freebsd-skq/sys/dev/ata/atapi-cd.c
2001-09-20 15:25:36 +00:00

2009 lines
53 KiB
C

/*-
* Copyright (c) 1998,1999,2000,2001 Søren Schmidt <sos@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ata.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/disklabel.h>
#include <sys/devicestat.h>
#include <sys/cdio.h>
#include <sys/cdrio.h>
#include <sys/dvdio.h>
#include <sys/fcntl.h>
#include <sys/conf.h>
#include <sys/ctype.h>
#include <dev/ata/ata-all.h>
#include <dev/ata/atapi-all.h>
#include <dev/ata/atapi-cd.h>
/* device structures */
static d_open_t acdopen;
static d_close_t acdclose;
static d_ioctl_t acdioctl;
static d_strategy_t acdstrategy;
static struct cdevsw acd_cdevsw = {
/* open */ acdopen,
/* close */ acdclose,
/* read */ physread,
/* write */ physwrite,
/* ioctl */ acdioctl,
/* poll */ nopoll,
/* mmap */ nommap,
/* strategy */ acdstrategy,
/* name */ "acd",
/* maj */ 117,
/* dump */ nodump,
/* psize */ nopsize,
/* flags */ D_DISK | D_TRACKCLOSE,
};
/* prototypes */
static struct acd_softc *acd_init_lun(struct atapi_softc *, struct devstat *);
static void acd_make_dev(struct acd_softc *);
static void acd_describe(struct acd_softc *);
static void lba2msf(u_int32_t, u_int8_t *, u_int8_t *, u_int8_t *);
static u_int32_t msf2lba(u_int8_t, u_int8_t, u_int8_t);
static int acd_done(struct atapi_request *);
static void acd_read_toc(struct acd_softc *);
static int acd_play(struct acd_softc *, int, int);
static int acd_setchan(struct acd_softc *, u_int8_t, u_int8_t, u_int8_t, u_int8_t);
static void acd_select_slot(struct acd_softc *);
static int acd_init_writer(struct acd_softc *, int);
static int acd_fixate(struct acd_softc *, int);
static int acd_init_track(struct acd_softc *, struct cdr_track *);
static int acd_flush(struct acd_softc *);
static int acd_read_track_info(struct acd_softc *, int32_t, struct acd_track_info *);
static int acd_get_progress(struct acd_softc *, int *);
static int acd_send_cue(struct acd_softc *, struct cdr_cuesheet *);
static int acd_report_key(struct acd_softc *, struct dvd_authinfo *);
static int acd_send_key(struct acd_softc *, struct dvd_authinfo *);
static int acd_read_structure(struct acd_softc *, struct dvd_struct *);
static int acd_eject(struct acd_softc *, int);
static int acd_blank(struct acd_softc *, int);
static int acd_prevent_allow(struct acd_softc *, int);
static int acd_start_stop(struct acd_softc *, int);
static int acd_pause_resume(struct acd_softc *, int);
static int acd_mode_sense(struct acd_softc *, int, caddr_t, int);
static int acd_mode_select(struct acd_softc *, caddr_t, int);
static int acd_set_speed(struct acd_softc *, int, int);
static void acd_get_cap(struct acd_softc *);
/* internal vars */
static u_int32_t acd_lun_map = 0;
static MALLOC_DEFINE(M_ACD, "ACD driver", "ATAPI CD driver buffers");
int
acdattach(struct atapi_softc *atp)
{
struct acd_softc *cdp;
struct changer *chp;
static int acd_cdev_done = 0;
if (!acd_cdev_done) {
cdevsw_add(&acd_cdevsw);
acd_cdev_done++;
}
if ((cdp = acd_init_lun(atp, NULL)) == NULL) {
ata_printf(atp->controller, atp->unit, "acd: out of memory\n");
return -1;
}
ata_set_name(atp->controller, atp->unit, "acd", cdp->lun);
acd_get_cap(cdp);
/* if this is a changer device, allocate the neeeded lun's */
if (cdp->cap.mech == MST_MECH_CHANGER) {
int8_t ccb[16] = { ATAPI_MECH_STATUS,
0, 0, 0, 0, 0, 0, 0,
sizeof(struct changer)>>8, sizeof(struct changer),
0, 0, 0, 0, 0, 0 };
chp = malloc(sizeof(struct changer), M_ACD, M_NOWAIT | M_ZERO);
if (chp == NULL) {
ata_printf(atp->controller, atp->unit, "out of memory\n");
free(cdp, M_ACD);
return -1;
}
if (!atapi_queue_cmd(cdp->atp, ccb, (caddr_t)chp,
sizeof(struct changer),
ATPR_F_READ, 60, NULL, NULL)) {
struct acd_softc *tmpcdp = cdp;
struct acd_softc **cdparr;
char *name;
int count;
chp->table_length = htons(chp->table_length);
if (!(cdparr = malloc(sizeof(struct acd_softc) * chp->slots,
M_ACD, M_NOWAIT))) {
ata_printf(atp->controller, atp->unit, "out of memory\n");
free(chp, M_ACD);
free(cdp, M_ACD);
return -1;
}
for (count = 0; count < chp->slots; count++) {
if (count > 0) {
tmpcdp = acd_init_lun(atp, NULL);
if (!tmpcdp) {
ata_printf(atp->controller,atp->unit,"out of memory\n");
break;
}
}
cdparr[count] = tmpcdp;
tmpcdp->driver = cdparr;
tmpcdp->slot = count;
tmpcdp->changer_info = chp;
acd_make_dev(tmpcdp);
devstat_add_entry(cdp->stats, "acd", tmpcdp->lun, DEV_BSIZE,
DEVSTAT_NO_ORDERED_TAGS,
DEVSTAT_TYPE_CDROM | DEVSTAT_TYPE_IF_IDE,
DEVSTAT_PRIORITY_CD);
}
name =
malloc(strlen(atp->controller->dev_name[ATA_DEV(atp->unit)])+1,
M_ACD, M_NOWAIT);
strcpy(name, atp->controller->dev_name[ATA_DEV(atp->unit)]);
ata_free_name(atp->controller, atp->unit);
ata_set_name(atp->controller, atp->unit, name,
cdp->lun + cdp->changer_info->slots - 1);
free(name, M_ACD);
}
}
else {
acd_make_dev(cdp);
devstat_add_entry(cdp->stats, "acd", cdp->lun, DEV_BSIZE,
DEVSTAT_NO_ORDERED_TAGS,
DEVSTAT_TYPE_CDROM | DEVSTAT_TYPE_IF_IDE,
DEVSTAT_PRIORITY_CD);
}
cdp->atp->driver = cdp;
acd_describe(cdp);
return 0;
}
void
acddetach(struct atapi_softc *atp)
{
struct acd_softc *cdp = atp->driver;
struct acd_devlist *entry;
struct bio *bp;
int subdev;
if (cdp->changer_info) {
for (subdev = 0; subdev < cdp->changer_info->slots; subdev++) {
if (cdp->driver[subdev] == cdp)
continue;
while ((bp = bioq_first(&cdp->driver[subdev]->queue))) {
biofinish(bp, NULL, ENXIO);
}
destroy_dev(cdp->driver[subdev]->dev1);
destroy_dev(cdp->driver[subdev]->dev2);
while ((entry = TAILQ_FIRST(&cdp->driver[subdev]->dev_list))) {
destroy_dev(entry->dev);
TAILQ_REMOVE(&cdp->driver[subdev]->dev_list, entry, chain);
free(entry, M_ACD);
}
devstat_remove_entry(cdp->driver[subdev]->stats);
free(cdp->driver[subdev]->stats, M_ACD);
ata_free_lun(&acd_lun_map, cdp->driver[subdev]->lun);
free(cdp->driver[subdev], M_ACD);
}
free(cdp->driver, M_ACD);
free(cdp->changer_info, M_ACD);
}
while ((bp = bioq_first(&cdp->queue))) {
biofinish(bp, NULL, ENXIO);
}
destroy_dev(cdp->dev1);
destroy_dev(cdp->dev2);
while ((entry = TAILQ_FIRST(&cdp->dev_list))) {
destroy_dev(entry->dev);
TAILQ_REMOVE(&cdp->dev_list, entry, chain);
free(entry, M_ACD);
}
devstat_remove_entry(cdp->stats);
free(cdp->stats, M_ACD);
ata_free_name(atp->controller, atp->unit);
ata_free_lun(&acd_lun_map, cdp->lun);
free(cdp, M_ACD);
}
static struct acd_softc *
acd_init_lun(struct atapi_softc *atp, struct devstat *stats)
{
struct acd_softc *cdp;
if (!(cdp = malloc(sizeof(struct acd_softc), M_ACD, M_NOWAIT | M_ZERO)))
return NULL;
TAILQ_INIT(&cdp->dev_list);
bioq_init(&cdp->queue);
cdp->atp = atp;
cdp->lun = ata_get_lun(&acd_lun_map);
cdp->block_size = 2048;
cdp->slot = -1;
cdp->changer_info = NULL;
if (stats == NULL) {
if (!(cdp->stats = malloc(sizeof(struct devstat), M_ACD,
M_NOWAIT | M_ZERO))) {
free(cdp, M_ACD);
return NULL;
}
}
else
cdp->stats = stats;
return cdp;
}
static void
acd_make_dev(struct acd_softc *cdp)
{
dev_t dev;
dev = make_dev(&acd_cdevsw, dkmakeminor(cdp->lun, 0, 0),
UID_ROOT, GID_OPERATOR, 0644, "acd%da", cdp->lun);
dev->si_drv1 = cdp;
dev->si_iosize_max = 252 * DEV_BSIZE;
dev->si_bsize_phys = 2048; /* XXX SOS */
cdp->dev1 = dev;
dev = make_dev(&acd_cdevsw, dkmakeminor(cdp->lun, 0, RAW_PART),
UID_ROOT, GID_OPERATOR, 0644, "acd%dc", cdp->lun);
dev->si_drv1 = cdp;
dev->si_iosize_max = 252 * DEV_BSIZE;
dev->si_bsize_phys = 2048; /* XXX SOS */
cdp->dev2 = dev;
cdp->atp->flags |= ATAPI_F_MEDIA_CHANGED;
}
static void
acd_describe(struct acd_softc *cdp)
{
int comma = 0;
char *mechanism;
if (bootverbose) {
ata_printf(cdp->atp->controller, cdp->atp->unit,
"<%.40s/%.8s> %s drive at ata%d as %s\n",
ATA_PARAM(cdp->atp->controller, cdp->atp->unit)->model,
ATA_PARAM(cdp->atp->controller, cdp->atp->unit)->revision,
(cdp->cap.write_dvdr) ? "DVD-R" :
(cdp->cap.write_dvdram) ? "DVD-RAM" :
(cdp->cap.write_cdrw) ? "CD-RW" :
(cdp->cap.write_cdr) ? "CD-R" :
(cdp->cap.read_dvdrom) ? "DVD-ROM" : "CDROM",
device_get_unit(cdp->atp->controller->dev),
(cdp->atp->unit == ATA_MASTER) ? "master" : "slave");
ata_printf(cdp->atp->controller, cdp->atp->unit, "%s", "");
if (cdp->cap.cur_read_speed) {
printf("read %dKB/s", cdp->cap.cur_read_speed * 1000 / 1024);
if (cdp->cap.max_read_speed)
printf(" (%dKB/s)", cdp->cap.max_read_speed * 1000 / 1024);
if ((cdp->cap.cur_write_speed) &&
(cdp->cap.write_cdr || cdp->cap.write_cdrw ||
cdp->cap.write_dvdr || cdp->cap.write_dvdram)) {
printf(" write %dKB/s", cdp->cap.cur_write_speed * 1000 / 1024);
if (cdp->cap.max_write_speed)
printf(" (%dKB/s)", cdp->cap.max_write_speed * 1000 / 1024);
}
comma = 1;
}
if (cdp->cap.buf_size) {
printf("%s %dKB buffer", comma ? "," : "", cdp->cap.buf_size);
comma = 1;
}
printf("%s %s\n",
comma ? "," : "", ata_mode2str(
cdp->atp->controller->mode[ATA_DEV(cdp->atp->unit)]));
ata_printf(cdp->atp->controller, cdp->atp->unit, "Reads:");
comma = 0;
if (cdp->cap.read_cdr) {
printf(" CD-R"); comma = 1;
}
if (cdp->cap.read_cdrw) {
printf("%s CD-RW", comma ? "," : ""); comma = 1;
}
if (cdp->cap.cd_da) {
if (cdp->cap.cd_da_stream)
printf("%s CD-DA stream", comma ? "," : "");
else
printf("%s CD-DA", comma ? "," : "");
comma = 1;
}
if (cdp->cap.read_dvdrom) {
printf("%s DVD-ROM", comma ? "," : ""); comma = 1;
}
if (cdp->cap.read_dvdr) {
printf("%s DVD-R", comma ? "," : ""); comma = 1;
}
if (cdp->cap.read_dvdram) {
printf("%s DVD-RAM", comma ? "," : ""); comma = 1;
}
if (cdp->cap.read_packet)
printf("%s packet", comma ? "," : "");
printf("\n");
ata_printf(cdp->atp->controller, cdp->atp->unit, "Writes:");
if (cdp->cap.write_cdr || cdp->cap.write_cdrw ||
cdp->cap.write_dvdr || cdp->cap.write_dvdram) {
comma = 0;
if (cdp->cap.write_cdr) {
printf(" CD-R" ); comma = 1;
}
if (cdp->cap.write_cdrw) {
printf("%s CD-RW", comma ? "," : ""); comma = 1;
}
if (cdp->cap.write_dvdr) {
printf("%s DVD-R", comma ? "," : ""); comma = 1;
}
if (cdp->cap.write_dvdram) {
printf("%s DVD-RAM", comma ? "," : ""); comma = 1;
}
if (cdp->cap.test_write) {
printf("%s test write", comma ? "," : ""); comma = 1;
}
if (cdp->cap.burnproof)
printf("%s burnproof", comma ? "," : "");
}
printf("\n");
if (cdp->cap.audio_play) {
ata_printf(cdp->atp->controller, cdp->atp->unit, "Audio: ");
if (cdp->cap.audio_play)
printf("play");
if (cdp->cap.max_vol_levels)
printf(", %d volume levels", cdp->cap.max_vol_levels);
printf("\n");
}
ata_printf(cdp->atp->controller, cdp->atp->unit, "Mechanism: ");
switch (cdp->cap.mech) {
case MST_MECH_CADDY:
mechanism = "caddy"; break;
case MST_MECH_TRAY:
mechanism = "tray"; break;
case MST_MECH_POPUP:
mechanism = "popup"; break;
case MST_MECH_CHANGER:
mechanism = "changer"; break;
case MST_MECH_CARTRIDGE:
mechanism = "cartridge"; break;
default:
mechanism = 0; break;
}
if (mechanism)
printf("%s%s", cdp->cap.eject ? "ejectable " : "", mechanism);
else if (cdp->cap.eject)
printf("ejectable");
if (cdp->cap.lock)
printf(cdp->cap.locked ? ", locked" : ", unlocked");
if (cdp->cap.prevent)
printf(", lock protected");
printf("\n");
if (cdp->cap.mech != MST_MECH_CHANGER) {
ata_printf(cdp->atp->controller, cdp->atp->unit, "Medium: ");
switch (cdp->cap.medium_type & MST_TYPE_MASK_HIGH) {
case MST_CDROM:
printf("CD-ROM "); break;
case MST_CDR:
printf("CD-R "); break;
case MST_CDRW:
printf("CD-RW "); break;
case MST_DOOR_OPEN:
printf("door open"); break;
case MST_NO_DISC:
printf("no/blank disc"); break;
case MST_FMT_ERROR:
printf("medium format error"); break;
}
if ((cdp->cap.medium_type & MST_TYPE_MASK_HIGH)<MST_TYPE_MASK_HIGH){
switch (cdp->cap.medium_type & MST_TYPE_MASK_LOW) {
case MST_DATA_120:
printf("120mm data disc"); break;
case MST_AUDIO_120:
printf("120mm audio disc"); break;
case MST_COMB_120:
printf("120mm data/audio disc"); break;
case MST_PHOTO_120:
printf("120mm photo disc"); break;
case MST_DATA_80:
printf("80mm data disc"); break;
case MST_AUDIO_80:
printf("80mm audio disc"); break;
case MST_COMB_80:
printf("80mm data/audio disc"); break;
case MST_PHOTO_80:
printf("80mm photo disc"); break;
case MST_FMT_NONE:
switch (cdp->cap.medium_type & MST_TYPE_MASK_HIGH) {
case MST_CDROM:
printf("unknown"); break;
case MST_CDR:
case MST_CDRW:
printf("blank"); break;
}
break;
default:
printf("unknown (0x%x)", cdp->cap.medium_type); break;
}
}
printf("\n");
}
}
else {
ata_printf(cdp->atp->controller, cdp->atp->unit, "%s ",
(cdp->cap.write_dvdr) ? "DVD-R" :
(cdp->cap.write_dvdram) ? "DVD-RAM" :
(cdp->cap.write_cdrw) ? "CD-RW" :
(cdp->cap.write_cdr) ? "CD-R" :
(cdp->cap.read_dvdrom) ? "DVD-ROM" : "CDROM");
if (cdp->changer_info)
printf("with %d CD changer ", cdp->changer_info->slots);
printf("<%.40s> at ata%d-%s %s\n",
ATA_PARAM(cdp->atp->controller, cdp->atp->unit)->model,
device_get_unit(cdp->atp->controller->dev),
(cdp->atp->unit == ATA_MASTER) ? "master" : "slave",
ata_mode2str(cdp->atp->controller->mode[ATA_DEV(cdp->atp->unit)])
);
}
}
static __inline void
lba2msf(u_int32_t lba, u_int8_t *m, u_int8_t *s, u_int8_t *f)
{
lba += 150;
lba &= 0xffffff;
*m = lba / (60 * 75);
lba %= (60 * 75);
*s = lba / 75;
*f = lba % 75;
}
static __inline u_int32_t
msf2lba(u_int8_t m, u_int8_t s, u_int8_t f)
{
return (m * 60 + s) * 75 + f - 150;
}
static int
acdopen(dev_t dev, int flags, int fmt, struct thread *td)
{
struct acd_softc *cdp = dev->si_drv1;
if (!cdp)
return ENXIO;
if (flags & FWRITE) {
if (count_dev(dev) > 1)
return EBUSY;
}
if (count_dev(dev) == 1) {
if (cdp->changer_info && cdp->slot != cdp->changer_info->current_slot) {
acd_select_slot(cdp);
tsleep(&cdp->changer_info, PRIBIO, "acdopn", 0);
}
acd_prevent_allow(cdp, 1);
cdp->flags |= F_LOCKED;
acd_read_toc(cdp);
}
return 0;
}
static int
acdclose(dev_t dev, int flags, int fmt, struct thread *td)
{
struct acd_softc *cdp = dev->si_drv1;
if (!cdp)
return ENXIO;
if (count_dev(dev) == 1) {
if (cdp->changer_info && cdp->slot != cdp->changer_info->current_slot) {
acd_select_slot(cdp);
tsleep(&cdp->changer_info, PRIBIO, "acdclo", 0);
}
acd_prevent_allow(cdp, 0);
cdp->flags &= ~F_LOCKED;
}
return 0;
}
static int
acdioctl(dev_t dev, u_long cmd, caddr_t addr, int flags, struct thread *td)
{
struct acd_softc *cdp = dev->si_drv1;
int error = 0;
if (!cdp)
return ENXIO;
if (cdp->changer_info && cdp->slot != cdp->changer_info->current_slot) {
acd_select_slot(cdp);
tsleep(&cdp->changer_info, PRIBIO, "acdctl", 0);
}
if (cdp->atp->flags & ATAPI_F_MEDIA_CHANGED)
switch (cmd) {
case CDIOCRESET:
atapi_test_ready(cdp->atp);
break;
default:
acd_read_toc(cdp);
acd_prevent_allow(cdp, 1);
cdp->flags |= F_LOCKED;
break;
}
switch (cmd) {
case CDIOCRESUME:
error = acd_pause_resume(cdp, 1);
break;
case CDIOCPAUSE:
error = acd_pause_resume(cdp, 0);
break;
case CDIOCSTART:
error = acd_start_stop(cdp, 1);
break;
case CDIOCSTOP:
error = acd_start_stop(cdp, 0);
break;
case CDIOCALLOW:
error = acd_prevent_allow(cdp, 0);
cdp->flags &= ~F_LOCKED;
break;
case CDIOCPREVENT:
error = acd_prevent_allow(cdp, 1);
cdp->flags |= F_LOCKED;
break;
case CDIOCRESET:
error = suser(td->td_proc);
if (error)
break;
error = atapi_test_ready(cdp->atp);
break;
case CDIOCEJECT:
if (count_dev(dev) > 1) {
error = EBUSY;
break;
}
error = acd_eject(cdp, 0);
break;
case CDIOCCLOSE:
if (count_dev(dev) > 1)
break;
error = acd_eject(cdp, 1);
break;
case CDIOREADTOCHEADER:
if (!cdp->toc.hdr.ending_track) {
error = EIO;
break;
}
bcopy(&cdp->toc.hdr, addr, sizeof(cdp->toc.hdr));
break;
case CDIOREADTOCENTRYS:
{
struct ioc_read_toc_entry *te = (struct ioc_read_toc_entry *)addr;
struct toc *toc = &cdp->toc;
int starting_track = te->starting_track;
int len;
if (!toc->hdr.ending_track) {
error = EIO;
break;
}
if (te->data_len < sizeof(toc->tab[0]) ||
(te->data_len % sizeof(toc->tab[0])) != 0 ||
(te->address_format != CD_MSF_FORMAT &&
te->address_format != CD_LBA_FORMAT)) {
error = EINVAL;
break;
}
if (!starting_track)
starting_track = toc->hdr.starting_track;
else if (starting_track == 170)
starting_track = toc->hdr.ending_track + 1;
else if (starting_track < toc->hdr.starting_track ||
starting_track > toc->hdr.ending_track + 1) {
error = EINVAL;
break;
}
len = ((toc->hdr.ending_track + 1 - starting_track) + 1) *
sizeof(toc->tab[0]);
if (te->data_len < len)
len = te->data_len;
if (len > sizeof(toc->tab)) {
error = EINVAL;
break;
}
if (te->address_format == CD_MSF_FORMAT) {
struct cd_toc_entry *entry;
toc = malloc(sizeof(struct toc), M_ACD, M_NOWAIT | M_ZERO);
bcopy(&cdp->toc, toc, sizeof(struct toc));
entry = toc->tab + (toc->hdr.ending_track + 1 -
toc->hdr.starting_track) + 1;
while (--entry >= toc->tab)
lba2msf(ntohl(entry->addr.lba), &entry->addr.msf.minute,
&entry->addr.msf.second, &entry->addr.msf.frame);
}
error = copyout(toc->tab + starting_track - toc->hdr.starting_track,
te->data, len);
if (te->address_format == CD_MSF_FORMAT)
free(toc, M_ACD);
break;
}
case CDIOREADTOCENTRY:
{
struct ioc_read_toc_single_entry *te =
(struct ioc_read_toc_single_entry *)addr;
struct toc *toc = &cdp->toc;
u_char track = te->track;
if (!toc->hdr.ending_track) {
error = EIO;
break;
}
if (te->address_format != CD_MSF_FORMAT &&
te->address_format != CD_LBA_FORMAT) {
error = EINVAL;
break;
}
if (!track)
track = toc->hdr.starting_track;
else if (track == 170)
track = toc->hdr.ending_track + 1;
else if (track < toc->hdr.starting_track ||
track > toc->hdr.ending_track + 1) {
error = EINVAL;
break;
}
if (te->address_format == CD_MSF_FORMAT) {
struct cd_toc_entry *entry;
toc = malloc(sizeof(struct toc), M_ACD, M_NOWAIT | M_ZERO);
bcopy(&cdp->toc, toc, sizeof(struct toc));
entry = toc->tab + (track - toc->hdr.starting_track);
lba2msf(ntohl(entry->addr.lba), &entry->addr.msf.minute,
&entry->addr.msf.second, &entry->addr.msf.frame);
}
bcopy(toc->tab + track - toc->hdr.starting_track,
&te->entry, sizeof(struct cd_toc_entry));
if (te->address_format == CD_MSF_FORMAT)
free(toc, M_ACD);
}
break;
case CDIOCREADSUBCHANNEL:
{
struct ioc_read_subchannel *args =
(struct ioc_read_subchannel *)addr;
struct cd_sub_channel_info *data;
int8_t ccb[16] = { ATAPI_READ_SUBCHANNEL, 0, 0x40, 1, 0, 0, 0,
sizeof(cdp->subchan)>>8, sizeof(cdp->subchan),
0, 0, 0, 0, 0, 0, 0 };
if (args->data_len > sizeof(data) ||
args->data_len < sizeof(struct cd_sub_channel_header)) {
error = EINVAL;
break;
}
if ((error = atapi_queue_cmd(cdp->atp, ccb, (caddr_t)&cdp->subchan,
sizeof(cdp->subchan), ATPR_F_READ, 10,
NULL, NULL))) {
break;
}
data = malloc(sizeof(struct cd_sub_channel_info),
M_ACD, M_NOWAIT | M_ZERO);
if (args->address_format == CD_MSF_FORMAT) {
lba2msf(ntohl(cdp->subchan.abslba),
&data->what.position.absaddr.msf.minute,
&data->what.position.absaddr.msf.second,
&data->what.position.absaddr.msf.frame);
lba2msf(ntohl(cdp->subchan.rellba),
&data->what.position.reladdr.msf.minute,
&data->what.position.reladdr.msf.second,
&data->what.position.reladdr.msf.frame);
} else {
data->what.position.absaddr.lba = cdp->subchan.abslba;
data->what.position.reladdr.lba = cdp->subchan.rellba;
}
data->header.audio_status = cdp->subchan.audio_status;
data->what.position.control = cdp->subchan.control & 0xf;
data->what.position.addr_type = cdp->subchan.control >> 4;
data->what.position.track_number = cdp->subchan.track;
data->what.position.index_number = cdp->subchan.indx;
error = copyout(data, args->data, args->data_len);
free(data, M_ACD);
break;
}
case CDIOCPLAYMSF:
{
struct ioc_play_msf *args = (struct ioc_play_msf *)addr;
error =
acd_play(cdp,
msf2lba(args->start_m, args->start_s, args->start_f),
msf2lba(args->end_m, args->end_s, args->end_f));
break;
}
case CDIOCPLAYBLOCKS:
{
struct ioc_play_blocks *args = (struct ioc_play_blocks *)addr;
error = acd_play(cdp, args->blk, args->blk + args->len);
break;
}
case CDIOCPLAYTRACKS:
{
struct ioc_play_track *args = (struct ioc_play_track *)addr;
int t1, t2;
if (!cdp->toc.hdr.ending_track) {
error = EIO;
break;
}
if (args->end_track < cdp->toc.hdr.ending_track + 1)
++args->end_track;
if (args->end_track > cdp->toc.hdr.ending_track + 1)
args->end_track = cdp->toc.hdr.ending_track + 1;
t1 = args->start_track - cdp->toc.hdr.starting_track;
t2 = args->end_track - cdp->toc.hdr.starting_track;
if (t1 < 0 || t2 < 0 ||
t1 > (cdp->toc.hdr.ending_track-cdp->toc.hdr.starting_track)) {
error = EINVAL;
break;
}
error = acd_play(cdp, ntohl(cdp->toc.tab[t1].addr.lba),
ntohl(cdp->toc.tab[t2].addr.lba));
break;
}
case CDIOCREADAUDIO:
{
struct ioc_read_audio *args = (struct ioc_read_audio *)addr;
int32_t lba;
caddr_t buffer, ubuf = args->buffer;
int8_t ccb[16];
int frames;
if (!cdp->toc.hdr.ending_track) {
error = EIO;
break;
}
if ((frames = args->nframes) < 0) {
error = EINVAL;
break;
}
if (args->address_format == CD_LBA_FORMAT)
lba = args->address.lba;
else if (args->address_format == CD_MSF_FORMAT)
lba = msf2lba(args->address.msf.minute,
args->address.msf.second,
args->address.msf.frame);
else {
error = EINVAL;
break;
}
#ifndef CD_BUFFER_BLOCKS
#define CD_BUFFER_BLOCKS 13
#endif
if (!(buffer = malloc(CD_BUFFER_BLOCKS * 2352, M_ACD, M_NOWAIT))){
error = ENOMEM;
break;
}
bzero(ccb, sizeof(ccb));
while (frames > 0) {
int8_t blocks;
int size;
blocks = (frames>CD_BUFFER_BLOCKS) ? CD_BUFFER_BLOCKS : frames;
size = blocks * 2352;
ccb[0] = ATAPI_READ_CD;
ccb[1] = 4;
ccb[2] = lba>>24;
ccb[3] = lba>>16;
ccb[4] = lba>>8;
ccb[5] = lba;
ccb[8] = blocks;
ccb[9] = 0xf0;
if ((error = atapi_queue_cmd(cdp->atp, ccb, buffer, size,
ATPR_F_READ, 30, NULL,NULL)))
break;
if ((error = copyout(buffer, ubuf, size)))
break;
ubuf += size;
frames -= blocks;
lba += blocks;
}
free(buffer, M_ACD);
if (args->address_format == CD_LBA_FORMAT)
args->address.lba = lba;
else if (args->address_format == CD_MSF_FORMAT)
lba2msf(lba, &args->address.msf.minute,
&args->address.msf.second,
&args->address.msf.frame);
break;
}
case CDIOCGETVOL:
{
struct ioc_vol *arg = (struct ioc_vol *)addr;
if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE,
(caddr_t)&cdp->au, sizeof(cdp->au))))
break;
if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE) {
error = EIO;
break;
}
arg->vol[0] = cdp->au.port[0].volume;
arg->vol[1] = cdp->au.port[1].volume;
arg->vol[2] = cdp->au.port[2].volume;
arg->vol[3] = cdp->au.port[3].volume;
break;
}
case CDIOCSETVOL:
{
struct ioc_vol *arg = (struct ioc_vol *)addr;
if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE,
(caddr_t)&cdp->au, sizeof(cdp->au))))
break;
if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE) {
error = EIO;
break;
}
if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE_MASK,
(caddr_t)&cdp->aumask,
sizeof(cdp->aumask))))
break;
cdp->au.data_length = 0;
cdp->au.port[0].channels = CHANNEL_0;
cdp->au.port[1].channels = CHANNEL_1;
cdp->au.port[0].volume = arg->vol[0] & cdp->aumask.port[0].volume;
cdp->au.port[1].volume = arg->vol[1] & cdp->aumask.port[1].volume;
cdp->au.port[2].volume = arg->vol[2] & cdp->aumask.port[2].volume;
cdp->au.port[3].volume = arg->vol[3] & cdp->aumask.port[3].volume;
error = acd_mode_select(cdp, (caddr_t)&cdp->au, sizeof(cdp->au));
break;
}
case CDIOCSETPATCH:
{
struct ioc_patch *arg = (struct ioc_patch *)addr;
error = acd_setchan(cdp, arg->patch[0], arg->patch[1],
arg->patch[2], arg->patch[3]);
break;
}
case CDIOCSETMONO:
error = acd_setchan(cdp, CHANNEL_0|CHANNEL_1, CHANNEL_0|CHANNEL_1, 0,0);
break;
case CDIOCSETSTEREO:
error = acd_setchan(cdp, CHANNEL_0, CHANNEL_1, 0, 0);
break;
case CDIOCSETMUTE:
error = acd_setchan(cdp, 0, 0, 0, 0);
break;
case CDIOCSETLEFT:
error = acd_setchan(cdp, CHANNEL_0, CHANNEL_0, 0, 0);
break;
case CDIOCSETRIGHT:
error = acd_setchan(cdp, CHANNEL_1, CHANNEL_1, 0, 0);
break;
case CDRIOCBLANK:
error = acd_blank(cdp, (*(int *)addr));
break;
case CDRIOCNEXTWRITEABLEADDR:
{
struct acd_track_info track_info;
if ((error = acd_read_track_info(cdp, 0xff, &track_info)))
break;
if (!track_info.nwa_valid) {
error = EINVAL;
break;
}
*(int*)addr = track_info.next_writeable_addr;
}
break;
case CDRIOCINITWRITER:
error = acd_init_writer(cdp, (*(int *)addr));
break;
case CDRIOCINITTRACK:
error = acd_init_track(cdp, (struct cdr_track *)addr);
break;
case CDRIOCFLUSH:
error = acd_flush(cdp);
break;
case CDRIOCFIXATE:
error = acd_fixate(cdp, (*(int *)addr));
break;
case CDRIOCREADSPEED:
error = acd_set_speed(cdp, 177 * (*(int *)addr), -1);
break;
case CDRIOCWRITESPEED:
error = acd_set_speed(cdp, -1, 177 * (*(int *)addr));
break;
case CDRIOCGETBLOCKSIZE:
*(int *)addr = cdp->block_size;
break;
case CDRIOCSETBLOCKSIZE:
cdp->block_size = *(int *)addr;
break;
case CDRIOCGETPROGRESS:
error = acd_get_progress(cdp, (int *)addr);
break;
case CDRIOCSENDCUE:
error = acd_send_cue(cdp, (struct cdr_cuesheet *)addr);
break;
case DVDIOCREPORTKEY:
if (!cdp->cap.read_dvdrom)
error = EINVAL;
else
error = acd_report_key(cdp, (struct dvd_authinfo *)addr);
break;
case DVDIOCSENDKEY:
if (!cdp->cap.read_dvdrom)
error = EINVAL;
else
error = acd_send_key(cdp, (struct dvd_authinfo *)addr);
break;
case DVDIOCREADSTRUCTURE:
if (!cdp->cap.read_dvdrom)
error = EINVAL;
else
error = acd_read_structure(cdp, (struct dvd_struct *)addr);
break;
case DIOCGDINFO:
*(struct disklabel *)addr = cdp->disklabel;
break;
case DIOCWDINFO:
case DIOCSDINFO:
if ((flags & FWRITE) == 0)
error = EBADF;
else
error = setdisklabel(&cdp->disklabel, (struct disklabel *)addr, 0);
break;
case DIOCWLABEL:
error = EBADF;
break;
case DIOCGPART:
((struct partinfo *)addr)->disklab = &cdp->disklabel;
((struct partinfo *)addr)->part = &cdp->disklabel.d_partitions[0];
break;
default:
error = ENOTTY;
}
return error;
}
static void
acdstrategy(struct bio *bp)
{
struct acd_softc *cdp = bp->bio_dev->si_drv1;
int s;
if (cdp->atp->flags & ATAPI_F_DETACHING) {
biofinish(bp, NULL, ENXIO);
return;
}
/* if it's a null transfer, return immediatly. */
if (bp->bio_bcount == 0) {
bp->bio_resid = 0;
biodone(bp);
return;
}
bp->bio_pblkno = bp->bio_blkno;
bp->bio_resid = bp->bio_bcount;
s = splbio();
bioqdisksort(&cdp->queue, bp);
ata_start(cdp->atp->controller);
splx(s);
}
void
acd_start(struct atapi_softc *atp)
{
struct acd_softc *cdp = atp->driver;
struct bio *bp = bioq_first(&cdp->queue);
u_int32_t lba, lastlba, count;
int8_t ccb[16];
int track, blocksize;
if (cdp->changer_info) {
int i;
cdp = cdp->driver[cdp->changer_info->current_slot];
bp = bioq_first(&cdp->queue);
/* check for work pending on any other slot */
for (i = 0; i < cdp->changer_info->slots; i++) {
if (i == cdp->changer_info->current_slot)
continue;
if (bioq_first(&(cdp->driver[i]->queue))) {
if (!bp || time_second > (cdp->timestamp + 10)) {
acd_select_slot(cdp->driver[i]);
return;
}
}
}
}
if (!bp)
return;
bioq_remove(&cdp->queue, bp);
/* reject all queued entries if media changed */
if (cdp->atp->flags & ATAPI_F_MEDIA_CHANGED) {
biofinish(bp, NULL, EIO);
return;
}
bzero(ccb, sizeof(ccb));
track = (bp->bio_dev->si_udev & 0x00ff0000) >> 16;
if (track) {
blocksize = (cdp->toc.tab[track - 1].control & 4) ? 2048 : 2352;
lastlba = ntohl(cdp->toc.tab[track].addr.lba);
lba = bp->bio_offset / blocksize;
lba += ntohl(cdp->toc.tab[track - 1].addr.lba);
}
else {
blocksize = cdp->block_size;
lastlba = cdp->disk_size;
lba = bp->bio_offset / blocksize;
}
if (bp->bio_bcount % blocksize != 0) {
biofinish(bp, NULL, EINVAL);
return;
}
count = bp->bio_bcount / blocksize;
if (bp->bio_cmd == BIO_READ) {
/* if transfer goes beyond range adjust it to be within limits */
if (lba + count > lastlba) {
/* if we are entirely beyond EOM return EOF */
if (lastlba <= lba) {
bp->bio_resid = bp->bio_bcount;
biodone(bp);
return;
}
count = lastlba - lba;
}
switch (blocksize) {
case 2048:
ccb[0] = ATAPI_READ_BIG;
break;
case 2352:
ccb[0] = ATAPI_READ_CD;
ccb[9] = 0xf8;
break;
default:
ccb[0] = ATAPI_READ_CD;
ccb[9] = 0x10;
}
}
else
ccb[0] = ATAPI_WRITE_BIG;
ccb[1] = 0;
ccb[2] = lba>>24;
ccb[3] = lba>>16;
ccb[4] = lba>>8;
ccb[5] = lba;
ccb[6] = count>>16;
ccb[7] = count>>8;
ccb[8] = count;
devstat_start_transaction(cdp->stats);
atapi_queue_cmd(cdp->atp, ccb, bp->bio_data, count * blocksize,
bp->bio_cmd == BIO_READ ? ATPR_F_READ : 0,
(ccb[0] == ATAPI_WRITE_BIG) ? 60 : 30, acd_done, bp);
}
static int
acd_done(struct atapi_request *request)
{
struct bio *bp = request->driver;
struct acd_softc *cdp = request->device->driver;
if (request->error) {
bp->bio_error = request->error;
bp->bio_flags |= BIO_ERROR;
}
else
bp->bio_resid = bp->bio_bcount - request->donecount;
biofinish(bp, cdp->stats, 0);
return 0;
}
static void
acd_read_toc(struct acd_softc *cdp)
{
struct acd_devlist *entry;
int track, ntracks, len;
u_int32_t sizes[2];
int8_t ccb[16];
bzero(&cdp->toc, sizeof(cdp->toc));
bzero(ccb, sizeof(ccb));
if (atapi_test_ready(cdp->atp) != 0)
return;
cdp->atp->flags &= ~ATAPI_F_MEDIA_CHANGED;
len = sizeof(struct ioc_toc_header) + sizeof(struct cd_toc_entry);
ccb[0] = ATAPI_READ_TOC;
ccb[7] = len>>8;
ccb[8] = len;
if (atapi_queue_cmd(cdp->atp, ccb, (caddr_t)&cdp->toc, len,
ATPR_F_READ | ATPR_F_QUIET, 30, NULL, NULL)) {
bzero(&cdp->toc, sizeof(cdp->toc));
return;
}
ntracks = cdp->toc.hdr.ending_track - cdp->toc.hdr.starting_track + 1;
if (ntracks <= 0 || ntracks > MAXTRK) {
bzero(&cdp->toc, sizeof(cdp->toc));
return;
}
len = sizeof(struct ioc_toc_header)+(ntracks+1)*sizeof(struct cd_toc_entry);
bzero(ccb, sizeof(ccb));
ccb[0] = ATAPI_READ_TOC;
ccb[7] = len>>8;
ccb[8] = len;
if (atapi_queue_cmd(cdp->atp, ccb, (caddr_t)&cdp->toc, len,
ATPR_F_READ | ATPR_F_QUIET, 30, NULL, NULL)) {
bzero(&cdp->toc, sizeof(cdp->toc));
return;
}
cdp->toc.hdr.len = ntohs(cdp->toc.hdr.len);
cdp->block_size = (cdp->toc.tab[0].control & 4) ? 2048 : 2352;
#if 0
cdp->disk_size = ntohl(cdp->toc.tab[cdp->toc.hdr.ending_track].addr.lba);
#else
bzero(ccb, sizeof(ccb));
ccb[0] = ATAPI_READ_CAPACITY;
if (atapi_queue_cmd(cdp->atp, ccb, (caddr_t)sizes, sizeof(sizes),
ATPR_F_READ | ATPR_F_QUIET, 30, NULL, NULL)) {
bzero(&cdp->toc, sizeof(cdp->toc));
return;
}
cdp->disk_size = ntohl(sizes[0]) + 1;
#endif
bzero(&cdp->disklabel, sizeof(struct disklabel));
strncpy(cdp->disklabel.d_typename, " ",
sizeof(cdp->disklabel.d_typename));
strncpy(cdp->disklabel.d_typename,
cdp->atp->controller->dev_name[ATA_DEV(cdp->atp->unit)],
min(strlen(cdp->atp->controller->dev_name[ATA_DEV(cdp->atp->unit)]),
sizeof(cdp->disklabel.d_typename) - 1));
strncpy(cdp->disklabel.d_packname, "unknown ",
sizeof(cdp->disklabel.d_packname));
cdp->disklabel.d_secsize = cdp->block_size;
cdp->disklabel.d_nsectors = 100;
cdp->disklabel.d_ntracks = 1;
cdp->disklabel.d_ncylinders = (cdp->disk_size / 100) + 1;
cdp->disklabel.d_secpercyl = 100;
cdp->disklabel.d_secperunit = cdp->disk_size;
cdp->disklabel.d_rpm = 300;
cdp->disklabel.d_interleave = 1;
cdp->disklabel.d_flags = D_REMOVABLE;
cdp->disklabel.d_npartitions = 1;
cdp->disklabel.d_partitions[0].p_offset = 0;
cdp->disklabel.d_partitions[0].p_size = cdp->disk_size;
cdp->disklabel.d_partitions[0].p_fstype = FS_BSDFFS;
cdp->disklabel.d_magic = DISKMAGIC;
cdp->disklabel.d_magic2 = DISKMAGIC;
cdp->disklabel.d_checksum = dkcksum(&cdp->disklabel);
while ((entry = TAILQ_FIRST(&cdp->dev_list))) {
destroy_dev(entry->dev);
TAILQ_REMOVE(&cdp->dev_list, entry, chain);
free(entry, M_ACD);
}
for (track = 1; track <= ntracks; track ++) {
char name[16];
sprintf(name, "acd%dt%d", cdp->lun, track);
entry = malloc(sizeof(struct acd_devlist), M_ACD, M_NOWAIT | M_ZERO);
entry->dev = make_dev(&acd_cdevsw, (cdp->lun << 3) | (track << 16),
0, 0, 0644, name, NULL);
entry->dev->si_drv1 = cdp->dev1->si_drv1;
TAILQ_INSERT_TAIL(&cdp->dev_list, entry, chain);
}
#ifdef ACD_DEBUG
if (cdp->disk_size && cdp->toc.hdr.ending_track) {
ata_printf(cdp->atp->controller, cdp->atp->unit,
"(%d sectors (%d bytes)), %d tracks ",
cdp->disk_size, cdp->block_size,
cdp->toc.hdr.ending_track - cdp->toc.hdr.starting_track + 1);
if (cdp->toc.tab[0].control & 4)
printf("%dMB\n", cdp->disk_size / 512);
else
printf("%d:%d audio\n",
cdp->disk_size / 75 / 60, cdp->disk_size / 75 % 60);
}
#endif
}
static int
acd_play(struct acd_softc *cdp, int start, int end)
{
int8_t ccb[16];
bzero(ccb, sizeof(ccb));
#if 1
ccb[0] = ATAPI_PLAY_MSF;
lba2msf(start, &ccb[3], &ccb[4], &ccb[5]);
lba2msf(end, &ccb[6], &ccb[7], &ccb[8]);
#else
ccb[0] = ATAPI_PLAY_12;
ccb[2] = start>>24;
ccb[3] = start>>16;
ccb[4] = start>>8;
ccb[5] = start;
ccb[6] = (end - start)>>24;
ccb[7] = (end - start)>>16;
ccb[8] = (end - start)>>8;
ccb[9] = (end - start);
#endif
return atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 10, NULL, NULL);
}
static int
acd_setchan(struct acd_softc *cdp,
u_int8_t c0, u_int8_t c1, u_int8_t c2, u_int8_t c3)
{
int error;
if ((error = acd_mode_sense(cdp, ATAPI_CDROM_AUDIO_PAGE, (caddr_t)&cdp->au,
sizeof(cdp->au))))
return error;
if (cdp->au.page_code != ATAPI_CDROM_AUDIO_PAGE)
return EIO;
cdp->au.data_length = 0;
cdp->au.port[0].channels = c0;
cdp->au.port[1].channels = c1;
cdp->au.port[2].channels = c2;
cdp->au.port[3].channels = c3;
return acd_mode_select(cdp, (caddr_t)&cdp->au, sizeof(cdp->au));
}
static int
acd_select_done1(struct atapi_request *request)
{
struct acd_softc *cdp = request->driver;
cdp->changer_info->current_slot = cdp->slot;
cdp->driver[cdp->changer_info->current_slot]->timestamp = time_second;
wakeup(&cdp->changer_info);
return 0;
}
static int
acd_select_done(struct atapi_request *request)
{
struct acd_softc *cdp = request->driver;
int8_t ccb[16] = { ATAPI_LOAD_UNLOAD, 0, 0, 0, 3, 0, 0, 0,
cdp->slot, 0, 0, 0, 0, 0, 0, 0 };
/* load the wanted slot */
atapi_queue_cmd(cdp->atp, ccb, NULL, 0, ATPR_F_AT_HEAD, 30,
acd_select_done1, cdp);
return 0;
}
static void
acd_select_slot(struct acd_softc *cdp)
{
int8_t ccb[16] = { ATAPI_LOAD_UNLOAD, 0, 0, 0, 2, 0, 0, 0,
cdp->changer_info->current_slot, 0, 0, 0, 0, 0, 0, 0 };
/* unload the current media from player */
atapi_queue_cmd(cdp->atp, ccb, NULL, 0, ATPR_F_AT_HEAD, 30,
acd_select_done, cdp);
}
static int
acd_init_writer(struct acd_softc *cdp, int test_write)
{
struct write_param param;
int8_t ccb[16];
int error;
bzero(ccb, sizeof(ccb));
ccb[0] = ATAPI_REZERO;
atapi_queue_cmd(cdp->atp, ccb, NULL, 0, ATPR_F_QUIET, 60, NULL, NULL);
ccb[0] = ATAPI_SEND_OPC_INFO;
ccb[1] = 0x01;
atapi_queue_cmd(cdp->atp, ccb, NULL, 0, ATPR_F_QUIET, 30, NULL, NULL);
if ((error = acd_mode_sense(cdp, ATAPI_CDROM_WRITE_PARAMETERS_PAGE,
(caddr_t)&param, sizeof(param))))
return error;
param.data_length = 0;
param.page_code = ATAPI_CDROM_WRITE_PARAMETERS_PAGE;
param.page_length = 0x32;
param.test_write = test_write ? 1 : 0;
param.write_type = CDR_WTYPE_SESSION;
param.session_type = CDR_SESS_NONE;
param.fp = 0;
param.packet_size = 0;
param.track_mode = CDR_TMODE_AUDIO;
param.datablock_type = CDR_DB_RAW;
param.session_format = CDR_SESS_CDROM;
return acd_mode_select(cdp, (caddr_t)&param, param.page_length + 10);
}
static int
acd_fixate(struct acd_softc *cdp, int multisession)
{
int8_t ccb[16] = { ATAPI_CLOSE_TRACK, 0x01, 0x02, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 };
int timeout = 5*60*2;
int error;
struct write_param param;
if ((error = acd_mode_sense(cdp, ATAPI_CDROM_WRITE_PARAMETERS_PAGE,
(caddr_t)&param, sizeof(param))))
return error;
param.data_length = 0;
if (multisession)
param.session_type = CDR_SESS_MULTI;
else
param.session_type = CDR_SESS_NONE;
if ((error = acd_mode_select(cdp, (caddr_t)&param, param.page_length + 10)))
return error;
error = atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 30, NULL, NULL);
if (error)
return error;
/* some drives just return ready, wait for the expected fixate time */
if ((error = atapi_test_ready(cdp->atp)) != EBUSY) {
timeout = timeout / (cdp->cap.cur_write_speed / 177);
tsleep(&error, PRIBIO, "acdfix", timeout * hz / 2);
return atapi_test_ready(cdp->atp);
}
while (timeout-- > 0) {
if ((error = atapi_test_ready(cdp->atp)) != EBUSY)
return error;
tsleep(&error, PRIBIO, "acdcld", hz/2);
}
return EIO;
}
static int
acd_init_track(struct acd_softc *cdp, struct cdr_track *track)
{
struct write_param param;
int error;
if ((error = acd_mode_sense(cdp, ATAPI_CDROM_WRITE_PARAMETERS_PAGE,
(caddr_t)&param, sizeof(param))))
return error;
param.data_length = 0;
param.page_code = ATAPI_CDROM_WRITE_PARAMETERS_PAGE;
param.page_length = 0x32;
param.test_write = track->test_write ? 1 : 0;
param.write_type = CDR_WTYPE_TRACK;
param.session_type = CDR_SESS_NONE;
param.fp = 0;
param.packet_size = 0;
if (cdp->cap.burnproof)
param.burnproof = 1;
switch (track->datablock_type) {
case CDR_DB_RAW:
if (track->preemp)
param.track_mode = CDR_TMODE_AUDIO_PREEMP;
else
param.track_mode = CDR_TMODE_AUDIO;
cdp->block_size = 2352;
param.datablock_type = CDR_DB_RAW;
param.session_format = CDR_SESS_CDROM;
break;
case CDR_DB_ROM_MODE1:
cdp->block_size = 2048;
param.track_mode = CDR_TMODE_DATA;
param.datablock_type = CDR_DB_ROM_MODE1;
param.session_format = CDR_SESS_CDROM;
break;
case CDR_DB_ROM_MODE2:
cdp->block_size = 2336;
param.track_mode = CDR_TMODE_DATA;
param.datablock_type = CDR_DB_ROM_MODE2;
param.session_format = CDR_SESS_CDROM;
break;
case CDR_DB_XA_MODE1:
cdp->block_size = 2048;
param.track_mode = CDR_TMODE_DATA;
param.datablock_type = CDR_DB_XA_MODE1;
param.session_format = CDR_SESS_CDROM_XA;
break;
case CDR_DB_XA_MODE2_F1:
cdp->block_size = 2056;
param.track_mode = CDR_TMODE_DATA;
param.datablock_type = CDR_DB_XA_MODE2_F1;
param.session_format = CDR_SESS_CDROM_XA;
break;
case CDR_DB_XA_MODE2_F2:
cdp->block_size = 2324;
param.track_mode = CDR_TMODE_DATA;
param.datablock_type = CDR_DB_XA_MODE2_F2;
param.session_format = CDR_SESS_CDROM_XA;
break;
case CDR_DB_XA_MODE2_MIX:
cdp->block_size = 2332;
param.track_mode = CDR_TMODE_DATA;
param.datablock_type = CDR_DB_XA_MODE2_MIX;
param.session_format = CDR_SESS_CDROM_XA;
break;
}
return acd_mode_select(cdp, (caddr_t)&param, param.page_length + 10);
}
static int
acd_flush(struct acd_softc *cdp)
{
int8_t ccb[16] = { ATAPI_SYNCHRONIZE_CACHE, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 };
return atapi_queue_cmd(cdp->atp, ccb, NULL, 0, ATPR_F_QUIET, 60, NULL,NULL);
}
static int
acd_read_track_info(struct acd_softc *cdp,
int32_t lba, struct acd_track_info *info)
{
int8_t ccb[16] = { ATAPI_READ_TRACK_INFO, 1,
lba>>24, lba>>16, lba>>8, lba,
0,
sizeof(*info)>>8, sizeof(*info),
0, 0, 0, 0, 0, 0, 0 };
int error;
if ((error = atapi_queue_cmd(cdp->atp, ccb, (caddr_t)info, sizeof(*info),
ATPR_F_READ, 30, NULL, NULL)))
return error;
info->track_start_addr = ntohl(info->track_start_addr);
info->next_writeable_addr = ntohl(info->next_writeable_addr);
info->free_blocks = ntohl(info->free_blocks);
info->fixed_packet_size = ntohl(info->fixed_packet_size);
info->track_length = ntohl(info->track_length);
return 0;
}
static int
acd_get_progress(struct acd_softc *cdp, int *finished)
{
int8_t ccb[16] = { ATAPI_READ_CAPACITY, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 };
char tmp[8];
if (atapi_test_ready(cdp->atp) != EBUSY) {
if (atapi_queue_cmd(cdp->atp, ccb, tmp, sizeof(tmp),
ATPR_F_READ, 30, NULL, NULL) != EBUSY) {
*finished = 100;
return 0;
}
}
if (cdp->atp->sense.sksv)
*finished = ((cdp->atp->sense.sk_specific2 |
(cdp->atp->sense.sk_specific1 << 8)) * 100) / 65535;
else
*finished = 0;
return 0;
}
static int
acd_send_cue(struct acd_softc *cdp, struct cdr_cuesheet *cuesheet)
{
int8_t ccb[16] = { ATAPI_SEND_CUE_SHEET, 0, 0, 0, 0, 0,
cuesheet->len>>16, cuesheet->len>>8, cuesheet->len,
0, 0, 0, 0, 0, 0, 0 };
int8_t *buffer;
int32_t error;
#ifdef ACD_DEBUG
int i;
#endif
buffer = malloc(cuesheet->len, M_ACD, M_NOWAIT);
if (!buffer)
return ENOMEM;
if ((error = copyin(cuesheet->entries, buffer, cuesheet->len)))
return error;
#ifdef ACD_DEBUG
printf("acd: cuesheet lenght = %d\n", cuesheet->len);
for (i=0; i<cuesheet->len; i++)
if (i%8) printf(" %02x", buffer[i]);
else printf("\n%02x", buffer[i]);
printf("\n");
#endif
error = atapi_queue_cmd(cdp->atp, ccb, buffer, cuesheet->len, 0, 30,
NULL, NULL);
free(buffer, M_ACD);
return error;
}
static int
acd_report_key(struct acd_softc *cdp, struct dvd_authinfo *ai)
{
struct dvd_miscauth *d;
u_int32_t lba = 0;
int16_t length;
int8_t ccb[16];
int error;
switch (ai->format) {
case DVD_REPORT_AGID:
case DVD_REPORT_ASF:
case DVD_REPORT_RPC:
length = 8;
break;
case DVD_REPORT_KEY1:
length = 12;
break;
case DVD_REPORT_TITLE_KEY:
length = 12;
lba = ai->lba;
break;
case DVD_REPORT_CHALLENGE:
length = 16;
break;
case DVD_INVALIDATE_AGID:
length = 0;
break;
default:
return EINVAL;
}
bzero(ccb, sizeof(ccb));
ccb[0] = ATAPI_REPORT_KEY;
ccb[2] = (lba >> 24) & 0xff;
ccb[3] = (lba >> 16) & 0xff;
ccb[4] = (lba >> 8) & 0xff;
ccb[5] = lba & 0xff;
ccb[8] = (length >> 8) & 0xff;
ccb[9] = length & 0xff;
ccb[10] = (ai->agid << 6) | ai->format;
d = malloc(length, M_ACD, M_NOWAIT | M_ZERO);
d->length = htons(length - 2);
error = atapi_queue_cmd(cdp->atp, ccb, (caddr_t)d, length,
ai->format == DVD_INVALIDATE_AGID ? 0 : ATPR_F_READ,
10, NULL, NULL);
if (error) {
free(d, M_ACD);
return error;
}
switch (ai->format) {
case DVD_REPORT_AGID:
ai->agid = d->data[3] >> 6;
break;
case DVD_REPORT_CHALLENGE:
bcopy(&d->data[0], &ai->keychal[0], 10);
break;
case DVD_REPORT_KEY1:
bcopy(&d->data[0], &ai->keychal[0], 5);
break;
case DVD_REPORT_TITLE_KEY:
ai->cpm = (d->data[0] >> 7);
ai->cp_sec = (d->data[0] >> 6) & 0x1;
ai->cgms = (d->data[0] >> 4) & 0x3;
bcopy(&d->data[1], &ai->keychal[0], 5);
break;
case DVD_REPORT_ASF:
ai->asf = d->data[3] & 1;
break;
case DVD_REPORT_RPC:
ai->reg_type = (d->data[0] >> 6);
ai->vend_rsts = (d->data[0] >> 3) & 0x7;
ai->user_rsts = d->data[0] & 0x7;
ai->region = d->data[1];
ai->rpc_scheme = d->data[2];
break;
case DVD_INVALIDATE_AGID:
break;
default:
error = EINVAL;
}
free(d, M_ACD);
return error;
}
static int
acd_send_key(struct acd_softc *cdp, struct dvd_authinfo *ai)
{
struct dvd_miscauth *d;
int16_t length;
int8_t ccb[16];
int error;
switch (ai->format) {
case DVD_SEND_CHALLENGE:
length = 16;
d = malloc(length, M_ACD, M_NOWAIT | M_ZERO);
bcopy(ai->keychal, &d->data[0], 10);
break;
case DVD_SEND_KEY2:
length = 12;
d = malloc(length, M_ACD, M_NOWAIT | M_ZERO);
bcopy(&ai->keychal[0], &d->data[0], 5);
break;
case DVD_SEND_RPC:
length = 8;
d = malloc(length, M_ACD, M_NOWAIT | M_ZERO);
d->data[0] = ai->region;
break;
default:
return EINVAL;
}
bzero(ccb, sizeof(ccb));
ccb[0] = ATAPI_SEND_KEY;
ccb[8] = (length >> 8) & 0xff;
ccb[9] = length & 0xff;
ccb[10] = (ai->agid << 6) | ai->format;
d->length = htons(length - 2);
error = atapi_queue_cmd(cdp->atp, ccb, (caddr_t)d, length, 0,
10, NULL, NULL);
free(d, M_ACD);
return error;
}
static int
acd_read_structure(struct acd_softc *cdp, struct dvd_struct *s)
{
struct dvd_miscauth *d;
u_int16_t length;
int8_t ccb[16];
int error = 0;
switch(s->format) {
case DVD_STRUCT_PHYSICAL:
length = 21;
break;
case DVD_STRUCT_COPYRIGHT:
length = 8;
break;
case DVD_STRUCT_DISCKEY:
length = 2052;
break;
case DVD_STRUCT_BCA:
length = 192;
break;
case DVD_STRUCT_MANUFACT:
length = 2052;
break;
case DVD_STRUCT_DDS:
case DVD_STRUCT_PRERECORDED:
case DVD_STRUCT_UNIQUEID:
case DVD_STRUCT_LIST:
case DVD_STRUCT_CMI:
case DVD_STRUCT_RMD_LAST:
case DVD_STRUCT_RMD_RMA:
case DVD_STRUCT_DCB:
return ENOSYS;
default:
return EINVAL;
}
d = malloc(length, M_ACD, M_NOWAIT | M_ZERO);
d->length = htons(length - 2);
bzero(ccb, sizeof(ccb));
ccb[0] = ATAPI_READ_STRUCTURE;
ccb[6] = s->layer_num;
ccb[7] = s->format;
ccb[8] = (length >> 8) & 0xff;
ccb[9] = length & 0xff;
ccb[10] = s->agid << 6;
error = atapi_queue_cmd(cdp->atp, ccb, (caddr_t)d, length, ATPR_F_READ,
30, NULL, NULL);
if (error) {
free(d, M_ACD);
return error;
}
switch (s->format) {
case DVD_STRUCT_PHYSICAL: {
struct dvd_layer *layer = (struct dvd_layer *)&s->data[0];
layer->book_type = d->data[0] >> 4;
layer->book_version = d->data[0] & 0xf;
layer->disc_size = d->data[1] >> 4;
layer->max_rate = d->data[1] & 0xf;
layer->nlayers = (d->data[2] >> 5) & 3;
layer->track_path = (d->data[2] >> 4) & 1;
layer->layer_type = d->data[2] & 0xf;
layer->linear_density = d->data[3] >> 4;
layer->track_density = d->data[3] & 0xf;
layer->start_sector = d->data[5] << 16 | d->data[6] << 8 | d->data[7];
layer->end_sector = d->data[9] << 16 | d->data[10] << 8 | d->data[11];
layer->end_sector_l0 = d->data[13] << 16 | d->data[14] << 8|d->data[15];
layer->bca = d->data[16] >> 7;
break;
}
case DVD_STRUCT_COPYRIGHT:
s->cpst = d->data[0];
s->rmi = d->data[0];
break;
case DVD_STRUCT_DISCKEY:
bcopy(&d->data[0], &s->data[0], 2048);
break;
case DVD_STRUCT_BCA:
s->length = ntohs(d->length);
bcopy(&d->data[0], &s->data[0], s->length);
break;
case DVD_STRUCT_MANUFACT:
s->length = ntohs(d->length);
bcopy(&d->data[0], &s->data[0], s->length);
break;
default:
error = EINVAL;
}
free(d, M_ACD);
return error;
}
static int
acd_eject(struct acd_softc *cdp, int close)
{
int error;
if ((error = acd_start_stop(cdp, 0)) == EBUSY) {
if (!close)
return 0;
if ((error = acd_start_stop(cdp, 3)))
return error;
acd_read_toc(cdp);
acd_prevent_allow(cdp, 1);
cdp->flags |= F_LOCKED;
return 0;
}
if (error)
return error;
if (close)
return 0;
acd_prevent_allow(cdp, 0);
cdp->flags &= ~F_LOCKED;
cdp->atp->flags |= ATAPI_F_MEDIA_CHANGED;
return acd_start_stop(cdp, 2);
}
static int
acd_blank(struct acd_softc *cdp, int blanktype)
{
int8_t ccb[16] = { ATAPI_BLANK, 0x10 | (blanktype & 0x7), 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 };
cdp->atp->flags |= ATAPI_F_MEDIA_CHANGED;
return atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 30, NULL, NULL);
}
static int
acd_prevent_allow(struct acd_softc *cdp, int lock)
{
int8_t ccb[16] = { ATAPI_PREVENT_ALLOW, 0, 0, 0, lock,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
return atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 30, NULL, NULL);
}
static int
acd_start_stop(struct acd_softc *cdp, int start)
{
int8_t ccb[16] = { ATAPI_START_STOP, 0, 0, 0, start,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
return atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 30, NULL, NULL);
}
static int
acd_pause_resume(struct acd_softc *cdp, int pause)
{
int8_t ccb[16] = { ATAPI_PAUSE, 0, 0, 0, 0, 0, 0, 0, pause,
0, 0, 0, 0, 0, 0, 0 };
return atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 30, NULL, NULL);
}
static int
acd_mode_sense(struct acd_softc *cdp, int page, caddr_t pagebuf, int pagesize)
{
int8_t ccb[16] = { ATAPI_MODE_SENSE_BIG, 0, page, 0, 0, 0, 0,
pagesize>>8, pagesize, 0, 0, 0, 0, 0, 0, 0 };
int error;
error = atapi_queue_cmd(cdp->atp, ccb, pagebuf, pagesize, ATPR_F_READ, 10,
NULL, NULL);
#ifdef ACD_DEBUG
atapi_dump("acd: mode sense ", pagebuf, pagesize);
#endif
return error;
}
static int
acd_mode_select(struct acd_softc *cdp, caddr_t pagebuf, int pagesize)
{
int8_t ccb[16] = { ATAPI_MODE_SELECT_BIG, 0x10, 0, 0, 0, 0, 0,
pagesize>>8, pagesize, 0, 0, 0, 0, 0, 0, 0 };
#ifdef ACD_DEBUG
ata_printf(cdp->atp->controller, cdp->atp->unit,
"modeselect pagesize=%d\n", pagesize);
atapi_dump("mode select ", pagebuf, pagesize);
#endif
return atapi_queue_cmd(cdp->atp, ccb, pagebuf, pagesize, 0, 30, NULL, NULL);
}
static int
acd_set_speed(struct acd_softc *cdp, int rdspeed, int wrspeed)
{
int8_t ccb[16] = { ATAPI_SET_SPEED, 0, rdspeed >> 8, rdspeed,
wrspeed >> 8, wrspeed, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
int error;
error = atapi_queue_cmd(cdp->atp, ccb, NULL, 0, 0, 30, NULL, NULL);
if (!error)
acd_get_cap(cdp);
return error;
}
static void
acd_get_cap(struct acd_softc *cdp)
{
int retry = 5;
/* get drive capabilities, some drives needs this repeated */
while (retry-- && acd_mode_sense(cdp, ATAPI_CDROM_CAP_PAGE,
(caddr_t)&cdp->cap, sizeof(cdp->cap)))
cdp->cap.max_read_speed = ntohs(cdp->cap.max_read_speed);
cdp->cap.cur_read_speed = ntohs(cdp->cap.cur_read_speed);
cdp->cap.max_write_speed = ntohs(cdp->cap.max_write_speed);
cdp->cap.cur_write_speed = max(ntohs(cdp->cap.cur_write_speed), 177);
cdp->cap.max_vol_levels = ntohs(cdp->cap.max_vol_levels);
cdp->cap.buf_size = ntohs(cdp->cap.buf_size);
}