freebsd-skq/sys/dev/mpt/mpt_pci.c
scottl 9126bcda9d Massive overhaul of MPT Fusion driver:
o Add timeout error recovery (from a thread context to avoid
  the deferral of other critical interrupts).
o Properly recover commands across controller reset events.
o Update the driver to handle events and status codes that
  have been added to the MPI spec since the driver was
  originally written.
o Make the driver more modular to improve maintainability and
  support dynamic "personality" registration (e.g. SCSI Initiator,
  RAID, SAS, FC, etc).
o Shorten and simplify the common I/O path to improve driver
  performance.
o Add RAID volume and RAID member state/settings reporting.
o Add periodic volume resynchronization status reporting.
o Add support for sysctl tunable resync rate, member write cache
  enable, and volume transaction queue depth.

Sponsored by
----------------
Avid Technologies Inc:
	SCSI error recovery, driver re-organization, update of MPI library
	headers, portions of dynamic personality registration, and misc bug
	fixes.

Wheel Open Technologies:
	RAID event notification, RAID member pass-thru support, firmware
	upload/download support, enhanced RAID resync speed, portions
	of dynamic personality registration, and misc bug fixes.

Detailed Changes
================
mpt.c mpt_cam.c mpt_raid.c mpt_pci.c:
o Add support for personality modules.  Each module exports
  load, and unload module scope methods as well as probe, attach,
  event, reset, shutdown, and detach  per-device instance
  methods

mpt.c mpt.h mpt_pci.c:
o The driver now associates a callback function (via an
  index) with every transaction submitted to the controller.
  This allows the main interrupt handler to absolve itself
  of any knowledge of individual transaction/response types
  by simply calling the callback function "registered" for
  the transaction.  We use a callback index instead of a
  callback function pointer in each requests so we can
  properly handle responses (e.g. event notifications)
  that are not associated with a transaction.  Personality
  modules dynamically register their callbacks with the
  driver core to receive the callback index to use for their
  handlers.

o Move the interrupt handler into mpt.c.  The ISR algorithm
  is bus transport and OS independent and thus had no reason
  to be in mpt_pci.c.

o Simplify configuration message reply handling by copying
  reply frame data for the requester and storing completion
  status in the original request structure.

o Add the mpt_complete_request_chain() helper method and use
  it to implement reset handlers that must abort transactions.

o Keep track of all pending requests on the new
  requests_pending_list in the softc.

o Add default handlers to mpt.c to handle generic event
  notifications and controller reset activities.  The event
  handler code is largely the same as in the original driver.
  The reset handler is new and terminates any pending transactions
  with a status code indicating the controller needs to be
  re-initialized.

o Add some endian support to the driver.  A complete audit is
  still required for this driver to have any hope of operating
  in a big-endian environment.

o Use inttypes.h and __inline.  Come closer to being style(9)
  compliant.

o Remove extraneous use of typedefs.

o Convert request state from a strict enumeration to a series
  of flags.  This allows us to, for example, tag transactions
  that have timed-out while retaining the state that the
  transaction is still in-flight on the controller.

o Add mpt_wait_req() which allows a caller to poll or sleep
  for the completion of a request.  Use this to simplify
  and factor code out from many initialization routines.
  We also use this to sleep for task management request
  completions in our CAM timeout handler.

mpt.c:
o Correct a bug in the event handler where request structures were
  freed even if the request reply was marked as a continuation
  reply. Continuation replies indicate that the controller still owns
  the request and freeing these replies prematurely corrupted
  controller state.

o Implement firmware upload and download. On controllers that do
  not have dedicated NVRAM (as in the Sun v20/v40z), the firmware
  image is downloaded to the controller by the system BIOS. This
  image occupies precious controller RAM space until the host driver
  fetches the image, reducing the number of concurrent I/Os the
  controller can processes. The uploaded image is used to
  re-program the controller during hard reset events since the
  controller cannot fetch the firmware on its own. Implementing this
  feature allows much higher queue depths when RAID volumes
  are configured.

o Changed configuration page accessors to allow threads to sleep
  rather than busy wait for completion.

o Removed hard coded data transfer sizes from configuration page
  routines so that RAID configuration page processing is possible.

mpt_reg.h:
o Move controller register definitions into a separate file.

mpt.h:
o Re-arrange includes to allow inlined functions to be
  defined in mpt.h.

o Add reply, event, and reset handler definitions.

o Add softc fields for handling timeout and controller
  reset recovery.

mpt_cam.c:
o Move mpt_freebsd.c to mpt_cam.c.  Move all core functionality,
  such as event handling, into mpt.c leaving only CAM SCSI
  support here.

o Revamp completion handler to provide correct CAM status for
  all currently defined SCSI MPI message result codes.

o Register event and reset handlers with the MPT core.  Modify
  the event handler to notify CAM of bus reset events.  The
  controller reset handler will abort any transactions that
  have timed out.  All other pending CAM transactions are
  correctly aborted by the core driver's reset handler.

o Allocate a single request up front to perform task management
  operations.  This guarantees that we can always perform a
  TMF operation even when the controller is saturated with other
  operations.  The single request also serves as a perfect
  mechanism of guaranteeing that only a single TMF is in flight
  at a time - something that is required according to the MPT
  Fusion documentation.

o Add a helper function for issuing task management requests
  to the controller.  This is used to abort individual requests
  or perform a bus reset.

o Modify the CAM XPT_BUS_RESET ccb handler to wait for and
  properly handle the status of the bus reset task management
  frame used to reset the bus.  The previous code assumed that
  the reset request would always succeed.

o Add timeout recovery support.  When a timeout occurs, the
  timed-out request is added to a queue to be processed by
  our recovery thread and the thread is woken up.  The recovery
  thread processes timed-out command serially, attempting first
  to abort them and then falling back to a bus reset if an
  abort fails.

o Add calls to mpt_reset() to reset the controller if any
  handshake command, bus reset attempt or abort attempt
  fails due to a timeout.

o Export a secondary "bus" to CAM that exposes all volume drive
  members as pass-thru devices, allowing CAM to perform proper
  speed negotiation to hidden devices.

o Add a CAM async event handler tracking the AC_FOUND_DEVICE event.
  Use this to trigger calls to set the per-volume queue depth once
  the volume is fully registered with CAM. This is required to avoid
  hitting firmware limits on volume queue depth.  Exceeding the
  limit causes the firmware to hang.

mpt_cam.h:
o Add several helper functions for interfacing to CAM and
  performing timeout recovery.

mpt_pci.c:
o Disable interrupts on the controller before registering and
  enabling interrupt delivery to the OS.  Otherwise we risk
  receiving interrupts before the driver is ready to receive
  them.

o Make use of compatibility macros that allow the driver to
  be compiled under 4.x and 5.x.

mpt_raid.c:
o Add a per-controller instance RAID thread to perform settings
   changes and query status (minimizes CPU busy wait loops).

o Use a shutdown handler to disable "Member Write Cache Enable"
  (MWCE) setting for RAID arrays set to enable MWCE During Rebuild.

o Change reply handler function signature to allow handlers to defer
  the deletion of reply frames. Use this to allow the event reply
  handler to queue up events that need to be acked if no resources
  are available to immediately ack an event. Queued events are
  processed in mpt_free_request() where resources are freed. This
  avoids a panic on resource shortage.

o Parse and print out RAID controller capabilities during driver probe.

o Define, allocate, and maintain RAID data structures for volumes,
  hidden member physical disks and spare disks.

o Add dynamic sysctls for per-instance setting of the log level, array
  resync rate, array member cache enable, and volume queue depth.

mpt_debug.c:
o Add mpt_lprt and mpt_lprtc for printing diagnostics conditioned on
  a particular log level to aid in tracking down driver issues.

o Add mpt_decode_value() which parses the bits in an integer
  value based on a parsing table (mask, value, name string, tuples).

mpilib/*:
o Update mpi library header files to latest distribution from LSI.

Submitted by: gibbs
Approved by: re
2005-07-10 15:05:39 +00:00

743 lines
20 KiB
C

/*-
* PCI specific probe and attach routines for LSI Fusion Adapters
* FreeBSD Version.
*
* Copyright (c) 2000, 2001 by Greg Ansley
* Partially derived from Matt Jacob's ISP driver.
* Copyright (c) 1997, 1998, 1999, 2000, 2001, 2002 by Matthew Jacob
* Feral Software
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 2004, Avid Technology, Inc. and its contributors.
* Copyright (c) 2005, WHEEL Sp. z o.o.
* Copyright (c) 2004, 2005 Justin T. Gibbs
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon including
* a substantially similar Disclaimer requirement for further binary
* redistribution.
* 3. Neither the name of the LSI Logic Corporation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
* OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/mpt/mpt.h>
#include <dev/mpt/mpt_cam.h>
#include <dev/mpt/mpt_raid.h>
#if __FreeBSD_version < 500000
#include <pci/pcireg.h>
#include <pci/pcivar.h>
#else
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#endif
#ifndef PCI_VENDOR_LSI
#define PCI_VENDOR_LSI 0x1000
#endif
#ifndef PCI_PRODUCT_LSI_FC909
#define PCI_PRODUCT_LSI_FC909 0x0620
#endif
#ifndef PCI_PRODUCT_LSI_FC909A
#define PCI_PRODUCT_LSI_FC909A 0x0621
#endif
#ifndef PCI_PRODUCT_LSI_FC919
#define PCI_PRODUCT_LSI_FC919 0x0624
#endif
#ifndef PCI_PRODUCT_LSI_FC929
#define PCI_PRODUCT_LSI_FC929 0x0622
#endif
#ifndef PCI_PRODUCT_LSI_1030
#define PCI_PRODUCT_LSI_1030 0x0030
#endif
#ifndef PCIM_CMD_SERRESPEN
#define PCIM_CMD_SERRESPEN 0x0100
#endif
#define MPT_IO_BAR 0
#define MPT_MEM_BAR 1
static int mpt_pci_probe(device_t);
static int mpt_pci_attach(device_t);
static void mpt_free_bus_resources(struct mpt_softc *mpt);
static int mpt_pci_detach(device_t);
static int mpt_pci_shutdown(device_t);
static int mpt_dma_mem_alloc(struct mpt_softc *mpt);
static void mpt_dma_mem_free(struct mpt_softc *mpt);
static void mpt_read_config_regs(struct mpt_softc *mpt);
static void mpt_pci_intr(void *);
static device_method_t mpt_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, mpt_pci_probe),
DEVMETHOD(device_attach, mpt_pci_attach),
DEVMETHOD(device_detach, mpt_pci_detach),
DEVMETHOD(device_shutdown, mpt_pci_shutdown),
{ 0, 0 }
};
static driver_t mpt_driver = {
"mpt", mpt_methods, sizeof(struct mpt_softc)
};
static devclass_t mpt_devclass;
DRIVER_MODULE(mpt, pci, mpt_driver, mpt_devclass, 0, 0);
MODULE_VERSION(mpt, 1);
static int
mpt_pci_probe(device_t dev)
{
char *desc;
if (pci_get_vendor(dev) != PCI_VENDOR_LSI)
return (ENXIO);
switch ((pci_get_device(dev) & ~1)) {
case PCI_PRODUCT_LSI_FC909:
desc = "LSILogic FC909 FC Adapter";
break;
case PCI_PRODUCT_LSI_FC909A:
desc = "LSILogic FC909A FC Adapter";
break;
case PCI_PRODUCT_LSI_FC919:
desc = "LSILogic FC919 FC Adapter";
break;
case PCI_PRODUCT_LSI_FC929:
desc = "LSILogic FC929 FC Adapter";
break;
case PCI_PRODUCT_LSI_1030:
desc = "LSILogic 1030 Ultra4 Adapter";
break;
default:
return (ENXIO);
}
device_set_desc(dev, desc);
return (0);
}
#ifdef RELENG_4
static void
mpt_set_options(struct mpt_softc *mpt)
{
int bitmap;
bitmap = 0;
if (getenv_int("mpt_disable", &bitmap)) {
if (bitmap & (1 << mpt->unit)) {
mpt->disabled = 1;
}
}
bitmap = 0;
if (getenv_int("mpt_debug", &bitmap)) {
if (bitmap & (1 << mpt->unit)) {
mpt->verbose = MPT_PRT_DEBUG;
}
}
}
#else
static void
mpt_set_options(struct mpt_softc *mpt)
{
int tval;
tval = 0;
if (resource_int_value(device_get_name(mpt->dev),
device_get_unit(mpt->dev), "disable", &tval) == 0 && tval != 0) {
mpt->disabled = 1;
}
tval = 0;
if (resource_int_value(device_get_name(mpt->dev),
device_get_unit(mpt->dev), "debug", &tval) == 0 && tval != 0) {
mpt->verbose += tval;
}
}
#endif
static void
mpt_link_peer(struct mpt_softc *mpt)
{
struct mpt_softc *mpt2;
if (mpt->unit == 0)
return;
/*
* XXX: depends on probe order
*/
mpt2 = (struct mpt_softc *)devclass_get_softc(mpt_devclass,mpt->unit-1);
if (mpt2 == NULL) {
return;
}
if (pci_get_vendor(mpt2->dev) != pci_get_vendor(mpt->dev)) {
return;
}
if (pci_get_device(mpt2->dev) != pci_get_device(mpt->dev)) {
return;
}
mpt->mpt2 = mpt2;
mpt2->mpt2 = mpt;
if (mpt->verbose >= MPT_PRT_DEBUG) {
mpt_prt(mpt, "linking with peer (mpt%d)\n",
device_get_unit(mpt2->dev));
}
}
static int
mpt_pci_attach(device_t dev)
{
struct mpt_softc *mpt;
int iqd;
uint32_t data, cmd;
/* Allocate the softc structure */
mpt = (struct mpt_softc*)device_get_softc(dev);
if (mpt == NULL) {
device_printf(dev, "cannot allocate softc\n");
return (ENOMEM);
}
bzero(mpt, sizeof(struct mpt_softc));
switch ((pci_get_device(dev) & ~1)) {
case PCI_PRODUCT_LSI_FC909:
case PCI_PRODUCT_LSI_FC909A:
case PCI_PRODUCT_LSI_FC919:
case PCI_PRODUCT_LSI_FC929:
mpt->is_fc = 1;
break;
default:
break;
}
mpt->dev = dev;
mpt->unit = device_get_unit(dev);
mpt->raid_resync_rate = MPT_RAID_RESYNC_RATE_DEFAULT;
mpt->raid_mwce_setting = MPT_RAID_MWCE_DEFAULT;
mpt->raid_queue_depth = MPT_RAID_QUEUE_DEPTH_DEFAULT;
mpt_set_options(mpt);
mpt->verbose = MPT_PRT_INFO;
mpt->verbose += (bootverbose != 0)? 1 : 0;
/* Make sure memory access decoders are enabled */
cmd = pci_read_config(dev, PCIR_COMMAND, 2);
if ((cmd & PCIM_CMD_MEMEN) == 0) {
device_printf(dev, "Memory accesses disabled");
goto bad;
}
/*
* Make sure that SERR, PERR, WRITE INVALIDATE and BUSMASTER are set.
*/
cmd |=
PCIM_CMD_SERRESPEN | PCIM_CMD_PERRESPEN |
PCIM_CMD_BUSMASTEREN | PCIM_CMD_MWRICEN;
pci_write_config(dev, PCIR_COMMAND, cmd, 2);
/*
* Make sure we've disabled the ROM.
*/
data = pci_read_config(dev, PCIR_BIOS, 4);
data &= ~1;
pci_write_config(dev, PCIR_BIOS, data, 4);
/*
* Is this part a dual?
* If so, link with our partner (around yet)
*/
if ((pci_get_device(dev) & ~1) == PCI_PRODUCT_LSI_FC929 ||
(pci_get_device(dev) & ~1) == PCI_PRODUCT_LSI_1030) {
mpt_link_peer(mpt);
}
/*
* Set up register access. PIO mode is required for
* certain reset operations.
*/
mpt->pci_pio_rid = PCIR_BAR(MPT_IO_BAR);
mpt->pci_pio_reg = bus_alloc_resource(dev, SYS_RES_IOPORT,
&mpt->pci_pio_rid, 0, ~0, 0, RF_ACTIVE);
if (mpt->pci_pio_reg == NULL) {
device_printf(dev, "unable to map registers in PIO mode\n");
goto bad;
}
mpt->pci_pio_st = rman_get_bustag(mpt->pci_pio_reg);
mpt->pci_pio_sh = rman_get_bushandle(mpt->pci_pio_reg);
/* Allocate kernel virtual memory for the 9x9's Mem0 region */
mpt->pci_mem_rid = PCIR_BAR(MPT_MEM_BAR);
mpt->pci_reg = bus_alloc_resource(dev, SYS_RES_MEMORY,
&mpt->pci_mem_rid, 0, ~0, 0, RF_ACTIVE);
if (mpt->pci_reg == NULL) {
device_printf(dev, "Unable to memory map registers.\n");
device_printf(dev, "Falling back to PIO mode.\n");
mpt->pci_st = mpt->pci_pio_st;
mpt->pci_sh = mpt->pci_pio_sh;
} else {
mpt->pci_st = rman_get_bustag(mpt->pci_reg);
mpt->pci_sh = rman_get_bushandle(mpt->pci_reg);
}
/* Get a handle to the interrupt */
iqd = 0;
#if __FreeBSD_version < 500000
mpt->pci_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &iqd, 0, ~0, 1,
RF_ACTIVE | RF_SHAREABLE);
#else
mpt->pci_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &iqd,
RF_ACTIVE | RF_SHAREABLE);
#endif
if (mpt->pci_irq == NULL) {
device_printf(dev, "could not allocate interrupt\n");
goto bad;
}
MPT_LOCK_SETUP(mpt);
/* Disable interrupts at the part */
mpt_disable_ints(mpt);
/* Register the interrupt handler */
if (bus_setup_intr(dev, mpt->pci_irq, MPT_IFLAGS, mpt_pci_intr,
mpt, &mpt->ih)) {
device_printf(dev, "could not setup interrupt\n");
goto bad;
}
/* Allocate dma memory */
/* XXX JGibbs -Should really be done based on IOCFacts. */
if (mpt_dma_mem_alloc(mpt)) {
device_printf(dev, "Could not allocate DMA memory\n");
goto bad;
}
/*
* Save the PCI config register values
*
* Hard resets are known to screw up the BAR for diagnostic
* memory accesses (Mem1).
*
* Using Mem1 is known to make the chip stop responding to
* configuration space transfers, so we need to save it now
*/
mpt_read_config_regs(mpt);
/* Initialize the hardware */
if (mpt->disabled == 0) {
MPT_LOCK(mpt);
if (mpt_attach(mpt) != 0) {
MPT_UNLOCK(mpt);
goto bad;
}
}
return (0);
bad:
mpt_dma_mem_free(mpt);
mpt_free_bus_resources(mpt);
/*
* but return zero to preserve unit numbering
*/
return (0);
}
/*
* Free bus resources
*/
static void
mpt_free_bus_resources(struct mpt_softc *mpt)
{
if (mpt->ih) {
bus_teardown_intr(mpt->dev, mpt->pci_irq, mpt->ih);
mpt->ih = 0;
}
if (mpt->pci_irq) {
bus_release_resource(mpt->dev, SYS_RES_IRQ, 0, mpt->pci_irq);
mpt->pci_irq = 0;
}
if (mpt->pci_pio_reg) {
bus_release_resource(mpt->dev, SYS_RES_IOPORT, mpt->pci_pio_rid,
mpt->pci_pio_reg);
mpt->pci_pio_reg = 0;
}
if (mpt->pci_reg) {
bus_release_resource(mpt->dev, SYS_RES_MEMORY, mpt->pci_mem_rid,
mpt->pci_reg);
mpt->pci_reg = 0;
}
MPT_LOCK_DESTROY(mpt);
}
/*
* Disconnect ourselves from the system.
*/
static int
mpt_pci_detach(device_t dev)
{
struct mpt_softc *mpt;
mpt = (struct mpt_softc*)device_get_softc(dev);
mpt_prt(mpt, "mpt_detach\n");
if (mpt) {
mpt_disable_ints(mpt);
mpt_detach(mpt);
mpt_reset(mpt, /*reinit*/FALSE);
mpt_dma_mem_free(mpt);
mpt_free_bus_resources(mpt);
if (mpt->raid_volumes != NULL
&& mpt->ioc_page2 != NULL) {
int i;
for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
struct mpt_raid_volume *mpt_vol;
mpt_vol = &mpt->raid_volumes[i];
if (mpt_vol->config_page)
free(mpt_vol->config_page, M_DEVBUF);
}
}
if (mpt->ioc_page2 != NULL)
free(mpt->ioc_page2, M_DEVBUF);
if (mpt->ioc_page3 != NULL)
free(mpt->ioc_page3, M_DEVBUF);
if (mpt->raid_volumes != NULL)
free(mpt->raid_volumes, M_DEVBUF);
if (mpt->raid_disks != NULL)
free(mpt->raid_disks, M_DEVBUF);
if (mpt->eh != NULL)
EVENTHANDLER_DEREGISTER(shutdown_final, mpt->eh);
}
return(0);
}
/*
* Disable the hardware
* XXX - Called too early by New Bus!!! ???
*/
static int
mpt_pci_shutdown(device_t dev)
{
struct mpt_softc *mpt;
mpt = (struct mpt_softc *)device_get_softc(dev);
if (mpt)
return (mpt_shutdown(mpt));
return(0);
}
static int
mpt_dma_mem_alloc(struct mpt_softc *mpt)
{
int i, error;
uint8_t *vptr;
uint32_t pptr, end;
size_t len;
struct mpt_map_info mi;
device_t dev = mpt->dev;
/* Check if we alreay have allocated the reply memory */
if (mpt->reply_phys != 0) {
return 0;
}
len = sizeof (request_t) * MPT_MAX_REQUESTS(mpt);
#ifdef RELENG_4
mpt->request_pool = (request_t *)malloc(len, M_DEVBUF, M_WAITOK);
if (mpt->request_pool == NULL) {
device_printf(dev, "cannot allocate request pool\n");
return (1);
}
bzero(mpt->request_pool, len);
#else
mpt->request_pool = (request_t *)malloc(len, M_DEVBUF, M_WAITOK|M_ZERO);
if (mpt->request_pool == NULL) {
device_printf(dev, "cannot allocate request pool\n");
return (1);
}
#endif
/*
* Create a parent dma tag for this device
*
* Align at byte boundaries, limit to 32-bit addressing
* (The chip supports 64-bit addressing, but this driver doesn't)
*/
if (mpt_dma_tag_create(mpt, /*parent*/NULL, /*alignment*/1,
/*boundary*/0, /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
/*highaddr*/BUS_SPACE_MAXADDR, /*filter*/NULL, /*filterarg*/NULL,
/*maxsize*/BUS_SPACE_MAXSIZE_32BIT,
/*nsegments*/BUS_SPACE_MAXSIZE_32BIT,
/*maxsegsz*/BUS_SPACE_UNRESTRICTED, /*flags*/0,
&mpt->parent_dmat) != 0) {
device_printf(dev, "cannot create parent dma tag\n");
return (1);
}
/* Create a child tag for reply buffers */
if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE,
0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
NULL, NULL, PAGE_SIZE, 1, BUS_SPACE_MAXSIZE_32BIT, 0,
&mpt->reply_dmat) != 0) {
device_printf(dev, "cannot create a dma tag for replies\n");
return (1);
}
/* Allocate some DMA accessable memory for replies */
if (bus_dmamem_alloc(mpt->reply_dmat, (void **)&mpt->reply,
BUS_DMA_NOWAIT, &mpt->reply_dmap) != 0) {
device_printf(dev, "cannot allocate %lu bytes of reply memory\n",
(u_long)PAGE_SIZE);
return (1);
}
mi.mpt = mpt;
mi.error = 0;
/* Load and lock it into "bus space" */
bus_dmamap_load(mpt->reply_dmat, mpt->reply_dmap, mpt->reply,
PAGE_SIZE, mpt_map_rquest, &mi, 0);
if (mi.error) {
device_printf(dev,
"error %d loading dma map for DMA reply queue\n", mi.error);
return (1);
}
mpt->reply_phys = mi.phys;
/* Create a child tag for data buffers */
if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
NULL, NULL, MAXBSIZE, MPT_SGL_MAX, BUS_SPACE_MAXSIZE_32BIT, 0,
&mpt->buffer_dmat) != 0) {
device_printf(dev,
"cannot create a dma tag for data buffers\n");
return (1);
}
/* Create a child tag for request buffers */
if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE,
0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
&mpt->request_dmat) != 0) {
device_printf(dev, "cannot create a dma tag for requests\n");
return (1);
}
/* Allocate some DMA accessable memory for requests */
if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
BUS_DMA_NOWAIT, &mpt->request_dmap) != 0) {
device_printf(dev,
"cannot allocate %d bytes of request memory\n",
MPT_REQ_MEM_SIZE(mpt));
return (1);
}
mi.mpt = mpt;
mi.error = 0;
/* Load and lock it into "bus space" */
bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
if (mi.error) {
device_printf(dev,
"error %d loading dma map for DMA request queue\n",
mi.error);
return (1);
}
mpt->request_phys = mi.phys;
i = 0;
pptr = mpt->request_phys;
vptr = mpt->request;
end = pptr + MPT_REQ_MEM_SIZE(mpt);
while(pptr < end) {
request_t *req = &mpt->request_pool[i];
req->index = i++;
/* Store location of Request Data */
req->req_pbuf = pptr;
req->req_vbuf = vptr;
pptr += MPT_REQUEST_AREA;
vptr += MPT_REQUEST_AREA;
req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
if (error) {
device_printf(dev,
"error %d creating per-cmd DMA maps\n", error);
return (1);
}
}
return (0);
}
/* Deallocate memory that was allocated by mpt_dma_mem_alloc
*/
static void
mpt_dma_mem_free(struct mpt_softc *mpt)
{
int i;
/* Make sure we aren't double destroying */
if (mpt->reply_dmat == 0) {
if (mpt->verbose >= MPT_PRT_DEBUG)
device_printf(mpt->dev,"Already released dma memory\n");
return;
}
for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
}
bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
bus_dma_tag_destroy(mpt->request_dmat);
bus_dma_tag_destroy(mpt->buffer_dmat);
bus_dmamap_unload(mpt->reply_dmat, mpt->reply_dmap);
bus_dmamem_free(mpt->reply_dmat, mpt->reply, mpt->reply_dmap);
bus_dma_tag_destroy(mpt->reply_dmat);
bus_dma_tag_destroy(mpt->parent_dmat);
mpt->reply_dmat = 0;
free(mpt->request_pool, M_DEVBUF);
mpt->request_pool = 0;
}
/* Reads modifiable (via PCI transactions) config registers */
static void
mpt_read_config_regs(struct mpt_softc *mpt)
{
mpt->pci_cfg.Command = pci_read_config(mpt->dev, PCIR_COMMAND, 2);
mpt->pci_cfg.LatencyTimer_LineSize =
pci_read_config(mpt->dev, PCIR_CACHELNSZ, 2);
mpt->pci_cfg.IO_BAR = pci_read_config(mpt->dev, PCIR_BAR(0), 4);
mpt->pci_cfg.Mem0_BAR[0] = pci_read_config(mpt->dev, PCIR_BAR(1), 4);
mpt->pci_cfg.Mem0_BAR[1] = pci_read_config(mpt->dev, PCIR_BAR(2), 4);
mpt->pci_cfg.Mem1_BAR[0] = pci_read_config(mpt->dev, PCIR_BAR(3), 4);
mpt->pci_cfg.Mem1_BAR[1] = pci_read_config(mpt->dev, PCIR_BAR(4), 4);
mpt->pci_cfg.ROM_BAR = pci_read_config(mpt->dev, PCIR_BIOS, 4);
mpt->pci_cfg.IntLine = pci_read_config(mpt->dev, PCIR_INTLINE, 1);
mpt->pci_cfg.PMCSR = pci_read_config(mpt->dev, 0x44, 4);
}
/* Sets modifiable config registers */
void
mpt_set_config_regs(struct mpt_softc *mpt)
{
uint32_t val;
#define MPT_CHECK(reg, offset, size) \
val = pci_read_config(mpt->dev, offset, size); \
if (mpt->pci_cfg.reg != val) { \
mpt_prt(mpt, \
"Restoring " #reg " to 0x%X from 0x%X\n", \
mpt->pci_cfg.reg, val); \
}
if (mpt->verbose >= MPT_PRT_DEBUG) {
MPT_CHECK(Command, PCIR_COMMAND, 2);
MPT_CHECK(LatencyTimer_LineSize, PCIR_CACHELNSZ, 2);
MPT_CHECK(IO_BAR, PCIR_BAR(0), 4);
MPT_CHECK(Mem0_BAR[0], PCIR_BAR(1), 4);
MPT_CHECK(Mem0_BAR[1], PCIR_BAR(2), 4);
MPT_CHECK(Mem1_BAR[0], PCIR_BAR(3), 4);
MPT_CHECK(Mem1_BAR[1], PCIR_BAR(4), 4);
MPT_CHECK(ROM_BAR, PCIR_BIOS, 4);
MPT_CHECK(IntLine, PCIR_INTLINE, 1);
MPT_CHECK(PMCSR, 0x44, 4);
}
#undef MPT_CHECK
pci_write_config(mpt->dev, PCIR_COMMAND, mpt->pci_cfg.Command, 2);
pci_write_config(mpt->dev, PCIR_CACHELNSZ,
mpt->pci_cfg.LatencyTimer_LineSize, 2);
pci_write_config(mpt->dev, PCIR_BAR(0), mpt->pci_cfg.IO_BAR, 4);
pci_write_config(mpt->dev, PCIR_BAR(1), mpt->pci_cfg.Mem0_BAR[0], 4);
pci_write_config(mpt->dev, PCIR_BAR(2), mpt->pci_cfg.Mem0_BAR[1], 4);
pci_write_config(mpt->dev, PCIR_BAR(3), mpt->pci_cfg.Mem1_BAR[0], 4);
pci_write_config(mpt->dev, PCIR_BAR(4), mpt->pci_cfg.Mem1_BAR[1], 4);
pci_write_config(mpt->dev, PCIR_BIOS, mpt->pci_cfg.ROM_BAR, 4);
pci_write_config(mpt->dev, PCIR_INTLINE, mpt->pci_cfg.IntLine, 1);
pci_write_config(mpt->dev, 0x44, mpt->pci_cfg.PMCSR, 4);
}
static void
mpt_pci_intr(void *arg)
{
struct mpt_softc *mpt;
mpt = (struct mpt_softc *)arg;
MPT_LOCK(mpt);
mpt_intr(mpt);
MPT_UNLOCK(mpt);
}