EE_DATAOUT)
|
|
word |= i;
|
|
dc_delay(sc);
|
|
SIO_CLR(DC_SIO_EE_CLK);
|
|
dc_delay(sc);
|
|
}
|
|
|
|
/* Turn off EEPROM access mode. */
|
|
dc_eeprom_idle(sc);
|
|
|
|
*dest = word;
|
|
}
|
|
|
|
/*
|
|
* Read a sequence of words from the EEPROM.
|
|
*/
|
|
static void
|
|
dc_read_eeprom(struct dc_softc *sc, caddr_t dest, int off, int cnt, int be)
|
|
{
|
|
int i;
|
|
uint16_t word = 0, *ptr;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
if (DC_IS_PNIC(sc))
|
|
dc_eeprom_getword_pnic(sc, off + i, &word);
|
|
else if (DC_IS_XIRCOM(sc))
|
|
dc_eeprom_getword_xircom(sc, off + i, &word);
|
|
else
|
|
dc_eeprom_getword(sc, off + i, &word);
|
|
ptr = (uint16_t *)(dest + (i * 2));
|
|
if (be)
|
|
*ptr = be16toh(word);
|
|
else
|
|
*ptr = le16toh(word);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The following two routines are taken from the Macronix 98713
|
|
* Application Notes pp.19-21.
|
|
*/
|
|
/*
|
|
* Write a bit to the MII bus.
|
|
*/
|
|
static void
|
|
dc_mii_writebit(struct dc_softc *sc, int bit)
|
|
{
|
|
uint32_t reg;
|
|
|
|
reg = DC_SIO_ROMCTL_WRITE | (bit != 0 ? DC_SIO_MII_DATAOUT : 0);
|
|
CSR_WRITE_4(sc, DC_SIO, reg);
|
|
CSR_BARRIER_4(sc, DC_SIO,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
DELAY(1);
|
|
|
|
CSR_WRITE_4(sc, DC_SIO, reg | DC_SIO_MII_CLK);
|
|
CSR_BARRIER_4(sc, DC_SIO,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
DELAY(1);
|
|
CSR_WRITE_4(sc, DC_SIO, reg);
|
|
CSR_BARRIER_4(sc, DC_SIO,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
DELAY(1);
|
|
}
|
|
|
|
/*
|
|
* Read a bit from the MII bus.
|
|
*/
|
|
static int
|
|
dc_mii_readbit(struct dc_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
reg = DC_SIO_ROMCTL_READ | DC_SIO_MII_DIR;
|
|
CSR_WRITE_4(sc, DC_SIO, reg);
|
|
CSR_BARRIER_4(sc, DC_SIO,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
DELAY(1);
|
|
(void)CSR_READ_4(sc, DC_SIO);
|
|
CSR_WRITE_4(sc, DC_SIO, reg | DC_SIO_MII_CLK);
|
|
CSR_BARRIER_4(sc, DC_SIO,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
DELAY(1);
|
|
CSR_WRITE_4(sc, DC_SIO, reg);
|
|
CSR_BARRIER_4(sc, DC_SIO,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
DELAY(1);
|
|
if (CSR_READ_4(sc, DC_SIO) & DC_SIO_MII_DATAIN)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Sync the PHYs by setting data bit and strobing the clock 32 times.
|
|
*/
|
|
static void
|
|
dc_mii_sync(struct dc_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
CSR_WRITE_4(sc, DC_SIO, DC_SIO_ROMCTL_WRITE);
|
|
CSR_BARRIER_4(sc, DC_SIO,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
DELAY(1);
|
|
|
|
for (i = 0; i < 32; i++)
|
|
dc_mii_writebit(sc, 1);
|
|
}
|
|
|
|
/*
|
|
* Clock a series of bits through the MII.
|
|
*/
|
|
static void
|
|
dc_mii_send(struct dc_softc *sc, uint32_t bits, int cnt)
|
|
{
|
|
int i;
|
|
|
|
for (i = (0x1 << (cnt - 1)); i; i >>= 1)
|
|
dc_mii_writebit(sc, bits & i);
|
|
}
|
|
|
|
/*
|
|
* Read an PHY register through the MII.
|
|
*/
|
|
static int
|
|
dc_mii_readreg(struct dc_softc *sc, struct dc_mii_frame *frame)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Set up frame for RX.
|
|
*/
|
|
frame->mii_stdelim = DC_MII_STARTDELIM;
|
|
frame->mii_opcode = DC_MII_READOP;
|
|
|
|
/*
|
|
* Sync the PHYs.
|
|
*/
|
|
dc_mii_sync(sc);
|
|
|
|
/*
|
|
* Send command/address info.
|
|
*/
|
|
dc_mii_send(sc, frame->mii_stdelim, 2);
|
|
dc_mii_send(sc, frame->mii_opcode, 2);
|
|
dc_mii_send(sc, frame->mii_phyaddr, 5);
|
|
dc_mii_send(sc, frame->mii_regaddr, 5);
|
|
|
|
/*
|
|
* Now try reading data bits. If the turnaround failed, we still
|
|
* need to clock through 16 cycles to keep the PHY(s) in sync.
|
|
*/
|
|
frame->mii_turnaround = dc_mii_readbit(sc);
|
|
if (frame->mii_turnaround != 0) {
|
|
for (i = 0; i < 16; i++)
|
|
dc_mii_readbit(sc);
|
|
goto fail;
|
|
}
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
if (dc_mii_readbit(sc))
|
|
frame->mii_data |= i;
|
|
}
|
|
|
|
fail:
|
|
|
|
/* Clock the idle bits. */
|
|
dc_mii_writebit(sc, 0);
|
|
dc_mii_writebit(sc, 0);
|
|
|
|
if (frame->mii_turnaround != 0)
|
|
return (1);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Write to a PHY register through the MII.
|
|
*/
|
|
static int
|
|
dc_mii_writereg(struct dc_softc *sc, struct dc_mii_frame *frame)
|
|
{
|
|
|
|
/*
|
|
* Set up frame for TX.
|
|
*/
|
|
frame->mii_stdelim = DC_MII_STARTDELIM;
|
|
frame->mii_opcode = DC_MII_WRITEOP;
|
|
frame->mii_turnaround = DC_MII_TURNAROUND;
|
|
|
|
/*
|
|
* Sync the PHYs.
|
|
*/
|
|
dc_mii_sync(sc);
|
|
|
|
dc_mii_send(sc, frame->mii_stdelim, 2);
|
|
dc_mii_send(sc, frame->mii_opcode, 2);
|
|
dc_mii_send(sc, frame->mii_phyaddr, 5);
|
|
dc_mii_send(sc, frame->mii_regaddr, 5);
|
|
dc_mii_send(sc, frame->mii_turnaround, 2);
|
|
dc_mii_send(sc, frame->mii_data, 16);
|
|
|
|
/* Clock the idle bits. */
|
|
dc_mii_writebit(sc, 0);
|
|
dc_mii_writebit(sc, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dc_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct dc_mii_frame frame;
|
|
struct dc_softc *sc;
|
|
int i, rval, phy_reg = 0;
|
|
|
|
sc = device_get_softc(dev);
|
|
bzero(&frame, sizeof(frame));
|
|
|
|
if (sc->dc_pmode != DC_PMODE_MII) {
|
|
if (phy == (MII_NPHY - 1)) {
|
|
switch (reg) {
|
|
case MII_BMSR:
|
|
/*
|
|
* Fake something to make the probe
|
|
* code think there's a PHY here.
|
|
*/
|
|
return (BMSR_MEDIAMASK);
|
|
break;
|
|
case MII_PHYIDR1:
|
|
if (DC_IS_PNIC(sc))
|
|
return (DC_VENDORID_LO);
|
|
return (DC_VENDORID_DEC);
|
|
break;
|
|
case MII_PHYIDR2:
|
|
if (DC_IS_PNIC(sc))
|
|
return (DC_DEVICEID_82C168);
|
|
return (DC_DEVICEID_21143);
|
|
break;
|
|
default:
|
|
return (0);
|
|
break;
|
|
}
|
|
} else
|
|
return (0);
|
|
}
|
|
|
|
if (DC_IS_PNIC(sc)) {
|
|
CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_READ |
|
|
(phy << 23) | (reg << 18));
|
|
for (i = 0; i < DC_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
rval = CSR_READ_4(sc, DC_PN_MII);
|
|
if (!(rval & DC_PN_MII_BUSY)) {
|
|
rval &= 0xFFFF;
|
|
return (rval == 0xFFFF ? 0 : rval);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
if (DC_IS_COMET(sc)) {
|
|
switch (reg) {
|
|
case MII_BMCR:
|
|
phy_reg = DC_AL_BMCR;
|
|
break;
|
|
case MII_BMSR:
|
|
phy_reg = DC_AL_BMSR;
|
|
break;
|
|
case MII_PHYIDR1:
|
|
phy_reg = DC_AL_VENID;
|
|
break;
|
|
case MII_PHYIDR2:
|
|
phy_reg = DC_AL_DEVID;
|
|
break;
|
|
case MII_ANAR:
|
|
phy_reg = DC_AL_ANAR;
|
|
break;
|
|
case MII_ANLPAR:
|
|
phy_reg = DC_AL_LPAR;
|
|
break;
|
|
case MII_ANER:
|
|
phy_reg = DC_AL_ANER;
|
|
break;
|
|
default:
|
|
device_printf(dev, "phy_read: bad phy register %x\n",
|
|
reg);
|
|
return (0);
|
|
break;
|
|
}
|
|
|
|
rval = CSR_READ_4(sc, phy_reg) & 0x0000FFFF;
|
|
|
|
if (rval == 0xFFFF)
|
|
return (0);
|
|
return (rval);
|
|
}
|
|
|
|
frame.mii_phyaddr = phy;
|
|
frame.mii_regaddr = reg;
|
|
if (sc->dc_type == DC_TYPE_98713) {
|
|
phy_reg = CSR_READ_4(sc, DC_NETCFG);
|
|
CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
|
|
}
|
|
dc_mii_readreg(sc, &frame);
|
|
if (sc->dc_type == DC_TYPE_98713)
|
|
CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
|
|
|
|
return (frame.mii_data);
|
|
}
|
|
|
|
static int
|
|
dc_miibus_writereg(device_t dev, int phy, int reg, int data)
|
|
{
|
|
struct dc_softc *sc;
|
|
struct dc_mii_frame frame;
|
|
int i, phy_reg = 0;
|
|
|
|
sc = device_get_softc(dev);
|
|
bzero(&frame, sizeof(frame));
|
|
|
|
if (DC_IS_PNIC(sc)) {
|
|
CSR_WRITE_4(sc, DC_PN_MII, DC_PN_MIIOPCODE_WRITE |
|
|
(phy << 23) | (reg << 10) | data);
|
|
for (i = 0; i < DC_TIMEOUT; i++) {
|
|
if (!(CSR_READ_4(sc, DC_PN_MII) & DC_PN_MII_BUSY))
|
|
break;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
if (DC_IS_COMET(sc)) {
|
|
switch (reg) {
|
|
case MII_BMCR:
|
|
phy_reg = DC_AL_BMCR;
|
|
break;
|
|
case MII_BMSR:
|
|
phy_reg = DC_AL_BMSR;
|
|
break;
|
|
case MII_PHYIDR1:
|
|
phy_reg = DC_AL_VENID;
|
|
break;
|
|
case MII_PHYIDR2:
|
|
phy_reg = DC_AL_DEVID;
|
|
break;
|
|
case MII_ANAR:
|
|
phy_reg = DC_AL_ANAR;
|
|
break;
|
|
case MII_ANLPAR:
|
|
phy_reg = DC_AL_LPAR;
|
|
break;
|
|
case MII_ANER:
|
|
phy_reg = DC_AL_ANER;
|
|
break;
|
|
default:
|
|
device_printf(dev, "phy_write: bad phy register %x\n",
|
|
reg);
|
|
return (0);
|
|
break;
|
|
}
|
|
|
|
CSR_WRITE_4(sc, phy_reg, data);
|
|
return (0);
|
|
}
|
|
|
|
frame.mii_phyaddr = phy;
|
|
frame.mii_regaddr = reg;
|
|
frame.mii_data = data;
|
|
|
|
if (sc->dc_type == DC_TYPE_98713) {
|
|
phy_reg = CSR_READ_4(sc, DC_NETCFG);
|
|
CSR_WRITE_4(sc, DC_NETCFG, phy_reg & ~DC_NETCFG_PORTSEL);
|
|
}
|
|
dc_mii_writereg(sc, &frame);
|
|
if (sc->dc_type == DC_TYPE_98713)
|
|
CSR_WRITE_4(sc, DC_NETCFG, phy_reg);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dc_miibus_statchg(device_t dev)
|
|
{
|
|
struct dc_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct mii_data *mii;
|
|
struct ifmedia *ifm;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
mii = device_get_softc(sc->dc_miibus);
|
|
ifp = sc->dc_ifp;
|
|
if (mii == NULL || ifp == NULL ||
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
return;
|
|
|
|
ifm = &mii->mii_media;
|
|
if (DC_IS_DAVICOM(sc) &&
|
|
IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
|
|
dc_setcfg(sc, ifm->ifm_media);
|
|
sc->dc_if_media = ifm->ifm_media;
|
|
return;
|
|
}
|
|
|
|
sc->dc_link = 0;
|
|
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
|
|
(IFM_ACTIVE | IFM_AVALID)) {
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_10_T:
|
|
case IFM_100_TX:
|
|
sc->dc_link = 1;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
if (sc->dc_link == 0)
|
|
return;
|
|
|
|
sc->dc_if_media = mii->mii_media_active;
|
|
if (DC_IS_ADMTEK(sc))
|
|
return;
|
|
dc_setcfg(sc, mii->mii_media_active);
|
|
}
|
|
|
|
/*
|
|
* Special support for DM9102A cards with HomePNA PHYs. Note:
|
|
* with the Davicom DM9102A/DM9801 eval board that I have, it seems
|
|
* to be impossible to talk to the management interface of the DM9801
|
|
* PHY (its MDIO pin is not connected to anything). Consequently,
|
|
* the driver has to just 'know' about the additional mode and deal
|
|
* with it itself. *sigh*
|
|
*/
|
|
static void
|
|
dc_miibus_mediainit(device_t dev)
|
|
{
|
|
struct dc_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifmedia *ifm;
|
|
int rev;
|
|
|
|
rev = pci_get_revid(dev);
|
|
|
|
sc = device_get_softc(dev);
|
|
mii = device_get_softc(sc->dc_miibus);
|
|
ifm = &mii->mii_media;
|
|
|
|
if (DC_IS_DAVICOM(sc) && rev >= DC_REVISION_DM9102A)
|
|
ifmedia_add(ifm, IFM_ETHER | IFM_HPNA_1, 0, NULL);
|
|
}
|
|
|
|
#define DC_BITS_512 9
|
|
#define DC_BITS_128 7
|
|
#define DC_BITS_64 6
|
|
|
|
static uint32_t
|
|
dc_mchash_le(struct dc_softc *sc, const uint8_t *addr)
|
|
{
|
|
uint32_t crc;
|
|
|
|
/* Compute CRC for the address value. */
|
|
crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
|
|
|
|
/*
|
|
* The hash table on the PNIC II and the MX98715AEC-C/D/E
|
|
* chips is only 128 bits wide.
|
|
*/
|
|
if (sc->dc_flags & DC_128BIT_HASH)
|
|
return (crc & ((1 << DC_BITS_128) - 1));
|
|
|
|
/* The hash table on the MX98715BEC is only 64 bits wide. */
|
|
if (sc->dc_flags & DC_64BIT_HASH)
|
|
return (crc & ((1 << DC_BITS_64) - 1));
|
|
|
|
/* Xircom's hash filtering table is different (read: weird) */
|
|
/* Xircom uses the LEAST significant bits */
|
|
if (DC_IS_XIRCOM(sc)) {
|
|
if ((crc & 0x180) == 0x180)
|
|
return ((crc & 0x0F) + (crc & 0x70) * 3 + (14 << 4));
|
|
else
|
|
return ((crc & 0x1F) + ((crc >> 1) & 0xF0) * 3 +
|
|
(12 << 4));
|
|
}
|
|
|
|
return (crc & ((1 << DC_BITS_512) - 1));
|
|
}
|
|
|
|
/*
|
|
* Calculate CRC of a multicast group address, return the lower 6 bits.
|
|
*/
|
|
static uint32_t
|
|
dc_mchash_be(const uint8_t *addr)
|
|
{
|
|
uint32_t crc;
|
|
|
|
/* Compute CRC for the address value. */
|
|
crc = ether_crc32_be(addr, ETHER_ADDR_LEN);
|
|
|
|
/* Return the filter bit position. */
|
|
return ((crc >> 26) & 0x0000003F);
|
|
}
|
|
|
|
/*
|
|
* 21143-style RX filter setup routine. Filter programming is done by
|
|
* downloading a special setup frame into the TX engine. 21143, Macronix,
|
|
* PNIC, PNIC II and Davicom chips are programmed this way.
|
|
*
|
|
* We always program the chip using 'hash perfect' mode, i.e. one perfect
|
|
* address (our node address) and a 512-bit hash filter for multicast
|
|
* frames. We also sneak the broadcast address into the hash filter since
|
|
* we need that too.
|
|
*/
|
|
static void
|
|
dc_setfilt_21143(struct dc_softc *sc)
|
|
{
|
|
uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
|
|
struct dc_desc *sframe;
|
|
uint32_t h, *sp;
|
|
struct ifmultiaddr *ifma;
|
|
struct ifnet *ifp;
|
|
int i;
|
|
|
|
ifp = sc->dc_ifp;
|
|
|
|
i = sc->dc_cdata.dc_tx_prod;
|
|
DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
|
|
sc->dc_cdata.dc_tx_cnt++;
|
|
sframe = &sc->dc_ldata.dc_tx_list[i];
|
|
sp = sc->dc_cdata.dc_sbuf;
|
|
bzero(sp, DC_SFRAME_LEN);
|
|
|
|
sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
|
|
sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
|
|
DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
|
|
|
|
sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
|
|
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = dc_mchash_le(sc,
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
sp[h >> 4] |= htole32(1 << (h & 0xF));
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
h = dc_mchash_le(sc, ifp->if_broadcastaddr);
|
|
sp[h >> 4] |= htole32(1 << (h & 0xF));
|
|
}
|
|
|
|
/* Set our MAC address. */
|
|
bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
|
|
sp[39] = DC_SP_MAC(eaddr[0]);
|
|
sp[40] = DC_SP_MAC(eaddr[1]);
|
|
sp[41] = DC_SP_MAC(eaddr[2]);
|
|
|
|
sframe->dc_status = htole32(DC_TXSTAT_OWN);
|
|
bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
|
|
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
|
|
|
|
/*
|
|
* The PNIC takes an exceedingly long time to process its
|
|
* setup frame; wait 10ms after posting the setup frame
|
|
* before proceeding, just so it has time to swallow its
|
|
* medicine.
|
|
*/
|
|
DELAY(10000);
|
|
|
|
sc->dc_wdog_timer = 5;
|
|
}
|
|
|
|
static void
|
|
dc_setfilt_admtek(struct dc_softc *sc)
|
|
{
|
|
uint8_t eaddr[ETHER_ADDR_LEN];
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma;
|
|
int h = 0;
|
|
uint32_t hashes[2] = { 0, 0 };
|
|
|
|
ifp = sc->dc_ifp;
|
|
|
|
/* Init our MAC address. */
|
|
bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
|
|
CSR_WRITE_4(sc, DC_AL_PAR0, eaddr[3] << 24 | eaddr[2] << 16 |
|
|
eaddr[1] << 8 | eaddr[0]);
|
|
CSR_WRITE_4(sc, DC_AL_PAR1, eaddr[5] << 8 | eaddr[4]);
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
|
|
|
|
/* First, zot all the existing hash bits. */
|
|
CSR_WRITE_4(sc, DC_AL_MAR0, 0);
|
|
CSR_WRITE_4(sc, DC_AL_MAR1, 0);
|
|
|
|
/*
|
|
* If we're already in promisc or allmulti mode, we
|
|
* don't have to bother programming the multicast filter.
|
|
*/
|
|
if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
|
|
return;
|
|
|
|
/* Now program new ones. */
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
if (DC_IS_CENTAUR(sc))
|
|
h = dc_mchash_le(sc,
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
else
|
|
h = dc_mchash_be(
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
|
|
CSR_WRITE_4(sc, DC_AL_MAR0, hashes[0]);
|
|
CSR_WRITE_4(sc, DC_AL_MAR1, hashes[1]);
|
|
}
|
|
|
|
static void
|
|
dc_setfilt_asix(struct dc_softc *sc)
|
|
{
|
|
uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma;
|
|
int h = 0;
|
|
uint32_t hashes[2] = { 0, 0 };
|
|
|
|
ifp = sc->dc_ifp;
|
|
|
|
/* Init our MAC address. */
|
|
bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
|
|
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR0);
|
|
CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[0]);
|
|
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_PAR1);
|
|
CSR_WRITE_4(sc, DC_AX_FILTDATA, eaddr[1]);
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
|
|
|
|
/*
|
|
* The ASIX chip has a special bit to enable reception
|
|
* of broadcast frames.
|
|
*/
|
|
if (ifp->if_flags & IFF_BROADCAST)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_AX_NETCFG_RX_BROAD);
|
|
|
|
/* first, zot all the existing hash bits */
|
|
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
|
|
CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
|
|
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
|
|
CSR_WRITE_4(sc, DC_AX_FILTDATA, 0);
|
|
|
|
/*
|
|
* If we're already in promisc or allmulti mode, we
|
|
* don't have to bother programming the multicast filter.
|
|
*/
|
|
if (ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI))
|
|
return;
|
|
|
|
/* now program new ones */
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = dc_mchash_be(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
|
|
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR0);
|
|
CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[0]);
|
|
CSR_WRITE_4(sc, DC_AX_FILTIDX, DC_AX_FILTIDX_MAR1);
|
|
CSR_WRITE_4(sc, DC_AX_FILTDATA, hashes[1]);
|
|
}
|
|
|
|
static void
|
|
dc_setfilt_xircom(struct dc_softc *sc)
|
|
{
|
|
uint16_t eaddr[(ETHER_ADDR_LEN+1)/2];
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma;
|
|
struct dc_desc *sframe;
|
|
uint32_t h, *sp;
|
|
int i;
|
|
|
|
ifp = sc->dc_ifp;
|
|
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
|
|
|
|
i = sc->dc_cdata.dc_tx_prod;
|
|
DC_INC(sc->dc_cdata.dc_tx_prod, DC_TX_LIST_CNT);
|
|
sc->dc_cdata.dc_tx_cnt++;
|
|
sframe = &sc->dc_ldata.dc_tx_list[i];
|
|
sp = sc->dc_cdata.dc_sbuf;
|
|
bzero(sp, DC_SFRAME_LEN);
|
|
|
|
sframe->dc_data = htole32(DC_ADDR_LO(sc->dc_saddr));
|
|
sframe->dc_ctl = htole32(DC_SFRAME_LEN | DC_TXCTL_SETUP |
|
|
DC_TXCTL_TLINK | DC_FILTER_HASHPERF | DC_TXCTL_FINT);
|
|
|
|
sc->dc_cdata.dc_tx_chain[i] = (struct mbuf *)sc->dc_cdata.dc_sbuf;
|
|
|
|
/* If we want promiscuous mode, set the allframes bit. */
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_PROMISC);
|
|
|
|
if (ifp->if_flags & IFF_ALLMULTI)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
|
|
else
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_RX_ALLMULTI);
|
|
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = dc_mchash_le(sc,
|
|
LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
|
|
sp[h >> 4] |= htole32(1 << (h & 0xF));
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
h = dc_mchash_le(sc, ifp->if_broadcastaddr);
|
|
sp[h >> 4] |= htole32(1 << (h & 0xF));
|
|
}
|
|
|
|
/* Set our MAC address. */
|
|
bcopy(IF_LLADDR(sc->dc_ifp), eaddr, ETHER_ADDR_LEN);
|
|
sp[0] = DC_SP_MAC(eaddr[0]);
|
|
sp[1] = DC_SP_MAC(eaddr[1]);
|
|
sp[2] = DC_SP_MAC(eaddr[2]);
|
|
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
|
|
sframe->dc_status = htole32(DC_TXSTAT_OWN);
|
|
bus_dmamap_sync(sc->dc_stag, sc->dc_smap, BUS_DMASYNC_PREWRITE);
|
|
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
|
|
|
|
/*
|
|
* Wait some time...
|
|
*/
|
|
DELAY(1000);
|
|
|
|
sc->dc_wdog_timer = 5;
|
|
}
|
|
|
|
static void
|
|
dc_setfilt(struct dc_softc *sc)
|
|
{
|
|
|
|
if (DC_IS_INTEL(sc) || DC_IS_MACRONIX(sc) || DC_IS_PNIC(sc) ||
|
|
DC_IS_PNICII(sc) || DC_IS_DAVICOM(sc) || DC_IS_CONEXANT(sc))
|
|
dc_setfilt_21143(sc);
|
|
|
|
if (DC_IS_ASIX(sc))
|
|
dc_setfilt_asix(sc);
|
|
|
|
if (DC_IS_ADMTEK(sc))
|
|
dc_setfilt_admtek(sc);
|
|
|
|
if (DC_IS_XIRCOM(sc))
|
|
dc_setfilt_xircom(sc);
|
|
}
|
|
|
|
static void
|
|
dc_netcfg_wait(struct dc_softc *sc)
|
|
{
|
|
uint32_t isr;
|
|
int i;
|
|
|
|
for (i = 0; i < DC_TIMEOUT; i++) {
|
|
isr = CSR_READ_4(sc, DC_ISR);
|
|
if (isr & DC_ISR_TX_IDLE &&
|
|
((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
|
|
(isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (i == DC_TIMEOUT && bus_child_present(sc->dc_dev)) {
|
|
if (!(isr & DC_ISR_TX_IDLE) && !DC_IS_ASIX(sc))
|
|
device_printf(sc->dc_dev,
|
|
"%s: failed to force tx to idle state\n", __func__);
|
|
if (!((isr & DC_ISR_RX_STATE) == DC_RXSTATE_STOPPED ||
|
|
(isr & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
|
|
!DC_HAS_BROKEN_RXSTATE(sc))
|
|
device_printf(sc->dc_dev,
|
|
"%s: failed to force rx to idle state\n", __func__);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In order to fiddle with the 'full-duplex' and '100Mbps' bits in
|
|
* the netconfig register, we first have to put the transmit and/or
|
|
* receive logic in the idle state.
|
|
*/
|
|
static void
|
|
dc_setcfg(struct dc_softc *sc, int media)
|
|
{
|
|
int restart = 0, watchdogreg;
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_NONE)
|
|
return;
|
|
|
|
if (CSR_READ_4(sc, DC_NETCFG) & (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON)) {
|
|
restart = 1;
|
|
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_TX_ON | DC_NETCFG_RX_ON));
|
|
dc_netcfg_wait(sc);
|
|
}
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_100_TX) {
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
|
|
if (sc->dc_pmode == DC_PMODE_MII) {
|
|
if (DC_IS_INTEL(sc)) {
|
|
/* There's a write enable bit here that reads as 1. */
|
|
watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
|
|
watchdogreg &= ~DC_WDOG_CTLWREN;
|
|
watchdogreg |= DC_WDOG_JABBERDIS;
|
|
CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
|
|
} else {
|
|
DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
|
|
}
|
|
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
|
|
DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
|
|
if (sc->dc_type == DC_TYPE_98713)
|
|
DC_SETBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
|
|
DC_NETCFG_SCRAMBLER));
|
|
if (!DC_IS_DAVICOM(sc))
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
|
|
DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
|
|
} else {
|
|
if (DC_IS_PNIC(sc)) {
|
|
DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_SPEEDSEL);
|
|
DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
|
|
DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
|
|
}
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
|
|
}
|
|
}
|
|
|
|
if (IFM_SUBTYPE(media) == IFM_10_T) {
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_SPEEDSEL);
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_HEARTBEAT);
|
|
if (sc->dc_pmode == DC_PMODE_MII) {
|
|
/* There's a write enable bit here that reads as 1. */
|
|
if (DC_IS_INTEL(sc)) {
|
|
watchdogreg = CSR_READ_4(sc, DC_WATCHDOG);
|
|
watchdogreg &= ~DC_WDOG_CTLWREN;
|
|
watchdogreg |= DC_WDOG_JABBERDIS;
|
|
CSR_WRITE_4(sc, DC_WATCHDOG, watchdogreg);
|
|
} else {
|
|
DC_SETBIT(sc, DC_WATCHDOG, DC_WDOG_JABBERDIS);
|
|
}
|
|
DC_CLRBIT(sc, DC_NETCFG, (DC_NETCFG_PCS |
|
|
DC_NETCFG_PORTSEL | DC_NETCFG_SCRAMBLER));
|
|
if (sc->dc_type == DC_TYPE_98713)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
|
|
if (!DC_IS_DAVICOM(sc))
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
|
|
DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
|
|
} else {
|
|
if (DC_IS_PNIC(sc)) {
|
|
DC_PN_GPIO_CLRBIT(sc, DC_PN_GPIO_SPEEDSEL);
|
|
DC_PN_GPIO_SETBIT(sc, DC_PN_GPIO_100TX_LOOP);
|
|
DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_SPEEDSEL);
|
|
}
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PCS);
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_SCRAMBLER);
|
|
if (DC_IS_INTEL(sc)) {
|
|
DC_CLRBIT(sc, DC_SIARESET, DC_SIA_RESET);
|
|
DC_CLRBIT(sc, DC_10BTCTRL, 0xFFFF);
|
|
if ((media & IFM_GMASK) == IFM_FDX)
|
|
DC_SETBIT(sc, DC_10BTCTRL, 0x7F3D);
|
|
else
|
|
DC_SETBIT(sc, DC_10BTCTRL, 0x7F3F);
|
|
DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
|
|
DC_CLRBIT(sc, DC_10BTCTRL,
|
|
DC_TCTL_AUTONEGENBL);
|
|
DELAY(20000);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is a Davicom DM9102A card with a DM9801 HomePNA
|
|
* PHY and we want HomePNA mode, set the portsel bit to turn
|
|
* on the external MII port.
|
|
*/
|
|
if (DC_IS_DAVICOM(sc)) {
|
|
if (IFM_SUBTYPE(media) == IFM_HPNA_1) {
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
|
|
sc->dc_link = 1;
|
|
} else {
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_PORTSEL);
|
|
}
|
|
}
|
|
|
|
if ((media & IFM_GMASK) == IFM_FDX) {
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
|
|
if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
|
|
DC_SETBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
|
|
} else {
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_FULLDUPLEX);
|
|
if (sc->dc_pmode == DC_PMODE_SYM && DC_IS_PNIC(sc))
|
|
DC_CLRBIT(sc, DC_PN_NWAY, DC_PN_NWAY_DUPLEX);
|
|
}
|
|
|
|
if (restart)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON | DC_NETCFG_RX_ON);
|
|
}
|
|
|
|
static void
|
|
dc_reset(struct dc_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
|
|
|
|
for (i = 0; i < DC_TIMEOUT; i++) {
|
|
DELAY(10);
|
|
if (!(CSR_READ_4(sc, DC_BUSCTL) & DC_BUSCTL_RESET))
|
|
break;
|
|
}
|
|
|
|
if (DC_IS_ASIX(sc) || DC_IS_ADMTEK(sc) || DC_IS_CONEXANT(sc) ||
|
|
DC_IS_XIRCOM(sc) || DC_IS_INTEL(sc)) {
|
|
DELAY(10000);
|
|
DC_CLRBIT(sc, DC_BUSCTL, DC_BUSCTL_RESET);
|
|
i = 0;
|
|
}
|
|
|
|
if (i == DC_TIMEOUT)
|
|
device_printf(sc->dc_dev, "reset never completed!\n");
|
|
|
|
/* Wait a little while for the chip to get its brains in order. */
|
|
DELAY(1000);
|
|
|
|
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
|
|
CSR_WRITE_4(sc, DC_BUSCTL, 0x00000000);
|
|
CSR_WRITE_4(sc, DC_NETCFG, 0x00000000);
|
|
|
|
/*
|
|
* Bring the SIA out of reset. In some cases, it looks
|
|
* like failing to unreset the SIA soon enough gets it
|
|
* into a state where it will never come out of reset
|
|
* until we reset the whole chip again.
|
|
*/
|
|
if (DC_IS_INTEL(sc)) {
|
|
DC_SETBIT(sc, DC_SIARESET, DC_SIA_RESET);
|
|
CSR_WRITE_4(sc, DC_10BTCTRL, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, DC_WATCHDOG, 0);
|
|
}
|
|
}
|
|
|
|
static const struct dc_type *
|
|
dc_devtype(device_t dev)
|
|
{
|
|
const struct dc_type *t;
|
|
uint32_t devid;
|
|
uint8_t rev;
|
|
|
|
t = dc_devs;
|
|
devid = pci_get_devid(dev);
|
|
rev = pci_get_revid(dev);
|
|
|
|
while (t->dc_name != NULL) {
|
|
if (devid == t->dc_devid && rev >= t->dc_minrev)
|
|
return (t);
|
|
t++;
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Probe for a 21143 or clone chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
* We do a little bit of extra work to identify the exact type of
|
|
* chip. The MX98713 and MX98713A have the same PCI vendor/device ID,
|
|
* but different revision IDs. The same is true for 98715/98715A
|
|
* chips and the 98725, as well as the ASIX and ADMtek chips. In some
|
|
* cases, the exact chip revision affects driver behavior.
|
|
*/
|
|
static int
|
|
dc_probe(device_t dev)
|
|
{
|
|
const struct dc_type *t;
|
|
|
|
t = dc_devtype(dev);
|
|
|
|
if (t != NULL) {
|
|
device_set_desc(dev, t->dc_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
static void
|
|
dc_apply_fixup(struct dc_softc *sc, int media)
|
|
{
|
|
struct dc_mediainfo *m;
|
|
uint8_t *p;
|
|
int i;
|
|
uint32_t reg;
|
|
|
|
m = sc->dc_mi;
|
|
|
|
while (m != NULL) {
|
|
if (m->dc_media == media)
|
|
break;
|
|
m = m->dc_next;
|
|
}
|
|
|
|
if (m == NULL)
|
|
return;
|
|
|
|
for (i = 0, p = m->dc_reset_ptr; i < m->dc_reset_len; i++, p += 2) {
|
|
reg = (p[0] | (p[1] << 8)) << 16;
|
|
CSR_WRITE_4(sc, DC_WATCHDOG, reg);
|
|
}
|
|
|
|
for (i = 0, p = m->dc_gp_ptr; i < m->dc_gp_len; i++, p += 2) {
|
|
reg = (p[0] | (p[1] << 8)) << 16;
|
|
CSR_WRITE_4(sc, DC_WATCHDOG, reg);
|
|
}
|
|
}
|
|
|
|
static int
|
|
dc_decode_leaf_sia(struct dc_softc *sc, struct dc_eblock_sia *l)
|
|
{
|
|
struct dc_mediainfo *m;
|
|
|
|
m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (m == NULL) {
|
|
device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
|
|
return (ENOMEM);
|
|
}
|
|
switch (l->dc_sia_code & ~DC_SIA_CODE_EXT) {
|
|
case DC_SIA_CODE_10BT:
|
|
m->dc_media = IFM_10_T;
|
|
break;
|
|
case DC_SIA_CODE_10BT_FDX:
|
|
m->dc_media = IFM_10_T | IFM_FDX;
|
|
break;
|
|
case DC_SIA_CODE_10B2:
|
|
m->dc_media = IFM_10_2;
|
|
break;
|
|
case DC_SIA_CODE_10B5:
|
|
m->dc_media = IFM_10_5;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We need to ignore CSR13, CSR14, CSR15 for SIA mode.
|
|
* Things apparently already work for cards that do
|
|
* supply Media Specific Data.
|
|
*/
|
|
if (l->dc_sia_code & DC_SIA_CODE_EXT) {
|
|
m->dc_gp_len = 2;
|
|
m->dc_gp_ptr =
|
|
(uint8_t *)&l->dc_un.dc_sia_ext.dc_sia_gpio_ctl;
|
|
} else {
|
|
m->dc_gp_len = 2;
|
|
m->dc_gp_ptr =
|
|
(uint8_t *)&l->dc_un.dc_sia_noext.dc_sia_gpio_ctl;
|
|
}
|
|
|
|
m->dc_next = sc->dc_mi;
|
|
sc->dc_mi = m;
|
|
|
|
sc->dc_pmode = DC_PMODE_SIA;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dc_decode_leaf_sym(struct dc_softc *sc, struct dc_eblock_sym *l)
|
|
{
|
|
struct dc_mediainfo *m;
|
|
|
|
m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (m == NULL) {
|
|
device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
|
|
return (ENOMEM);
|
|
}
|
|
if (l->dc_sym_code == DC_SYM_CODE_100BT)
|
|
m->dc_media = IFM_100_TX;
|
|
|
|
if (l->dc_sym_code == DC_SYM_CODE_100BT_FDX)
|
|
m->dc_media = IFM_100_TX | IFM_FDX;
|
|
|
|
m->dc_gp_len = 2;
|
|
m->dc_gp_ptr = (uint8_t *)&l->dc_sym_gpio_ctl;
|
|
|
|
m->dc_next = sc->dc_mi;
|
|
sc->dc_mi = m;
|
|
|
|
sc->dc_pmode = DC_PMODE_SYM;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dc_decode_leaf_mii(struct dc_softc *sc, struct dc_eblock_mii *l)
|
|
{
|
|
struct dc_mediainfo *m;
|
|
uint8_t *p;
|
|
|
|
m = malloc(sizeof(struct dc_mediainfo), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (m == NULL) {
|
|
device_printf(sc->dc_dev, "Could not allocate mediainfo\n");
|
|
return (ENOMEM);
|
|
}
|
|
/* We abuse IFM_AUTO to represent MII. */
|
|
m->dc_media = IFM_AUTO;
|
|
m->dc_gp_len = l->dc_gpr_len;
|
|
|
|
p = (uint8_t *)l;
|
|
p += sizeof(struct dc_eblock_mii);
|
|
m->dc_gp_ptr = p;
|
|
p += 2 * l->dc_gpr_len;
|
|
m->dc_reset_len = *p;
|
|
p++;
|
|
m->dc_reset_ptr = p;
|
|
|
|
m->dc_next = sc->dc_mi;
|
|
sc->dc_mi = m;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dc_read_srom(struct dc_softc *sc, int bits)
|
|
{
|
|
int size;
|
|
|
|
size = DC_ROM_SIZE(bits);
|
|
sc->dc_srom = malloc(size, M_DEVBUF, M_NOWAIT);
|
|
if (sc->dc_srom == NULL) {
|
|
device_printf(sc->dc_dev, "Could not allocate SROM buffer\n");
|
|
return (ENOMEM);
|
|
}
|
|
dc_read_eeprom(sc, (caddr_t)sc->dc_srom, 0, (size / 2), 0);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dc_parse_21143_srom(struct dc_softc *sc)
|
|
{
|
|
struct dc_leaf_hdr *lhdr;
|
|
struct dc_eblock_hdr *hdr;
|
|
int error, have_mii, i, loff;
|
|
char *ptr;
|
|
|
|
have_mii = 0;
|
|
loff = sc->dc_srom[27];
|
|
lhdr = (struct dc_leaf_hdr *)&(sc->dc_srom[loff]);
|
|
|
|
ptr = (char *)lhdr;
|
|
ptr += sizeof(struct dc_leaf_hdr) - 1;
|
|
/*
|
|
* Look if we got a MII media block.
|
|
*/
|
|
for (i = 0; i < lhdr->dc_mcnt; i++) {
|
|
hdr = (struct dc_eblock_hdr *)ptr;
|
|
if (hdr->dc_type == DC_EBLOCK_MII)
|
|
have_mii++;
|
|
|
|
ptr += (hdr->dc_len & 0x7F);
|
|
ptr++;
|
|
}
|
|
|
|
/*
|
|
* Do the same thing again. Only use SIA and SYM media
|
|
* blocks if no MII media block is available.
|
|
*/
|
|
ptr = (char *)lhdr;
|
|
ptr += sizeof(struct dc_leaf_hdr) - 1;
|
|
error = 0;
|
|
for (i = 0; i < lhdr->dc_mcnt; i++) {
|
|
hdr = (struct dc_eblock_hdr *)ptr;
|
|
switch (hdr->dc_type) {
|
|
case DC_EBLOCK_MII:
|
|
error = dc_decode_leaf_mii(sc, (struct dc_eblock_mii *)hdr);
|
|
break;
|
|
case DC_EBLOCK_SIA:
|
|
if (! have_mii)
|
|
error = dc_decode_leaf_sia(sc,
|
|
(struct dc_eblock_sia *)hdr);
|
|
break;
|
|
case DC_EBLOCK_SYM:
|
|
if (! have_mii)
|
|
error = dc_decode_leaf_sym(sc,
|
|
(struct dc_eblock_sym *)hdr);
|
|
break;
|
|
default:
|
|
/* Don't care. Yet. */
|
|
break;
|
|
}
|
|
ptr += (hdr->dc_len & 0x7F);
|
|
ptr++;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
dc_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
bus_addr_t *paddr;
|
|
|
|
KASSERT(nseg == 1,
|
|
("%s: wrong number of segments (%d)", __func__, nseg));
|
|
paddr = arg;
|
|
*paddr = segs->ds_addr;
|
|
}
|
|
|
|
static int
|
|
dc_dma_alloc(struct dc_softc *sc)
|
|
{
|
|
int error, i;
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->dc_dev), 1, 0,
|
|
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
|
|
NULL, NULL, &sc->dc_ptag);
|
|
if (error) {
|
|
device_printf(sc->dc_dev,
|
|
"failed to allocate parent DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
|
|
error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_RX_LIST_SZ, 1,
|
|
DC_RX_LIST_SZ, 0, NULL, NULL, &sc->dc_rx_ltag);
|
|
if (error) {
|
|
device_printf(sc->dc_dev, "failed to create RX list DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, DC_TX_LIST_SZ, 1,
|
|
DC_TX_LIST_SZ, 0, NULL, NULL, &sc->dc_tx_ltag);
|
|
if (error) {
|
|
device_printf(sc->dc_dev, "failed to create TX list DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* RX descriptor list. */
|
|
error = bus_dmamem_alloc(sc->dc_rx_ltag,
|
|
(void **)&sc->dc_ldata.dc_rx_list, BUS_DMA_NOWAIT |
|
|
BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_rx_lmap);
|
|
if (error) {
|
|
device_printf(sc->dc_dev,
|
|
"failed to allocate DMA'able memory for RX list\n");
|
|
goto fail;
|
|
}
|
|
error = bus_dmamap_load(sc->dc_rx_ltag, sc->dc_rx_lmap,
|
|
sc->dc_ldata.dc_rx_list, DC_RX_LIST_SZ, dc_dma_map_addr,
|
|
&sc->dc_ldata.dc_rx_list_paddr, BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
device_printf(sc->dc_dev,
|
|
"failed to load DMA'able memory for RX list\n");
|
|
goto fail;
|
|
}
|
|
/* TX descriptor list. */
|
|
error = bus_dmamem_alloc(sc->dc_tx_ltag,
|
|
(void **)&sc->dc_ldata.dc_tx_list, BUS_DMA_NOWAIT |
|
|
BUS_DMA_ZERO | BUS_DMA_COHERENT, &sc->dc_tx_lmap);
|
|
if (error) {
|
|
device_printf(sc->dc_dev,
|
|
"failed to allocate DMA'able memory for TX list\n");
|
|
goto fail;
|
|
}
|
|
error = bus_dmamap_load(sc->dc_tx_ltag, sc->dc_tx_lmap,
|
|
sc->dc_ldata.dc_tx_list, DC_TX_LIST_SZ, dc_dma_map_addr,
|
|
&sc->dc_ldata.dc_tx_list_paddr, BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
device_printf(sc->dc_dev,
|
|
"cannot load DMA'able memory for TX list\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Allocate a busdma tag and DMA safe memory for the multicast
|
|
* setup frame.
|
|
*/
|
|
error = bus_dma_tag_create(sc->dc_ptag, DC_LIST_ALIGN, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
DC_SFRAME_LEN + DC_MIN_FRAMELEN, 1, DC_SFRAME_LEN + DC_MIN_FRAMELEN,
|
|
0, NULL, NULL, &sc->dc_stag);
|
|
if (error) {
|
|
device_printf(sc->dc_dev,
|
|
"failed to create DMA tag for setup frame\n");
|
|
goto fail;
|
|
}
|
|
error = bus_dmamem_alloc(sc->dc_stag, (void **)&sc->dc_cdata.dc_sbuf,
|
|
BUS_DMA_NOWAIT, &sc->dc_smap);
|
|
if (error) {
|
|
device_printf(sc->dc_dev,
|
|
"failed to allocate DMA'able memory for setup frame\n");
|
|
goto fail;
|
|
}
|
|
error = bus_dmamap_load(sc->dc_stag, sc->dc_smap, sc->dc_cdata.dc_sbuf,
|
|
DC_SFRAME_LEN, dc_dma_map_addr, &sc->dc_saddr, BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
device_printf(sc->dc_dev,
|
|
"cannot load DMA'able memory for setup frame\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate a busdma tag for RX mbufs. */
|
|
error = bus_dma_tag_create(sc->dc_ptag, DC_RXBUF_ALIGN, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->dc_rx_mtag);
|
|
if (error) {
|
|
device_printf(sc->dc_dev, "failed to create RX mbuf tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate a busdma tag for TX mbufs. */
|
|
error = bus_dma_tag_create(sc->dc_ptag, 1, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
|
|
MCLBYTES * DC_MAXFRAGS, DC_MAXFRAGS, MCLBYTES,
|
|
0, NULL, NULL, &sc->dc_tx_mtag);
|
|
if (error) {
|
|
device_printf(sc->dc_dev, "failed to create TX mbuf tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create the TX/RX busdma maps. */
|
|
for (i = 0; i < DC_TX_LIST_CNT; i++) {
|
|
error = bus_dmamap_create(sc->dc_tx_mtag, 0,
|
|
&sc->dc_cdata.dc_tx_map[i]);
|
|
if (error) {
|
|
device_printf(sc->dc_dev,
|
|
"failed to create TX mbuf dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
for (i = 0; i < DC_RX_LIST_CNT; i++) {
|
|
error = bus_dmamap_create(sc->dc_rx_mtag, 0,
|
|
&sc->dc_cdata.dc_rx_map[i]);
|
|
if (error) {
|
|
device_printf(sc->dc_dev,
|
|
"failed to create RX mbuf dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
error = bus_dmamap_create(sc->dc_rx_mtag, 0, &sc->dc_sparemap);
|
|
if (error) {
|
|
device_printf(sc->dc_dev,
|
|
"failed to create spare RX mbuf dmamap\n");
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
dc_dma_free(struct dc_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
/* RX buffers. */
|
|
if (sc->dc_rx_mtag != NULL) {
|
|
for (i = 0; i < DC_RX_LIST_CNT; i++) {
|
|
if (sc->dc_cdata.dc_rx_map[i] != NULL)
|
|
bus_dmamap_destroy(sc->dc_rx_mtag,
|
|
sc->dc_cdata.dc_rx_map[i]);
|
|
}
|
|
if (sc->dc_sparemap != NULL)
|
|
bus_dmamap_destroy(sc->dc_rx_mtag, sc->dc_sparemap);
|
|
bus_dma_tag_destroy(sc->dc_rx_mtag);
|
|
}
|
|
|
|
/* TX buffers. */
|
|
if (sc->dc_rx_mtag != NULL) {
|
|
for (i = 0; i < DC_TX_LIST_CNT; i++) {
|
|
if (sc->dc_cdata.dc_tx_map[i] != NULL)
|
|
bus_dmamap_destroy(sc->dc_tx_mtag,
|
|
sc->dc_cdata.dc_tx_map[i]);
|
|
}
|
|
bus_dma_tag_destroy(sc->dc_tx_mtag);
|
|
}
|
|
|
|
/* RX descriptor list. */
|
|
if (sc->dc_rx_ltag) {
|
|
if (sc->dc_rx_lmap != NULL)
|
|
bus_dmamap_unload(sc->dc_rx_ltag, sc->dc_rx_lmap);
|
|
if (sc->dc_rx_lmap != NULL && sc->dc_ldata.dc_rx_list != NULL)
|
|
bus_dmamem_free(sc->dc_rx_ltag, sc->dc_ldata.dc_rx_list,
|
|
sc->dc_rx_lmap);
|
|
bus_dma_tag_destroy(sc->dc_rx_ltag);
|
|
}
|
|
|
|
/* TX descriptor list. */
|
|
if (sc->dc_tx_ltag) {
|
|
if (sc->dc_tx_lmap != NULL)
|
|
bus_dmamap_unload(sc->dc_tx_ltag, sc->dc_tx_lmap);
|
|
if (sc->dc_tx_lmap != NULL && sc->dc_ldata.dc_tx_list != NULL)
|
|
bus_dmamem_free(sc->dc_tx_ltag, sc->dc_ldata.dc_tx_list,
|
|
sc->dc_tx_lmap);
|
|
bus_dma_tag_destroy(sc->dc_tx_ltag);
|
|
}
|
|
|
|
/* multicast setup frame. */
|
|
if (sc->dc_stag) {
|
|
if (sc->dc_smap != NULL)
|
|
bus_dmamap_unload(sc->dc_stag, sc->dc_smap);
|
|
if (sc->dc_smap != NULL && sc->dc_cdata.dc_sbuf != NULL)
|
|
bus_dmamem_free(sc->dc_stag, sc->dc_cdata.dc_sbuf,
|
|
sc->dc_smap);
|
|
bus_dma_tag_destroy(sc->dc_stag);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static int
|
|
dc_attach(device_t dev)
|
|
{
|
|
uint32_t eaddr[(ETHER_ADDR_LEN+3)/4];
|
|
uint32_t command;
|
|
struct dc_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct dc_mediainfo *m;
|
|
uint32_t reg, revision;
|
|
int error, mac_offset, phy, rid, tmp;
|
|
uint8_t *mac;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->dc_dev = dev;
|
|
|
|
mtx_init(&sc->dc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
pci_enable_busmaster(dev);
|
|
|
|
rid = DC_RID;
|
|
sc->dc_res = bus_alloc_resource_any(dev, DC_RES, &rid, RF_ACTIVE);
|
|
|
|
if (sc->dc_res == NULL) {
|
|
device_printf(dev, "couldn't map ports/memory\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
sc->dc_btag = rman_get_bustag(sc->dc_res);
|
|
sc->dc_bhandle = rman_get_bushandle(sc->dc_res);
|
|
|
|
/* Allocate interrupt. */
|
|
rid = 0;
|
|
sc->dc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
|
|
if (sc->dc_irq == NULL) {
|
|
device_printf(dev, "couldn't map interrupt\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Need this info to decide on a chip type. */
|
|
sc->dc_info = dc_devtype(dev);
|
|
revision = pci_get_revid(dev);
|
|
|
|
error = 0;
|
|
/* Get the eeprom width, but PNIC and XIRCOM have diff eeprom */
|
|
if (sc->dc_info->dc_devid !=
|
|
DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168) &&
|
|
sc->dc_info->dc_devid !=
|
|
DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201))
|
|
dc_eeprom_width(sc);
|
|
|
|
switch (sc->dc_info->dc_devid) {
|
|
case DC_DEVID(DC_VENDORID_DEC, DC_DEVICEID_21143):
|
|
sc->dc_type = DC_TYPE_21143;
|
|
sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
|
|
sc->dc_flags |= DC_REDUCED_MII_POLL;
|
|
/* Save EEPROM contents so we can parse them later. */
|
|
error = dc_read_srom(sc, sc->dc_romwidth);
|
|
if (error != 0)
|
|
goto fail;
|
|
break;
|
|
case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9009):
|
|
case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9100):
|
|
case DC_DEVID(DC_VENDORID_DAVICOM, DC_DEVICEID_DM9102):
|
|
sc->dc_type = DC_TYPE_DM9102;
|
|
sc->dc_flags |= DC_TX_COALESCE | DC_TX_INTR_ALWAYS;
|
|
sc->dc_flags |= DC_REDUCED_MII_POLL | DC_TX_STORENFWD;
|
|
sc->dc_flags |= DC_TX_ALIGN;
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
|
|
/* Increase the latency timer value. */
|
|
pci_write_config(dev, PCIR_LATTIMER, 0x80, 1);
|
|
break;
|
|
case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AL981):
|
|
sc->dc_type = DC_TYPE_AL981;
|
|
sc->dc_flags |= DC_TX_USE_TX_INTR;
|
|
sc->dc_flags |= DC_TX_ADMTEK_WAR;
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
error = dc_read_srom(sc, sc->dc_romwidth);
|
|
if (error != 0)
|
|
goto fail;
|
|
break;
|
|
case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN983):
|
|
case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_AN985):
|
|
case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9511):
|
|
case DC_DEVID(DC_VENDORID_ADMTEK, DC_DEVICEID_ADM9513):
|
|
case DC_DEVID(DC_VENDORID_DLINK, DC_DEVICEID_DRP32TXD):
|
|
case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500):
|
|
case DC_DEVID(DC_VENDORID_ABOCOM, DC_DEVICEID_FE2500MX):
|
|
case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN2242):
|
|
case DC_DEVID(DC_VENDORID_HAWKING, DC_DEVICEID_HAWKING_PN672TX):
|
|
case DC_DEVID(DC_VENDORID_PLANEX, DC_DEVICEID_FNW3602T):
|
|
case DC_DEVID(DC_VENDORID_3COM, DC_DEVICEID_3CSOHOB):
|
|
case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN120):
|
|
case DC_DEVID(DC_VENDORID_MICROSOFT, DC_DEVICEID_MSMN130):
|
|
case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB08):
|
|
case DC_DEVID(DC_VENDORID_LINKSYS, DC_DEVICEID_PCMPC200_AB09):
|
|
sc->dc_type = DC_TYPE_AN983;
|
|
sc->dc_flags |= DC_64BIT_HASH;
|
|
sc->dc_flags |= DC_TX_USE_TX_INTR;
|
|
sc->dc_flags |= DC_TX_ADMTEK_WAR;
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
/* Don't read SROM for - auto-loaded on reset */
|
|
break;
|
|
case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98713):
|
|
case DC_DEVID(DC_VENDORID_CP, DC_DEVICEID_98713_CP):
|
|
if (revision < DC_REVISION_98713A) {
|
|
sc->dc_type = DC_TYPE_98713;
|
|
}
|
|
if (revision >= DC_REVISION_98713A) {
|
|
sc->dc_type = DC_TYPE_98713A;
|
|
sc->dc_flags |= DC_21143_NWAY;
|
|
}
|
|
sc->dc_flags |= DC_REDUCED_MII_POLL;
|
|
sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
|
|
break;
|
|
case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_987x5):
|
|
case DC_DEVID(DC_VENDORID_ACCTON, DC_DEVICEID_EN1217):
|
|
/*
|
|
* Macronix MX98715AEC-C/D/E parts have only a
|
|
* 128-bit hash table. We need to deal with these
|
|
* in the same manner as the PNIC II so that we
|
|
* get the right number of bits out of the
|
|
* CRC routine.
|
|
*/
|
|
if (revision >= DC_REVISION_98715AEC_C &&
|
|
revision < DC_REVISION_98725)
|
|
sc->dc_flags |= DC_128BIT_HASH;
|
|
sc->dc_type = DC_TYPE_987x5;
|
|
sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
|
|
sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
|
|
break;
|
|
case DC_DEVID(DC_VENDORID_MX, DC_DEVICEID_98727):
|
|
sc->dc_type = DC_TYPE_987x5;
|
|
sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR;
|
|
sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
|
|
break;
|
|
case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C115):
|
|
sc->dc_type = DC_TYPE_PNICII;
|
|
sc->dc_flags |= DC_TX_POLL | DC_TX_USE_TX_INTR | DC_128BIT_HASH;
|
|
sc->dc_flags |= DC_REDUCED_MII_POLL | DC_21143_NWAY;
|
|
break;
|
|
case DC_DEVID(DC_VENDORID_LO, DC_DEVICEID_82C168):
|
|
sc->dc_type = DC_TYPE_PNIC;
|
|
sc->dc_flags |= DC_TX_STORENFWD | DC_TX_INTR_ALWAYS;
|
|
sc->dc_flags |= DC_PNIC_RX_BUG_WAR;
|
|
sc->dc_pnic_rx_buf = malloc(DC_RXLEN * 5, M_DEVBUF, M_NOWAIT);
|
|
if (sc->dc_pnic_rx_buf == NULL) {
|
|
device_printf(sc->dc_dev,
|
|
"Could not allocate PNIC RX buffer\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
if (revision < DC_REVISION_82C169)
|
|
sc->dc_pmode = DC_PMODE_SYM;
|
|
break;
|
|
case DC_DEVID(DC_VENDORID_ASIX, DC_DEVICEID_AX88140A):
|
|
sc->dc_type = DC_TYPE_ASIX;
|
|
sc->dc_flags |= DC_TX_USE_TX_INTR | DC_TX_INTR_FIRSTFRAG;
|
|
sc->dc_flags |= DC_REDUCED_MII_POLL;
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
break;
|
|
case DC_DEVID(DC_VENDORID_XIRCOM, DC_DEVICEID_X3201):
|
|
sc->dc_type = DC_TYPE_XIRCOM;
|
|
sc->dc_flags |= DC_TX_INTR_ALWAYS | DC_TX_COALESCE |
|
|
DC_TX_ALIGN;
|
|
/*
|
|
* We don't actually need to coalesce, but we're doing
|
|
* it to obtain a double word aligned buffer.
|
|
* The DC_TX_COALESCE flag is required.
|
|
*/
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
break;
|
|
case DC_DEVID(DC_VENDORID_CONEXANT, DC_DEVICEID_RS7112):
|
|
sc->dc_type = DC_TYPE_CONEXANT;
|
|
sc->dc_flags |= DC_TX_INTR_ALWAYS;
|
|
sc->dc_flags |= DC_REDUCED_MII_POLL;
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
error = dc_read_srom(sc, sc->dc_romwidth);
|
|
if (error != 0)
|
|
goto fail;
|
|
break;
|
|
default:
|
|
device_printf(dev, "unknown device: %x\n",
|
|
sc->dc_info->dc_devid);
|
|
break;
|
|
}
|
|
|
|
/* Save the cache line size. */
|
|
if (DC_IS_DAVICOM(sc))
|
|
sc->dc_cachesize = 0;
|
|
else
|
|
sc->dc_cachesize = pci_get_cachelnsz(dev);
|
|
|
|
/* Reset the adapter. */
|
|
dc_reset(sc);
|
|
|
|
/* Take 21143 out of snooze mode */
|
|
if (DC_IS_INTEL(sc) || DC_IS_XIRCOM(sc)) {
|
|
command = pci_read_config(dev, DC_PCI_CFDD, 4);
|
|
command &= ~(DC_CFDD_SNOOZE_MODE | DC_CFDD_SLEEP_MODE);
|
|
pci_write_config(dev, DC_PCI_CFDD, command, 4);
|
|
}
|
|
|
|
/*
|
|
* Try to learn something about the supported media.
|
|
* We know that ASIX and ADMtek and Davicom devices
|
|
* will *always* be using MII media, so that's a no-brainer.
|
|
* The tricky ones are the Macronix/PNIC II and the
|
|
* Intel 21143.
|
|
*/
|
|
if (DC_IS_INTEL(sc)) {
|
|
error = dc_parse_21143_srom(sc);
|
|
if (error != 0)
|
|
goto fail;
|
|
} else if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
|
|
if (sc->dc_type == DC_TYPE_98713)
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
else
|
|
sc->dc_pmode = DC_PMODE_SYM;
|
|
} else if (!sc->dc_pmode)
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
|
|
/*
|
|
* Get station address from the EEPROM.
|
|
*/
|
|
switch(sc->dc_type) {
|
|
case DC_TYPE_98713:
|
|
case DC_TYPE_98713A:
|
|
case DC_TYPE_987x5:
|
|
case DC_TYPE_PNICII:
|
|
dc_read_eeprom(sc, (caddr_t)&mac_offset,
|
|
(DC_EE_NODEADDR_OFFSET / 2), 1, 0);
|
|
dc_read_eeprom(sc, (caddr_t)&eaddr, (mac_offset / 2), 3, 0);
|
|
break;
|
|
case DC_TYPE_PNIC:
|
|
dc_read_eeprom(sc, (caddr_t)&eaddr, 0, 3, 1);
|
|
break;
|
|
case DC_TYPE_DM9102:
|
|
dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
|
|
#ifdef __sparc64__
|
|
/*
|
|
* If this is an onboard dc(4) the station address read from
|
|
* the EEPROM is all zero and we have to get it from the FCode.
|
|
*/
|
|
if (eaddr[0] == 0 && (eaddr[1] & ~0xffff) == 0)
|
|
OF_getetheraddr(dev, (caddr_t)&eaddr);
|
|
#endif
|
|
break;
|
|
case DC_TYPE_21143:
|
|
case DC_TYPE_ASIX:
|
|
dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
|
|
break;
|
|
case DC_TYPE_AL981:
|
|
case DC_TYPE_AN983:
|
|
reg = CSR_READ_4(sc, DC_AL_PAR0);
|
|
mac = (uint8_t *)&eaddr[0];
|
|
mac[0] = (reg >> 0) & 0xff;
|
|
mac[1] = (reg >> 8) & 0xff;
|
|
mac[2] = (reg >> 16) & 0xff;
|
|
mac[3] = (reg >> 24) & 0xff;
|
|
reg = CSR_READ_4(sc, DC_AL_PAR1);
|
|
mac[4] = (reg >> 0) & 0xff;
|
|
mac[5] = (reg >> 8) & 0xff;
|
|
break;
|
|
case DC_TYPE_CONEXANT:
|
|
bcopy(sc->dc_srom + DC_CONEXANT_EE_NODEADDR, &eaddr,
|
|
ETHER_ADDR_LEN);
|
|
break;
|
|
case DC_TYPE_XIRCOM:
|
|
/* The MAC comes from the CIS. */
|
|
mac = pci_get_ether(dev);
|
|
if (!mac) {
|
|
device_printf(dev, "No station address in CIS!\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
bcopy(mac, eaddr, ETHER_ADDR_LEN);
|
|
break;
|
|
default:
|
|
dc_read_eeprom(sc, (caddr_t)&eaddr, DC_EE_NODEADDR, 3, 0);
|
|
break;
|
|
}
|
|
|
|
bcopy(eaddr, sc->dc_eaddr, sizeof(eaddr));
|
|
/*
|
|
* If we still have invalid station address, see whether we can
|
|
* find station address for chip 0. Some multi-port controllers
|
|
* just store station address for chip 0 if they have a shared
|
|
* SROM.
|
|
*/
|
|
if ((sc->dc_eaddr[0] == 0 && (sc->dc_eaddr[1] & ~0xffff) == 0) ||
|
|
(sc->dc_eaddr[0] == 0xffffffff &&
|
|
(sc->dc_eaddr[1] & 0xffff) == 0xffff)) {
|
|
error = dc_check_multiport(sc);
|
|
if (error == 0) {
|
|
bcopy(sc->dc_eaddr, eaddr, sizeof(eaddr));
|
|
/* Extract media information. */
|
|
if (DC_IS_INTEL(sc) && sc->dc_srom != NULL) {
|
|
while (sc->dc_mi != NULL) {
|
|
m = sc->dc_mi->dc_next;
|
|
free(sc->dc_mi, M_DEVBUF);
|
|
sc->dc_mi = m;
|
|
}
|
|
error = dc_parse_21143_srom(sc);
|
|
if (error != 0)
|
|
goto fail;
|
|
}
|
|
} else if (error == ENOMEM)
|
|
goto fail;
|
|
else
|
|
error = 0;
|
|
}
|
|
|
|
if ((error = dc_dma_alloc(sc)) != 0)
|
|
goto fail;
|
|
|
|
ifp = sc->dc_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "can not if_alloc()\n");
|
|
error = ENOSPC;
|
|
goto fail;
|
|
}
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = dc_ioctl;
|
|
ifp->if_start = dc_start;
|
|
ifp->if_init = dc_init;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, DC_TX_LIST_CNT - 1);
|
|
ifp->if_snd.ifq_drv_maxlen = DC_TX_LIST_CNT - 1;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/*
|
|
* Do MII setup. If this is a 21143, check for a PHY on the
|
|
* MII bus after applying any necessary fixups to twiddle the
|
|
* GPIO bits. If we don't end up finding a PHY, restore the
|
|
* old selection (SIA only or SIA/SYM) and attach the dcphy
|
|
* driver instead.
|
|
*/
|
|
tmp = 0;
|
|
if (DC_IS_INTEL(sc)) {
|
|
dc_apply_fixup(sc, IFM_AUTO);
|
|
tmp = sc->dc_pmode;
|
|
sc->dc_pmode = DC_PMODE_MII;
|
|
}
|
|
|
|
/*
|
|
* Setup General Purpose port mode and data so the tulip can talk
|
|
* to the MII. This needs to be done before mii_attach so that
|
|
* we can actually see them.
|
|
*/
|
|
if (DC_IS_XIRCOM(sc)) {
|
|
CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
|
|
DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
|
|
DELAY(10);
|
|
CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
|
|
DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
|
|
DELAY(10);
|
|
}
|
|
|
|
phy = MII_PHY_ANY;
|
|
/*
|
|
* Note: both the AL981 and AN983 have internal PHYs, however the
|
|
* AL981 provides direct access to the PHY registers while the AN983
|
|
* uses a serial MII interface. The AN983's MII interface is also
|
|
* buggy in that you can read from any MII address (0 to 31), but
|
|
* only address 1 behaves normally. To deal with both cases, we
|
|
* pretend that the PHY is at MII address 1.
|
|
*/
|
|
if (DC_IS_ADMTEK(sc))
|
|
phy = DC_ADMTEK_PHYADDR;
|
|
|
|
/*
|
|
* Note: the ukphy probes of the RS7112 report a PHY at MII address
|
|
* 0 (possibly HomePNA?) and 1 (ethernet) so we only respond to the
|
|
* correct one.
|
|
*/
|
|
if (DC_IS_CONEXANT(sc))
|
|
phy = DC_CONEXANT_PHYADDR;
|
|
|
|
error = mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
|
|
dc_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
|
|
|
|
if (error && DC_IS_INTEL(sc)) {
|
|
sc->dc_pmode = tmp;
|
|
if (sc->dc_pmode != DC_PMODE_SIA)
|
|
sc->dc_pmode = DC_PMODE_SYM;
|
|
sc->dc_flags |= DC_21143_NWAY;
|
|
mii_attach(dev, &sc->dc_miibus, ifp, dc_ifmedia_upd,
|
|
dc_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, 0);
|
|
/*
|
|
* For non-MII cards, we need to have the 21143
|
|
* drive the LEDs. Except there are some systems
|
|
* like the NEC VersaPro NoteBook PC which have no
|
|
* LEDs, and twiddling these bits has adverse effects
|
|
* on them. (I.e. you suddenly can't get a link.)
|
|
*/
|
|
if (!(pci_get_subvendor(dev) == 0x1033 &&
|
|
pci_get_subdevice(dev) == 0x8028))
|
|
sc->dc_flags |= DC_TULIP_LEDS;
|
|
error = 0;
|
|
}
|
|
|
|
if (error) {
|
|
device_printf(dev, "attaching PHYs failed\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (DC_IS_ADMTEK(sc)) {
|
|
/*
|
|
* Set automatic TX underrun recovery for the ADMtek chips
|
|
*/
|
|
DC_SETBIT(sc, DC_AL_CR, DC_AL_CR_ATUR);
|
|
}
|
|
|
|
/*
|
|
* Tell the upper layer(s) we support long frames.
|
|
*/
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
ifp->if_capabilities |= IFCAP_VLAN_MTU;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
#ifdef DEVICE_POLLING
|
|
ifp->if_capabilities |= IFCAP_POLLING;
|
|
#endif
|
|
|
|
callout_init_mtx(&sc->dc_stat_ch, &sc->dc_mtx, 0);
|
|
callout_init_mtx(&sc->dc_wdog_ch, &sc->dc_mtx, 0);
|
|
|
|
/*
|
|
* Call MI attach routine.
|
|
*/
|
|
ether_ifattach(ifp, (caddr_t)eaddr);
|
|
|
|
/* Hook interrupt last to avoid having to lock softc */
|
|
error = bus_setup_intr(dev, sc->dc_irq, INTR_TYPE_NET | INTR_MPSAFE,
|
|
NULL, dc_intr, sc, &sc->dc_intrhand);
|
|
|
|
if (error) {
|
|
device_printf(dev, "couldn't set up irq\n");
|
|
ether_ifdetach(ifp);
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
if (error)
|
|
dc_detach(dev);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Shutdown hardware and free up resources. This can be called any
|
|
* time after the mutex has been initialized. It is called in both
|
|
* the error case in attach and the normal detach case so it needs
|
|
* to be careful about only freeing resources that have actually been
|
|
* allocated.
|
|
*/
|
|
static int
|
|
dc_detach(device_t dev)
|
|
{
|
|
struct dc_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct dc_mediainfo *m;
|
|
|
|
sc = device_get_softc(dev);
|
|
KASSERT(mtx_initialized(&sc->dc_mtx), ("dc mutex not initialized"));
|
|
|
|
ifp = sc->dc_ifp;
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING)
|
|
ether_poll_deregister(ifp);
|
|
#endif
|
|
|
|
/* These should only be active if attach succeeded */
|
|
if (device_is_attached(dev)) {
|
|
DC_LOCK(sc);
|
|
dc_stop(sc);
|
|
DC_UNLOCK(sc);
|
|
callout_drain(&sc->dc_stat_ch);
|
|
callout_drain(&sc->dc_wdog_ch);
|
|
ether_ifdetach(ifp);
|
|
}
|
|
if (sc->dc_miibus)
|
|
device_delete_child(dev, sc->dc_miibus);
|
|
bus_generic_detach(dev);
|
|
|
|
if (sc->dc_intrhand)
|
|
bus_teardown_intr(dev, sc->dc_irq, sc->dc_intrhand);
|
|
if (sc->dc_irq)
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->dc_irq);
|
|
if (sc->dc_res)
|
|
bus_release_resource(dev, DC_RES, DC_RID, sc->dc_res);
|
|
|
|
if (ifp)
|
|
if_free(ifp);
|
|
|
|
dc_dma_free(sc);
|
|
|
|
free(sc->dc_pnic_rx_buf, M_DEVBUF);
|
|
|
|
while (sc->dc_mi != NULL) {
|
|
m = sc->dc_mi->dc_next;
|
|
free(sc->dc_mi, M_DEVBUF);
|
|
sc->dc_mi = m;
|
|
}
|
|
free(sc->dc_srom, M_DEVBUF);
|
|
|
|
mtx_destroy(&sc->dc_mtx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit descriptors.
|
|
*/
|
|
static int
|
|
dc_list_tx_init(struct dc_softc *sc)
|
|
{
|
|
struct dc_chain_data *cd;
|
|
struct dc_list_data *ld;
|
|
int i, nexti;
|
|
|
|
cd = &sc->dc_cdata;
|
|
ld = &sc->dc_ldata;
|
|
for (i = 0; i < DC_TX_LIST_CNT; i++) {
|
|
if (i == DC_TX_LIST_CNT - 1)
|
|
nexti = 0;
|
|
else
|
|
nexti = i + 1;
|
|
ld->dc_tx_list[i].dc_status = 0;
|
|
ld->dc_tx_list[i].dc_ctl = 0;
|
|
ld->dc_tx_list[i].dc_data = 0;
|
|
ld->dc_tx_list[i].dc_next = htole32(DC_TXDESC(sc, nexti));
|
|
cd->dc_tx_chain[i] = NULL;
|
|
}
|
|
|
|
cd->dc_tx_prod = cd->dc_tx_cons = cd->dc_tx_cnt = 0;
|
|
cd->dc_tx_pkts = 0;
|
|
bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
|
|
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize the RX descriptors and allocate mbufs for them. Note that
|
|
* we arrange the descriptors in a closed ring, so that the last descriptor
|
|
* points back to the first.
|
|
*/
|
|
static int
|
|
dc_list_rx_init(struct dc_softc *sc)
|
|
{
|
|
struct dc_chain_data *cd;
|
|
struct dc_list_data *ld;
|
|
int i, nexti;
|
|
|
|
cd = &sc->dc_cdata;
|
|
ld = &sc->dc_ldata;
|
|
|
|
for (i = 0; i < DC_RX_LIST_CNT; i++) {
|
|
if (dc_newbuf(sc, i) != 0)
|
|
return (ENOBUFS);
|
|
if (i == DC_RX_LIST_CNT - 1)
|
|
nexti = 0;
|
|
else
|
|
nexti = i + 1;
|
|
ld->dc_rx_list[i].dc_next = htole32(DC_RXDESC(sc, nexti));
|
|
}
|
|
|
|
cd->dc_rx_prod = 0;
|
|
bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
|
|
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize an RX descriptor and attach an MBUF cluster.
|
|
*/
|
|
static int
|
|
dc_newbuf(struct dc_softc *sc, int i)
|
|
{
|
|
struct mbuf *m;
|
|
bus_dmamap_t map;
|
|
bus_dma_segment_t segs[1];
|
|
int error, nseg;
|
|
|
|
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
m_adj(m, sizeof(u_int64_t));
|
|
|
|
/*
|
|
* If this is a PNIC chip, zero the buffer. This is part
|
|
* of the workaround for the receive bug in the 82c168 and
|
|
* 82c169 chips.
|
|
*/
|
|
if (sc->dc_flags & DC_PNIC_RX_BUG_WAR)
|
|
bzero(mtod(m, char *), m->m_len);
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->dc_rx_mtag, sc->dc_sparemap,
|
|
m, segs, &nseg, 0);
|
|
if (error) {
|
|
m_freem(m);
|
|
return (error);
|
|
}
|
|
KASSERT(nseg == 1, ("%s: wrong number of segments (%d)", __func__,
|
|
nseg));
|
|
if (sc->dc_cdata.dc_rx_chain[i] != NULL)
|
|
bus_dmamap_unload(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i]);
|
|
|
|
map = sc->dc_cdata.dc_rx_map[i];
|
|
sc->dc_cdata.dc_rx_map[i] = sc->dc_sparemap;
|
|
sc->dc_sparemap = map;
|
|
sc->dc_cdata.dc_rx_chain[i] = m;
|
|
bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
|
|
BUS_DMASYNC_PREREAD);
|
|
|
|
sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
|
|
sc->dc_ldata.dc_rx_list[i].dc_data =
|
|
htole32(DC_ADDR_LO(segs[0].ds_addr));
|
|
sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
|
|
bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
|
|
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Grrrrr.
|
|
* The PNIC chip has a terrible bug in it that manifests itself during
|
|
* periods of heavy activity. The exact mode of failure if difficult to
|
|
* pinpoint: sometimes it only happens in promiscuous mode, sometimes it
|
|
* will happen on slow machines. The bug is that sometimes instead of
|
|
* uploading one complete frame during reception, it uploads what looks
|
|
* like the entire contents of its FIFO memory. The frame we want is at
|
|
* the end of the whole mess, but we never know exactly how much data has
|
|
* been uploaded, so salvaging the frame is hard.
|
|
*
|
|
* There is only one way to do it reliably, and it's disgusting.
|
|
* Here's what we know:
|
|
*
|
|
* - We know there will always be somewhere between one and three extra
|
|
* descriptors uploaded.
|
|
*
|
|
* - We know the desired received frame will always be at the end of the
|
|
* total data upload.
|
|
*
|
|
* - We know the size of the desired received frame because it will be
|
|
* provided in the length field of the status word in the last descriptor.
|
|
*
|
|
* Here's what we do:
|
|
*
|
|
* - When we allocate buffers for the receive ring, we bzero() them.
|
|
* This means that we know that the buffer contents should be all
|
|
* zeros, except for data uploaded by the chip.
|
|
*
|
|
* - We also force the PNIC chip to upload frames that include the
|
|
* ethernet CRC at the end.
|
|
*
|
|
* - We gather all of the bogus frame data into a single buffer.
|
|
*
|
|
* - We then position a pointer at the end of this buffer and scan
|
|
* backwards until we encounter the first non-zero byte of data.
|
|
* This is the end of the received frame. We know we will encounter
|
|
* some data at the end of the frame because the CRC will always be
|
|
* there, so even if the sender transmits a packet of all zeros,
|
|
* we won't be fooled.
|
|
*
|
|
* - We know the size of the actual received frame, so we subtract
|
|
* that value from the current pointer location. This brings us
|
|
* to the start of the actual received packet.
|
|
*
|
|
* - We copy this into an mbuf and pass it on, along with the actual
|
|
* frame length.
|
|
*
|
|
* The performance hit is tremendous, but it beats dropping frames all
|
|
* the time.
|
|
*/
|
|
|
|
#define DC_WHOLEFRAME (DC_RXSTAT_FIRSTFRAG | DC_RXSTAT_LASTFRAG)
|
|
static void
|
|
dc_pnic_rx_bug_war(struct dc_softc *sc, int idx)
|
|
{
|
|
struct dc_desc *cur_rx;
|
|
struct dc_desc *c = NULL;
|
|
struct mbuf *m = NULL;
|
|
unsigned char *ptr;
|
|
int i, total_len;
|
|
uint32_t rxstat = 0;
|
|
|
|
i = sc->dc_pnic_rx_bug_save;
|
|
cur_rx = &sc->dc_ldata.dc_rx_list[idx];
|
|
ptr = sc->dc_pnic_rx_buf;
|
|
bzero(ptr, DC_RXLEN * 5);
|
|
|
|
/* Copy all the bytes from the bogus buffers. */
|
|
while (1) {
|
|
c = &sc->dc_ldata.dc_rx_list[i];
|
|
rxstat = le32toh(c->dc_status);
|
|
m = sc->dc_cdata.dc_rx_chain[i];
|
|
bcopy(mtod(m, char *), ptr, DC_RXLEN);
|
|
ptr += DC_RXLEN;
|
|
/* If this is the last buffer, break out. */
|
|
if (i == idx || rxstat & DC_RXSTAT_LASTFRAG)
|
|
break;
|
|
dc_discard_rxbuf(sc, i);
|
|
DC_INC(i, DC_RX_LIST_CNT);
|
|
}
|
|
|
|
/* Find the length of the actual receive frame. */
|
|
total_len = DC_RXBYTES(rxstat);
|
|
|
|
/* Scan backwards until we hit a non-zero byte. */
|
|
while (*ptr == 0x00)
|
|
ptr--;
|
|
|
|
/* Round off. */
|
|
if ((uintptr_t)(ptr) & 0x3)
|
|
ptr -= 1;
|
|
|
|
/* Now find the start of the frame. */
|
|
ptr -= total_len;
|
|
if (ptr < sc->dc_pnic_rx_buf)
|
|
ptr = sc->dc_pnic_rx_buf;
|
|
|
|
/*
|
|
* Now copy the salvaged frame to the last mbuf and fake up
|
|
* the status word to make it look like a successful
|
|
* frame reception.
|
|
*/
|
|
bcopy(ptr, mtod(m, char *), total_len);
|
|
cur_rx->dc_status = htole32(rxstat | DC_RXSTAT_FIRSTFRAG);
|
|
}
|
|
|
|
/*
|
|
* This routine searches the RX ring for dirty descriptors in the
|
|
* event that the rxeof routine falls out of sync with the chip's
|
|
* current descriptor pointer. This may happen sometimes as a result
|
|
* of a "no RX buffer available" condition that happens when the chip
|
|
* consumes all of the RX buffers before the driver has a chance to
|
|
* process the RX ring. This routine may need to be called more than
|
|
* once to bring the driver back in sync with the chip, however we
|
|
* should still be getting RX DONE interrupts to drive the search
|
|
* for new packets in the RX ring, so we should catch up eventually.
|
|
*/
|
|
static int
|
|
dc_rx_resync(struct dc_softc *sc)
|
|
{
|
|
struct dc_desc *cur_rx;
|
|
int i, pos;
|
|
|
|
pos = sc->dc_cdata.dc_rx_prod;
|
|
|
|
for (i = 0; i < DC_RX_LIST_CNT; i++) {
|
|
cur_rx = &sc->dc_ldata.dc_rx_list[pos];
|
|
if (!(le32toh(cur_rx->dc_status) & DC_RXSTAT_OWN))
|
|
break;
|
|
DC_INC(pos, DC_RX_LIST_CNT);
|
|
}
|
|
|
|
/* If the ring really is empty, then just return. */
|
|
if (i == DC_RX_LIST_CNT)
|
|
return (0);
|
|
|
|
/* We've fallen behing the chip: catch it. */
|
|
sc->dc_cdata.dc_rx_prod = pos;
|
|
|
|
return (EAGAIN);
|
|
}
|
|
|
|
static void
|
|
dc_discard_rxbuf(struct dc_softc *sc, int i)
|
|
{
|
|
struct mbuf *m;
|
|
|
|
if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
|
|
m = sc->dc_cdata.dc_rx_chain[i];
|
|
bzero(mtod(m, char *), m->m_len);
|
|
}
|
|
|
|
sc->dc_ldata.dc_rx_list[i].dc_ctl = htole32(DC_RXCTL_RLINK | DC_RXLEN);
|
|
sc->dc_ldata.dc_rx_list[i].dc_status = htole32(DC_RXSTAT_OWN);
|
|
bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_PREREAD |
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
/*
|
|
* A frame has been uploaded: pass the resulting mbuf chain up to
|
|
* the higher level protocols.
|
|
*/
|
|
static int
|
|
dc_rxeof(struct dc_softc *sc)
|
|
{
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct dc_desc *cur_rx;
|
|
int i, total_len, rx_npkts;
|
|
uint32_t rxstat;
|
|
|
|
DC_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->dc_ifp;
|
|
rx_npkts = 0;
|
|
|
|
bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap, BUS_DMASYNC_POSTREAD |
|
|
BUS_DMASYNC_POSTWRITE);
|
|
for (i = sc->dc_cdata.dc_rx_prod;
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
|
|
DC_INC(i, DC_RX_LIST_CNT)) {
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING) {
|
|
if (sc->rxcycles <= 0)
|
|
break;
|
|
sc->rxcycles--;
|
|
}
|
|
#endif
|
|
cur_rx = &sc->dc_ldata.dc_rx_list[i];
|
|
rxstat = le32toh(cur_rx->dc_status);
|
|
if ((rxstat & DC_RXSTAT_OWN) != 0)
|
|
break;
|
|
m = sc->dc_cdata.dc_rx_chain[i];
|
|
bus_dmamap_sync(sc->dc_rx_mtag, sc->dc_cdata.dc_rx_map[i],
|
|
BUS_DMASYNC_POSTREAD);
|
|
total_len = DC_RXBYTES(rxstat);
|
|
rx_npkts++;
|
|
|
|
if (sc->dc_flags & DC_PNIC_RX_BUG_WAR) {
|
|
if ((rxstat & DC_WHOLEFRAME) != DC_WHOLEFRAME) {
|
|
if (rxstat & DC_RXSTAT_FIRSTFRAG)
|
|
sc->dc_pnic_rx_bug_save = i;
|
|
if ((rxstat & DC_RXSTAT_LASTFRAG) == 0)
|
|
continue;
|
|
dc_pnic_rx_bug_war(sc, i);
|
|
rxstat = le32toh(cur_rx->dc_status);
|
|
total_len = DC_RXBYTES(rxstat);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If an error occurs, update stats, clear the
|
|
* status word and leave the mbuf cluster in place:
|
|
* it should simply get re-used next time this descriptor
|
|
* comes up in the ring. However, don't report long
|
|
* frames as errors since they could be vlans.
|
|
*/
|
|
if ((rxstat & DC_RXSTAT_RXERR)) {
|
|
if (!(rxstat & DC_RXSTAT_GIANT) ||
|
|
(rxstat & (DC_RXSTAT_CRCERR | DC_RXSTAT_DRIBBLE |
|
|
DC_RXSTAT_MIIERE | DC_RXSTAT_COLLSEEN |
|
|
DC_RXSTAT_RUNT | DC_RXSTAT_DE))) {
|
|
ifp->if_ierrors++;
|
|
if (rxstat & DC_RXSTAT_COLLSEEN)
|
|
ifp->if_collisions++;
|
|
dc_discard_rxbuf(sc, i);
|
|
if (rxstat & DC_RXSTAT_CRCERR)
|
|
continue;
|
|
else {
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
dc_init_locked(sc);
|
|
return (rx_npkts);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* No errors; receive the packet. */
|
|
total_len -= ETHER_CRC_LEN;
|
|
#ifdef __NO_STRICT_ALIGNMENT
|
|
/*
|
|
* On architectures without alignment problems we try to
|
|
* allocate a new buffer for the receive ring, and pass up
|
|
* the one where the packet is already, saving the expensive
|
|
* copy done in m_devget().
|
|
* If we are on an architecture with alignment problems, or
|
|
* if the allocation fails, then use m_devget and leave the
|
|
* existing buffer in the receive ring.
|
|
*/
|
|
if (dc_newbuf(sc, i) != 0) {
|
|
dc_discard_rxbuf(sc, i);
|
|
ifp->if_iqdrops++;
|
|
continue;
|
|
}
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = total_len;
|
|
#else
|
|
{
|
|
struct mbuf *m0;
|
|
|
|
m0 = m_devget(mtod(m, char *), total_len,
|
|
ETHER_ALIGN, ifp, NULL);
|
|
dc_discard_rxbuf(sc, i);
|
|
if (m0 == NULL) {
|
|
ifp->if_iqdrops++;
|
|
continue;
|
|
}
|
|
m = m0;
|
|
}
|
|
#endif
|
|
|
|
ifp->if_ipackets++;
|
|
DC_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
DC_LOCK(sc);
|
|
}
|
|
|
|
sc->dc_cdata.dc_rx_prod = i;
|
|
return (rx_npkts);
|
|
}
|
|
|
|
/*
|
|
* A frame was downloaded to the chip. It's safe for us to clean up
|
|
* the list buffers.
|
|
*/
|
|
static void
|
|
dc_txeof(struct dc_softc *sc)
|
|
{
|
|
struct dc_desc *cur_tx;
|
|
struct ifnet *ifp;
|
|
int idx, setup;
|
|
uint32_t ctl, txstat;
|
|
|
|
if (sc->dc_cdata.dc_tx_cnt == 0)
|
|
return;
|
|
|
|
ifp = sc->dc_ifp;
|
|
|
|
/*
|
|
* Go through our tx list and free mbufs for those
|
|
* frames that have been transmitted.
|
|
*/
|
|
bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_tx_lmap, BUS_DMASYNC_POSTREAD |
|
|
BUS_DMASYNC_POSTWRITE);
|
|
setup = 0;
|
|
for (idx = sc->dc_cdata.dc_tx_cons; idx != sc->dc_cdata.dc_tx_prod;
|
|
DC_INC(idx, DC_TX_LIST_CNT), sc->dc_cdata.dc_tx_cnt--) {
|
|
cur_tx = &sc->dc_ldata.dc_tx_list[idx];
|
|
txstat = le32toh(cur_tx->dc_status);
|
|
ctl = le32toh(cur_tx->dc_ctl);
|
|
|
|
if (txstat & DC_TXSTAT_OWN)
|
|
break;
|
|
|
|
if (sc->dc_cdata.dc_tx_chain[idx] == NULL)
|
|
continue;
|
|
|
|
if (ctl & DC_TXCTL_SETUP) {
|
|
cur_tx->dc_ctl = htole32(ctl & ~DC_TXCTL_SETUP);
|
|
setup++;
|
|
bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
/*
|
|
* Yes, the PNIC is so brain damaged
|
|
* that it will sometimes generate a TX
|
|
* underrun error while DMAing the RX
|
|
* filter setup frame. If we detect this,
|
|
* we have to send the setup frame again,
|
|
* or else the filter won't be programmed
|
|
* correctly.
|
|
*/
|
|
if (DC_IS_PNIC(sc)) {
|
|
if (txstat & DC_TXSTAT_ERRSUM)
|
|
dc_setfilt(sc);
|
|
}
|
|
sc->dc_cdata.dc_tx_chain[idx] = NULL;
|
|
continue;
|
|
}
|
|
|
|
if (DC_IS_XIRCOM(sc) || DC_IS_CONEXANT(sc)) {
|
|
/*
|
|
* XXX: Why does my Xircom taunt me so?
|
|
* For some reason it likes setting the CARRLOST flag
|
|
* even when the carrier is there. wtf?!?
|
|
* Who knows, but Conexant chips have the
|
|
* same problem. Maybe they took lessons
|
|
* from Xircom.
|
|
*/
|
|
if (/*sc->dc_type == DC_TYPE_21143 &&*/
|
|
sc->dc_pmode == DC_PMODE_MII &&
|
|
((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
|
|
DC_TXSTAT_NOCARRIER)))
|
|
txstat &= ~DC_TXSTAT_ERRSUM;
|
|
} else {
|
|
if (/*sc->dc_type == DC_TYPE_21143 &&*/
|
|
sc->dc_pmode == DC_PMODE_MII &&
|
|
((txstat & 0xFFFF) & ~(DC_TXSTAT_ERRSUM |
|
|
DC_TXSTAT_NOCARRIER | DC_TXSTAT_CARRLOST)))
|
|
txstat &= ~DC_TXSTAT_ERRSUM;
|
|
}
|
|
|
|
if (txstat & DC_TXSTAT_ERRSUM) {
|
|
ifp->if_oerrors++;
|
|
if (txstat & DC_TXSTAT_EXCESSCOLL)
|
|
ifp->if_collisions++;
|
|
if (txstat & DC_TXSTAT_LATECOLL)
|
|
ifp->if_collisions++;
|
|
if (!(txstat & DC_TXSTAT_UNDERRUN)) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
dc_init_locked(sc);
|
|
return;
|
|
}
|
|
} else
|
|
ifp->if_opackets++;
|
|
ifp->if_collisions += (txstat & DC_TXSTAT_COLLCNT) >> 3;
|
|
|
|
bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
|
|
m_freem(sc->dc_cdata.dc_tx_chain[idx]);
|
|
sc->dc_cdata.dc_tx_chain[idx] = NULL;
|
|
}
|
|
sc->dc_cdata.dc_tx_cons = idx;
|
|
|
|
if (sc->dc_cdata.dc_tx_cnt <= DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
if (sc->dc_cdata.dc_tx_cnt == 0)
|
|
sc->dc_wdog_timer = 0;
|
|
}
|
|
if (setup > 0)
|
|
bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static void
|
|
dc_tick(void *xsc)
|
|
{
|
|
struct dc_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifnet *ifp;
|
|
uint32_t r;
|
|
|
|
sc = xsc;
|
|
DC_LOCK_ASSERT(sc);
|
|
ifp = sc->dc_ifp;
|
|
mii = device_get_softc(sc->dc_miibus);
|
|
|
|
/*
|
|
* Reclaim transmitted frames for controllers that do
|
|
* not generate TX completion interrupt for every frame.
|
|
*/
|
|
if (sc->dc_flags & DC_TX_USE_TX_INTR)
|
|
dc_txeof(sc);
|
|
|
|
if (sc->dc_flags & DC_REDUCED_MII_POLL) {
|
|
if (sc->dc_flags & DC_21143_NWAY) {
|
|
r = CSR_READ_4(sc, DC_10BTSTAT);
|
|
if (IFM_SUBTYPE(mii->mii_media_active) ==
|
|
IFM_100_TX && (r & DC_TSTAT_LS100)) {
|
|
sc->dc_link = 0;
|
|
mii_mediachg(mii);
|
|
}
|
|
if (IFM_SUBTYPE(mii->mii_media_active) ==
|
|
IFM_10_T && (r & DC_TSTAT_LS10)) {
|
|
sc->dc_link = 0;
|
|
mii_mediachg(mii);
|
|
}
|
|
if (sc->dc_link == 0)
|
|
mii_tick(mii);
|
|
} else {
|
|
/*
|
|
* For NICs which never report DC_RXSTATE_WAIT, we
|
|
* have to bite the bullet...
|
|
*/
|
|
if ((DC_HAS_BROKEN_RXSTATE(sc) || (CSR_READ_4(sc,
|
|
DC_ISR) & DC_ISR_RX_STATE) == DC_RXSTATE_WAIT) &&
|
|
sc->dc_cdata.dc_tx_cnt == 0)
|
|
mii_tick(mii);
|
|
}
|
|
} else
|
|
mii_tick(mii);
|
|
|
|
/*
|
|
* When the init routine completes, we expect to be able to send
|
|
* packets right away, and in fact the network code will send a
|
|
* gratuitous ARP the moment the init routine marks the interface
|
|
* as running. However, even though the MAC may have been initialized,
|
|
* there may be a delay of a few seconds before the PHY completes
|
|
* autonegotiation and the link is brought up. Any transmissions
|
|
* made during that delay will be lost. Dealing with this is tricky:
|
|
* we can't just pause in the init routine while waiting for the
|
|
* PHY to come ready since that would bring the whole system to
|
|
* a screeching halt for several seconds.
|
|
*
|
|
* What we do here is prevent the TX start routine from sending
|
|
* any packets until a link has been established. After the
|
|
* interface has been initialized, the tick routine will poll
|
|
* the state of the PHY until the IFM_ACTIVE flag is set. Until
|
|
* that time, packets will stay in the send queue, and once the
|
|
* link comes up, they will be flushed out to the wire.
|
|
*/
|
|
if (sc->dc_link != 0 && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
dc_start_locked(ifp);
|
|
|
|
if (sc->dc_flags & DC_21143_NWAY && !sc->dc_link)
|
|
callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
|
|
else
|
|
callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* A transmit underrun has occurred. Back off the transmit threshold,
|
|
* or switch to store and forward mode if we have to.
|
|
*/
|
|
static void
|
|
dc_tx_underrun(struct dc_softc *sc)
|
|
{
|
|
uint32_t netcfg, isr;
|
|
int i, reinit;
|
|
|
|
reinit = 0;
|
|
netcfg = CSR_READ_4(sc, DC_NETCFG);
|
|
device_printf(sc->dc_dev, "TX underrun -- ");
|
|
if ((sc->dc_flags & DC_TX_STORENFWD) == 0) {
|
|
if (sc->dc_txthresh + DC_TXTHRESH_INC > DC_TXTHRESH_MAX) {
|
|
printf("using store and forward mode\n");
|
|
netcfg |= DC_NETCFG_STORENFWD;
|
|
} else {
|
|
printf("increasing TX threshold\n");
|
|
sc->dc_txthresh += DC_TXTHRESH_INC;
|
|
netcfg &= ~DC_NETCFG_TX_THRESH;
|
|
netcfg |= sc->dc_txthresh;
|
|
}
|
|
|
|
if (DC_IS_INTEL(sc)) {
|
|
/*
|
|
* The real 21143 requires that the transmitter be idle
|
|
* in order to change the transmit threshold or store
|
|
* and forward state.
|
|
*/
|
|
CSR_WRITE_4(sc, DC_NETCFG, netcfg & ~DC_NETCFG_TX_ON);
|
|
|
|
for (i = 0; i < DC_TIMEOUT; i++) {
|
|
isr = CSR_READ_4(sc, DC_ISR);
|
|
if (isr & DC_ISR_TX_IDLE)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (i == DC_TIMEOUT) {
|
|
device_printf(sc->dc_dev,
|
|
"%s: failed to force tx to idle state\n",
|
|
__func__);
|
|
reinit++;
|
|
}
|
|
}
|
|
} else {
|
|
printf("resetting\n");
|
|
reinit++;
|
|
}
|
|
|
|
if (reinit == 0) {
|
|
CSR_WRITE_4(sc, DC_NETCFG, netcfg);
|
|
if (DC_IS_INTEL(sc))
|
|
CSR_WRITE_4(sc, DC_NETCFG, netcfg | DC_NETCFG_TX_ON);
|
|
} else {
|
|
sc->dc_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
dc_init_locked(sc);
|
|
}
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static poll_handler_t dc_poll;
|
|
|
|
static int
|
|
dc_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct dc_softc *sc = ifp->if_softc;
|
|
int rx_npkts = 0;
|
|
|
|
DC_LOCK(sc);
|
|
|
|
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
|
|
DC_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
|
|
sc->rxcycles = count;
|
|
rx_npkts = dc_rxeof(sc);
|
|
dc_txeof(sc);
|
|
if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
|
|
!(ifp->if_drv_flags & IFF_DRV_OACTIVE))
|
|
dc_start_locked(ifp);
|
|
|
|
if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
|
|
uint32_t status;
|
|
|
|
status = CSR_READ_4(sc, DC_ISR);
|
|
status &= (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF |
|
|
DC_ISR_TX_NOBUF | DC_ISR_TX_IDLE | DC_ISR_TX_UNDERRUN |
|
|
DC_ISR_BUS_ERR);
|
|
if (!status) {
|
|
DC_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
/* ack what we have */
|
|
CSR_WRITE_4(sc, DC_ISR, status);
|
|
|
|
if (status & (DC_ISR_RX_WATDOGTIMEO | DC_ISR_RX_NOBUF)) {
|
|
uint32_t r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
|
|
ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
|
|
|
|
if (dc_rx_resync(sc))
|
|
dc_rxeof(sc);
|
|
}
|
|
/* restart transmit unit if necessary */
|
|
if (status & DC_ISR_TX_IDLE && sc->dc_cdata.dc_tx_cnt)
|
|
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
|
|
|
|
if (status & DC_ISR_TX_UNDERRUN)
|
|
dc_tx_underrun(sc);
|
|
|
|
if (status & DC_ISR_BUS_ERR) {
|
|
if_printf(ifp, "%s: bus error\n", __func__);
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
dc_init_locked(sc);
|
|
}
|
|
}
|
|
DC_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
static void
|
|
dc_intr(void *arg)
|
|
{
|
|
struct dc_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint32_t r, status;
|
|
int n;
|
|
|
|
sc = arg;
|
|
|
|
if (sc->suspended)
|
|
return;
|
|
|
|
DC_LOCK(sc);
|
|
status = CSR_READ_4(sc, DC_ISR);
|
|
if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0) {
|
|
DC_UNLOCK(sc);
|
|
return;
|
|
}
|
|
ifp = sc->dc_ifp;
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING) {
|
|
DC_UNLOCK(sc);
|
|
return;
|
|
}
|
|
#endif
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
|
|
|
|
for (n = 16; n > 0; n--) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
break;
|
|
/* Ack interrupts. */
|
|
CSR_WRITE_4(sc, DC_ISR, status);
|
|
|
|
if (status & DC_ISR_RX_OK) {
|
|
if (dc_rxeof(sc) == 0) {
|
|
while (dc_rx_resync(sc))
|
|
dc_rxeof(sc);
|
|
}
|
|
}
|
|
|
|
if (status & (DC_ISR_TX_OK | DC_ISR_TX_NOBUF))
|
|
dc_txeof(sc);
|
|
|
|
if (status & DC_ISR_TX_IDLE) {
|
|
dc_txeof(sc);
|
|
if (sc->dc_cdata.dc_tx_cnt) {
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
|
|
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
|
|
}
|
|
}
|
|
|
|
if (status & DC_ISR_TX_UNDERRUN)
|
|
dc_tx_underrun(sc);
|
|
|
|
if ((status & DC_ISR_RX_WATDOGTIMEO)
|
|
|| (status & DC_ISR_RX_NOBUF)) {
|
|
r = CSR_READ_4(sc, DC_FRAMESDISCARDED);
|
|
ifp->if_ierrors += (r & 0xffff) + ((r >> 17) & 0x7ff);
|
|
if (dc_rxeof(sc) == 0) {
|
|
while (dc_rx_resync(sc))
|
|
dc_rxeof(sc);
|
|
}
|
|
}
|
|
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
dc_start_locked(ifp);
|
|
|
|
if (status & DC_ISR_BUS_ERR) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
dc_init_locked(sc);
|
|
DC_UNLOCK(sc);
|
|
return;
|
|
}
|
|
status = CSR_READ_4(sc, DC_ISR);
|
|
if (status == 0xFFFFFFFF || (status & DC_INTRS) == 0)
|
|
break;
|
|
}
|
|
|
|
/* Re-enable interrupts. */
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
|
|
|
|
DC_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
|
|
* pointers to the fragment pointers.
|
|
*/
|
|
static int
|
|
dc_encap(struct dc_softc *sc, struct mbuf **m_head)
|
|
{
|
|
bus_dma_segment_t segs[DC_MAXFRAGS];
|
|
bus_dmamap_t map;
|
|
struct dc_desc *f;
|
|
struct mbuf *m;
|
|
int cur, defragged, error, first, frag, i, idx, nseg;
|
|
|
|
m = NULL;
|
|
defragged = 0;
|
|
if (sc->dc_flags & DC_TX_COALESCE &&
|
|
((*m_head)->m_next != NULL || sc->dc_flags & DC_TX_ALIGN)) {
|
|
m = m_defrag(*m_head, M_DONTWAIT);
|
|
defragged = 1;
|
|
} else {
|
|
/*
|
|
* Count the number of frags in this chain to see if we
|
|
* need to m_collapse. Since the descriptor list is shared
|
|
* by all packets, we'll m_collapse long chains so that they
|
|
* do not use up the entire list, even if they would fit.
|
|
*/
|
|
i = 0;
|
|
for (m = *m_head; m != NULL; m = m->m_next)
|
|
i++;
|
|
if (i > DC_TX_LIST_CNT / 4 ||
|
|
DC_TX_LIST_CNT - i + sc->dc_cdata.dc_tx_cnt <=
|
|
DC_TX_LIST_RSVD) {
|
|
m = m_collapse(*m_head, M_DONTWAIT, DC_MAXFRAGS);
|
|
defragged = 1;
|
|
}
|
|
}
|
|
if (defragged != 0) {
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
}
|
|
|
|
idx = sc->dc_cdata.dc_tx_prod;
|
|
error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
|
|
sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
|
|
if (error == EFBIG) {
|
|
if (defragged != 0 || (m = m_collapse(*m_head, M_DONTWAIT,
|
|
DC_MAXFRAGS)) == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (defragged != 0 ? error : ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->dc_tx_mtag,
|
|
sc->dc_cdata.dc_tx_map[idx], *m_head, segs, &nseg, 0);
|
|
if (error != 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
KASSERT(nseg <= DC_MAXFRAGS,
|
|
("%s: wrong number of segments (%d)", __func__, nseg));
|
|
if (nseg == 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (EIO);
|
|
}
|
|
|
|
/* Check descriptor overruns. */
|
|
if (sc->dc_cdata.dc_tx_cnt + nseg > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
|
|
bus_dmamap_unload(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx]);
|
|
return (ENOBUFS);
|
|
}
|
|
bus_dmamap_sync(sc->dc_tx_mtag, sc->dc_cdata.dc_tx_map[idx],
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
first = cur = frag = sc->dc_cdata.dc_tx_prod;
|
|
for (i = 0; i < nseg; i++) {
|
|
if ((sc->dc_flags & DC_TX_ADMTEK_WAR) &&
|
|
(frag == (DC_TX_LIST_CNT - 1)) &&
|
|
(first != sc->dc_cdata.dc_tx_first)) {
|
|
bus_dmamap_unload(sc->dc_tx_mtag,
|
|
sc->dc_cdata.dc_tx_map[first]);
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
f = &sc->dc_ldata.dc_tx_list[frag];
|
|
f->dc_ctl = htole32(DC_TXCTL_TLINK | segs[i].ds_len);
|
|
if (i == 0) {
|
|
f->dc_status = 0;
|
|
f->dc_ctl |= htole32(DC_TXCTL_FIRSTFRAG);
|
|
} else
|
|
f->dc_status = htole32(DC_TXSTAT_OWN);
|
|
f->dc_data = htole32(DC_ADDR_LO(segs[i].ds_addr));
|
|
cur = frag;
|
|
DC_INC(frag, DC_TX_LIST_CNT);
|
|
}
|
|
|
|
sc->dc_cdata.dc_tx_prod = frag;
|
|
sc->dc_cdata.dc_tx_cnt += nseg;
|
|
sc->dc_cdata.dc_tx_chain[cur] = *m_head;
|
|
sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_LASTFRAG);
|
|
if (sc->dc_flags & DC_TX_INTR_FIRSTFRAG)
|
|
sc->dc_ldata.dc_tx_list[first].dc_ctl |=
|
|
htole32(DC_TXCTL_FINT);
|
|
if (sc->dc_flags & DC_TX_INTR_ALWAYS)
|
|
sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
|
|
if (sc->dc_flags & DC_TX_USE_TX_INTR &&
|
|
++sc->dc_cdata.dc_tx_pkts >= 8) {
|
|
sc->dc_cdata.dc_tx_pkts = 0;
|
|
sc->dc_ldata.dc_tx_list[cur].dc_ctl |= htole32(DC_TXCTL_FINT);
|
|
}
|
|
sc->dc_ldata.dc_tx_list[first].dc_status = htole32(DC_TXSTAT_OWN);
|
|
|
|
bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Swap the last and the first dmamaps to ensure the map for
|
|
* this transmission is placed at the last descriptor.
|
|
*/
|
|
map = sc->dc_cdata.dc_tx_map[cur];
|
|
sc->dc_cdata.dc_tx_map[cur] = sc->dc_cdata.dc_tx_map[first];
|
|
sc->dc_cdata.dc_tx_map[first] = map;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
dc_start(struct ifnet *ifp)
|
|
{
|
|
struct dc_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
DC_LOCK(sc);
|
|
dc_start_locked(ifp);
|
|
DC_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine
|
|
* To avoid having to do mbuf copies, we put pointers to the mbuf data
|
|
* regions directly in the transmit lists. We also save a copy of the
|
|
* pointers since the transmit list fragment pointers are physical
|
|
* addresses.
|
|
*/
|
|
static void
|
|
dc_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct dc_softc *sc;
|
|
struct mbuf *m_head;
|
|
int queued;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
DC_LOCK_ASSERT(sc);
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING || sc->dc_link == 0)
|
|
return;
|
|
|
|
sc->dc_cdata.dc_tx_first = sc->dc_cdata.dc_tx_prod;
|
|
|
|
for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
|
|
/*
|
|
* If there's no way we can send any packets, return now.
|
|
*/
|
|
if (sc->dc_cdata.dc_tx_cnt > DC_TX_LIST_CNT - DC_TX_LIST_RSVD) {
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
if (dc_encap(sc, &m_head)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
queued++;
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
BPF_MTAP(ifp, m_head);
|
|
}
|
|
|
|
if (queued > 0) {
|
|
/* Transmit */
|
|
if (!(sc->dc_flags & DC_TX_POLL))
|
|
CSR_WRITE_4(sc, DC_TXSTART, 0xFFFFFFFF);
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
sc->dc_wdog_timer = 5;
|
|
}
|
|
}
|
|
|
|
static void
|
|
dc_init(void *xsc)
|
|
{
|
|
struct dc_softc *sc = xsc;
|
|
|
|
DC_LOCK(sc);
|
|
dc_init_locked(sc);
|
|
DC_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
dc_init_locked(struct dc_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->dc_ifp;
|
|
struct mii_data *mii;
|
|
struct ifmedia *ifm;
|
|
|
|
DC_LOCK_ASSERT(sc);
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
return;
|
|
|
|
mii = device_get_softc(sc->dc_miibus);
|
|
|
|
/*
|
|
* Cancel pending I/O and free all RX/TX buffers.
|
|
*/
|
|
dc_stop(sc);
|
|
dc_reset(sc);
|
|
if (DC_IS_INTEL(sc)) {
|
|
ifm = &mii->mii_media;
|
|
dc_apply_fixup(sc, ifm->ifm_media);
|
|
}
|
|
|
|
/*
|
|
* Set cache alignment and burst length.
|
|
*/
|
|
if (DC_IS_ASIX(sc) || DC_IS_DAVICOM(sc))
|
|
CSR_WRITE_4(sc, DC_BUSCTL, 0);
|
|
else
|
|
CSR_WRITE_4(sc, DC_BUSCTL, DC_BUSCTL_MRME | DC_BUSCTL_MRLE);
|
|
/*
|
|
* Evenly share the bus between receive and transmit process.
|
|
*/
|
|
if (DC_IS_INTEL(sc))
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_BUSCTL_ARBITRATION);
|
|
if (DC_IS_DAVICOM(sc) || DC_IS_INTEL(sc)) {
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_USECA);
|
|
} else {
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_BURSTLEN_16LONG);
|
|
}
|
|
if (sc->dc_flags & DC_TX_POLL)
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_TXPOLL_1);
|
|
switch(sc->dc_cachesize) {
|
|
case 32:
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_32LONG);
|
|
break;
|
|
case 16:
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_16LONG);
|
|
break;
|
|
case 8:
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_8LONG);
|
|
break;
|
|
case 0:
|
|
default:
|
|
DC_SETBIT(sc, DC_BUSCTL, DC_CACHEALIGN_NONE);
|
|
break;
|
|
}
|
|
|
|
if (sc->dc_flags & DC_TX_STORENFWD)
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
|
|
else {
|
|
if (sc->dc_txthresh > DC_TXTHRESH_MAX) {
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
|
|
} else {
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_STORENFWD);
|
|
DC_SETBIT(sc, DC_NETCFG, sc->dc_txthresh);
|
|
}
|
|
}
|
|
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_NO_RXCRC);
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_BACKOFF);
|
|
|
|
if (DC_IS_MACRONIX(sc) || DC_IS_PNICII(sc)) {
|
|
/*
|
|
* The app notes for the 98713 and 98715A say that
|
|
* in order to have the chips operate properly, a magic
|
|
* number must be written to CSR16. Macronix does not
|
|
* document the meaning of these bits so there's no way
|
|
* to know exactly what they do. The 98713 has a magic
|
|
* number all its own; the rest all use a different one.
|
|
*/
|
|
DC_CLRBIT(sc, DC_MX_MAGICPACKET, 0xFFFF0000);
|
|
if (sc->dc_type == DC_TYPE_98713)
|
|
DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98713);
|
|
else
|
|
DC_SETBIT(sc, DC_MX_MAGICPACKET, DC_MX_MAGIC_98715);
|
|
}
|
|
|
|
if (DC_IS_XIRCOM(sc)) {
|
|
/*
|
|
* setup General Purpose Port mode and data so the tulip
|
|
* can talk to the MII.
|
|
*/
|
|
CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_WRITE_EN | DC_SIAGP_INT1_EN |
|
|
DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
|
|
DELAY(10);
|
|
CSR_WRITE_4(sc, DC_SIAGP, DC_SIAGP_INT1_EN |
|
|
DC_SIAGP_MD_GP2_OUTPUT | DC_SIAGP_MD_GP0_OUTPUT);
|
|
DELAY(10);
|
|
}
|
|
|
|
DC_CLRBIT(sc, DC_NETCFG, DC_NETCFG_TX_THRESH);
|
|
DC_SETBIT(sc, DC_NETCFG, DC_TXTHRESH_MIN);
|
|
|
|
/* Init circular RX list. */
|
|
if (dc_list_rx_init(sc) == ENOBUFS) {
|
|
device_printf(sc->dc_dev,
|
|
"initialization failed: no memory for rx buffers\n");
|
|
dc_stop(sc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Init TX descriptors.
|
|
*/
|
|
dc_list_tx_init(sc);
|
|
|
|
/*
|
|
* Load the address of the RX list.
|
|
*/
|
|
CSR_WRITE_4(sc, DC_RXADDR, DC_RXDESC(sc, 0));
|
|
CSR_WRITE_4(sc, DC_TXADDR, DC_TXDESC(sc, 0));
|
|
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
#ifdef DEVICE_POLLING
|
|
/*
|
|
* ... but only if we are not polling, and make sure they are off in
|
|
* the case of polling. Some cards (e.g. fxp) turn interrupts on
|
|
* after a reset.
|
|
*/
|
|
if (ifp->if_capenable & IFCAP_POLLING)
|
|
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
|
|
else
|
|
#endif
|
|
CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
|
|
CSR_WRITE_4(sc, DC_ISR, 0xFFFFFFFF);
|
|
|
|
/* Enable transmitter. */
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_TX_ON);
|
|
|
|
/*
|
|
* If this is an Intel 21143 and we're not using the
|
|
* MII port, program the LED control pins so we get
|
|
* link and activity indications.
|
|
*/
|
|
if (sc->dc_flags & DC_TULIP_LEDS) {
|
|
CSR_WRITE_4(sc, DC_WATCHDOG,
|
|
DC_WDOG_CTLWREN | DC_WDOG_LINK | DC_WDOG_ACTIVITY);
|
|
CSR_WRITE_4(sc, DC_WATCHDOG, 0);
|
|
}
|
|
|
|
/*
|
|
* Load the RX/multicast filter. We do this sort of late
|
|
* because the filter programming scheme on the 21143 and
|
|
* some clones requires DMAing a setup frame via the TX
|
|
* engine, and we need the transmitter enabled for that.
|
|
*/
|
|
dc_setfilt(sc);
|
|
|
|
/* Enable receiver. */
|
|
DC_SETBIT(sc, DC_NETCFG, DC_NETCFG_RX_ON);
|
|
CSR_WRITE_4(sc, DC_RXSTART, 0xFFFFFFFF);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
mii_mediachg(mii);
|
|
dc_setcfg(sc, sc->dc_if_media);
|
|
|
|
/* Clear missed frames and overflow counter. */
|
|
CSR_READ_4(sc, DC_FRAMESDISCARDED);
|
|
|
|
/* Don't start the ticker if this is a homePNA link. */
|
|
if (IFM_SUBTYPE(mii->mii_media.ifm_media) == IFM_HPNA_1)
|
|
sc->dc_link = 1;
|
|
else {
|
|
if (sc->dc_flags & DC_21143_NWAY)
|
|
callout_reset(&sc->dc_stat_ch, hz/10, dc_tick, sc);
|
|
else
|
|
callout_reset(&sc->dc_stat_ch, hz, dc_tick, sc);
|
|
}
|
|
|
|
sc->dc_wdog_timer = 0;
|
|
callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int
|
|
dc_ifmedia_upd(struct ifnet *ifp)
|
|
{
|
|
struct dc_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifmedia *ifm;
|
|
|
|
sc = ifp->if_softc;
|
|
mii = device_get_softc(sc->dc_miibus);
|
|
DC_LOCK(sc);
|
|
mii_mediachg(mii);
|
|
ifm = &mii->mii_media;
|
|
|
|
if (DC_IS_INTEL(sc))
|
|
dc_setcfg(sc, ifm->ifm_media);
|
|
else if (DC_IS_DAVICOM(sc) &&
|
|
IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1)
|
|
dc_setcfg(sc, ifm->ifm_media);
|
|
else
|
|
sc->dc_link = 0;
|
|
DC_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void
|
|
dc_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct dc_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifmedia *ifm;
|
|
|
|
sc = ifp->if_softc;
|
|
mii = device_get_softc(sc->dc_miibus);
|
|
DC_LOCK(sc);
|
|
mii_pollstat(mii);
|
|
ifm = &mii->mii_media;
|
|
if (DC_IS_DAVICOM(sc)) {
|
|
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_HPNA_1) {
|
|
ifmr->ifm_active = ifm->ifm_media;
|
|
ifmr->ifm_status = 0;
|
|
DC_UNLOCK(sc);
|
|
return;
|
|
}
|
|
}
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
DC_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
dc_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct dc_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
struct mii_data *mii;
|
|
int error = 0;
|
|
|
|
switch (command) {
|
|
case SIOCSIFFLAGS:
|
|
DC_LOCK(sc);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
int need_setfilt = (ifp->if_flags ^ sc->dc_if_flags) &
|
|
(IFF_PROMISC | IFF_ALLMULTI);
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
if (need_setfilt)
|
|
dc_setfilt(sc);
|
|
} else {
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
dc_init_locked(sc);
|
|
}
|
|
} else {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
dc_stop(sc);
|
|
}
|
|
sc->dc_if_flags = ifp->if_flags;
|
|
DC_UNLOCK(sc);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
DC_LOCK(sc);
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
dc_setfilt(sc);
|
|
DC_UNLOCK(sc);
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
mii = device_get_softc(sc->dc_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
#ifdef DEVICE_POLLING
|
|
if (ifr->ifr_reqcap & IFCAP_POLLING &&
|
|
!(ifp->if_capenable & IFCAP_POLLING)) {
|
|
error = ether_poll_register(dc_poll, ifp);
|
|
if (error)
|
|
return(error);
|
|
DC_LOCK(sc);
|
|
/* Disable interrupts */
|
|
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
|
|
ifp->if_capenable |= IFCAP_POLLING;
|
|
DC_UNLOCK(sc);
|
|
return (error);
|
|
}
|
|
if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
|
|
ifp->if_capenable & IFCAP_POLLING) {
|
|
error = ether_poll_deregister(ifp);
|
|
/* Enable interrupts. */
|
|
DC_LOCK(sc);
|
|
CSR_WRITE_4(sc, DC_IMR, DC_INTRS);
|
|
ifp->if_capenable &= ~IFCAP_POLLING;
|
|
DC_UNLOCK(sc);
|
|
return (error);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
dc_watchdog(void *xsc)
|
|
{
|
|
struct dc_softc *sc = xsc;
|
|
struct ifnet *ifp;
|
|
|
|
DC_LOCK_ASSERT(sc);
|
|
|
|
if (sc->dc_wdog_timer == 0 || --sc->dc_wdog_timer != 0) {
|
|
callout_reset(&sc->dc_wdog_ch, hz, dc_watchdog, sc);
|
|
return;
|
|
}
|
|
|
|
ifp = sc->dc_ifp;
|
|
ifp->if_oerrors++;
|
|
device_printf(sc->dc_dev, "watchdog timeout\n");
|
|
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
dc_init_locked(sc);
|
|
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
dc_start_locked(ifp);
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
static void
|
|
dc_stop(struct dc_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct dc_list_data *ld;
|
|
struct dc_chain_data *cd;
|
|
int i;
|
|
uint32_t ctl, netcfg;
|
|
|
|
DC_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->dc_ifp;
|
|
ld = &sc->dc_ldata;
|
|
cd = &sc->dc_cdata;
|
|
|
|
callout_stop(&sc->dc_stat_ch);
|
|
callout_stop(&sc->dc_wdog_ch);
|
|
sc->dc_wdog_timer = 0;
|
|
sc->dc_link = 0;
|
|
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
|
|
netcfg = CSR_READ_4(sc, DC_NETCFG);
|
|
if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
|
|
CSR_WRITE_4(sc, DC_NETCFG,
|
|
netcfg & ~(DC_NETCFG_RX_ON | DC_NETCFG_TX_ON));
|
|
CSR_WRITE_4(sc, DC_IMR, 0x00000000);
|
|
/* Wait the completion of TX/RX SM. */
|
|
if (netcfg & (DC_NETCFG_RX_ON | DC_NETCFG_TX_ON))
|
|
dc_netcfg_wait(sc);
|
|
|
|
CSR_WRITE_4(sc, DC_TXADDR, 0x00000000);
|
|
CSR_WRITE_4(sc, DC_RXADDR, 0x00000000);
|
|
|
|
/*
|
|
* Free data in the RX lists.
|
|
*/
|
|
for (i = 0; i < DC_RX_LIST_CNT; i++) {
|
|
if (cd->dc_rx_chain[i] != NULL) {
|
|
bus_dmamap_sync(sc->dc_rx_mtag,
|
|
cd->dc_rx_map[i], BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->dc_rx_mtag,
|
|
cd->dc_rx_map[i]);
|
|
m_freem(cd->dc_rx_chain[i]);
|
|
cd->dc_rx_chain[i] = NULL;
|
|
}
|
|
}
|
|
bzero(ld->dc_rx_list, DC_RX_LIST_SZ);
|
|
bus_dmamap_sync(sc->dc_rx_ltag, sc->dc_rx_lmap,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Free the TX list buffers.
|
|
*/
|
|
for (i = 0; i < DC_TX_LIST_CNT; i++) {
|
|
if (cd->dc_tx_chain[i] != NULL) {
|
|
ctl = le32toh(ld->dc_tx_list[i].dc_ctl);
|
|
if (ctl & DC_TXCTL_SETUP) {
|
|
bus_dmamap_sync(sc->dc_stag, sc->dc_smap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
} else {
|
|
bus_dmamap_sync(sc->dc_tx_mtag,
|
|
cd->dc_tx_map[i], BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->dc_tx_mtag,
|
|
cd->dc_tx_map[i]);
|
|
m_freem(cd->dc_tx_chain[i]);
|
|
}
|
|
cd->dc_tx_chain[i] = NULL;
|
|
}
|
|
}
|
|
bzero(ld->dc_tx_list, DC_TX_LIST_SZ);
|
|
bus_dmamap_sync(sc->dc_tx_ltag, sc->dc_tx_lmap,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
/*
|
|
* Device suspend routine. Stop the interface and save some PCI
|
|
* settings in case the BIOS doesn't restore them properly on
|
|
* resume.
|
|
*/
|
|
static int
|
|
dc_suspend(device_t dev)
|
|
{
|
|
struct dc_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
DC_LOCK(sc);
|
|
dc_stop(sc);
|
|
sc->suspended = 1;
|
|
DC_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Device resume routine. Restore some PCI settings in case the BIOS
|
|
* doesn't, re-enable busmastering, and restart the interface if
|
|
* appropriate.
|
|
*/
|
|
static int
|
|
dc_resume(device_t dev)
|
|
{
|
|
struct dc_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
ifp = sc->dc_ifp;
|
|
|
|
/* reinitialize interface if necessary */
|
|
DC_LOCK(sc);
|
|
if (ifp->if_flags & IFF_UP)
|
|
dc_init_locked(sc);
|
|
|
|
sc->suspended = 0;
|
|
DC_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
* get confused by errant DMAs when rebooting.
|
|
*/
|
|
static int
|
|
dc_shutdown(device_t dev)
|
|
{
|
|
struct dc_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
DC_LOCK(sc);
|
|
dc_stop(sc);
|
|
DC_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
dc_check_multiport(struct dc_softc *sc)
|
|
{
|
|
struct dc_softc *dsc;
|
|
devclass_t dc;
|
|
device_t child;
|
|
uint8_t *eaddr;
|
|
int unit;
|
|
|
|
dc = devclass_find("dc");
|
|
for (unit = 0; unit < devclass_get_maxunit(dc); unit++) {
|
|
child = devclass_get_device(dc, unit);
|
|
if (child == NULL)
|
|
continue;
|
|
if (child == sc->dc_dev)
|
|
continue;
|
|
if (device_get_parent(child) != device_get_parent(sc->dc_dev))
|
|
continue;
|
|
if (unit > device_get_unit(sc->dc_dev))
|
|
continue;
|
|
if (device_is_attached(child) == 0)
|
|
continue;
|
|
dsc = device_get_softc(child);
|
|
device_printf(sc->dc_dev,
|
|
"Using station address of %s as base\n",
|
|
device_get_nameunit(child));
|
|
bcopy(dsc->dc_eaddr, sc->dc_eaddr, ETHER_ADDR_LEN);
|
|
eaddr = (uint8_t *)sc->dc_eaddr;
|
|
eaddr[5]++;
|
|
/* Prepare SROM to parse again. */
|
|
if (DC_IS_INTEL(sc) && dsc->dc_srom != NULL &&
|
|
sc->dc_romwidth != 0) {
|
|
free(sc->dc_srom, M_DEVBUF);
|
|
sc->dc_romwidth = dsc->dc_romwidth;
|
|
sc->dc_srom = malloc(DC_ROM_SIZE(sc->dc_romwidth),
|
|
M_DEVBUF, M_NOWAIT);
|
|
if (sc->dc_srom == NULL) {
|
|
device_printf(sc->dc_dev,
|
|
"Could not allocate SROM buffer\n");
|
|
return (ENOMEM);
|
|
}
|
|
bcopy(dsc->dc_srom, sc->dc_srom,
|
|
DC_ROM_SIZE(sc->dc_romwidth));
|
|
}
|
|
return (0);
|
|
}
|
|
return (ENOENT);
|
|
}
|