fb23f7edbf
Reports of breakage on igb(4) have been narrowed down to 287762 and 287914 is an dependant change. Submitted by: erj
2254 lines
67 KiB
C
2254 lines
67 KiB
C
/******************************************************************************
|
|
|
|
Copyright (c) 2001-2015, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
******************************************************************************/
|
|
/*$FreeBSD$*/
|
|
|
|
#include "e1000_api.h"
|
|
|
|
static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw);
|
|
static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw);
|
|
static void e1000_config_collision_dist_generic(struct e1000_hw *hw);
|
|
static int e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index);
|
|
|
|
/**
|
|
* e1000_init_mac_ops_generic - Initialize MAC function pointers
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Setups up the function pointers to no-op functions
|
|
**/
|
|
void e1000_init_mac_ops_generic(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
DEBUGFUNC("e1000_init_mac_ops_generic");
|
|
|
|
/* General Setup */
|
|
mac->ops.init_params = e1000_null_ops_generic;
|
|
mac->ops.init_hw = e1000_null_ops_generic;
|
|
mac->ops.reset_hw = e1000_null_ops_generic;
|
|
mac->ops.setup_physical_interface = e1000_null_ops_generic;
|
|
mac->ops.get_bus_info = e1000_null_ops_generic;
|
|
mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pcie;
|
|
mac->ops.read_mac_addr = e1000_read_mac_addr_generic;
|
|
mac->ops.config_collision_dist = e1000_config_collision_dist_generic;
|
|
mac->ops.clear_hw_cntrs = e1000_null_mac_generic;
|
|
/* LED */
|
|
mac->ops.cleanup_led = e1000_null_ops_generic;
|
|
mac->ops.setup_led = e1000_null_ops_generic;
|
|
mac->ops.blink_led = e1000_null_ops_generic;
|
|
mac->ops.led_on = e1000_null_ops_generic;
|
|
mac->ops.led_off = e1000_null_ops_generic;
|
|
/* LINK */
|
|
mac->ops.setup_link = e1000_null_ops_generic;
|
|
mac->ops.get_link_up_info = e1000_null_link_info;
|
|
mac->ops.check_for_link = e1000_null_ops_generic;
|
|
mac->ops.set_obff_timer = e1000_null_set_obff_timer;
|
|
/* Management */
|
|
mac->ops.check_mng_mode = e1000_null_mng_mode;
|
|
/* VLAN, MC, etc. */
|
|
mac->ops.update_mc_addr_list = e1000_null_update_mc;
|
|
mac->ops.clear_vfta = e1000_null_mac_generic;
|
|
mac->ops.write_vfta = e1000_null_write_vfta;
|
|
mac->ops.rar_set = e1000_rar_set_generic;
|
|
mac->ops.validate_mdi_setting = e1000_validate_mdi_setting_generic;
|
|
}
|
|
|
|
/**
|
|
* e1000_null_ops_generic - No-op function, returns 0
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
s32 e1000_null_ops_generic(struct e1000_hw E1000_UNUSEDARG *hw)
|
|
{
|
|
DEBUGFUNC("e1000_null_ops_generic");
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_null_mac_generic - No-op function, return void
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
void e1000_null_mac_generic(struct e1000_hw E1000_UNUSEDARG *hw)
|
|
{
|
|
DEBUGFUNC("e1000_null_mac_generic");
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* e1000_null_link_info - No-op function, return 0
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
s32 e1000_null_link_info(struct e1000_hw E1000_UNUSEDARG *hw,
|
|
u16 E1000_UNUSEDARG *s, u16 E1000_UNUSEDARG *d)
|
|
{
|
|
DEBUGFUNC("e1000_null_link_info");
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_null_mng_mode - No-op function, return FALSE
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
bool e1000_null_mng_mode(struct e1000_hw E1000_UNUSEDARG *hw)
|
|
{
|
|
DEBUGFUNC("e1000_null_mng_mode");
|
|
return FALSE;
|
|
}
|
|
|
|
/**
|
|
* e1000_null_update_mc - No-op function, return void
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
void e1000_null_update_mc(struct e1000_hw E1000_UNUSEDARG *hw,
|
|
u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
|
|
{
|
|
DEBUGFUNC("e1000_null_update_mc");
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* e1000_null_write_vfta - No-op function, return void
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
void e1000_null_write_vfta(struct e1000_hw E1000_UNUSEDARG *hw,
|
|
u32 E1000_UNUSEDARG a, u32 E1000_UNUSEDARG b)
|
|
{
|
|
DEBUGFUNC("e1000_null_write_vfta");
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* e1000_null_rar_set - No-op function, return 0
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
int e1000_null_rar_set(struct e1000_hw E1000_UNUSEDARG *hw,
|
|
u8 E1000_UNUSEDARG *h, u32 E1000_UNUSEDARG a)
|
|
{
|
|
DEBUGFUNC("e1000_null_rar_set");
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_null_set_obff_timer - No-op function, return 0
|
|
* @hw: pointer to the HW structure
|
|
**/
|
|
s32 e1000_null_set_obff_timer(struct e1000_hw E1000_UNUSEDARG *hw,
|
|
u32 E1000_UNUSEDARG a)
|
|
{
|
|
DEBUGFUNC("e1000_null_set_obff_timer");
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_bus_info_pci_generic - Get PCI(x) bus information
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Determines and stores the system bus information for a particular
|
|
* network interface. The following bus information is determined and stored:
|
|
* bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
|
|
**/
|
|
s32 e1000_get_bus_info_pci_generic(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
struct e1000_bus_info *bus = &hw->bus;
|
|
u32 status = E1000_READ_REG(hw, E1000_STATUS);
|
|
s32 ret_val = E1000_SUCCESS;
|
|
|
|
DEBUGFUNC("e1000_get_bus_info_pci_generic");
|
|
|
|
/* PCI or PCI-X? */
|
|
bus->type = (status & E1000_STATUS_PCIX_MODE)
|
|
? e1000_bus_type_pcix
|
|
: e1000_bus_type_pci;
|
|
|
|
/* Bus speed */
|
|
if (bus->type == e1000_bus_type_pci) {
|
|
bus->speed = (status & E1000_STATUS_PCI66)
|
|
? e1000_bus_speed_66
|
|
: e1000_bus_speed_33;
|
|
} else {
|
|
switch (status & E1000_STATUS_PCIX_SPEED) {
|
|
case E1000_STATUS_PCIX_SPEED_66:
|
|
bus->speed = e1000_bus_speed_66;
|
|
break;
|
|
case E1000_STATUS_PCIX_SPEED_100:
|
|
bus->speed = e1000_bus_speed_100;
|
|
break;
|
|
case E1000_STATUS_PCIX_SPEED_133:
|
|
bus->speed = e1000_bus_speed_133;
|
|
break;
|
|
default:
|
|
bus->speed = e1000_bus_speed_reserved;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Bus width */
|
|
bus->width = (status & E1000_STATUS_BUS64)
|
|
? e1000_bus_width_64
|
|
: e1000_bus_width_32;
|
|
|
|
/* Which PCI(-X) function? */
|
|
mac->ops.set_lan_id(hw);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_bus_info_pcie_generic - Get PCIe bus information
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Determines and stores the system bus information for a particular
|
|
* network interface. The following bus information is determined and stored:
|
|
* bus speed, bus width, type (PCIe), and PCIe function.
|
|
**/
|
|
s32 e1000_get_bus_info_pcie_generic(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
struct e1000_bus_info *bus = &hw->bus;
|
|
s32 ret_val;
|
|
u16 pcie_link_status;
|
|
|
|
DEBUGFUNC("e1000_get_bus_info_pcie_generic");
|
|
|
|
bus->type = e1000_bus_type_pci_express;
|
|
|
|
ret_val = e1000_read_pcie_cap_reg(hw, PCIE_LINK_STATUS,
|
|
&pcie_link_status);
|
|
if (ret_val) {
|
|
bus->width = e1000_bus_width_unknown;
|
|
bus->speed = e1000_bus_speed_unknown;
|
|
} else {
|
|
switch (pcie_link_status & PCIE_LINK_SPEED_MASK) {
|
|
case PCIE_LINK_SPEED_2500:
|
|
bus->speed = e1000_bus_speed_2500;
|
|
break;
|
|
case PCIE_LINK_SPEED_5000:
|
|
bus->speed = e1000_bus_speed_5000;
|
|
break;
|
|
default:
|
|
bus->speed = e1000_bus_speed_unknown;
|
|
break;
|
|
}
|
|
|
|
bus->width = (enum e1000_bus_width)((pcie_link_status &
|
|
PCIE_LINK_WIDTH_MASK) >> PCIE_LINK_WIDTH_SHIFT);
|
|
}
|
|
|
|
mac->ops.set_lan_id(hw);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
|
|
*
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Determines the LAN function id by reading memory-mapped registers
|
|
* and swaps the port value if requested.
|
|
**/
|
|
static void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_bus_info *bus = &hw->bus;
|
|
u32 reg;
|
|
|
|
/* The status register reports the correct function number
|
|
* for the device regardless of function swap state.
|
|
*/
|
|
reg = E1000_READ_REG(hw, E1000_STATUS);
|
|
bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_lan_id_multi_port_pci - Set LAN id for PCI multiple port devices
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Determines the LAN function id by reading PCI config space.
|
|
**/
|
|
void e1000_set_lan_id_multi_port_pci(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_bus_info *bus = &hw->bus;
|
|
u16 pci_header_type;
|
|
u32 status;
|
|
|
|
e1000_read_pci_cfg(hw, PCI_HEADER_TYPE_REGISTER, &pci_header_type);
|
|
if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
|
|
status = E1000_READ_REG(hw, E1000_STATUS);
|
|
bus->func = (status & E1000_STATUS_FUNC_MASK)
|
|
>> E1000_STATUS_FUNC_SHIFT;
|
|
} else {
|
|
bus->func = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_set_lan_id_single_port - Set LAN id for a single port device
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Sets the LAN function id to zero for a single port device.
|
|
**/
|
|
void e1000_set_lan_id_single_port(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_bus_info *bus = &hw->bus;
|
|
|
|
bus->func = 0;
|
|
}
|
|
|
|
/**
|
|
* e1000_clear_vfta_generic - Clear VLAN filter table
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Clears the register array which contains the VLAN filter table by
|
|
* setting all the values to 0.
|
|
**/
|
|
void e1000_clear_vfta_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 offset;
|
|
|
|
DEBUGFUNC("e1000_clear_vfta_generic");
|
|
|
|
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_write_vfta_generic - Write value to VLAN filter table
|
|
* @hw: pointer to the HW structure
|
|
* @offset: register offset in VLAN filter table
|
|
* @value: register value written to VLAN filter table
|
|
*
|
|
* Writes value at the given offset in the register array which stores
|
|
* the VLAN filter table.
|
|
**/
|
|
void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
|
|
{
|
|
DEBUGFUNC("e1000_write_vfta_generic");
|
|
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_init_rx_addrs_generic - Initialize receive address's
|
|
* @hw: pointer to the HW structure
|
|
* @rar_count: receive address registers
|
|
*
|
|
* Setup the receive address registers by setting the base receive address
|
|
* register to the devices MAC address and clearing all the other receive
|
|
* address registers to 0.
|
|
**/
|
|
void e1000_init_rx_addrs_generic(struct e1000_hw *hw, u16 rar_count)
|
|
{
|
|
u32 i;
|
|
u8 mac_addr[ETH_ADDR_LEN] = {0};
|
|
|
|
DEBUGFUNC("e1000_init_rx_addrs_generic");
|
|
|
|
/* Setup the receive address */
|
|
DEBUGOUT("Programming MAC Address into RAR[0]\n");
|
|
|
|
hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
|
|
|
|
/* Zero out the other (rar_entry_count - 1) receive addresses */
|
|
DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
|
|
for (i = 1; i < rar_count; i++)
|
|
hw->mac.ops.rar_set(hw, mac_addr, i);
|
|
}
|
|
|
|
/**
|
|
* e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Checks the nvm for an alternate MAC address. An alternate MAC address
|
|
* can be setup by pre-boot software and must be treated like a permanent
|
|
* address and must override the actual permanent MAC address. If an
|
|
* alternate MAC address is found it is programmed into RAR0, replacing
|
|
* the permanent address that was installed into RAR0 by the Si on reset.
|
|
* This function will return SUCCESS unless it encounters an error while
|
|
* reading the EEPROM.
|
|
**/
|
|
s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 i;
|
|
s32 ret_val;
|
|
u16 offset, nvm_alt_mac_addr_offset, nvm_data;
|
|
u8 alt_mac_addr[ETH_ADDR_LEN];
|
|
|
|
DEBUGFUNC("e1000_check_alt_mac_addr_generic");
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* not supported on older hardware or 82573 */
|
|
if ((hw->mac.type < e1000_82571) || (hw->mac.type == e1000_82573))
|
|
return E1000_SUCCESS;
|
|
|
|
/* Alternate MAC address is handled by the option ROM for 82580
|
|
* and newer. SW support not required.
|
|
*/
|
|
if (hw->mac.type >= e1000_82580)
|
|
return E1000_SUCCESS;
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
|
|
&nvm_alt_mac_addr_offset);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
|
|
(nvm_alt_mac_addr_offset == 0x0000))
|
|
/* There is no Alternate MAC Address */
|
|
return E1000_SUCCESS;
|
|
|
|
if (hw->bus.func == E1000_FUNC_1)
|
|
nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
|
|
if (hw->bus.func == E1000_FUNC_2)
|
|
nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN2;
|
|
|
|
if (hw->bus.func == E1000_FUNC_3)
|
|
nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN3;
|
|
for (i = 0; i < ETH_ADDR_LEN; i += 2) {
|
|
offset = nvm_alt_mac_addr_offset + (i >> 1);
|
|
ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
|
|
alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
|
|
}
|
|
|
|
/* if multicast bit is set, the alternate address will not be used */
|
|
if (alt_mac_addr[0] & 0x01) {
|
|
DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/* We have a valid alternate MAC address, and we want to treat it the
|
|
* same as the normal permanent MAC address stored by the HW into the
|
|
* RAR. Do this by mapping this address into RAR0.
|
|
*/
|
|
hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_rar_set_generic - Set receive address register
|
|
* @hw: pointer to the HW structure
|
|
* @addr: pointer to the receive address
|
|
* @index: receive address array register
|
|
*
|
|
* Sets the receive address array register at index to the address passed
|
|
* in by addr.
|
|
**/
|
|
static int e1000_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
|
|
{
|
|
u32 rar_low, rar_high;
|
|
|
|
DEBUGFUNC("e1000_rar_set_generic");
|
|
|
|
/* HW expects these in little endian so we reverse the byte order
|
|
* from network order (big endian) to little endian
|
|
*/
|
|
rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
|
|
((u32) addr[2] << 16) | ((u32) addr[3] << 24));
|
|
|
|
rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
|
|
|
|
/* If MAC address zero, no need to set the AV bit */
|
|
if (rar_low || rar_high)
|
|
rar_high |= E1000_RAH_AV;
|
|
|
|
/* Some bridges will combine consecutive 32-bit writes into
|
|
* a single burst write, which will malfunction on some parts.
|
|
* The flushes avoid this.
|
|
*/
|
|
E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
|
|
E1000_WRITE_FLUSH(hw);
|
|
E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_hash_mc_addr_generic - Generate a multicast hash value
|
|
* @hw: pointer to the HW structure
|
|
* @mc_addr: pointer to a multicast address
|
|
*
|
|
* Generates a multicast address hash value which is used to determine
|
|
* the multicast filter table array address and new table value.
|
|
**/
|
|
u32 e1000_hash_mc_addr_generic(struct e1000_hw *hw, u8 *mc_addr)
|
|
{
|
|
u32 hash_value, hash_mask;
|
|
u8 bit_shift = 0;
|
|
|
|
DEBUGFUNC("e1000_hash_mc_addr_generic");
|
|
|
|
/* Register count multiplied by bits per register */
|
|
hash_mask = (hw->mac.mta_reg_count * 32) - 1;
|
|
|
|
/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
|
|
* where 0xFF would still fall within the hash mask.
|
|
*/
|
|
while (hash_mask >> bit_shift != 0xFF)
|
|
bit_shift++;
|
|
|
|
/* The portion of the address that is used for the hash table
|
|
* is determined by the mc_filter_type setting.
|
|
* The algorithm is such that there is a total of 8 bits of shifting.
|
|
* The bit_shift for a mc_filter_type of 0 represents the number of
|
|
* left-shifts where the MSB of mc_addr[5] would still fall within
|
|
* the hash_mask. Case 0 does this exactly. Since there are a total
|
|
* of 8 bits of shifting, then mc_addr[4] will shift right the
|
|
* remaining number of bits. Thus 8 - bit_shift. The rest of the
|
|
* cases are a variation of this algorithm...essentially raising the
|
|
* number of bits to shift mc_addr[5] left, while still keeping the
|
|
* 8-bit shifting total.
|
|
*
|
|
* For example, given the following Destination MAC Address and an
|
|
* mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
|
|
* we can see that the bit_shift for case 0 is 4. These are the hash
|
|
* values resulting from each mc_filter_type...
|
|
* [0] [1] [2] [3] [4] [5]
|
|
* 01 AA 00 12 34 56
|
|
* LSB MSB
|
|
*
|
|
* case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
|
|
* case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
|
|
* case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
|
|
* case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
|
|
*/
|
|
switch (hw->mac.mc_filter_type) {
|
|
default:
|
|
case 0:
|
|
break;
|
|
case 1:
|
|
bit_shift += 1;
|
|
break;
|
|
case 2:
|
|
bit_shift += 2;
|
|
break;
|
|
case 3:
|
|
bit_shift += 4;
|
|
break;
|
|
}
|
|
|
|
hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
|
|
(((u16) mc_addr[5]) << bit_shift)));
|
|
|
|
return hash_value;
|
|
}
|
|
|
|
/**
|
|
* e1000_update_mc_addr_list_generic - Update Multicast addresses
|
|
* @hw: pointer to the HW structure
|
|
* @mc_addr_list: array of multicast addresses to program
|
|
* @mc_addr_count: number of multicast addresses to program
|
|
*
|
|
* Updates entire Multicast Table Array.
|
|
* The caller must have a packed mc_addr_list of multicast addresses.
|
|
**/
|
|
void e1000_update_mc_addr_list_generic(struct e1000_hw *hw,
|
|
u8 *mc_addr_list, u32 mc_addr_count)
|
|
{
|
|
u32 hash_value, hash_bit, hash_reg;
|
|
int i;
|
|
|
|
DEBUGFUNC("e1000_update_mc_addr_list_generic");
|
|
|
|
/* clear mta_shadow */
|
|
memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
|
|
|
|
/* update mta_shadow from mc_addr_list */
|
|
for (i = 0; (u32) i < mc_addr_count; i++) {
|
|
hash_value = e1000_hash_mc_addr_generic(hw, mc_addr_list);
|
|
|
|
hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
|
|
hash_bit = hash_value & 0x1F;
|
|
|
|
hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
|
|
mc_addr_list += (ETH_ADDR_LEN);
|
|
}
|
|
|
|
/* replace the entire MTA table */
|
|
for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
|
|
E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* In certain situations, a system BIOS may report that the PCIx maximum
|
|
* memory read byte count (MMRBC) value is higher than than the actual
|
|
* value. We check the PCIx command register with the current PCIx status
|
|
* register.
|
|
**/
|
|
void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw *hw)
|
|
{
|
|
u16 cmd_mmrbc;
|
|
u16 pcix_cmd;
|
|
u16 pcix_stat_hi_word;
|
|
u16 stat_mmrbc;
|
|
|
|
DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
|
|
|
|
/* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
|
|
if (hw->bus.type != e1000_bus_type_pcix)
|
|
return;
|
|
|
|
e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
|
|
e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
|
|
cmd_mmrbc = (pcix_cmd & PCIX_COMMAND_MMRBC_MASK) >>
|
|
PCIX_COMMAND_MMRBC_SHIFT;
|
|
stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
|
|
PCIX_STATUS_HI_MMRBC_SHIFT;
|
|
if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
|
|
stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
|
|
if (cmd_mmrbc > stat_mmrbc) {
|
|
pcix_cmd &= ~PCIX_COMMAND_MMRBC_MASK;
|
|
pcix_cmd |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
|
|
e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Clears the base hardware counters by reading the counter registers.
|
|
**/
|
|
void e1000_clear_hw_cntrs_base_generic(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
|
|
|
|
E1000_READ_REG(hw, E1000_CRCERRS);
|
|
E1000_READ_REG(hw, E1000_SYMERRS);
|
|
E1000_READ_REG(hw, E1000_MPC);
|
|
E1000_READ_REG(hw, E1000_SCC);
|
|
E1000_READ_REG(hw, E1000_ECOL);
|
|
E1000_READ_REG(hw, E1000_MCC);
|
|
E1000_READ_REG(hw, E1000_LATECOL);
|
|
E1000_READ_REG(hw, E1000_COLC);
|
|
E1000_READ_REG(hw, E1000_DC);
|
|
E1000_READ_REG(hw, E1000_SEC);
|
|
E1000_READ_REG(hw, E1000_RLEC);
|
|
E1000_READ_REG(hw, E1000_XONRXC);
|
|
E1000_READ_REG(hw, E1000_XONTXC);
|
|
E1000_READ_REG(hw, E1000_XOFFRXC);
|
|
E1000_READ_REG(hw, E1000_XOFFTXC);
|
|
E1000_READ_REG(hw, E1000_FCRUC);
|
|
E1000_READ_REG(hw, E1000_GPRC);
|
|
E1000_READ_REG(hw, E1000_BPRC);
|
|
E1000_READ_REG(hw, E1000_MPRC);
|
|
E1000_READ_REG(hw, E1000_GPTC);
|
|
E1000_READ_REG(hw, E1000_GORCL);
|
|
E1000_READ_REG(hw, E1000_GORCH);
|
|
E1000_READ_REG(hw, E1000_GOTCL);
|
|
E1000_READ_REG(hw, E1000_GOTCH);
|
|
E1000_READ_REG(hw, E1000_RNBC);
|
|
E1000_READ_REG(hw, E1000_RUC);
|
|
E1000_READ_REG(hw, E1000_RFC);
|
|
E1000_READ_REG(hw, E1000_ROC);
|
|
E1000_READ_REG(hw, E1000_RJC);
|
|
E1000_READ_REG(hw, E1000_TORL);
|
|
E1000_READ_REG(hw, E1000_TORH);
|
|
E1000_READ_REG(hw, E1000_TOTL);
|
|
E1000_READ_REG(hw, E1000_TOTH);
|
|
E1000_READ_REG(hw, E1000_TPR);
|
|
E1000_READ_REG(hw, E1000_TPT);
|
|
E1000_READ_REG(hw, E1000_MPTC);
|
|
E1000_READ_REG(hw, E1000_BPTC);
|
|
}
|
|
|
|
/**
|
|
* e1000_check_for_copper_link_generic - Check for link (Copper)
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Checks to see of the link status of the hardware has changed. If a
|
|
* change in link status has been detected, then we read the PHY registers
|
|
* to get the current speed/duplex if link exists.
|
|
**/
|
|
s32 e1000_check_for_copper_link_generic(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
s32 ret_val;
|
|
bool link;
|
|
|
|
DEBUGFUNC("e1000_check_for_copper_link");
|
|
|
|
/* We only want to go out to the PHY registers to see if Auto-Neg
|
|
* has completed and/or if our link status has changed. The
|
|
* get_link_status flag is set upon receiving a Link Status
|
|
* Change or Rx Sequence Error interrupt.
|
|
*/
|
|
if (!mac->get_link_status)
|
|
return E1000_SUCCESS;
|
|
|
|
/* First we want to see if the MII Status Register reports
|
|
* link. If so, then we want to get the current speed/duplex
|
|
* of the PHY.
|
|
*/
|
|
ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (!link)
|
|
return E1000_SUCCESS; /* No link detected */
|
|
|
|
mac->get_link_status = FALSE;
|
|
|
|
/* Check if there was DownShift, must be checked
|
|
* immediately after link-up
|
|
*/
|
|
e1000_check_downshift_generic(hw);
|
|
|
|
/* If we are forcing speed/duplex, then we simply return since
|
|
* we have already determined whether we have link or not.
|
|
*/
|
|
if (!mac->autoneg)
|
|
return -E1000_ERR_CONFIG;
|
|
|
|
/* Auto-Neg is enabled. Auto Speed Detection takes care
|
|
* of MAC speed/duplex configuration. So we only need to
|
|
* configure Collision Distance in the MAC.
|
|
*/
|
|
mac->ops.config_collision_dist(hw);
|
|
|
|
/* Configure Flow Control now that Auto-Neg has completed.
|
|
* First, we need to restore the desired flow control
|
|
* settings because we may have had to re-autoneg with a
|
|
* different link partner.
|
|
*/
|
|
ret_val = e1000_config_fc_after_link_up_generic(hw);
|
|
if (ret_val)
|
|
DEBUGOUT("Error configuring flow control\n");
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_check_for_fiber_link_generic - Check for link (Fiber)
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Checks for link up on the hardware. If link is not up and we have
|
|
* a signal, then we need to force link up.
|
|
**/
|
|
s32 e1000_check_for_fiber_link_generic(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
u32 rxcw;
|
|
u32 ctrl;
|
|
u32 status;
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_check_for_fiber_link_generic");
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
status = E1000_READ_REG(hw, E1000_STATUS);
|
|
rxcw = E1000_READ_REG(hw, E1000_RXCW);
|
|
|
|
/* If we don't have link (auto-negotiation failed or link partner
|
|
* cannot auto-negotiate), the cable is plugged in (we have signal),
|
|
* and our link partner is not trying to auto-negotiate with us (we
|
|
* are receiving idles or data), we need to force link up. We also
|
|
* need to give auto-negotiation time to complete, in case the cable
|
|
* was just plugged in. The autoneg_failed flag does this.
|
|
*/
|
|
/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
|
|
if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
|
|
!(rxcw & E1000_RXCW_C)) {
|
|
if (!mac->autoneg_failed) {
|
|
mac->autoneg_failed = TRUE;
|
|
return E1000_SUCCESS;
|
|
}
|
|
DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
|
|
|
|
/* Disable auto-negotiation in the TXCW register */
|
|
E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
|
|
|
|
/* Force link-up and also force full-duplex. */
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
|
|
|
|
/* Configure Flow Control after forcing link up. */
|
|
ret_val = e1000_config_fc_after_link_up_generic(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error configuring flow control\n");
|
|
return ret_val;
|
|
}
|
|
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
|
|
/* If we are forcing link and we are receiving /C/ ordered
|
|
* sets, re-enable auto-negotiation in the TXCW register
|
|
* and disable forced link in the Device Control register
|
|
* in an attempt to auto-negotiate with our link partner.
|
|
*/
|
|
DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
|
|
E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
|
|
E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
|
|
|
|
mac->serdes_has_link = TRUE;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_check_for_serdes_link_generic - Check for link (Serdes)
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Checks for link up on the hardware. If link is not up and we have
|
|
* a signal, then we need to force link up.
|
|
**/
|
|
s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
u32 rxcw;
|
|
u32 ctrl;
|
|
u32 status;
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_check_for_serdes_link_generic");
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
status = E1000_READ_REG(hw, E1000_STATUS);
|
|
rxcw = E1000_READ_REG(hw, E1000_RXCW);
|
|
|
|
/* If we don't have link (auto-negotiation failed or link partner
|
|
* cannot auto-negotiate), and our link partner is not trying to
|
|
* auto-negotiate with us (we are receiving idles or data),
|
|
* we need to force link up. We also need to give auto-negotiation
|
|
* time to complete.
|
|
*/
|
|
/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
|
|
if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
|
|
if (!mac->autoneg_failed) {
|
|
mac->autoneg_failed = TRUE;
|
|
return E1000_SUCCESS;
|
|
}
|
|
DEBUGOUT("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
|
|
|
|
/* Disable auto-negotiation in the TXCW register */
|
|
E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
|
|
|
|
/* Force link-up and also force full-duplex. */
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
|
|
|
|
/* Configure Flow Control after forcing link up. */
|
|
ret_val = e1000_config_fc_after_link_up_generic(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error configuring flow control\n");
|
|
return ret_val;
|
|
}
|
|
} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
|
|
/* If we are forcing link and we are receiving /C/ ordered
|
|
* sets, re-enable auto-negotiation in the TXCW register
|
|
* and disable forced link in the Device Control register
|
|
* in an attempt to auto-negotiate with our link partner.
|
|
*/
|
|
DEBUGOUT("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
|
|
E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
|
|
E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
|
|
|
|
mac->serdes_has_link = TRUE;
|
|
} else if (!(E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW))) {
|
|
/* If we force link for non-auto-negotiation switch, check
|
|
* link status based on MAC synchronization for internal
|
|
* serdes media type.
|
|
*/
|
|
/* SYNCH bit and IV bit are sticky. */
|
|
usec_delay(10);
|
|
rxcw = E1000_READ_REG(hw, E1000_RXCW);
|
|
if (rxcw & E1000_RXCW_SYNCH) {
|
|
if (!(rxcw & E1000_RXCW_IV)) {
|
|
mac->serdes_has_link = TRUE;
|
|
DEBUGOUT("SERDES: Link up - forced.\n");
|
|
}
|
|
} else {
|
|
mac->serdes_has_link = FALSE;
|
|
DEBUGOUT("SERDES: Link down - force failed.\n");
|
|
}
|
|
}
|
|
|
|
if (E1000_TXCW_ANE & E1000_READ_REG(hw, E1000_TXCW)) {
|
|
status = E1000_READ_REG(hw, E1000_STATUS);
|
|
if (status & E1000_STATUS_LU) {
|
|
/* SYNCH bit and IV bit are sticky, so reread rxcw. */
|
|
usec_delay(10);
|
|
rxcw = E1000_READ_REG(hw, E1000_RXCW);
|
|
if (rxcw & E1000_RXCW_SYNCH) {
|
|
if (!(rxcw & E1000_RXCW_IV)) {
|
|
mac->serdes_has_link = TRUE;
|
|
DEBUGOUT("SERDES: Link up - autoneg completed successfully.\n");
|
|
} else {
|
|
mac->serdes_has_link = FALSE;
|
|
DEBUGOUT("SERDES: Link down - invalid codewords detected in autoneg.\n");
|
|
}
|
|
} else {
|
|
mac->serdes_has_link = FALSE;
|
|
DEBUGOUT("SERDES: Link down - no sync.\n");
|
|
}
|
|
} else {
|
|
mac->serdes_has_link = FALSE;
|
|
DEBUGOUT("SERDES: Link down - autoneg failed\n");
|
|
}
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_default_fc_generic - Set flow control default values
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Read the EEPROM for the default values for flow control and store the
|
|
* values.
|
|
**/
|
|
s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
u16 nvm_data;
|
|
u16 nvm_offset = 0;
|
|
|
|
DEBUGFUNC("e1000_set_default_fc_generic");
|
|
|
|
/* Read and store word 0x0F of the EEPROM. This word contains bits
|
|
* that determine the hardware's default PAUSE (flow control) mode,
|
|
* a bit that determines whether the HW defaults to enabling or
|
|
* disabling auto-negotiation, and the direction of the
|
|
* SW defined pins. If there is no SW over-ride of the flow
|
|
* control setting, then the variable hw->fc will
|
|
* be initialized based on a value in the EEPROM.
|
|
*/
|
|
if (hw->mac.type == e1000_i350) {
|
|
nvm_offset = NVM_82580_LAN_FUNC_OFFSET(hw->bus.func);
|
|
ret_val = hw->nvm.ops.read(hw,
|
|
NVM_INIT_CONTROL2_REG +
|
|
nvm_offset,
|
|
1, &nvm_data);
|
|
} else {
|
|
ret_val = hw->nvm.ops.read(hw,
|
|
NVM_INIT_CONTROL2_REG,
|
|
1, &nvm_data);
|
|
}
|
|
|
|
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
|
|
hw->fc.requested_mode = e1000_fc_none;
|
|
else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
|
|
NVM_WORD0F_ASM_DIR)
|
|
hw->fc.requested_mode = e1000_fc_tx_pause;
|
|
else
|
|
hw->fc.requested_mode = e1000_fc_full;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_link_generic - Setup flow control and link settings
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Determines which flow control settings to use, then configures flow
|
|
* control. Calls the appropriate media-specific link configuration
|
|
* function. Assuming the adapter has a valid link partner, a valid link
|
|
* should be established. Assumes the hardware has previously been reset
|
|
* and the transmitter and receiver are not enabled.
|
|
**/
|
|
s32 e1000_setup_link_generic(struct e1000_hw *hw)
|
|
{
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_setup_link_generic");
|
|
|
|
/* In the case of the phy reset being blocked, we already have a link.
|
|
* We do not need to set it up again.
|
|
*/
|
|
if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
|
|
return E1000_SUCCESS;
|
|
|
|
/* If requested flow control is set to default, set flow control
|
|
* based on the EEPROM flow control settings.
|
|
*/
|
|
if (hw->fc.requested_mode == e1000_fc_default) {
|
|
ret_val = e1000_set_default_fc_generic(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
/* Save off the requested flow control mode for use later. Depending
|
|
* on the link partner's capabilities, we may or may not use this mode.
|
|
*/
|
|
hw->fc.current_mode = hw->fc.requested_mode;
|
|
|
|
DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
|
|
hw->fc.current_mode);
|
|
|
|
/* Call the necessary media_type subroutine to configure the link. */
|
|
ret_val = hw->mac.ops.setup_physical_interface(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Initialize the flow control address, type, and PAUSE timer
|
|
* registers to their default values. This is done even if flow
|
|
* control is disabled, because it does not hurt anything to
|
|
* initialize these registers.
|
|
*/
|
|
DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
|
|
E1000_WRITE_REG(hw, E1000_FCT, FLOW_CONTROL_TYPE);
|
|
E1000_WRITE_REG(hw, E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
|
|
E1000_WRITE_REG(hw, E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
|
|
|
|
E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
|
|
|
|
return e1000_set_fc_watermarks_generic(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_commit_fc_settings_generic - Configure flow control
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Write the flow control settings to the Transmit Config Word Register (TXCW)
|
|
* base on the flow control settings in e1000_mac_info.
|
|
**/
|
|
s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
u32 txcw;
|
|
|
|
DEBUGFUNC("e1000_commit_fc_settings_generic");
|
|
|
|
/* Check for a software override of the flow control settings, and
|
|
* setup the device accordingly. If auto-negotiation is enabled, then
|
|
* software will have to set the "PAUSE" bits to the correct value in
|
|
* the Transmit Config Word Register (TXCW) and re-start auto-
|
|
* negotiation. However, if auto-negotiation is disabled, then
|
|
* software will have to manually configure the two flow control enable
|
|
* bits in the CTRL register.
|
|
*
|
|
* The possible values of the "fc" parameter are:
|
|
* 0: Flow control is completely disabled
|
|
* 1: Rx flow control is enabled (we can receive pause frames,
|
|
* but not send pause frames).
|
|
* 2: Tx flow control is enabled (we can send pause frames but we
|
|
* do not support receiving pause frames).
|
|
* 3: Both Rx and Tx flow control (symmetric) are enabled.
|
|
*/
|
|
switch (hw->fc.current_mode) {
|
|
case e1000_fc_none:
|
|
/* Flow control completely disabled by a software over-ride. */
|
|
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
|
|
break;
|
|
case e1000_fc_rx_pause:
|
|
/* Rx Flow control is enabled and Tx Flow control is disabled
|
|
* by a software over-ride. Since there really isn't a way to
|
|
* advertise that we are capable of Rx Pause ONLY, we will
|
|
* advertise that we support both symmetric and asymmetric Rx
|
|
* PAUSE. Later, we will disable the adapter's ability to send
|
|
* PAUSE frames.
|
|
*/
|
|
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
|
|
break;
|
|
case e1000_fc_tx_pause:
|
|
/* Tx Flow control is enabled, and Rx Flow control is disabled,
|
|
* by a software over-ride.
|
|
*/
|
|
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
|
|
break;
|
|
case e1000_fc_full:
|
|
/* Flow control (both Rx and Tx) is enabled by a software
|
|
* over-ride.
|
|
*/
|
|
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
|
|
break;
|
|
default:
|
|
DEBUGOUT("Flow control param set incorrectly\n");
|
|
return -E1000_ERR_CONFIG;
|
|
break;
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_TXCW, txcw);
|
|
mac->txcw = txcw;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_poll_fiber_serdes_link_generic - Poll for link up
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Polls for link up by reading the status register, if link fails to come
|
|
* up with auto-negotiation, then the link is forced if a signal is detected.
|
|
**/
|
|
s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
u32 i, status;
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
|
|
|
|
/* If we have a signal (the cable is plugged in, or assumed TRUE for
|
|
* serdes media) then poll for a "Link-Up" indication in the Device
|
|
* Status Register. Time-out if a link isn't seen in 500 milliseconds
|
|
* seconds (Auto-negotiation should complete in less than 500
|
|
* milliseconds even if the other end is doing it in SW).
|
|
*/
|
|
for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
|
|
msec_delay(10);
|
|
status = E1000_READ_REG(hw, E1000_STATUS);
|
|
if (status & E1000_STATUS_LU)
|
|
break;
|
|
}
|
|
if (i == FIBER_LINK_UP_LIMIT) {
|
|
DEBUGOUT("Never got a valid link from auto-neg!!!\n");
|
|
mac->autoneg_failed = TRUE;
|
|
/* AutoNeg failed to achieve a link, so we'll call
|
|
* mac->check_for_link. This routine will force the
|
|
* link up if we detect a signal. This will allow us to
|
|
* communicate with non-autonegotiating link partners.
|
|
*/
|
|
ret_val = mac->ops.check_for_link(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error while checking for link\n");
|
|
return ret_val;
|
|
}
|
|
mac->autoneg_failed = FALSE;
|
|
} else {
|
|
mac->autoneg_failed = FALSE;
|
|
DEBUGOUT("Valid Link Found\n");
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Configures collision distance and flow control for fiber and serdes
|
|
* links. Upon successful setup, poll for link.
|
|
**/
|
|
s32 e1000_setup_fiber_serdes_link_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl;
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
|
|
/* Take the link out of reset */
|
|
ctrl &= ~E1000_CTRL_LRST;
|
|
|
|
hw->mac.ops.config_collision_dist(hw);
|
|
|
|
ret_val = e1000_commit_fc_settings_generic(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Since auto-negotiation is enabled, take the link out of reset (the
|
|
* link will be in reset, because we previously reset the chip). This
|
|
* will restart auto-negotiation. If auto-negotiation is successful
|
|
* then the link-up status bit will be set and the flow control enable
|
|
* bits (RFCE and TFCE) will be set according to their negotiated value.
|
|
*/
|
|
DEBUGOUT("Auto-negotiation enabled\n");
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
msec_delay(1);
|
|
|
|
/* For these adapters, the SW definable pin 1 is set when the optics
|
|
* detect a signal. If we have a signal, then poll for a "Link-Up"
|
|
* indication.
|
|
*/
|
|
if (hw->phy.media_type == e1000_media_type_internal_serdes ||
|
|
(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
|
|
ret_val = e1000_poll_fiber_serdes_link_generic(hw);
|
|
} else {
|
|
DEBUGOUT("No signal detected\n");
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/**
|
|
* e1000_config_collision_dist_generic - Configure collision distance
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Configures the collision distance to the default value and is used
|
|
* during link setup.
|
|
**/
|
|
static void e1000_config_collision_dist_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 tctl;
|
|
|
|
DEBUGFUNC("e1000_config_collision_dist_generic");
|
|
|
|
tctl = E1000_READ_REG(hw, E1000_TCTL);
|
|
|
|
tctl &= ~E1000_TCTL_COLD;
|
|
tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
|
|
|
|
E1000_WRITE_REG(hw, E1000_TCTL, tctl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/**
|
|
* e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Sets the flow control high/low threshold (watermark) registers. If
|
|
* flow control XON frame transmission is enabled, then set XON frame
|
|
* transmission as well.
|
|
**/
|
|
s32 e1000_set_fc_watermarks_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 fcrtl = 0, fcrth = 0;
|
|
|
|
DEBUGFUNC("e1000_set_fc_watermarks_generic");
|
|
|
|
/* Set the flow control receive threshold registers. Normally,
|
|
* these registers will be set to a default threshold that may be
|
|
* adjusted later by the driver's runtime code. However, if the
|
|
* ability to transmit pause frames is not enabled, then these
|
|
* registers will be set to 0.
|
|
*/
|
|
if (hw->fc.current_mode & e1000_fc_tx_pause) {
|
|
/* We need to set up the Receive Threshold high and low water
|
|
* marks as well as (optionally) enabling the transmission of
|
|
* XON frames.
|
|
*/
|
|
fcrtl = hw->fc.low_water;
|
|
if (hw->fc.send_xon)
|
|
fcrtl |= E1000_FCRTL_XONE;
|
|
|
|
fcrth = hw->fc.high_water;
|
|
}
|
|
E1000_WRITE_REG(hw, E1000_FCRTL, fcrtl);
|
|
E1000_WRITE_REG(hw, E1000_FCRTH, fcrth);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_force_mac_fc_generic - Force the MAC's flow control settings
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
|
|
* device control register to reflect the adapter settings. TFCE and RFCE
|
|
* need to be explicitly set by software when a copper PHY is used because
|
|
* autonegotiation is managed by the PHY rather than the MAC. Software must
|
|
* also configure these bits when link is forced on a fiber connection.
|
|
**/
|
|
s32 e1000_force_mac_fc_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl;
|
|
|
|
DEBUGFUNC("e1000_force_mac_fc_generic");
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
|
|
/* Because we didn't get link via the internal auto-negotiation
|
|
* mechanism (we either forced link or we got link via PHY
|
|
* auto-neg), we have to manually enable/disable transmit an
|
|
* receive flow control.
|
|
*
|
|
* The "Case" statement below enables/disable flow control
|
|
* according to the "hw->fc.current_mode" parameter.
|
|
*
|
|
* The possible values of the "fc" parameter are:
|
|
* 0: Flow control is completely disabled
|
|
* 1: Rx flow control is enabled (we can receive pause
|
|
* frames but not send pause frames).
|
|
* 2: Tx flow control is enabled (we can send pause frames
|
|
* frames but we do not receive pause frames).
|
|
* 3: Both Rx and Tx flow control (symmetric) is enabled.
|
|
* other: No other values should be possible at this point.
|
|
*/
|
|
DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
|
|
|
|
switch (hw->fc.current_mode) {
|
|
case e1000_fc_none:
|
|
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
|
|
break;
|
|
case e1000_fc_rx_pause:
|
|
ctrl &= (~E1000_CTRL_TFCE);
|
|
ctrl |= E1000_CTRL_RFCE;
|
|
break;
|
|
case e1000_fc_tx_pause:
|
|
ctrl &= (~E1000_CTRL_RFCE);
|
|
ctrl |= E1000_CTRL_TFCE;
|
|
break;
|
|
case e1000_fc_full:
|
|
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
|
|
break;
|
|
default:
|
|
DEBUGOUT("Flow control param set incorrectly\n");
|
|
return -E1000_ERR_CONFIG;
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_config_fc_after_link_up_generic - Configures flow control after link
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Checks the status of auto-negotiation after link up to ensure that the
|
|
* speed and duplex were not forced. If the link needed to be forced, then
|
|
* flow control needs to be forced also. If auto-negotiation is enabled
|
|
* and did not fail, then we configure flow control based on our link
|
|
* partner.
|
|
**/
|
|
s32 e1000_config_fc_after_link_up_generic(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
s32 ret_val = E1000_SUCCESS;
|
|
u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
|
|
u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
|
|
u16 speed, duplex;
|
|
|
|
DEBUGFUNC("e1000_config_fc_after_link_up_generic");
|
|
|
|
/* Check for the case where we have fiber media and auto-neg failed
|
|
* so we had to force link. In this case, we need to force the
|
|
* configuration of the MAC to match the "fc" parameter.
|
|
*/
|
|
if (mac->autoneg_failed) {
|
|
if (hw->phy.media_type == e1000_media_type_fiber ||
|
|
hw->phy.media_type == e1000_media_type_internal_serdes)
|
|
ret_val = e1000_force_mac_fc_generic(hw);
|
|
} else {
|
|
if (hw->phy.media_type == e1000_media_type_copper)
|
|
ret_val = e1000_force_mac_fc_generic(hw);
|
|
}
|
|
|
|
if (ret_val) {
|
|
DEBUGOUT("Error forcing flow control settings\n");
|
|
return ret_val;
|
|
}
|
|
|
|
/* Check for the case where we have copper media and auto-neg is
|
|
* enabled. In this case, we need to check and see if Auto-Neg
|
|
* has completed, and if so, how the PHY and link partner has
|
|
* flow control configured.
|
|
*/
|
|
if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
|
|
/* Read the MII Status Register and check to see if AutoNeg
|
|
* has completed. We read this twice because this reg has
|
|
* some "sticky" (latched) bits.
|
|
*/
|
|
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
if (ret_val)
|
|
return ret_val;
|
|
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
|
|
DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
|
|
return ret_val;
|
|
}
|
|
|
|
/* The AutoNeg process has completed, so we now need to
|
|
* read both the Auto Negotiation Advertisement
|
|
* Register (Address 4) and the Auto_Negotiation Base
|
|
* Page Ability Register (Address 5) to determine how
|
|
* flow control was negotiated.
|
|
*/
|
|
ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
|
|
&mii_nway_adv_reg);
|
|
if (ret_val)
|
|
return ret_val;
|
|
ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
|
|
&mii_nway_lp_ability_reg);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Two bits in the Auto Negotiation Advertisement Register
|
|
* (Address 4) and two bits in the Auto Negotiation Base
|
|
* Page Ability Register (Address 5) determine flow control
|
|
* for both the PHY and the link partner. The following
|
|
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
|
|
* 1999, describes these PAUSE resolution bits and how flow
|
|
* control is determined based upon these settings.
|
|
* NOTE: DC = Don't Care
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
|
|
*-------|---------|-------|---------|--------------------
|
|
* 0 | 0 | DC | DC | e1000_fc_none
|
|
* 0 | 1 | 0 | DC | e1000_fc_none
|
|
* 0 | 1 | 1 | 0 | e1000_fc_none
|
|
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
|
|
* 1 | 0 | 0 | DC | e1000_fc_none
|
|
* 1 | DC | 1 | DC | e1000_fc_full
|
|
* 1 | 1 | 0 | 0 | e1000_fc_none
|
|
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
|
|
*
|
|
* Are both PAUSE bits set to 1? If so, this implies
|
|
* Symmetric Flow Control is enabled at both ends. The
|
|
* ASM_DIR bits are irrelevant per the spec.
|
|
*
|
|
* For Symmetric Flow Control:
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
*-------|---------|-------|---------|--------------------
|
|
* 1 | DC | 1 | DC | E1000_fc_full
|
|
*
|
|
*/
|
|
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
|
|
/* Now we need to check if the user selected Rx ONLY
|
|
* of pause frames. In this case, we had to advertise
|
|
* FULL flow control because we could not advertise Rx
|
|
* ONLY. Hence, we must now check to see if we need to
|
|
* turn OFF the TRANSMISSION of PAUSE frames.
|
|
*/
|
|
if (hw->fc.requested_mode == e1000_fc_full) {
|
|
hw->fc.current_mode = e1000_fc_full;
|
|
DEBUGOUT("Flow Control = FULL.\n");
|
|
} else {
|
|
hw->fc.current_mode = e1000_fc_rx_pause;
|
|
DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
|
|
}
|
|
}
|
|
/* For receiving PAUSE frames ONLY.
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
*-------|---------|-------|---------|--------------------
|
|
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
|
|
*/
|
|
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
|
|
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
|
|
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
|
|
hw->fc.current_mode = e1000_fc_tx_pause;
|
|
DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
|
|
}
|
|
/* For transmitting PAUSE frames ONLY.
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
*-------|---------|-------|---------|--------------------
|
|
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
|
|
*/
|
|
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
|
|
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
|
|
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
|
|
hw->fc.current_mode = e1000_fc_rx_pause;
|
|
DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
|
|
} else {
|
|
/* Per the IEEE spec, at this point flow control
|
|
* should be disabled.
|
|
*/
|
|
hw->fc.current_mode = e1000_fc_none;
|
|
DEBUGOUT("Flow Control = NONE.\n");
|
|
}
|
|
|
|
/* Now we need to do one last check... If we auto-
|
|
* negotiated to HALF DUPLEX, flow control should not be
|
|
* enabled per IEEE 802.3 spec.
|
|
*/
|
|
ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error getting link speed and duplex\n");
|
|
return ret_val;
|
|
}
|
|
|
|
if (duplex == HALF_DUPLEX)
|
|
hw->fc.current_mode = e1000_fc_none;
|
|
|
|
/* Now we call a subroutine to actually force the MAC
|
|
* controller to use the correct flow control settings.
|
|
*/
|
|
ret_val = e1000_force_mac_fc_generic(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error forcing flow control settings\n");
|
|
return ret_val;
|
|
}
|
|
}
|
|
|
|
/* Check for the case where we have SerDes media and auto-neg is
|
|
* enabled. In this case, we need to check and see if Auto-Neg
|
|
* has completed, and if so, how the PHY and link partner has
|
|
* flow control configured.
|
|
*/
|
|
if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
|
|
mac->autoneg) {
|
|
/* Read the PCS_LSTS and check to see if AutoNeg
|
|
* has completed.
|
|
*/
|
|
pcs_status_reg = E1000_READ_REG(hw, E1000_PCS_LSTAT);
|
|
|
|
if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
|
|
DEBUGOUT("PCS Auto Neg has not completed.\n");
|
|
return ret_val;
|
|
}
|
|
|
|
/* The AutoNeg process has completed, so we now need to
|
|
* read both the Auto Negotiation Advertisement
|
|
* Register (PCS_ANADV) and the Auto_Negotiation Base
|
|
* Page Ability Register (PCS_LPAB) to determine how
|
|
* flow control was negotiated.
|
|
*/
|
|
pcs_adv_reg = E1000_READ_REG(hw, E1000_PCS_ANADV);
|
|
pcs_lp_ability_reg = E1000_READ_REG(hw, E1000_PCS_LPAB);
|
|
|
|
/* Two bits in the Auto Negotiation Advertisement Register
|
|
* (PCS_ANADV) and two bits in the Auto Negotiation Base
|
|
* Page Ability Register (PCS_LPAB) determine flow control
|
|
* for both the PHY and the link partner. The following
|
|
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
|
|
* 1999, describes these PAUSE resolution bits and how flow
|
|
* control is determined based upon these settings.
|
|
* NOTE: DC = Don't Care
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
|
|
*-------|---------|-------|---------|--------------------
|
|
* 0 | 0 | DC | DC | e1000_fc_none
|
|
* 0 | 1 | 0 | DC | e1000_fc_none
|
|
* 0 | 1 | 1 | 0 | e1000_fc_none
|
|
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
|
|
* 1 | 0 | 0 | DC | e1000_fc_none
|
|
* 1 | DC | 1 | DC | e1000_fc_full
|
|
* 1 | 1 | 0 | 0 | e1000_fc_none
|
|
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
|
|
*
|
|
* Are both PAUSE bits set to 1? If so, this implies
|
|
* Symmetric Flow Control is enabled at both ends. The
|
|
* ASM_DIR bits are irrelevant per the spec.
|
|
*
|
|
* For Symmetric Flow Control:
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
*-------|---------|-------|---------|--------------------
|
|
* 1 | DC | 1 | DC | e1000_fc_full
|
|
*
|
|
*/
|
|
if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
|
|
(pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
|
|
/* Now we need to check if the user selected Rx ONLY
|
|
* of pause frames. In this case, we had to advertise
|
|
* FULL flow control because we could not advertise Rx
|
|
* ONLY. Hence, we must now check to see if we need to
|
|
* turn OFF the TRANSMISSION of PAUSE frames.
|
|
*/
|
|
if (hw->fc.requested_mode == e1000_fc_full) {
|
|
hw->fc.current_mode = e1000_fc_full;
|
|
DEBUGOUT("Flow Control = FULL.\n");
|
|
} else {
|
|
hw->fc.current_mode = e1000_fc_rx_pause;
|
|
DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
|
|
}
|
|
}
|
|
/* For receiving PAUSE frames ONLY.
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
*-------|---------|-------|---------|--------------------
|
|
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
|
|
*/
|
|
else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
|
|
(pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
|
|
(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
|
|
(pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
|
|
hw->fc.current_mode = e1000_fc_tx_pause;
|
|
DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
|
|
}
|
|
/* For transmitting PAUSE frames ONLY.
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
*-------|---------|-------|---------|--------------------
|
|
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
|
|
*/
|
|
else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
|
|
(pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
|
|
!(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
|
|
(pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
|
|
hw->fc.current_mode = e1000_fc_rx_pause;
|
|
DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
|
|
} else {
|
|
/* Per the IEEE spec, at this point flow control
|
|
* should be disabled.
|
|
*/
|
|
hw->fc.current_mode = e1000_fc_none;
|
|
DEBUGOUT("Flow Control = NONE.\n");
|
|
}
|
|
|
|
/* Now we call a subroutine to actually force the MAC
|
|
* controller to use the correct flow control settings.
|
|
*/
|
|
pcs_ctrl_reg = E1000_READ_REG(hw, E1000_PCS_LCTL);
|
|
pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
|
|
E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_ctrl_reg);
|
|
|
|
ret_val = e1000_force_mac_fc_generic(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error forcing flow control settings\n");
|
|
return ret_val;
|
|
}
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
|
|
* @hw: pointer to the HW structure
|
|
* @speed: stores the current speed
|
|
* @duplex: stores the current duplex
|
|
*
|
|
* Read the status register for the current speed/duplex and store the current
|
|
* speed and duplex for copper connections.
|
|
**/
|
|
s32 e1000_get_speed_and_duplex_copper_generic(struct e1000_hw *hw, u16 *speed,
|
|
u16 *duplex)
|
|
{
|
|
u32 status;
|
|
|
|
DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
|
|
|
|
status = E1000_READ_REG(hw, E1000_STATUS);
|
|
if (status & E1000_STATUS_SPEED_1000) {
|
|
*speed = SPEED_1000;
|
|
DEBUGOUT("1000 Mbs, ");
|
|
} else if (status & E1000_STATUS_SPEED_100) {
|
|
*speed = SPEED_100;
|
|
DEBUGOUT("100 Mbs, ");
|
|
} else {
|
|
*speed = SPEED_10;
|
|
DEBUGOUT("10 Mbs, ");
|
|
}
|
|
|
|
if (status & E1000_STATUS_FD) {
|
|
*duplex = FULL_DUPLEX;
|
|
DEBUGOUT("Full Duplex\n");
|
|
} else {
|
|
*duplex = HALF_DUPLEX;
|
|
DEBUGOUT("Half Duplex\n");
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
|
|
* @hw: pointer to the HW structure
|
|
* @speed: stores the current speed
|
|
* @duplex: stores the current duplex
|
|
*
|
|
* Sets the speed and duplex to gigabit full duplex (the only possible option)
|
|
* for fiber/serdes links.
|
|
**/
|
|
s32 e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw E1000_UNUSEDARG *hw,
|
|
u16 *speed, u16 *duplex)
|
|
{
|
|
DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
|
|
|
|
*speed = SPEED_1000;
|
|
*duplex = FULL_DUPLEX;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_get_hw_semaphore_generic - Acquire hardware semaphore
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Acquire the HW semaphore to access the PHY or NVM
|
|
**/
|
|
s32 e1000_get_hw_semaphore_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 swsm;
|
|
s32 timeout = hw->nvm.word_size + 1;
|
|
s32 i = 0;
|
|
|
|
DEBUGFUNC("e1000_get_hw_semaphore_generic");
|
|
|
|
/* Get the SW semaphore */
|
|
while (i < timeout) {
|
|
swsm = E1000_READ_REG(hw, E1000_SWSM);
|
|
if (!(swsm & E1000_SWSM_SMBI))
|
|
break;
|
|
|
|
usec_delay(50);
|
|
i++;
|
|
}
|
|
|
|
if (i == timeout) {
|
|
DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
|
|
/* Get the FW semaphore. */
|
|
for (i = 0; i < timeout; i++) {
|
|
swsm = E1000_READ_REG(hw, E1000_SWSM);
|
|
E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
|
|
|
|
/* Semaphore acquired if bit latched */
|
|
if (E1000_READ_REG(hw, E1000_SWSM) & E1000_SWSM_SWESMBI)
|
|
break;
|
|
|
|
usec_delay(50);
|
|
}
|
|
|
|
if (i == timeout) {
|
|
/* Release semaphores */
|
|
e1000_put_hw_semaphore_generic(hw);
|
|
DEBUGOUT("Driver can't access the NVM\n");
|
|
return -E1000_ERR_NVM;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_put_hw_semaphore_generic - Release hardware semaphore
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Release hardware semaphore used to access the PHY or NVM
|
|
**/
|
|
void e1000_put_hw_semaphore_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 swsm;
|
|
|
|
DEBUGFUNC("e1000_put_hw_semaphore_generic");
|
|
|
|
swsm = E1000_READ_REG(hw, E1000_SWSM);
|
|
|
|
swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
|
|
|
|
E1000_WRITE_REG(hw, E1000_SWSM, swsm);
|
|
}
|
|
|
|
/**
|
|
* e1000_get_auto_rd_done_generic - Check for auto read completion
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Check EEPROM for Auto Read done bit.
|
|
**/
|
|
s32 e1000_get_auto_rd_done_generic(struct e1000_hw *hw)
|
|
{
|
|
s32 i = 0;
|
|
|
|
DEBUGFUNC("e1000_get_auto_rd_done_generic");
|
|
|
|
while (i < AUTO_READ_DONE_TIMEOUT) {
|
|
if (E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_AUTO_RD)
|
|
break;
|
|
msec_delay(1);
|
|
i++;
|
|
}
|
|
|
|
if (i == AUTO_READ_DONE_TIMEOUT) {
|
|
DEBUGOUT("Auto read by HW from NVM has not completed.\n");
|
|
return -E1000_ERR_RESET;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_valid_led_default_generic - Verify a valid default LED config
|
|
* @hw: pointer to the HW structure
|
|
* @data: pointer to the NVM (EEPROM)
|
|
*
|
|
* Read the EEPROM for the current default LED configuration. If the
|
|
* LED configuration is not valid, set to a valid LED configuration.
|
|
**/
|
|
s32 e1000_valid_led_default_generic(struct e1000_hw *hw, u16 *data)
|
|
{
|
|
s32 ret_val;
|
|
|
|
DEBUGFUNC("e1000_valid_led_default_generic");
|
|
|
|
ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
|
|
if (ret_val) {
|
|
DEBUGOUT("NVM Read Error\n");
|
|
return ret_val;
|
|
}
|
|
|
|
if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
|
|
*data = ID_LED_DEFAULT;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_id_led_init_generic -
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
**/
|
|
s32 e1000_id_led_init_generic(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
s32 ret_val;
|
|
const u32 ledctl_mask = 0x000000FF;
|
|
const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
|
|
const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
|
|
u16 data, i, temp;
|
|
const u16 led_mask = 0x0F;
|
|
|
|
DEBUGFUNC("e1000_id_led_init_generic");
|
|
|
|
ret_val = hw->nvm.ops.valid_led_default(hw, &data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
|
|
mac->ledctl_mode1 = mac->ledctl_default;
|
|
mac->ledctl_mode2 = mac->ledctl_default;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
temp = (data >> (i << 2)) & led_mask;
|
|
switch (temp) {
|
|
case ID_LED_ON1_DEF2:
|
|
case ID_LED_ON1_ON2:
|
|
case ID_LED_ON1_OFF2:
|
|
mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
|
|
mac->ledctl_mode1 |= ledctl_on << (i << 3);
|
|
break;
|
|
case ID_LED_OFF1_DEF2:
|
|
case ID_LED_OFF1_ON2:
|
|
case ID_LED_OFF1_OFF2:
|
|
mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
|
|
mac->ledctl_mode1 |= ledctl_off << (i << 3);
|
|
break;
|
|
default:
|
|
/* Do nothing */
|
|
break;
|
|
}
|
|
switch (temp) {
|
|
case ID_LED_DEF1_ON2:
|
|
case ID_LED_ON1_ON2:
|
|
case ID_LED_OFF1_ON2:
|
|
mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
|
|
mac->ledctl_mode2 |= ledctl_on << (i << 3);
|
|
break;
|
|
case ID_LED_DEF1_OFF2:
|
|
case ID_LED_ON1_OFF2:
|
|
case ID_LED_OFF1_OFF2:
|
|
mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
|
|
mac->ledctl_mode2 |= ledctl_off << (i << 3);
|
|
break;
|
|
default:
|
|
/* Do nothing */
|
|
break;
|
|
}
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_led_generic - Configures SW controllable LED
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* This prepares the SW controllable LED for use and saves the current state
|
|
* of the LED so it can be later restored.
|
|
**/
|
|
s32 e1000_setup_led_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 ledctl;
|
|
|
|
DEBUGFUNC("e1000_setup_led_generic");
|
|
|
|
if (hw->mac.ops.setup_led != e1000_setup_led_generic)
|
|
return -E1000_ERR_CONFIG;
|
|
|
|
if (hw->phy.media_type == e1000_media_type_fiber) {
|
|
ledctl = E1000_READ_REG(hw, E1000_LEDCTL);
|
|
hw->mac.ledctl_default = ledctl;
|
|
/* Turn off LED0 */
|
|
ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
|
|
E1000_LEDCTL_LED0_MODE_MASK);
|
|
ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
|
|
E1000_LEDCTL_LED0_MODE_SHIFT);
|
|
E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl);
|
|
} else if (hw->phy.media_type == e1000_media_type_copper) {
|
|
E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_cleanup_led_generic - Set LED config to default operation
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Remove the current LED configuration and set the LED configuration
|
|
* to the default value, saved from the EEPROM.
|
|
**/
|
|
s32 e1000_cleanup_led_generic(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_cleanup_led_generic");
|
|
|
|
E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_blink_led_generic - Blink LED
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Blink the LEDs which are set to be on.
|
|
**/
|
|
s32 e1000_blink_led_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 ledctl_blink = 0;
|
|
u32 i;
|
|
|
|
DEBUGFUNC("e1000_blink_led_generic");
|
|
|
|
if (hw->phy.media_type == e1000_media_type_fiber) {
|
|
/* always blink LED0 for PCI-E fiber */
|
|
ledctl_blink = E1000_LEDCTL_LED0_BLINK |
|
|
(E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
|
|
} else {
|
|
/* Set the blink bit for each LED that's "on" (0x0E)
|
|
* (or "off" if inverted) in ledctl_mode2. The blink
|
|
* logic in hardware only works when mode is set to "on"
|
|
* so it must be changed accordingly when the mode is
|
|
* "off" and inverted.
|
|
*/
|
|
ledctl_blink = hw->mac.ledctl_mode2;
|
|
for (i = 0; i < 32; i += 8) {
|
|
u32 mode = (hw->mac.ledctl_mode2 >> i) &
|
|
E1000_LEDCTL_LED0_MODE_MASK;
|
|
u32 led_default = hw->mac.ledctl_default >> i;
|
|
|
|
if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
|
|
(mode == E1000_LEDCTL_MODE_LED_ON)) ||
|
|
((led_default & E1000_LEDCTL_LED0_IVRT) &&
|
|
(mode == E1000_LEDCTL_MODE_LED_OFF))) {
|
|
ledctl_blink &=
|
|
~(E1000_LEDCTL_LED0_MODE_MASK << i);
|
|
ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
|
|
E1000_LEDCTL_MODE_LED_ON) << i;
|
|
}
|
|
}
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, E1000_LEDCTL, ledctl_blink);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_led_on_generic - Turn LED on
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Turn LED on.
|
|
**/
|
|
s32 e1000_led_on_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl;
|
|
|
|
DEBUGFUNC("e1000_led_on_generic");
|
|
|
|
switch (hw->phy.media_type) {
|
|
case e1000_media_type_fiber:
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
ctrl &= ~E1000_CTRL_SWDPIN0;
|
|
ctrl |= E1000_CTRL_SWDPIO0;
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
|
|
break;
|
|
case e1000_media_type_copper:
|
|
E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_led_off_generic - Turn LED off
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Turn LED off.
|
|
**/
|
|
s32 e1000_led_off_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl;
|
|
|
|
DEBUGFUNC("e1000_led_off_generic");
|
|
|
|
switch (hw->phy.media_type) {
|
|
case e1000_media_type_fiber:
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
ctrl |= E1000_CTRL_SWDPIN0;
|
|
ctrl |= E1000_CTRL_SWDPIO0;
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
|
|
break;
|
|
case e1000_media_type_copper:
|
|
E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
|
|
* @hw: pointer to the HW structure
|
|
* @no_snoop: bitmap of snoop events
|
|
*
|
|
* Set the PCI-express register to snoop for events enabled in 'no_snoop'.
|
|
**/
|
|
void e1000_set_pcie_no_snoop_generic(struct e1000_hw *hw, u32 no_snoop)
|
|
{
|
|
u32 gcr;
|
|
|
|
DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
|
|
|
|
if (hw->bus.type != e1000_bus_type_pci_express)
|
|
return;
|
|
|
|
if (no_snoop) {
|
|
gcr = E1000_READ_REG(hw, E1000_GCR);
|
|
gcr &= ~(PCIE_NO_SNOOP_ALL);
|
|
gcr |= no_snoop;
|
|
E1000_WRITE_REG(hw, E1000_GCR, gcr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_disable_pcie_master_generic - Disables PCI-express master access
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Returns E1000_SUCCESS if successful, else returns -10
|
|
* (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
|
|
* the master requests to be disabled.
|
|
*
|
|
* Disables PCI-Express master access and verifies there are no pending
|
|
* requests.
|
|
**/
|
|
s32 e1000_disable_pcie_master_generic(struct e1000_hw *hw)
|
|
{
|
|
u32 ctrl;
|
|
s32 timeout = MASTER_DISABLE_TIMEOUT;
|
|
|
|
DEBUGFUNC("e1000_disable_pcie_master_generic");
|
|
|
|
if (hw->bus.type != e1000_bus_type_pci_express)
|
|
return E1000_SUCCESS;
|
|
|
|
ctrl = E1000_READ_REG(hw, E1000_CTRL);
|
|
ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
|
|
E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
|
|
|
|
while (timeout) {
|
|
if (!(E1000_READ_REG(hw, E1000_STATUS) &
|
|
E1000_STATUS_GIO_MASTER_ENABLE) ||
|
|
E1000_REMOVED(hw->hw_addr))
|
|
break;
|
|
usec_delay(100);
|
|
timeout--;
|
|
}
|
|
|
|
if (!timeout) {
|
|
DEBUGOUT("Master requests are pending.\n");
|
|
return -E1000_ERR_MASTER_REQUESTS_PENDING;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Reset the Adaptive Interframe Spacing throttle to default values.
|
|
**/
|
|
void e1000_reset_adaptive_generic(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
|
|
DEBUGFUNC("e1000_reset_adaptive_generic");
|
|
|
|
if (!mac->adaptive_ifs) {
|
|
DEBUGOUT("Not in Adaptive IFS mode!\n");
|
|
return;
|
|
}
|
|
|
|
mac->current_ifs_val = 0;
|
|
mac->ifs_min_val = IFS_MIN;
|
|
mac->ifs_max_val = IFS_MAX;
|
|
mac->ifs_step_size = IFS_STEP;
|
|
mac->ifs_ratio = IFS_RATIO;
|
|
|
|
mac->in_ifs_mode = FALSE;
|
|
E1000_WRITE_REG(hw, E1000_AIT, 0);
|
|
}
|
|
|
|
/**
|
|
* e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Update the Adaptive Interframe Spacing Throttle value based on the
|
|
* time between transmitted packets and time between collisions.
|
|
**/
|
|
void e1000_update_adaptive_generic(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_mac_info *mac = &hw->mac;
|
|
|
|
DEBUGFUNC("e1000_update_adaptive_generic");
|
|
|
|
if (!mac->adaptive_ifs) {
|
|
DEBUGOUT("Not in Adaptive IFS mode!\n");
|
|
return;
|
|
}
|
|
|
|
if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
|
|
if (mac->tx_packet_delta > MIN_NUM_XMITS) {
|
|
mac->in_ifs_mode = TRUE;
|
|
if (mac->current_ifs_val < mac->ifs_max_val) {
|
|
if (!mac->current_ifs_val)
|
|
mac->current_ifs_val = mac->ifs_min_val;
|
|
else
|
|
mac->current_ifs_val +=
|
|
mac->ifs_step_size;
|
|
E1000_WRITE_REG(hw, E1000_AIT,
|
|
mac->current_ifs_val);
|
|
}
|
|
}
|
|
} else {
|
|
if (mac->in_ifs_mode &&
|
|
(mac->tx_packet_delta <= MIN_NUM_XMITS)) {
|
|
mac->current_ifs_val = 0;
|
|
mac->in_ifs_mode = FALSE;
|
|
E1000_WRITE_REG(hw, E1000_AIT, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Verify that when not using auto-negotiation that MDI/MDIx is correctly
|
|
* set, which is forced to MDI mode only.
|
|
**/
|
|
static s32 e1000_validate_mdi_setting_generic(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC("e1000_validate_mdi_setting_generic");
|
|
|
|
if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
|
|
DEBUGOUT("Invalid MDI setting detected\n");
|
|
hw->phy.mdix = 1;
|
|
return -E1000_ERR_CONFIG;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_validate_mdi_setting_crossover_generic - Verify MDI/MDIx settings
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Validate the MDI/MDIx setting, allowing for auto-crossover during forced
|
|
* operation.
|
|
**/
|
|
s32 e1000_validate_mdi_setting_crossover_generic(struct e1000_hw E1000_UNUSEDARG *hw)
|
|
{
|
|
DEBUGFUNC("e1000_validate_mdi_setting_crossover_generic");
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
|
|
* @hw: pointer to the HW structure
|
|
* @reg: 32bit register offset such as E1000_SCTL
|
|
* @offset: register offset to write to
|
|
* @data: data to write at register offset
|
|
*
|
|
* Writes an address/data control type register. There are several of these
|
|
* and they all have the format address << 8 | data and bit 31 is polled for
|
|
* completion.
|
|
**/
|
|
s32 e1000_write_8bit_ctrl_reg_generic(struct e1000_hw *hw, u32 reg,
|
|
u32 offset, u8 data)
|
|
{
|
|
u32 i, regvalue = 0;
|
|
|
|
DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
|
|
|
|
/* Set up the address and data */
|
|
regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
|
|
E1000_WRITE_REG(hw, reg, regvalue);
|
|
|
|
/* Poll the ready bit to see if the MDI read completed */
|
|
for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
|
|
usec_delay(5);
|
|
regvalue = E1000_READ_REG(hw, reg);
|
|
if (regvalue & E1000_GEN_CTL_READY)
|
|
break;
|
|
}
|
|
if (!(regvalue & E1000_GEN_CTL_READY)) {
|
|
DEBUGOUT1("Reg %08x did not indicate ready\n", reg);
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|